Storage-centric Mutable Blockchain in the network of trusted nodes

Abhijith Rajeev (Abe)

This prototype is built according to the proposed model; Reserved blocks — Nodes get ownership of the blocks
whenever they are moving out of strong connectivity, in that case; only the owner nodes are able to contribute
to that particular block. Rest of the nodes will keep contributing to the blockchain apart from the reserved
block (this part is not implemented in this prototype).

In this document we will discuss two prototypes, first is a simulation where all the blockchain operations
which were discussed in the earlier proposal are performed over an APl interface and the HTTP server acts as
amasternode whichverifies and maintains the blockchainintegrity. Since it'sasimulationand APl call, we
will be manually entering the Owner ID and Node ID,

Second is where the more detailed networking is established over a TCP interface, which allows us to
launch and communicate via multiple terminalwindows. Since it'sa TCP communication, the dataisinthe
form of bytes and decoding the information such as Owner and Node ID are not achieved yet. This prototype
will only have data (BPM data), provided by nodes and not Owner ID and Node ID

Datamodel: Setofinformationineachblocksareinthefollowingorder
Index — blockindex
Timestamp — time at which block is framed
Owner—ownerlD, ifassignedany(0—incase ofnoowner)
Node—ID ofthe node whichis contributing datato the block

BPM-datauploadedtotheblock,integerarraydatatypeisusedinthis prototype (BPM=beats per
min, adopted from a blockchain repo)

Hash—hashgeneratedfromtheentireblock (inthisprototypeitsgeneratedbyincludingallblock
information except for data (BPM array))

Previous Hash — hash of the previous block
Note: Prototypeis builtwith Golang; forthe availability of packages, boiler plate codes and code reusability.

Genesis block: Genesis block is the first block in the chain, and it's hard coded. In this prototype blockchain is
an array or slice to be more precise (a Golang datatype)

{

"Index": O,
"Timestamp": "2018-06-15 04:04:00.9346622 -0400 EDT m=+0.024374501",
"Owner": O,
"Node": 0,
"BPM": [
65,
23,
54
1,
"Hash": "2ac9a6746acab543af8dff39894cfe8173afbal2leb01c6fae33d52947222855ef",

"PrevHash": ""

BPM data size set to 3, for the purpose of this demonstration.

- Hashofeveryblockislinked using the previous block, used to validate the integrity ofthe chain. In
case conflict (whentwo nodes frames the block at nearly same time), longestchainruleisused to
maintain the blockchaincontinuity.

Prototype 1:

- AHTTPserverisestablishedandlaunched, populargolang package GorillaMuxis used to supportthis
feature.PORT 8080whichisprovidedinthe .envfileisread throughthe muxfunctionandthe portis
made open forcommunication.

- Thegolangpackagegodotenvisusedheretoreadfromthefileandtooperatethroughtheport. The
goalng package spew is used to printthe JSON data in a well formatted way.

- Oncethe program is made running, the genesis block is visible on the browser window.

/ [} localhost:8080 x_'\!‘
- C) | ® localhost:808C

[
r
L
"Index": @,
"Timestamp": "2018-06-15 04:04:00.9346622 -2400 EDT m=+2.024374501",
"Owner": 0,
"Node": @,
lprl.-‘ll: [
65,
23,
54

1
"Hash": "2ac%a6746aca543af8dff39894cfe8173afba2leb@ic6faec33d52947222855ef",
"PrevHash": ""

- It's also visible in the terminal window;

$ go run mainvalid.go
2018/06/15 04:04:00 HTTP Server INh Listening on port : 8080
(main.Block) {
Index: (int) 0,
Timestamp: (string) (len=52) "2018-06-15 04:04:00.9346622 -0400 EDT m=+0.024374
SOE™,
Owner: (int) O,
Node: (int) O,
BPM: ([Jint) (len=3 cap=3) {
(int) 65,
(int) 23,
54

(string) (len=64) "2ac9a6746aca543af8dff39894cfe8l173afba2leb0lc6fae33d529

- Nowopen an APl testing tool, we can start playing with our blockchain. Here we can see the manually
given information such as Node ID, Owner ID has been sent along with the actual data.

http://localhost:8080 @ -+ e

POST ~ http://localhost:8080
Authorization Headers (1) Body ® Pre-request Script Tests
form-data x-www-form-urlencoded ® raw binary Text ¥

{| "Owner":0,
"Node":3,
"BPM":21%}

W R

- Nowwecanseethesamedatareflectedinourblockchain, here Owner=0; meansthatthereareno
reservedblocks. Any nodes can contribute tothe blockand BPMis the data being sentto the chain

from node 3.

- We’lldo more postrequests and see which are the data being added and being rejected from the
blockchain. And we can also see that after three requests; i.e, after three integer elements being sent
block is framed and the chain starts to accept data for the new block. (this is the limit set for the
purpose of thisdemonstration)

' [localhost:8080

a-

< CcC 0O ’@ localhost:3080

[
{

"Index": @,

"Timestamp"”: "2018-06-15 04:24:00.9346622 -2400 EDT m=+2.@24374501",

"Owner": @,
"Node": @,
"BPM": [

65,

235

54

1,

"Hash": "2ac%9a6746aca543af8dff39894cfe8173afbha2lebllc6faec33d52947222855ef",

"PrevHash":

"Index": 1,

"Timestamp": "2018-06-15 ©4:04:11.372034 -2400 EDT m=+1@.461746201",

"Owner": @,
"Node": 3,
"BPM": [

21,

43,

27

1,

"Hash": "26cfcbc31287ac53d3ebddfc73abc87782e281197b3%e2cbf58383@dc5345b2¢",

"PrevHash":

"2ac9a6746aca543af8dff39894cfe8173afba2leb@lcefae33d52947222855ef"

- Let’s see when the blocks are being reserved, in this case only the owner node will be able to
contribute to the block. Meaning that the Owner ID and the Node ID must be same in order to

contribute to thenode.
- ldeally restofthe nodes should be able to contribute to the unreserved — highest block, butin this

demonstrational prototype only single mutex operation was performed.

http://localhost:8080 @ -+ eee
POST ~+ http://localhost:8080
Body ®
form-data x-www-form-uriencoded ® raw binary Te v

{ "Owner":2,
2 "Node™":3,
3 "BPM":1277%

- Thisdatawillnotbe posted onto our blockchain as there is conflictin the Owner ID and Node ID.

http://localhost:8080 @ + e
POST ~ http://localhost:8080
Body @
form-data x-www-form-urlencoded ® raw binary Text

“"Owner™:3,
"Node":3,
"BPM":1993]

W N

Now with a modified Ownerandthe Node IDs, the new datato be added to the blockchainis sentto
the master node for verification. And the chain with new block is below.

i
"Index": 1,
"Timestamp™: "2218-06-15 ©4:94:11.372034 -2420 EDT m=+12.461746201",
"Owner": ©,
"Node": 3,
"BPM": [
21,
43,
27
])
"Hash": "26cfc6c31287ac53d3ebddfc73abc87782e081197b3%e2cbfS58383@dc5345b2c”,
"PrevHash": "2ac9a6746aca543af8dff39894cfe8173afba2leb@lchfaes33d52947222855ef"
}s
{
"Index": 2,
"Timestamp”: "2818-06-15 ©7:22:15.7483113 -0400 EDT m=+11894.842952901",
"Owner"™: 3,
"Node": 3,
"BPM": [
199,
19,
67
1,
"Hash": "ff7db99d7e563ad17925a6922e9fda388d352468412556b260c4ece@adddS5adl”,
"PrevHash": "26cfc6c31287ac53d3ebddfc73abc87782e281197b3%e2cbf583830dc5345b2c™

¥

Note: Source code and readme file to run the prototype application will be given along with this document.

Prototype 2:

- ATCPserverisestablished overthe PORT 9000 along with initiating the genesis block, any nodes can
come in connection with the established server by using the command: nclocalhost 9000.

- Once the connection is established, nodes will be able to contribute to the blockchain, as in the
prototype 1 the data in this blockchain is kept mutable and of length two integer arrays.

- Sinceisthedataistransmitted overthe TCP, it'sinthe form of bytes and we are notdoing the bytes
segmentation here so only data (BPM) is sent over the established channel (No owner id or node id).

- This prototype almost mimics the operation of network of nodes in a blockchain environment.
Whereas in the actual live blockchain network; nodes conmmunicate via RPCs (remote procedural
calls), here as its build on a single machine and instead of having multiple machines as nodes we have
multiple terminals; the communication is via IPCs (Inter Process Communication).

$ go run main.go
I (main.Block) {
| Index: (int) 0,
Timestamp: (string) (len=52) "2018-06-15 12:33:25.1684887 -0400 EDT m=+0.018016
801",
| BPM: ([Jint) (len=2 cap=2) {
(int) 45,
(int) 23
} '
Hash: (string) "",
PrevHash: (string) "

1
J
2018/06/15 12:33:25 HTTP Server Listening on port : 9000

- Theserverstartsontheport9000,alongwiththe genesisblock. Nowlet’'sconnecttothisbyopening
as many terminals as we want by entering the command; nc localhost 9000

- ByenteringanewBPMvalue anynodecancontributetotheblockchain. Andtheinitiatornodeasa
master node and handles all the verification and validation part.

Future work:

IPFS/storageintegration: Sinceit’'sastorage centricblockchainadding IPFS orany othersort
of storage (cloud storage like S3) part will be done in the future.

- Multi-node validating capacity: As this is a simulation, only a master node is capable of
validatingand addingblocksto the chain. Amuch sophisticated consensus algorithm with
applicationandrulesbasedinallconnected nodes makesitafullyfunctional blockchain.

- Remote procedural calls: In this simulation the inter-nodal communication (inter-process
communication)is established over IPCs. The actual network would require RPC capability.

- Network Mem pool: The transactions contributed by the nodes of network are storedina
memory bufferbefore addingtotheblockchain. Hereinthis prototypewe areusinganarray
buffer on the master node, butin the actual blockchain it's going to be a distributed unit.

- Distributed hash table or Merkle tree integration: For the purpose of demonstration and
keep the prototype simple the data type used was a simple integer array. The actual
blockchain would have wither distributed hash table ora merkle tree as the storage part of
the block.

- Secure access of data: The encryption techniques like proxy re-encryption or circular
encryptioncanbeintegrated withthe blockchaintodelegateaccessonlyrequirednodes.

Note: Source code of both the prototypes are sent along with this document. With a minimal
environmental setup anyone would be able to run the prototype model on their machine.

Setup:

- Once Golangis on the machine, we would need the packages by entering the command

go getgithub.com/davecgh/go-spew/spew

go get github.com/gorilla/mux

go get github.com/joho/godotenv
- Incase .envis missing, create a file with the name “.env” with the content “PORT=8080". This

would help in establishing the master nodal server.

- Then run the source code file;

Go run main.go
- And contribute to the blockchain via, Postman. Data sentis in the form of JSON.
- Forthe protype 2: after running the main.go

o Open as many terminal as wanted by entering the command: nc localhost 9000

- Contribute to the blockchain by sending over the BPM data.

