	Image Featurization Applied to Find Similar Images:-

	https://github.com/Microsoft/ML-Server-Python-Samples/blob/master/microsoftml/101/plot_image_featurizer_match.py
	==

	
	

	
	Here is the scenario this sample addresses: You have a catalog

	
	of images in a repository. When you get a new image, you want

	
	to find the image from your catalog that most closely matches

	
	this new image.

	
	The procedure for finding the best match has the following steps:

	
	

	
	- Locate the images in the catalogue and get their feature vectors.

	
	- Locate the new image and get its feature vector.

	
	- Find out which image or set of images from the catalog has the

	
	 smallest "distance" from the new image. There are a number of

	
	 ways to calculate this distance. A simple one is the Euclidean

	
	 distance, which we use in this sample.

	
	

	
	In this sample, our intial catalog consists a set of pictures of fish and helicopters.

	
	First, create a dataframe with the locations of these images:

	
	

	
	.. index:: image, similarity

	
	"""

	
	import os

	
	

	
	try:

	
	 root = os.path.dirname(__file__)

	
	except NameError:

	
	 # __file__ does not exist in a notebook

	
	 root = "."

	
	

	
	# An absolute path must be used if the current folder

	
	# is not the script's one.

	
	image_location = os.path.abspath(os.path.join(root, "Data", "Pictures"))

	
	

	
	############################

	
	# Specify paths to the images we want to featurize.

	
	

	
	images = []

	
	for im in ["Fish/Fish1.jpg", "Fish/Fish2.jpg",

	
	 "Helicopter/Helicopter1.jpg", "Helicopter/Helicopter2.jpg"]:

	
	 images.append(os.path.join(image_location, im))

	
	

	
	###############################

	
	# Let's plot the image to see what they look like.

	
	

	
	import matplotlib.pyplot as plt

	
	from PIL import Image

	
	fig, ax = plt.subplots(2, 2)

	
	for i, im in enumerate(images):

	
	 ax[i // 2, i % 2].imshow(Image.open(im))

	
	

	
	################

	
	# Setup a dataframe with the path to the image.

	
	

	
	import pandas

	
	image_df = pandas.DataFrame(data=dict(image=images))

	
	print(image_df)

	
	

	
	#########################

	
	# Then, get the corresponding feature vectors for each

	
	# of the catalog images into a dataframe.

	
	# We follow the process mentioned at :ref:`l-imgfeat`.

	
	# We load, resize, convert into pixels and finally build

	
	# vectors from images.

	
	

	
	from microsoftml import rx_featurize, load_image, resize_image, extract_pixels, featurize_image

	
	image_vector = rx_featurize(data=image_df, ml_transforms=[

	
	 load_image(cols=dict(Features="image")),

	
	 resize_image(cols="Features", width=227, height=227),

	
	 extract_pixels(cols="Features"),

	
	 featurize_image(cols="Features", dnn_model="Alexnet")])

	
	

	
	print(image_vector.head())

	
	

	
	###################################

	
	# Secondly, create a dataframe with the location of

	
	# the new image to match and get its feature vector into a dataframe.

	
	

	
	images_match = []

	
	for im in ["Fish/Fish4.jpg"]:

	
	 images_match.append(os.path.join(image_location, im))

	
	

	
	fig, ax = plt.subplots(1, 1)

	
	ax.imshow(Image.open(images_match[0]))

	
	

	
	image_match_df = pandas.DataFrame(data=dict(image=images_match))

	
	

	
	image_match_vectors = rx_featurize(data=image_match_df, ml_transforms=[

	
	 load_image(cols=dict(Features="image")),

	
	 resize_image(cols="Features", width=227, height=227),

	
	 extract_pixels(cols="Features"),

	
	 featurize_image(cols="Features", dnn_model="Alexnet")])

	
	

	
	print(image_match_vectors.head())

	
	

	
	###########################

	
	# Thirdly, compare the new image with the images in the

	
	# catalogue to find the best match.

	
	# We have 2 sets of feature vectors:

	
	#

	
	# - ``image_vectors`` contains the feature vectors for the catalog images;

	
	# - ``image_match_vectors`` contains the feature vector of the new image to be compared.

	
	#

	
	# The best match is defined (for our purposes) as the image pair

	
	# with the least Euclidean distance between their image feature

	
	# vectors where one of the feature vectors is for the new image.

	
	# We implement these calculations using

	
	# `cdist <https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html#scipy.spatial.distance.cdist>`_.

	
	

	
	matimg = image_vector.drop("image", axis=1).as_matrix()

	
	matmat = image_match_vectors.drop("image", axis=1).as_matrix()

	
	

	
	from scipy.spatial.distance import cdist

	
	distance = cdist(matimg, matmat)

	
	print(distance)

	
	

	
	#######################

	
	# It contains 4 values corresponding to the Euclidian

	
	# distance between the new image and the first four images

	
	# we used as reference.

	
	#

	
	# .. note:: The actual values can change slightly depending on the machine

	
	# used to run the code, but the order relations between the distance

	
	# values should be invarient.

	
	#

	
	# And the winner is...

	
	

	
	arg = distance.argmin()

	
	print(arg)

	
	

	
	fig, ax = plt.subplots(1, 1)

	
	ax.imshow(Image.open(images[arg]))

 Method 2

Camera and Capture Frame using AForge library

Method 3
Percentage difference between images

https://rosettacode.org/wiki/Percentage_difference_between_images#Fortran
