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Overview  
Starting with version 2.0, the OpenEXR image file format supports deep images.  In a regular, or flat image, 

every pixel stores at most one value per channel.  In contrast, each pixel in a deep image can store an 

arbitrary number of values or samples per channel.  Each of those samples is associated with a depth, or 

distance from the viewer. Together with the two-dimensional pixel raster, the samples at different depths 

form a three-dimensional data set.   

The open-source OpenEXR file I/O library defines the file format for deep images, and it provides 

convenient methods for reading and writing deep image files. However, the library does not define how 

deep images are meant to be interpreted.  In order to encourage compatibility among application 

programs and image processing libraries, this document describes a standard way to represent point and 

volume samples in deep images, and it defines basic compositing operations such as merging two deep 

images or converting a deep image into a flat image. 
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Definitions 

Flat and Deep Images, Samples  

For a single-part OpenEXR file an image is the set of all channels in the file.  For a multi-part file an image 

is the set of all channels in the same part of the file.   

A flat image has at most one stored value or sample per pixel per channel.  The most common case is an 

RGB image, which contains three channels, and every pixel has exactly one 𝑅, one 𝐺 and one 𝐵 sample.  

Some channels in a flat image may be sub-sampled, as is the case with luminance-chroma images, where 

the luminance channel has a sample at every pixel, but the chroma channels have samples only at every 

second pixel of every second scan line.   

A deep image can store an unlimited number of samples per pixel, and each of those samples is associated 

with a depth, or distance from the viewer.   

A pixel at pixel space location (𝑥, 𝑦) in a deep image has 𝑛(𝑥, 𝑦) samples in each channel.  The number of 

samples varies from pixel to pixel, and any non-negative number of samples, including zero, is allowed.  

However, all channels in a single pixel have the same number of samples. 

The samples in each channel are numbered from 0 to 𝑛(𝑥, 𝑦) − 1, and the expression 𝑆𝑖(𝑐, 𝑥, 𝑦) refers to 

sample number 𝑖 in channel 𝑐 of the pixel at location (𝑥, 𝑦).   

In the following we will for the most part discuss a single pixel.  For readability we will omit the coordinates 

of the pixel; expressions such as 𝑛 and 𝑆𝑖(𝑐) are to be understood as 𝑛(𝑥, 𝑦) and 𝑆𝑖(𝑐, 𝑥, 𝑦) respectively.   

Channel Names and Layers  

The channels in an image have names that serve two purposes: specifying the intended interpretation of 

each channel, and grouping the channels into layers.   

If a channel name contains one or more periods, then the part of the channel name that follows the last 

period is the base name.  If a channel name contains no periods, then the entire channel name is the base 

name.   

[Examples: the base name of channel 𝑅 is 𝑅; the base name of channel 𝐿1. 𝐿2. 𝑅 is 𝑅.]  

If a channel name contains one or more periods, then the part of the channel name before the last period 

is the channel's layer name.  If a channel name contains no periods, then the layer name is an empty 

string.   

[Examples: the layer name of channel 𝑅 is the empty string; the layer name of channel 𝐿1. 𝐿2. 𝑅 is 𝐿1. 𝐿2.]  

The set of all channels in an image that share the same layer name is called a layer.   

The set of all channels in an image whose layer name is the empty string is called the base layer.   
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If the name of one layer is a prefix of the name of another layer, then the first layer encloses the second 

layer, and the second layer is nested in the first layer.  Since the empty string is a prefix of any other string, 

the base layer encloses all other layers.   

A layer directly encloses a second layer if there is no third layer that is nested in the first layer and encloses 

the second layer.   

[Examples: layer 𝐿1 encloses layers 𝐿1. 𝐿2 and 𝐿1. 𝐿2. 𝐿3.  Layer L1 directly encloses layer 𝐿1. 𝐿2, but 𝐿1 

does not directly enclose 𝐿1. 𝐿2. 𝐿3.]  

Alpha, Color, Depth and Auxiliary Channels  

A channel whose base name is 𝐴, 𝐴𝑅, 𝐴𝐺 or 𝐴𝐵 is an alpha channel.  All samples must be greater than or 

equal to zero, and less than or equal to one. 

A channel whose base name is 𝑅, 𝐺, 𝐵, or 𝑌 is a color channel.   

A channel whose full name is 𝑍 or 𝑍𝐵𝑎𝑐𝑘, is a depth channel.  All samples in a depth channel must be 

greater than or equal to zero. 

A channel that is not an alpha, color or depth channel is an auxiliary channel. 

Required Depth Channels 
The base layer of a deep image must include a depth channel that is called 𝑍.   

The base layer of a deep image may include a depth channel called 𝑍𝐵𝑎𝑐𝑘.  If the base layer does not 

include one, then a 𝑍𝐵𝑎𝑐𝑘 channel can be generated by copying the 𝑍 channel. 

Layers other than the base layer may include channels called 𝑍 or 𝑍𝐵𝑎𝑐𝑘, but those channels are auxiliary 

channels and do not determine the positions of any samples in the image. 

Sample Locations, Point and Volume Samples 

The depth samples 𝑆𝑖(𝑍) and 𝑆𝑖(𝑍𝐵𝑎𝑐𝑘) determine the positions of the front and the back of sample 

number 𝑖 in all other channels in the same pixel. 

If 𝑆𝑖(𝑍) ≥ 𝑆𝑖(𝑍𝐵𝑎𝑐𝑘), then sample number 𝑖 in all other channels covers the single depth value 𝑧 = 𝑆𝑖(𝑍), 

where 𝑧 is the distance of the sample from the viewer.  Sample number 𝑖 is called a point sample. 

If 𝑆𝑖(𝑍) < 𝑆𝑖(𝑍𝐵𝑎𝑐𝑘), then sample number 𝑖 in all other channels covers the half open interval 𝑆𝑖(𝑍) ≤

𝑧 < 𝑆𝑖(𝑍𝐵𝑎𝑐𝑘).  Sample number 𝑖  is called a volume sample. 𝑆𝑖(𝑍) is the sample’s front and 𝑆𝑖(𝑍𝐵𝑎𝑐𝑘) 

is the sample’s back. 

Point samples are used to represent the intersections of surfaces with a pixel.  A surface intersects a pixel 

at a well-defined distance from the viewer, but the surface has zero thickness.  Volume samples are used 

to represent the intersections of volumes with a pixel. 
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Required Alpha Channels 

Every color or auxiliary channel in a deep image must have an associated alpha channel. 

The associated alpha channel for a given color or auxiliary channel, 𝑐, is found by looking for a matching 

alpha channel (see below), first in the layer that contains 𝑐, then in the directly enclosing layer, then in 

the layer that directly encloses that layer, and so on, until the base layer is reached.  The first matching 

alpha channel found this way becomes the alpha channel that is associated with 𝑐. 

Each color our auxiliary channel matches an alpha channel, as shown in the following table: 

Color or auxiliary channel base name Matching alpha channel base name 
  
 𝑅   𝐴𝑅 if it exists, otherwise 𝐴 
 𝐺   𝐴𝐺 if it exists, otherwise 𝐴 
 𝐵   𝐴𝐵 if it exists, otherwise 𝐴 
 𝑌   𝐴  
(any auxiliary channel)  𝐴  

 

[Example: The following table shows the list of channels in a deep image, and the associated alpha channel 

for each color or auxiliary channel. 

Channel name Associated alpha channel 
  
 𝐴    
 𝐴𝑅    
 𝐴𝐺   
 𝑅   𝐴𝑅  
 𝑍    
 𝐿1. 𝐴    
 𝐿1. 𝐴𝑅    
 𝐿1. 𝑅   𝐿1. 𝐴𝑅  
 𝐿1. 𝐺   𝐿1. 𝐴  
 𝐿1. 𝐿2. 𝐺   𝐿1. 𝐴  

] 

Sorted, Non-Overlapping and Tidy Images 

The samples in a pixel may or may not be sorted according to depth, and the sample depths or depth 

ranges may or may not overlap each other. 

A pixel in a deep image is sorted if for every 𝑖 and 𝑗 with 𝑖 < 𝑗, 

𝑆𝑖(𝑍) <  𝑆𝑗(𝑍)  or (𝑆𝑖(𝑍) = 𝑆𝑗(𝑍) and 𝑆𝑖(𝑍𝐵𝑎𝑐𝑘) ≤ 𝑆𝑗(𝑍𝐵𝑎𝑐𝑘)). 

A pixel in a deep image is non-overlapping if for every 𝑖 and 𝑗 with 𝑖 ≠ 𝑗, 

(𝑆𝑖(𝑍) <  𝑆𝑗(𝑍) and 𝑆𝑖(𝑍𝐵𝑎𝑐𝑘) ≤  𝑆𝑗(𝑍))  or (𝑆𝑗(𝑍) <  𝑆𝑖(𝑍) and 𝑆𝑗(𝑍𝐵𝑎𝑐𝑘) ≤  𝑆𝑖(𝑍))  or 
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(𝑆𝑖(𝑍) =  𝑆𝑗(𝑍) and 𝑆𝑖(𝑍𝐵𝑎𝑐𝑘) ≤  𝑆𝑖(𝑍) and 𝑆𝑗(𝑍𝐵𝑎𝑐𝑘) >  𝑆𝑗(𝑍))  or 

(𝑆𝑗(𝑍) =  𝑆𝑖(𝑍) and 𝑆𝑗(𝑍𝐵𝑎𝑐𝑘) ≤  𝑆𝑗(𝑍) and 𝑆𝑖(𝑍𝐵𝑎𝑐𝑘) >  𝑆𝑖(𝑍)).      

A pixel in a deep image is tidy if it is sorted and non-overlapping. 

A deep image is sorted if all of its pixels are sorted; it is non-overlapping if all of its pixels are non-

overlapping; and it is tidy if all of its pixels are tidy. 

The images stored in an OpenEXR file are not required to be tidy.  Some deep image processing operations, 

for example, flattening a deep image, require tidy input images.  However, making an image tidy loses 

information, and some kinds of data cannot be represented with tidy images, for example, object 

identifiers or motion vectors for volume objects that pass through each other. 

Some application programs that read deep images can run more efficiently with tidy images.  For example, 

in a 3D renderer that uses deep images as shadow maps, shadow lookups are faster if the samples in each 

pixel are sorted and non-overlapping. 

Application programs that write deep OpenEXR files can add a deepImageState attribute to the header to 

let file readers know if the pixels in the image are tidy or not.  The attribute is of type DeepImageState, 

and can have the following values: 

Value Interpretation 
  
MESSY Samples may not be sorted, and overlaps are possible. 
SORTED Samples are sorted, but overlaps are possible. 
NON_OVERLAPPING Samples do not overlap, but may not be sorted. 
TIDY Samples are sorted and do not overlap. 

 
If the header does not contain a deepImageState attribute, then file readers should assume that the image 

is MESSY.  The OpenEXR file I/O library does not verify that the samples in the pixels are consistent with 

the deepImageState attribute.  Application software that handles deep images may assume that the 

attribute value is valid, as long as the software will not crash or lock up if any pixels are inconsistent with 

the deepImageState. 

Alpha and Color as Functions of Depth 
Given a color channel, 𝑐, and its associated alpha channel, 𝛼, the samples 𝑆𝑖(𝑐), 𝑆𝑖(𝛼), 𝑆𝑖(𝑍) and 

𝑆𝑖(𝑍𝐵𝑎𝑐𝑘) together represent the intersection of an object with a pixel.  The color of the object is 𝑆𝑖(𝑐), 

its opacity is 𝑆𝑖(𝛼), and the distances of its front and back from the viewer are indicated by 𝑆𝑖(𝑍) and 

𝑆𝑖(𝑍𝐵𝑎𝑐𝑘) respectively. 

One Sample 

We now define two functions, 𝑧 ⟼ 𝛼𝑖(𝑧), and 𝑧 ⟼ 𝑐𝑖(𝑧), that represent the opacity and color of the 

part of the object whose distance from the viewer is no more than 𝑧.  In other words, we divide the object 
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into two parts by splitting it at distance 𝑧;  𝛼𝑖(𝑧) and 𝑐𝑖(𝑧) are the opacity and color of the part that is 

closer to the viewer. 

For a point sample, 𝛼𝑖(𝑧) and 𝑐𝑖(𝑧) are step functions: 

𝛼𝑖(𝑧) = {
0, 𝑧 <  𝑆𝑖(𝑍)

𝑆𝑖(𝛼), 𝑧 ≥  𝑆𝑖(𝑍)
 

𝑐𝑖(𝑧) = {
0, 𝑧 <  𝑆𝑖(𝑍)

𝑆𝑖(𝑐), 𝑧 ≥  𝑆𝑖(𝑍)
 

 

For a volume sample, we define a helper function 𝑥(𝑧) that consists of two constant segments and a linear 

ramp: 

𝑥(𝑧) =

{
 

 
0, 𝑧 ≤ 𝑆𝑖(𝑍)

𝑧 − 𝑆𝑖(𝑍)

𝑆𝑖(𝑍𝐵𝑎𝑐𝑘) − 𝑆𝑖(𝑍)
, 𝑆𝑖(𝑍) < 𝑧 < 𝑆𝑖(𝑍𝐵𝑎𝑐𝑘)

1, 𝑧 ≥ 𝑆𝑖(𝑍𝐵𝑎𝑐𝑘)

 

 

𝑧 

𝜶𝒊(𝒛) 

𝑆𝑖(𝑍𝐵𝑎𝑐𝑘) 

𝑆𝑖(𝑍) 0 

0 

1 
𝒄𝒊(𝒛) 𝑆𝑖(𝑐) 

𝑆𝑖(𝛼) 

𝑧 

𝑆𝑖(𝑍𝐵𝑎𝑐𝑘) 

𝑆𝑖(𝑍) 0 

0 

1 𝒙(𝒛) 
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With this helper function, 𝛼𝑖(𝑧) and 𝑐𝑖(𝑧) are defined as follows: 

𝛼𝑖(𝑧) = 1 − (1 − 𝑆𝑖(𝛼))
𝑥(𝑧)

 

𝑐𝑖(𝑧) = {
𝑆𝑖(𝑐) ∙

𝛼𝑖(𝑧)

𝑆𝑖(𝛼)
, 𝑆𝑖(𝛼) > 0

𝑆𝑖(𝑐) ∙ 𝑥(𝑧), 𝑆𝑖(𝛼) = 0

 

Note that the second case in the definition of 𝑐𝑖(𝑧) is the limit of the first case as 𝑆𝑖(𝛼) approaches zero. 

The figure below shows an example of 𝛼𝑖(𝑧) and 𝑐𝑖(𝑧) for a volume sample.  Alpha and color are zero up 

to 𝑍, increase gradually between 𝑍 and 𝑍𝐵𝑎𝑐𝑘, and then remain constant. 

 

Whole Pixel 
If a pixel is tidy, then we can define two functions, 𝑧 ⟼ 𝐴(𝑧), and 𝑧 ⟼ 𝐶(𝑧), that represent the total 

opacity and color of all objects whose distance from the viewer is no more than 𝑧: if the distance 𝑧 is 

inside a volume object, we split the object at 𝑧.  Then we use “over” operations to composite all objects 

that are no further away than 𝑧. 

Given a foreground object with opacity 𝛼𝑓  and color 𝑐𝑓, and a background object with opacity 𝛼𝑏 and 

color 𝑐𝑏, an “over” operation computes the total opacity and color, 𝛼 and 𝑐, that result from placing the 

foreground object in front of the background object: 

𝛼 = 𝛼𝑓 + (1 − 𝛼𝑓) ∙ 𝛼𝑏  

𝑐 = 𝑐𝑓 + (1 − 𝛼𝑓) ∙ 𝑐𝑏 

𝑧 

𝜶(𝒛) 

𝑆𝑖(𝑍𝐵𝑎𝑐𝑘) 

𝑆𝑖(𝑍) 0 

0 

1 
𝒄(𝒛) 𝑆𝑖(𝑐) 

𝑆𝑖(𝛼) 
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We define two sets of helper functions: 

𝐴𝑖(𝑧) = {
0, 𝑖 < 0

𝐴𝑖−1(𝑆𝑖(𝑍)) + (1 − 𝐴𝑖−1(𝑆𝑖(𝑍))) ∙ 𝛼𝑖(𝑧), 𝑖 ≥ 0
 

𝐶𝑖(𝑧) = {
0, 𝑖 < 0

𝐶𝑖−1(𝑆𝑖(𝑍)) + (1 − 𝐴𝑖−1(𝑆𝑖(𝑍))) ∙ 𝑐𝑖(𝑧), 𝑖 ≥ 0
 

With these helper functions, 𝐴(𝑧) and 𝐶(𝑧) look like this: 

𝐴(𝑧) = {

𝐴−1(𝑧), 𝑧 < 𝑆0(𝑍)

𝐴𝑖(𝑧), 𝑆𝑖(𝑍) ≤ 𝑧 < 𝑆𝑖+1(𝑍)

𝐴𝑛−1(𝑧), 𝑆𝑛−1(𝑍) ≤ 𝑧

 

𝐶(𝑧) = {

𝐶−1(𝑧), 𝑧 < 𝑆0(𝑍)

𝐶𝑖(𝑧), 𝑆𝑖(𝑍) ≤ 𝑧 < 𝑆𝑖+1(𝑍)

𝐶𝑛−1(𝑧), 𝑆𝑛−1(𝑍) ≤ 𝑧

 

The figure below shows an example of 𝐴(𝑧) and 𝐶(𝑧).  Sample number 𝑖 is a volume sample; its  𝑍𝐵𝑎𝑐𝑘 

is greater than its 𝑍.  Alpha and color increase gradually between 𝑍 and 𝑍𝐵𝑎𝑐𝑘 and then remain constant.  

Sample number 𝑖 + 1, whose 𝑍 and 𝑍𝐵𝑎𝑐𝑘 are equal, is a point sample where alpha and color 

discontinuously jump to a new value. 

 

  

𝑧 

𝑨(𝒛) 

𝑆𝑖(𝑍𝐵𝑎𝑐𝑘) 𝑆𝑖+1(𝑍𝐵𝑎𝑐𝑘) 

𝑆𝑖(𝑍) 𝑆𝑖+1(𝑍) 0 

0 

1 
𝑪(𝒛) 
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Basic Deep Image Operations 
Given the definitions above, we can now construct a few basic deep image processing operations. 

Splitting a Volume Sample 

Our first operation is splitting volume sample number 𝑖 of a pixel at a given depth, 𝑧, where  

𝑆𝑖(𝑍) < 𝑧 < 𝑆𝑖(𝑍𝐵𝑎𝑐𝑘). 

The operation replaces the original sample with two new samples.  If the first of those new samples is 

composited over the second one, then the total opacity and color are the same as in the original sample. 

For the depth channels, the new samples are: 

𝑆𝑖,𝑛𝑒𝑤(𝑍) =  𝑆𝑖(𝑍) 
 

𝑆𝑖+1,𝑛𝑒𝑤(𝑍) =  𝑧 
 

𝑆𝑖,𝑛𝑒𝑤(𝑍𝐵𝑎𝑐𝑘) =  𝑧 
 

𝑆𝑖+1,𝑛𝑒𝑤(𝑍𝐵𝑎𝑐𝑘) =  𝑆𝑖(𝑍𝐵𝑎𝑐𝑘) 
 

For a color channel, 𝑐, and its associated alpha channel, 𝛼, the new samples are: 

𝑆𝑖,𝑛𝑒𝑤(𝛼) = 𝛼𝑖(𝑧) 
 

𝑆𝑖+1,𝑛𝑒𝑤(𝛼) = 𝛼𝑖(𝑆𝑖(𝑍) + 𝑆𝑖(𝑍𝐵𝑎𝑐𝑘) − 𝑧) 
 

𝑆𝑖,𝑛𝑒𝑤(𝑐) = 𝑐𝑖(𝑧) 
 

𝑆𝑖+1,𝑛𝑒𝑤(𝑐) = 𝑐𝑖(𝑆𝑖(𝑍) + 𝑆𝑖(𝑍𝐵𝑎𝑐𝑘) − 𝑧) 
 

If it is not done exactly right, splitting a sample can lead to large rounding errors for the colors of the new 

samples when the opacity of the original sample is very small.  For C++ code that splits a volume sample 

in a numerically stable way, see page 15 of this document. 

Merging Overlapping Samples 
In order to make a deep image tidy, we need a procedure for merging two samples that perfectly overlap 

each other.  Given two samples, 𝑖 and 𝑗, with 

𝑆𝑖(𝑍) =  𝑆𝑗(𝑍) 

and  

max (𝑆𝑖(𝑍), 𝑆𝑖(𝑍𝐵𝑎𝑐𝑘)) =  max (𝑆𝑗(𝑍), 𝑆𝑗(𝑍𝐵𝑎𝑐𝑘)), 

we want to replace those samples with a single new sample that has an appropriate opacity and color. 

For two overlapping volume samples, the opacity and color of the new sample should be the same as 

what one would get from splitting the original samples into a very large number of shorter sub-samples, 

interleaving the sub-samples, and compositing them back together with a series of “over” operations. 
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For a color channel, 𝑐, and its associated alpha channel, 𝛼, we can compute the opacity and color of the 

new sample as follows: 

𝑆𝑖,𝑛𝑒𝑤(𝛼) = 1 − (1 − 𝑆𝑖(𝛼)) ∙ (1 − 𝑆𝑗(𝛼)) 

𝑆𝑖,𝑛𝑒𝑤(𝑐) =

{
 
 

 
 

𝑆𝑖(𝑐) + 𝑆𝑗(𝑐)

2
, 𝑆𝑖(𝛼) = 1 and 𝑆𝑗(𝛼) = 1

𝑆𝑖(𝑐),

𝑆𝑗(𝑐),

𝑆𝑖(𝛼) = 1 and 𝑆𝑗(𝛼) < 1

𝑆𝑖(𝛼) < 1 and 𝑆𝑗(𝛼) = 1

𝑤 (𝑆𝑖(𝑐) ∙ 𝑣𝑖 + 𝑆𝑗(𝑐) ∙ 𝑣𝑗) 𝑆𝑖(𝛼) < 1 and 𝑆𝑗(𝛼) < 1

 

where 

𝑢𝑘 = {
−log(1 − 𝑆𝑘(𝛼)) , 𝑆𝑘(𝛼) > 0

0, 𝑆𝑘(𝛼) = 0
 

𝑣𝑘 = {

𝑢𝑘
𝑆𝑘(𝛼)

, 𝑆𝑘(𝛼) > 0

1, 𝑆𝑘(𝛼) = 0
 

with 𝑘 = 𝑖 or 𝑘 = 𝑗, and 

𝑤 = {

𝑆𝑖,𝑛𝑒𝑤(𝛼)

𝑢𝑖 + 𝑢𝑗
, 𝑢𝑖 + 𝑢𝑗 ≠ 0

1, 𝑢𝑖 + 𝑢𝑗 = 0

 

Evaluating the expressions above directly can lead to large rounding errors when the opacity of one or 

both of the input samples is very small.  For C++ code that computes 𝑆𝑖,𝑛𝑒𝑤(𝛼) and 𝑆𝑖,𝑛𝑒𝑤(𝑐) in a 

numerically robust way, see page 16 of this document. 

For details on how the expressions for 𝑆𝑖,𝑛𝑒𝑤(𝛼) and 𝑆𝑖,𝑛𝑒𝑤(𝑐), can be derived, see Peter Hillman’s paper, 

“The Theory of OpenEXR Deep Samples” 

Note that the expressions for computing 𝑆𝑖,𝑛𝑒𝑤(𝛼) and 𝑆𝑖,𝑛𝑒𝑤(𝑐) do not refer to depth at all.  This allows 

us to reuse the same expressions for merging two perfectly overlapping (that is, coincident) point samples. 

A point sample cannot perfectly overlap a volume sample; therefore point samples are never merged with 

volume samples. 
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Making an Image Tidy 

An image is made tidy by making each of its pixels tidy.  A pixel is made tidy in three steps: 

1. Split partially overlapping samples: if there are indices 𝑖 and 𝑗 such sample 𝑖 is either a point or a 

volume sample, sample 𝑗 is a volume sample, and 𝑆𝑗(𝑍) < 𝑆𝑖(𝑍) < 𝑆𝑗(𝑍𝐵𝑎𝑐𝑘), then split sample 

𝑗 at 𝑆𝑖(𝑍) as shown on page 10 of this document.  Otherwise, if there are indices 𝑖 and 𝑗 such that 

samples 𝑖 and 𝑗 are volume samples, and 𝑆𝑗(𝑍) < 𝑆𝑖(𝑍𝐵𝑎𝑐𝑘) < 𝑆𝑗(𝑍𝐵𝑎𝑐𝑘), then split sample 𝑗 

at 𝑆𝑖(𝑍𝐵𝑎𝑐𝑘).  Repeat this until there are no more partially overlapping samples. 

 
2. Merge overlapping samples: if there are indices 𝑖 and 𝑗 such that samples 𝑖 and 𝑗 overlap perfectly, 

then merge those two samples as shown in “Merging Overlapping Samples,” above.  Repeat this 

until there are no more perfectly overlapping samples. 

 
3. Sort the samples according to 𝑍 and 𝑍𝐵𝑎𝑐𝑘 (see “Sorted, Non-Overlapping and Tidy Images” on 

page 5). 

 

Note that this procedure can be made more efficient by first sorting the samples, and then splitting and 

merging overlapping samples in a single front-to-back sweep through the sample list. 

𝑧 

Example (horizontal lines are volume samples, vertical lines are point 

samples, and the numbers next to the lines are sample indices): 

1 

4 

3 

2 0 

6 

5 

𝑧 

After splitting: 

1 

12 
2 

11 

15 

0 

4 
3 

9 

5 

10 
8 

7 

6 

13 
14 16 

𝑧 

After merging: 

1 

2 
8 

7 
3 

9 
4 

5 
6 

10 
0 

𝑧 

After sorting: 

1 

0 
2 

3 
4 

5 
7 

8 
10 

9 
6 
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Merging two Images 

Merging two deep images forms a new deep image that represents all of the objects contained in both of 

the original images.  Conceptually, the deep image “merge” operation is similar to the “over” operation 

for flat images, except that the “merge” operation does not distinguish between a foreground and a 

background image. 

Since deep images are not required to be tidy, the “merge” operation is trivial: for each output pixel, 

concatenate the sample lists of the corresponding input pixels. 

Flattening an Image 

Flattening produces a flat image from a deep image by performing a front-to-back composite of the deep 

image samples.  The “flatten” operation has two steps: 

1. Make the deep image tidy. 

2. For each pixel, composite sample 0 over sample 1.  Composite the result over sample 2, and so 

on, until sample 𝑛 − 1 is reached. 

Note that this is equivalent to computing 𝐴(max (𝑆𝑛−1(𝑍), 𝑆𝑛−1(𝑍𝐵𝑎𝑐𝑘))) for each alpha 

channel and 𝐶 (max (𝑆𝑛−1(𝑍), 𝑆𝑛−1(𝑍𝐵𝑎𝑐𝑘))) for each color or auxiliary channel. 

There is no single “correct” way to flatten the depth channels.  The most useful way to handle 𝑍 and 

𝑍𝐵𝑎𝑐𝑘 depends on how the flat image will be used.  Possibilities include, among others: 

• Flatten the 𝑍 channel as if it was a color channel, using 𝐴 as the associated alpha channel.  For 

volume samples, replace 𝑍 with the average of 𝑍 and 𝑍𝐵𝑎𝑐k before flattening.  Either discard the 

𝑍𝐵𝑎𝑐𝑘 channel, or use the back of the last sample, max (𝑆𝑛−1(𝑍), 𝑆𝑛−1(𝑍𝐵𝑎𝑐𝑘)), as the 𝑍𝐵𝑎𝑐𝑘 

value for the flat image. 

• Treating 𝐴 as the alpha channel associated with 𝑍, find the depth where 𝐴(𝑧) becomes 1.0 and 

store that depth in the 𝑍 channel of the flat image.  If 𝐴(𝑧) never reaches 1.0, then store either 

infinity or the maximum possible finite value in the flat image. 

• Treating 𝐴 as the alpha channel associated with 𝑍, copy the front of the first sample with non-

zero alpha and the front of the first opaque sample into the 𝑍 and 𝑍𝐵𝑎𝑐𝑘 channels of the flat 

image.  
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Opaque Volume Samples 
Volume samples represent regions along the 𝑧 axis of a pixel that are filled with a medium that absorbs 

light and also emits light towards the camera.  The intensity of light traveling through the medium falls off 

exponentially with the distance traveled.  For example, if a one unit thick layer of fog absorbs half of the 

light and transmits the rest, then a two unit thick layer of the same fog absorbs three quarters of the light 

and transmits only one quarter.  Volume samples representing these two layers would have alpha 0.5 and 

0.75 respectively.  As the thickness of a layer increases, the layer quickly becomes nearly opaque.  A fog 

layer that is twenty units thick transmits less than one millionth of the light entering it, and its alpha is 

0.99999905.  If alpha is represented using 16-bit floating-point numbers, then the exact value will be 

rounded to 1.0, making the corresponding volume sample completely opaque.  With 32-bit floating-point 

numbers, the alpha value for a 20 unit thick layer can still be distinguished from 1.0, but for a 25 unit layer, 

alpha rounds to 1.0.  At 55 units, alpha rounds to 1.0 even with 64-bit floating-point numbers. 

Once a sample effectively becomes opaque, the true density of the light-absorbing medium is lost.  A one-

unit layer of a light fog might absorb half of the light while a one-unit layer of a dense fog might absorb 

three quarters of the light, but the representation of a 60-unit layer as a volume sample is exactly the 

same for the light fog, the dense fog and a gray brick.  For a sample that extends from 𝑍 to 𝑍𝐵𝑎𝑐𝑘, the 

function 𝛼(𝑧) evaluates to 1.0 for any 𝑧 > 𝑍.  Any object within this layer would be completely hidden, 

no matter how close it was to the front of the layer. 

 

Application software that writes deep images should avoid generating very deep volume samples.  If the 

program is about to generate a sample with alpha close to 1.0, then it should split the sample into multiple 

sub-samples with a lower opacity before storing the data in a deep image file.  This assumes, of course, 

that the software has an internal volume sample representation that can distinguish very nearly opaque 

samples from completely opaque ones, so that splitting will produce sub-samples with alpha significantly 

below 1.0.    

𝑧 

𝛼 

1 

0 

𝑍 𝑍𝐵𝑎𝑐𝑘 

computed 𝛼(𝑧) for both samples 

true 𝛼(𝑧) of “dense fog” sample 

true 𝛼(𝑧) of “light fog” sample 
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Appendix: C++ Code 

Splitting a Volume Sample 
 

#include <algorithm> 

#include <limits> 

#include <cmath> 

#include <cassert> 

 

using namespace std; 

 

 

void 

splitVolumeSample 

    (float   a, float   c,  // Opacity and color of original sample 

     float  zf, float  zb,  // Front and back of original sample 

     float   z,             // Position of split 

     float& af, float& cf,  // Opacity and color of part closer than z 

     float& ab, float& cb)  // Opacity and color of part further away than z 

{ 

    // 

    // Given a volume sample whose front and back are at depths zf and zb 

    // respectively, split the sample at depth z.  Return the opacities 

    // and colors of the two parts that result from the split. 

    // 

    // The code below is written to avoid excessive rounding errors when 

    // the opacity of the original sample is very small: 

    // 

    // The straightforward computation of the opacity of either part 

    // requires evaluating an expression of the form 

    // 

    //      1 - pow (1-a, x). 

    // 

    // However, if a is very small, then 1-a evaluates to 1.0 exactly, 

    // and the entire expression evaluates to 0.0. 

    // 

    // We can avoid this by rewriting the expression as 

    // 

    //      1 - exp (x * log (1-a)), 

    // 

    // and replacing the call to log() with a call to the function log1p(), 

    // which computes the logarithm of 1+x without attempting to evaluate 

    // the expression 1+x when x is very small. 

    // 

    // Now we have 

    // 

    //      1 - exp (x * log1p (-a)). 

    //  

    // However, if a is very small then the call to exp() returns 1.0, and 

    // the overall expression still evaluates to 0.0.  We can avoid that 

    // by replacing the call to exp() with a call to expm1(): 

    // 

    //      -expm1 (x * log1p (-a)) 

    // 

    // expm1(x) computes exp(x) - 1 in such a way that the result is accurate 

    // even if x is very small. 

    // 

 

    assert (zb > zf && z >= zf && z <= zb); 

 

    a = max (0.0f, min (a, 1.0f)); 
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    if (a == 1) 

    { 

        af = ab = 1; 

        cf = cb = c; 

    } 

    else 

    { 

        float xf = (z - zf) / (zb - zf); 

        float xb = (zb - z) / (zb - zf); 

 

        if (a > numeric_limits<float>::min()) 

        { 

            af = -expm1 (xf * log1p (-a)); 

            cf = (af / a) * c; 

 

            ab = -expm1 (xb * log1p (-a)); 

            cb = (ab / a) * c; 

        } 

        else 

        { 

            af = a * xf; 

            cf = c * xf; 

 

            ab = a * xb; 

            cb = c * xb; 

        } 

    } 

} 

Merging two Overlapping Samples 
 

#include <algorithm> 

#include <limits> 

#include <cmath> 

#include <cassert> 

 

using namespace std; 

 

 

void 

mergeOverlappingSamples 

    (float  a1, float  c1,  // Opacity and color of first sample 

     float  a2, float  c2,  // Opacity and color of second sample 

     float& am, float& cm)  // Opacity and color of merged sample 

{ 

    // 

    // This function merges two perfectly overlapping volume or point 

    // samples.  Given the color and opacity of two samples, it returns 

    // the color and opacity of the merged sample. 

    // 

    // The code below is written to avoid very large rounding errors when 

    // the opacity of one or both samples is very small: 

    // 

    // * The merged opacity must not be computed as 1 - (1-a1) * (1-a2). 

    //   If a1 and a2 are less than about half a floating-point epsilon, 

    //   the expressions (1-a1) and (1-a2) evaluate to 1.0 exactly, and the 

    //   merged opacity becomes 0.0.  The error is amplified later in the 

    //   calculation of the merged color. 

    // 

    //   Changing the calculation of the merged opacity to a1 + a2 - a1*a2 

    //   avoids the excessive rounding error. 

    //    
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    // * For small x, the logarithm of 1+x is approximately equal to x, 

    //   but log(1+x) returns 0 because 1+x evaluates to 1.0 exactly. 

    //   This can lead to large errors in the calculation of the merged 

    //   color if a1 or a2 is very small. 

    // 

    //   The math library function log1p(x) returns the logarithm of 

    //   1+x, but without attempting to evaluate the expression 1+x 

    //   when x is very small. 

    // 

 

    a1 = max (0.0f, min (a1, 1.0f)); 

    a2 = max (0.0f, min (a2, 1.0f)); 

 

    am = a1 + a2 - a1 * a2; 

 

    if (a1 == 1 && a2 == 1) 

    { 

        cm = (c1 + c2) / 2; 

    } 

    else if (a1 == 1) 

    { 

        cm = c1; 

    } 

    else if (a2 == 1) 

    { 

        cm = c2; 

    } 

    else 

    { 

        static const float MAX = numeric_limits<float>::max(); 

 

        float u1 = -log1p (-a1); 

        float v1 = (u1 < a1 * MAX)? u1 / a1: 1; 

 

        float u2 = -log1p (-a2); 

        float v2 = (u2 < a2 * MAX)? u2 / a2: 1; 

 

        float u = u1 + u2; 

        float w = (u > 1 || am < u * MAX)? am / u: 1; 

 

        cm = (c1 * v1 + c2 * v2) * w; 

    } 

} 
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