
CSE 512 – Assignment 1

The required task is to simulate data partitioning approaches on-top of an open source relational database
management system (i.e., PostgreSQL). Each student must generate a set of Python functions that load the
input data into a relational table, partition the table using different horizontal fragmentation approaches,
and insert new tuples into the right fragment.

Input Data. The input data is a Movie Rating data set collected from the MovieLens web site

(http://movielens.org). The raw data is available in the file ratings.dat.
The rating.dat file contains 10 million ratings and 100,000 tag applications applied to 10,000 movies by
72,000 users. Each line of this file represents one rating of one movie by one user, and has the following
format:

UserID::MovieID::Rating::Timestamp

Ratings are made on a 5-star scale, with half-star increments. Timestamps represent seconds since

midnight Coordinated Universal Time (UTC) of January 1, 1970. A sample of the file contents is given
below:

1::122::5::838985046
1::185::5::838983525
1::231::5::838983392

Required Task. Below are the steps you need to follow to fulfill this assignment:

1. Download the virtual machine that has the same environment with the grading machine. This is highly
recommended. You can use your own machine. But it is not ensured that you code can work in the grading
machine. If you use the provided machine, then skip Step 2. Virtual Machine setting: Python 2.7.x. Ubuntu
16.04.

2. Install PostgreSQL.

3. Download rating.dat file from the MovieLens website,

http://files.grouplens.org/datasets/movielens/ml-10m.zip

You can use partial data for testing. One testing data file is given on blackboard.

4. Implement a Python function LoadRatings() that takes a file system absolute path that contains the
rating.dat file as input. LoadRatings() then loads the rating.dat content into a table (saved in
PostgreSQL) named Ratings that has the following schema

UserID (int) – MovieID (int) – Rating (float)

5. Implement a Python function Range_Partition() that takes as input: (1) the Ratings table stored in

PostgreSQL and (2) an integer value N; that represents the number of partitions. Range_Partition()
then generates N horizontal fragments of the Ratings table and store them in PostgreSQL. The
algorithm should partition the ratings table based on N uniform ranges of the Rating attribute.

6. Implement a Python function RoundRobin_Partition() that takes as input: (1) the Ratings table

stored in PostgreSQL and (2) an integer value N; that represents the number of partitions. The

function then generates N horizontal fragments of the Ratings table and stores them in PostgreSQL.
The algorithm should partition the ratings table using the round robin partitioning approach (explained
in class).

7. Implement a Python function RoundRobin_Insert() that takes as input: (1) Ratings table stored in

PostgreSQL, (2) UserID, (3) ItemID, (4) Rating. RoundRobin_Insert() then inserts a new tuple to the

Ratings table and the right fragment based on the round robin approach.

8. Implement a Python function Range_Insert() that takes as input: (1) Ratings table stored in Post-
greSQL (2) UserID, (3) ItemID, (4) Rating. Range_Insert() then inserts a new tuple to the Ratings
table and the correct fragment (of the partitioned ratings table) based upon the Rating value.

http://files.grouplens.org/datasets/movielens/ml-10m.zip

Frequently Asked Questions:

 Partition numbers start from 0, if there are 3 partitions then range_part0, range_part1,
range_part2 are partition table names for range partitions and similar numbering
should be done for round robin partitions.

 Do not change partition table names prefix given in assignment_tester.py

 Do not hard code input file name.

 Do not close the connection inside the implemented function.

 Do not hard code database name.

 Table schema should be equivalent to what has been described in point 4.

 Use Python 2.7.x version.

Question with respect to Partitioning:

The number of partitions here refer to the number of tables to be created.

For rating values in [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]

Case N = 1,
One table containing all the values.

Case N = 2,
Two tables,
Partition 0 has values [0, 2.5]
Partition 1 has values (2.5, 5]

Case N = 3,
Three tables,
Partition 0 has values [0, 1.67]
Partition 1 has values (1.67, 3.34]
Partition 2 has values (3.34, 5]

Uniform ranges means a region is divided uniformly, I hope the example gives a clear picture.

Hint

1. Do not use global variables in your implementation. Meta-data table is allowed.
2. You are not allowed to modify the data file.
3. Pass all the test cases cannot ensure that your answer is correct. It means there is no compile error in your

code. To fully verify your implementation, you need to check content of the corresponding tables in the
database.

4. Two insert functions can be called many times at any time. They are designed for maintaining the tables in the
database when insertions happen.

Submission

1. Only submit the Interface.py file. Do not change the file name. Do not put it into a folder or upload a zip.
2. Multiple submissions are allowed. Only the latest submission will be graded. No late submission is accepted.

Please make use of Discussion Board extensively to clear any doubts. It is your
responsibility to check all the threads in Discussion board. Loss of points caused by
missing information in Discussion board cannot be argued.

