
UBIT CVIP UB-mail
anand6 Project-3 anand6@buffalo.edu

Face Detection: Using Open CV libraries

Open CV offers two types of pre-trained classifiers which are trained on multiple positive
and negative sample of images. We will use these classifiers and build algorithm for the sample
of dataset – FDDB.

Two pre-trained face detection classifiers by open cv :

1. Haar classifier
2. LBP – Local Binary Patterns

Haar classifier:

 Haar classifier learns haar features mentioned below which are windows just like
convolutional kernels to learn image features. These windows move across image learning the
image features and each window when placed on image returns a single value for the whole
window by subtracting the sum of values of black portion from white portion. Larger images can
be scaled down to learn the features. As we learn non-essential features which will not addon to
classification accuracy so we use machine learning method Adaboost to build strong classifier
from the sequence of weak classifiers. Adaboost discards group features which does not add up to
classification accuracy.

LBP: Local Binary Patterns

 For each pixel is compared to its neighbor pixels like 3*3 window with center being the
pixel of interest and if the value of neighbor pixel is greater than pixel of interest then set to 1
else 0 then summed up to get the value of LBP. Uses histogram of these blocks to create a
feature vector which contains features of interest.

HAAR LBP
1. Slow- window reads features to create

weak classifiers and scales image and
reads again and use adaboost to build
strong classifier using weak classifiers

1. Faster compared to HAAR as its just
calculating values based on the pixel
values

2. Higher Accuracy 2. Lower than HAAR

Implementation:

Pretrained frontal face classifiers are in the form of xml available in OPENCV- install directory.

haarcascade_frontalface_default.xml
haarcascade_frontalface_alt.xml
haarcascade_frontalface_alt_tree.xml
haarcascade_frontalface_alt2.xml
lbpcascade_frontalface.xml

 We read images from the given directory in sequence
 Use these classifiers to detect multiple faces from the image
 Algorithm uses the features from the trained data and compares with similar features in

the image and marks it as face.
 We store detected face parameters into the json file

We have to tune two parameters for using these classifiers:

 Scale factor – to scale image to identify smaller and larger faces so it reduces the image

size by percent on every iteration to detect multiple faces of different size.

 minNeighbors – how many objects each rectangle to retain to identify as a face.

Results:
Given sample dataset is tested on both classifiers and we tuned the parameters to achieve

accuracy of 82% thru Haar classifier.

Type of
Features Pre Trained Data Multi Scale Factor

Min
Neighbors Accuracy

Haar Features

haarcascade_frontalface_default.xml 1.3 3 0.785
haarcascade_frontalface_alt.xml 1.3 3 0.7625
haarcascade_frontalface_alt_tree.xml 1.3 3 0.25
haarcascade_frontalface_alt2.xml 1.3 3 0.784

Iterating to find optimal minNeighbors
haarcascade_frontalface_default.xml 1.3 3 0.79
haarcascade_frontalface_alt.xml 1.3 1 0.79
haarcascade_frontalface_alt2.xml 1.3 3 0.78

Iterating to find optimal scale factor
haarcascade_frontalface_default.xml 1.19 3 0.81
haarcascade_frontalface_default.xml 1.19 4 0.82

LBP Features
lbpcascade_frontalface.xml 1.19 4 0.73
lbpcascade_frontalface.xml 1.19 2 0.76
lbpcascade_frontalface.xml 1.18 2 0.78

