EINDHOVEN UNIVERSITY OF TECHNOLOGY

Email Filtering and Querying

2IMM15 Web Information Retrieval and Data Mining

Alex Anthis, Chun Li, Kostantinos Messanakis, Tong Wu

April 3, 2019

Abstract

This report is about how we as a group implemented the course project
on email filtering and querying. Including the literature surveys we have
studied, detailed step by step estimation approach, from choosing the best
suited methods to the final product of our work, and also the obstacles we
faced as well as improvements made during the process.

Contents

(1._Introductionl 1
[LI Motivation and Goald 1
[2._Architecture| 1
[3._Prior Work| 1
[4. Components| 3
4.1, Boolean IRl 3
4.1.1. Component Motivation|. 3

[4.1.2. Problem Formulation|. 3

4.1.3. Component Approach| 3

|4.2. Naive Bayes Classifier] 4
4.2.1. Component Motivation|.)

[4.2.2. Problem Formulation|. 5

[4.2.3. Component Validation| 5

[4.3. Clustering] 6
|4.3.1. Component Motivation|. 6

4.3.2. Component Problem Formulation|. 6

[4.3.3. Component Approach| 6

|4.3.4. Justification ot Choosing TF-IDF and K-Means| 7

[4.3.5. Component Evaluation|. 7

|4.3.6. Remarks about the Component| 7

[4.4. Data Cleaning|. e 8
441, Motivationl 8

[4.4.2. Problem Formulation|. oL 8

4.4.3. Component Approach|, 8

45, Word2Ved 8
[4.5.1. Motivationl 8

[4.5.2. Problem Formulation|. o oo 9

[4.5.3. Component Approach| 9

454, PFvaluationso 11

4.6. RNN for Classification| 11
4.6.1. Component Motivation|. 11

[4.6.2. Problem Formulation|. 12

[4.6.3. Model Constructionl L. 12

4.6.4. Implementation|. L 13

4.6.5. Evaluationl. 13

[4.7. Java Application| 15
|4.7.1. Component Description| 16

[5. System Summaryj| 17

6. Conclusion|

[A. Java Application Installation Guide|

18

18

18

1. Introduction

Choosing an efficient way to query email data, distinguish spam mail from a users
mailbox, clustering emails into subject categories are all tasks and challenges an email
provider is responsible for in order to serve the end user successfully. Using Information
Retrieval and Data Mining techniques we worked on building such functionality of an
email provider on our project and testing it on a large email dataset. For the imple-
mentation Java and Python was used as the codebase as well as SQLite library for the
creation of the database.

1.1. Motivation and Goals

For the specific project, our group needs to tackle the following challenges which will be
explained in detail in this report:

1. Create Boolean IR database to query through the set of emails

2. Classify emails as spam or non-spam using Naive Bayes

3. Building a clustering algorithm for the dataset

4. Create a Word to Vector database

5. Create a RNN for spam-ham classification utilizing the Word to Vector database

2. Architecture

As an overview of the project components (Figure , the Boolean IR implementation
supplies the database with a boolean table and an inverted index table which can be
used for querying the dataset of e-mails. The Naive Bayes implementation focuses on
the classification of each e-mail as spam or non-spam assembling the functionality of an
e-mail filter. The clustering component performs K-means algorithm to obtain clusters of
e-mails with similar context and provides the results to the Java Application to implement
one of its functionalities. For an alternative approach, Word2Vec is used to vectorize the
input text, to enable the application of RNN classification model and detect spam e-mails.

3. Prior Work

The dataset is a preprocessed subset of the Ling-Spam Dataset, provided by AUEB
professor Ion Androutsopoulos. The legitimate emails are extracted from public archives
of mailing lists and more topic specific resources. It is based on 960 real email messages
from a linguistics mailing list. Each message exists in a separate text file. The total
size of the data is approximately 2700 emails. The dataset contains approximately 2300
non-spam and 400 spam emails.

Word2Vec

TF.IDF

|
B

Java
Application

Figure 2.1: Project Architecture

On the Boolean IR and Naive Bayes components the implementation was hardcoded
in Java without the use of external libraries. However, when implementing the Naive
Bayes filter, the following pages were referenced:

e https://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering

e An example of an information retrieval problem, 2008 Cambridge University Press,
2009-04-07

On the clustering component the implementation was also coded from scratch without
the use of a library or framework. The following links are referenced:

e https://en.wikipedia.org/wiki/K-means_clustering
e https://en.wikipedia.org/wiki/Dunn_index

e https://www.researchgate.net/post/How_can_we_say_that_a_clustering_quality_

https://en.wikipedia.org/wiki/Naive_Bayes_spam_filtering
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/Dunn_index
https://www.researchgate.net/post/How_can_we_say_that_a_clustering_quality_measure_is_good
https://www.researchgate.net/post/How_can_we_say_that_a_clustering_quality_measure_is_good

measure_is_good
The implementation of Word2Vec is a work based on:

e Chris Moody, Introducing our Hybrid lda2vec Algorithm, San Francisco, CA,
United States, May 27, 2016, https://multithreaded.stitchfix.com/blog/2016/
05/27/1da2vec/

e Rong, X. (2014). word2vec parameter learning explained. arXiv preprint arXiv:1411.2738.
The libraries or packages used are NLTK, NumPy and Gensim.

The RNN implementation makes use of TensorFlow, Keras, and scikit-learn.

4. Components

4.1. Boolean IR

Author: Alex Anthis

4.1.1. Component Motivation

The motivation behind our team implementing a Boolean IR system is to be able to
query the data set and retrieve relevant email containing specific terms. Considering the
methods of retrieving large sets of documents with their own draw-backs as well their
advantages, we choose to build a Boolean IR model as it serves the reasons of simplicity
and accuracy on the queries we will subject it in order to retrieve desired documents.

4.1.2. Problem Formulation

In order to process queries on the data set of emails we have to be able to store and retrieve
425 thousand terms contained in 2700 emails which makes a total of approximately 1.1
billion records. Therefore, one has to be acknowledged that the creation of the complete
database storing all the required terms for the data set will demand a great amount of
time and resources. On our part we handled a small portion of the data and tested our
model on those as an outcome of limited workforce on our machines.

4.1.3. Component Approach

The creation of such a system manifests through parsing the data set and building the
required tables in the database. In our case, the model consists of the document names
(emails) as well as the terms contained in those. The database we built consists of
a Boolean table and an index table. The Boolean table works as a term-document
incidence matrix in which element (t,d) is 1 if the term exists in the specific email d.
Otherwise it is 0.

https://www.researchgate.net/post/How_can_we_say_that_a_clustering_quality_measure_is_good
https://www.researchgate.net/post/How_can_we_say_that_a_clustering_quality_measure_is_good
https://multithreaded.stitchfix.com/blog/2016/05/27/lda2vec/
https://multithreaded.stitchfix.com/blog/2016/05/27/lda2vec/

Table: | |~] boolean = |§| &)

word mail frequency

_[Filter ”:I: ”f| ter |

1 keplerstrasse | 9-314msg1.txt

2. schrodt 9-314msgl.txt |0
3 pittner 9-314msgl.txt |0
4 beninca 9-314msgl.txt |0
5 l padua 9-314msgl.txt |0

Figure 4.1: Small Sample of Boolean Table

In order to represent the table in SQL we use the element id (t,d) as a composite
primary key and the frequency as the value for a record. The index table contains the
term as a primary key and the documents it is exists in, as the value of the record. The
documents in the value column are separated with whitespaces.

word mail
Filter |[Fitter
1 | melchers 9-312msgl.txt
2 | auftrag | 9-474msgl.txt
3 | dukes .9—515msg1.m
4 | situationnelles | 8-1043msg2.oit
5 | compile 5-1222msg 1.t 6-799msg 1.t 6-875msg2.uxt

Figure 4.2: Small sample of the Index table

For querying the database we have constructed a method to retrieve emails that contain
or exclude specific terms. A query for e-mails containing the term “utrecht” but not the
term disclosing is executed as Figure

SELECT mail FROM boolean_tbl WHERE word="utrecht' and frequency=1
INTERSECT
SELECT mail FROM boolean_tbl WHERE word="disclosing' and frequency=0

Figure 4.3: Querying the E-mail Database

4.2. Naive Bayes Classifier

Author: Alex Anthis

4.2.1. Component Motivation

An important aspect of a successful mail provider is the ability to distinguish and block
spam mail arriving at a users mailbox. By building a classifier for that reason we are
able to offer insight on whether an email is legitimate or not by running a query to the
application providing the txt file.

4.2.2. Problem Formulation

The Naive Bayes model takes into account the probabilities of particular terms occurring
in spam and legitimate mail. The model uses 90% of the data set in order to train and
then verifies its accuracy testing the rest 10% of mails. After training we can link the
probability for each term occurring in a legitimate or a spam email. Viewing the mail
as a bag of words we combine the probabilities of the terms to calculate the posterior
probability computed using Bayes’ theorem (Equation . Comparing the probability
of the mail being spam with the probability of it being legitimate we can claim for the
legitimacy of the email.

B Pr(W|S) - Pr(S)
PriSIW) = 5 5718y Pris) = Prow H) - Pr(d) (4.1)

Equation is the probability of an e-mail being legitimate using the probabilities of
the terms it contains.

p= pip2...PN
pip2---pN + (1 —p1)(1 —p2)... (1 —pn)

(4.2)

4.2.3. Component Validation

The results of the model were tested and improved by limiting the number of terms
used to calculate the overall probability. With this method we use a top performing
set of words rather than a more exhaustive list. This also prevents the implementation
from Bayesian poisoning, a technique used by spammers in an attempt to degrade the
effectiveness of spam filters including terms used in legitimate mails to manipulate the
overall probability of a mail being spam. Additionally this leads to noise reduction and
ultimately gave better results to our model.

Table is the confusion matrix presenting the overall accuracy of our mail filter and
on the testing data of 290 emails. The left graph features a 98% accuracy on legitimate
mail and the right one a 88.7% accuracy on spam mail.

The results can be improved by the use of different frequency and occurrence models
like the n-gram model in order to take into account whole phrases instead of just single
words. To eliminate the 2% of legitimate mail targeted as spam, weighing terms according
to their contribution in the distinction between spam non spam could be used.

Predicted
Non-spam | Spam
Non-spam | 0.98 0.113
Spam 0.02 0.887

Actual

Table 4.1: Confusion Matrix

4.3. Clustering

Author: Konstantinos Messanakis

4.3.1. Component Motivation

Considering the fact that the goal of this project is to analyze and handle the data of an
e-mail dataset we decided to put the data through a clustering analysis in order to create
groups of e-mails (clusters). Emails belonging to the same clusters are expected to be
more similar (in some sense) to each other than to those in other groups(clusters). More
specifically, the results of the clustering are used in our Application, where the user can:

1. Give an e-mail as an input and retrieve all (or can specify the number) the e-mails
that are similar in some sense to the input e-mail(e-mails in the same cluster)

2. Retrieve a set containing all the most significant words that makes his e-mail be
similar to other e-mails

4.3.2. Component Problem Formulation

The problem that this component is trying to solve is the following.

Given a sample of e-mails:

1. Preprocess data to obtain them in a way that the clustering algorithm can work
with them efiiciently

2. perform a clustering algorithm in a way that all the e-mails in the same cluster
share some similarities

3. Get the clustering results and use them in the Application

4. Try to evaluate the results of the clustering algorithm

4.3.3. Component Approach

The first thing to do, was to obtain a suitable representation of our data, in order to
perform our clustering algorithm. To achieve that, we implemented a TF-IDF Calculator
in order to obtain our e-mails as mutually comparable TF-IDF Vectors.

After the TF-IDF vectorization we implemented (from scratch) the K-Means clustering
algorithm (K = 5) and obtained the e-mails clusters (Equation [4.3)).

N
After the TF-IDF vectorization we implemented (from scratch) the K-Means clustering
algorithm (K = 5) and obtained the e-mails clusters

4.3.4. Justification of Choosing TF-IDF and K-Means

TF-IDF We decided to implement the TF-IDF algorithm because of its usefulness to
figure out the most important words in a big context, and thus spot the similarities
between the emails.Another important factor was that when using TF-IDF we didn’t
have to worry about some stopwords that every email could contain

K-Means Algorithm We decided to implement the K-Means algorithm instead of an-
other algorithm because we wanted to code the algorithms from scatch and it seemed
the simpler choice among the other clustering algorithms.Furthermore, K-Means per-
forms really well with big loads of data, and is not really exensive in terms of speed and
memory

4.3.5. Component Evaluation

In order to evaluate the results of the clustering we calculated the Dunn Index metric.
The result of this metric is base on the clustered data itself. The aim is to identify if the
clusters are compact and well separated

ming<;<j<m 0C;, Cj

DI, =
maxlgkgm Ak

The Dunn Index of our algorithm gives a score of: 0.6907953435513402(69%)

The performance of the algorithm is not optimal. This is mainly because when testing
the clustering results, we observed that K-Means doesn’t work really good with multi-
dimensional data(Our data were TF.IDF Vectors).We tried to perform some techniques in
order to reduce the dimension of the Vectors, for example using Python’s PCA (Principal
Component analysis) but this approach was never completed due to time limitations

4.3.6. Remarks about the Component

Clustering was implemented on clean data after stop word removal.

The clustering was performed using a data sample of 300 e-mails, mainly because
the load of the e-mails was big we were facing a heap out of Memory exception when
executing the clustering.

4.4. Data Cleaning

Author: Chun L1

4.4.1. Motivation

There are two reasons for reprocessing the data. First reason is that prepossessed data
will improve the efficiency of the model training. The other reason is making model
training more effective.

4.4.2. Problem Formulation

In the data context, there are some words existing frequently but not important for
analyzing, like: “I”, “is”, “we” etc. Also there are some word they looks different but they
have same meaning, for example: “includes” and “include”. To solve these problems, we

need to reprocess these words.

4.4.3. Component Approach

Python package NLTK is used here for implementation. In the end, all the data is stored
as lists of the list in JSON file. Each list represents one Email. The final data has the
following characteristics:

No stopping words

No symbols
No Numbers
Length of each word is longer than 2

In each mail (list) only contains the unique words

All the words are through the process of determining the lemma

4.5. Word2Vec

Author: Chun L1

4.5.1. Motivation

We would like to learn what is the relationship among the words, and transform the
text into featured for a classifier. In the end, the results should be compared to finding

out the best model for mail filtering. Therefore, word embedding is one option for the
information retrieval of this project.

4.5.2. Problem Formulation

Word embedding is a common way to process natural language. It is processing natural
language to computers. There are two models considered in the beginning, namely,
word2vec and Ida2vec. Word2vec is predicting the relationship between the word and
its neighboring words. While lda2vec was a model combing LDA and word2vec. LDA
(Latent Dirichlet Allocation) is classifying text in the document. Therefore, compare to
word2vec, 1da2vec is not only predicting local words but also the whole document.

Obviously, lda2vec is a very powerful model, but from Chris Moody’s Introducing
our hybrid lda2vec algorithm, he suggested do not use lda2vec for practical reasons, for
example, it needs a GPU in your desktop and so on. Also, limited information can be
searched about lda2vec. Therefore, word2vec was used in this project.

4.5.3. Component Approach

Word2Vec is a three layer neutral network. First layer is Input Layer, the second one is
hidden layer, and the last one is output layer.

Skip Gram Model Architecture

Input ¢ . Hidden ot s Output
Layer Wthls Layer Weights Layer
x1 O l Jv O yl
2|0 O Ol »
a|O O Ol »
v InlO v -
i :
Xk H
¥
Vxl VxN Nx1 N xV Vxl

Figure 4.4: Word2Vec CBOW and Skip-Gram Network Architectures

In Word2Vec, there are two models: bag of words (CBOW) and Skip-gram model.
CBOW model is using neighboring words to predict central word, as to Skip-gram model
is using central word to predict neighboring words. In this project, skip-gram model is

used. Because, although CBOW model has better performance on speed, but not on rare
words prediction.

The concept of central word and context words can be though as a sliding window
that cross the text, for example, the sentence “I attended the web information retrieval
and data mining course”. If “web” is central word and window size is 2, then “attended”,

“the”, “information”, “retrieval” are the context words.

Like we introduced above, the natural word cannot be understood by computers, so we
need to convert them as numbers. Here we employ one-hot encoding. One-hot encoding
is a vector, length is the total number of unique words in the text. Every word in this
vector has a corresponding position which value is 1, and all the rest will be 0, see Figure
below. The one-hot encoding vector will be the input, and it will gain the weights
and go to the hidden layer, the output of the hidden layer will get another weights then
feed into the output layer.

I K]
attendad o
thee o
web '.
informiation o
reatrisval o
and o
data o
FriF ing o
COurse o

Figure 4.5: Word2Vec One-Hot Encoding Example

Writing from Scratch Using NumPy Word2Vec is implemented in Python. In the
beginning, it is implemented from scratch, only Numpy package used, but during the
training process, I met some difficulties, like long training period; results are not satisfied,
etc. Therefore, I also used package Gensim to train the model.

The functions are built for implementation are: generate_one_hot, forward_pass
and back_pass. The function generate_one_hot is used to generate one-hot vector;
forward_pass get a vector; and back_pass is used to adjust the the weights W and W .
For training the model, we tried to get the window size from range 2 to 15, and initialize
weights is randomly get by np.random.uniform(). As to the hidden node is by root
square of the input node plus a, and a could be from range 1 to 10.

Implemented word2vec from scratch helps me to understanding word embedding better
and also for word2vec itself. But in piratical, it needs long training period and also big
data set to get the better feature of the words. So for the whole project, I used Gensim
package later.

Gensim Package Gensim pacakage is much more efficient and more practical. Model
word2vec is used here, and after training, window size is 10. We are going to show the
graph of visualization first 200 word in the data set in the figure 6. The top 5 similarity

10

words for “first” in our data set are “slapping” (0.391) , “permentiers” (0.336), “before”’
(0.334), “foreignborn” (0.328), and “casestudies” (0.317) .

$emantics
@rangements
@lso®ve &ither
gleclar
Sccount gore ghmenadie Eguegntwerp Slays
tinuous
ovenschelde nalysis @on
elgium @Naly: kol urrentl; r
liscussed guch gaus ascours SO e Jror o gurrently gigh
gampugaddress @inner wfpcngme dnois o
solgrranged lepending ghotted
ity uildings restin
& gt & ?Sg-;wsaged ﬂd mfumpgan&otcked Evewitidy sautolony Surghgae
2 &ute ct lodek
e e oty ; [dirch ol gelated
gffiliation upplies :ﬁend flse sllows ¢ louble &vening
dministrati ridges vorite i
arranging grope giucump @dministral .vet . source ridg agpl;s Gieries gombine 90 $§Eppore
irdevmrr;srteﬂa(lw”ae gorference HEROGiRnable gngeles drussels
cond geminds riter
o Ee e oty o W e oo
@nauiries ttention @nything offex
&heap (4 @ubject game dank "‘%‘3‘3
ngelse |
gorsider gepariment {?rgrﬁ@ﬂ\lage Sgangen ‘Gommercial alogic
lternative onferences M
dartman ¢ en email ‘ @eal.n‘g @ast dgonrol > e
et vant reaiast e gonfirmation nglish Jring ivmmme dendencies
gverly @ircular ¥ linor
#napuing TS ones vl pgica &ommunication
id @riveyears ttribut
$eccommodation itnet ook @ameattribute
onstruction, o P ultural
reign
éngllang §
jates duplication
¢ @pproaches @round L gentre
v
gompete o
gouthern

Figure 4.6: Visualization of Closest 200 Words According to Word2Vec

4.5.4. Evaluations

Writing from Scratch In order to get the optimal window size and weights, in the
implementation from scratch, calculating the loss value by loss formula. The table below
shows part of the result based on the window size.

w w’

Window Size

Loss Percentage

2

0.3%

[[0.43056057 .||

[-0.7859653 ...]]

2

0.6%

[[0.41652962 ...]]

[[-0.785966 ...]]

58.6%

[ﬁl41652962.“”

[F0.7456865]|

4.6. RNN for Classification

Author: Tong Wu

4.6.1. Component Motivation

One of the goal of this project is categorizing e-mail (ham or spam), given its textual
representation. Word embedding transforms textual information into N-dimensional (V-
D) vectors. A sentence is a sequence of words, therefore it can be mapped to a sequence

11

of N-D vectors. Then the problem transforms into how to utilize this sequence, to reveal
implicit characteristics of sentences. For example, by categorization or prediction.

Neural networks (NN) are suitable to solve this kind of problems. With cells and layers,
a NN is fundamentally an implicit function with many hidden inputs. In this project,
the materials are represented by text. From the view of each word, it has a context,
and an order in the sentence, just as human usually process words one by one. Using a
NN with consideration of sequence order should be able to make good evaluation of the
sentences. Recurrent neural network (RNN) is a suitable choice.

4.6.2. Problem Formulation

The problem here is another way of classification, using NN. The final result is a trained
RNN model, which accepts text (e-mail body) as input, and classifies whether the e-mail
is a spam or not.

4.6.3. Model Construction

RNN has recurrent structure that allows it to generate output based on current input
and previous input(s). This can have interesting applications, for example, evaluating
a word based on its immutable characteristic (e.g. spelling) and previous words (i.e.
context).

Qutput Output(t-1) Outputit) Qutput(t+1)
A ~ ~ ~
Feedback(i-2) Feedback(t-1) Feedbacki(t) Feedback(t+1)
CD |:> _________ < >—<>—<> ________ ”
4 Feedback 4 4 4
Input Inputit-1) Input(t) Input(t+1)

Figure 4.7: RNN Structure

The model structure is shown in Figure [4.§|

The embedding layer is used to lower the dimensions of input, and discover the implicit
correlations between words. Then, the RNN is used to process word sequence (vector
sequence), which plays a role of understanding the context, with sliding windows. Next
the hidden and activation layers are used to form weights (“learning”), and the dropout
layer is used to clean the learning result (“forgetting the errors”). In the end the output
layer combining with an activation layer (which uses sigmoid function for activation)
do the classification. The output is evaluated by a loss function to correct the hidden
parameters inside the model.

12

group_de...
loss group._deps metrics group.deps
rovp o.

P init
¢ training IsVariablel..
activatio. 2" activatio... init

training training activation_z training

traininc

output Mning embedsliariablelnitialized[0-36]
IsVariablel... n_1

dense_1
output
1 more

dropout_1 training init
Adam

raining
IsVariablel...

activation_1 training
init
dense 1 training
= IsVariablel...

i
rnn 1 training
- IsVariablel

embedding... ‘Tram‘mg

IsVariablel...

inpuits
inputs_out

Figure 4.8: The RNN Model

4.6.4. Implementation

First, a trained Word2Vec model is loaded or generated. Then, a vector of N-D vectors
is constructed using this method: for each email of all emails, retrieve the first M words
of its body; if the length L is shorter than M, pad it to M by adding M — L zero N-D
vectors. During this process, label all the N-D vectors as 0 (non-spam) or 1 (spam). The
N-D vectors are served as input and labels are expected output.

Next, split the generated input/output set into training set (70%), validation set (15%)
and testing set (15%). Training set and validation set are provided as a whole but they
are shuffled (i.e. computing a new set and its complement from the partition ratio) in
each run.

Finally, fit the model and evaluate. The RNN is implemented using Keras, with
backend of Tensorflow.

4.6.5. Evaluation

From multiple runs of the model (Figures to 4.12)).

The general performance is not as good as expected. Test set accuracy falls between
0.83 and 0.85, which is lower than common tasks using neural networks (> 0.9), even

13

acc

4.000k 5.000k 6.000k 000k 8.000k

Figure 4.9: Training Accuracy

loss

Figure 4.10: Training Loss

val_ace

Figure 4.11: Validation Accuracy

worse than the Naive Bayes filter (see section|4.2)). Also, the test set loss is too high. Using
binary cross entropy as loss function, test set loss varies from 0.43 to 0.45. Considering

14

val_loss

Figure 4.12: Valiation Loss

that for such loss function log N should be the upper bound of loss, where N is the
number of output categories (N = 2 in our case). It means the model is not certain
about which category should test inputs lie in. Loss of validation set and training set are
close, which indicates that the model may be underfitted.

There should be three possible causes for the result.

First, the model is underfitted. The model structure is naive and relatively simple.
However, even if more hidden layers are added (in places between output and RNN), the
performance does not improve.

Second, the Word2Vec model is not accurate. Word2Vec generates models with good
quality, when the input is properly preprocessed. But in our data, the e-mails are hard
to preprocess. For example, there are numbers, symbols (serve as content delimiters, in
common emails), manual confusion by adding spaces inside words, and lexical changes
(partially reduced by lemmatization).

Third, improper model parameter selection because of hardware limitation. In real
runs, the number of words cut from each e-mail body, and/or the length of word vector,
must be limited. Otherwise, training requires huge amount of memory and an out of
memory exception is easily thrown. When using Gensim’s Word2Vec implementation,
the number of words is set to 100 and vector length is set to 25. When using the
Word2Vec implemented from scratch, the values are 18 and 150. For a general length
e-mail with medium complexity, none of the settings seems to be able to capture the
characteristics of e-mail texts well. This issue should be able to solve using better device,
but unfortunately, we do not have one.

4.7. Java Application

Authors: Alex Anthis & Konstantinos Messanakis

15

4.7.1. Component Description

This section of the report offers some basic documentation on the Java application and
its functionality. Due to limited time we implemented a basic Ul featuring the main
functions of our project such as mail filtering and mail querying. The application was
created using Javax Swing.

=
AppIRDM

[utrecht not members

Find e-mails containing

Figure 4.13: Querying Data from the Application

The above image presents the functionality of the Boolean IR component where a
query is given as input to the database and an result is received. The query “utrecht
not members” returns those emails who contain the term ‘“utrecht” but not the term
“members”. Due to limitations on our end machines the boolean table in the SQLite
database only contains a small fraction of the 1.1 billion records it was estimated to store
in order to serve the complete mail dataset of 2700 mails. For this specific queries are
suggested to be executed in order to retrieve results. The functionality provided suggests
that the terms entered in the query are contained in the same mail (INTERSECT SQL
command) thus the limited number of results.

Below the functionality of the email filter is presented. The absolute path of the email
is served as input in the application and a message is handed as an output declaring
the legitimacy of the specific email. Note that on the first time the user presses the
classification button the application will execute the machine learning process of training
the 90% of the dataset, compute its accuracy on the rest 10% using it as test data and
finally use the probabilities per term in order to estimate the class of the given email.

This functionality can be used to test any email in txt format giving the absolute path
of file to the search bar of our application.

Below the functionality of the clustering’s component functionality is presented. The
absolute path of the email is served as input in the application and a message is handed

16

0
AppIRDM

File Edit View Go Bookmarks Help

N« » 4 | ¢ span | Testoam

~ My Compute ABC

Message x

(i) mail classified as legitimate. ABC

9-6msgl bt

ata/TestData/S-Smsgl.bxt

ABC

Find e-mails containing specific words

Classify an e-mail as spam/ham 9.59msg1.oxt

Find relevant mails to input e-mail

Figure 4.14: Spam Mail Detection by the Application

as an output showing a list of emails similar to the input e-mail (most similar mails in
the same cluster).

Message

(D) spmsgarsetxt

ta/TestData/9-5msql. bt

Find e-mails containing specific words

Classify an e-mail as spam/ham

Find relevant mails to input e-mail

—
O Uava Dow... | AppIRDM [... ¥ [TestDatal | B IRDM proj... A Ml 5 Home P (ire-8u20L... | A [Docum:

Figure 4.15: Retrieving Similar Mail by the Application

5. System Summary

The main result is that every component designed is able to work, but at different levels.
Boolean IR and the Naive Bayes filter are fully functional and work as expected. These
functions are also presented by a fine GUI application. Word2Vec is implemented but

17

the result cannot be easily verified. However compared to a “standard” implementation
in Gensim it should be working correctly. The RNN model can be treated as a classifier
but its accuracy is lower than the Naive Bayes filter, due to some possible factors.

For the whole project, one apparent limitation is there are two main languages (Java
and Python) in used in the project, which are hard to interop. This limits the reuse
of components - an language adapter was designed and implemented at first, but not
used later in the project. And that leads to complete different usage of frameworks and
libraries, and the only feature that can be related is the spam filter accuracy.

Another limitation is the implementations may not be well optimized. For a vocabulary
of 48000 words and 2700 documents, searching the whole database takes unacceptable
amount of time. However, as the method itself has been proved correct, it can be im-
proved by using more optimized algorithms, or using devices with higher specs.

6. Conclusion

In this project, we try to use web information retrieval and data mining knowledge built
one application to do email filtering and querying. The project used three models Naive
Bayes, Clustering, and RNN. These three models fed by different information retrieval
methods. Naive Bayes gets the data by Boolean IR; clustering gets the data by TF-IDF
vectorization; and RNN gets the data by word2vec. Based on final results, Naive Bayes
is the optimize model we would like to suggest.

During the project, we met some challenges. One of them is the big size of the data
set, it requires long time period to train the models, feeding all the data into database
and perform the TF-IDF vectorization. Also, the project was implemented using two
languages, python and java. In the end,because of time limitation, we were not able to
integrate them together, so in the application demo we only show the app built in java.

For future research, the project can focus on training the models based on a bigger
data set, as well as integrating the two languages components into one.

Appendices

A. Java Application Installation Guide

The project can be loaded as an IntelliJ project on Linux environment with Java 1.8
installed. Once compilation build is completed the application can be launched by exe-
cuting the MailAnalyzer.main() method. Doing so must display the main window of
the application. From here you can enter the desired queries or file paths in the search
bar and explore the different functionalities our application has to offer.

18

	Introduction
	Motivation and Goals

	Architecture
	Prior Work
	Components
	Boolean IR
	Component Motivation
	Problem Formulation
	Component Approach

	Naive Bayes Classifier
	Component Motivation
	Problem Formulation
	Component Validation

	Clustering
	Component Motivation
	Component Problem Formulation
	Component Approach
	Justification of Choosing TF-IDF and K-Means
	Component Evaluation
	Remarks about the Component

	Data Cleaning
	Motivation
	Problem Formulation
	Component Approach

	Word2Vec
	Motivation
	Problem Formulation
	Component Approach
	Evaluations

	RNN for Classification
	Component Motivation
	Problem Formulation
	Model Construction
	Implementation
	Evaluation

	Java Application
	Component Description

	System Summary
	Conclusion
	Appendices
	Java Application Installation Guide

