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ABSTRACT 

 

 

A Comparative Study Of Three Image Matching Algorithms: Sift, Surf, And Fast 

 

by 

 

Maridalia Guerrero Peña, Master of Science 

Utah State University, 2011 

 

Major Professor: Dr. Robert Pack 

Department: Civil and Environmental Engineering 

 

 

A new method for assessing the performance of popular image matching algorithms 

is presented. Specifically, the method assesses the type of images under which each of the 

algorithms reviewed herein perform to its maximum or highest efficiency. The efficiency 

is measured in terms of the number of matches founds by the algorithm and the number 

of type I and type II errors encountered when the algorithm is tested against a specific 

pair of images. Current comparative studies asses the performance of the algorithms 

based on the results obtained in different criteria such as speed, sensitivity, occlusion, and 

others. These studies are an important resource to understand the behavior of the 

algorithms and their influence on the results obtained. But they do not account for the 

inherent characteristics of the algorithms that derive the process through which the 

matching features are evaluated, filtered, and finally selected. Moreover, these methods 

cannot be used to predict the efficiency or level of accuracy that could be reached by 

using one algorithm or the other depending on of the type of images. This ability to 

predict performance becomes handy in situations where time is a limiting factor in a 
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project because it allows one to quickly predict which algorithm will save the most time 

and resources. 

This study addresses the limitations of the existing comparative tools and delivers a 

generalized criterion to determine beforehand the level of efficiency expected from a 

matching algorithm given the type of images evaluated. The algorithms and the 

respective images used within this work are divided into two groups: Feature-Based and 

Texture-Based. And from this broad classification only three of the most widely used 

algorithms are assessed: SIFT, SURF, and FAST. The latter is the only one belonging to 

the feature-based category. Three types of images were evaluated in this study: planar 

surfaces, cluttered background, and repetitive patterns. For the purpose of matching 

planar and very “edgy” objects, such as a boat or a building, the feature-based algorithm 

(FAST) was found to perform with fewer detection errors than the texture-based 

algorithms. Conversely, when the images evaluated corresponded to cluttered 

backgrounds or considerably busy scenes, the texture-based detected a larger number of 

features and matches. The results of each algorithm are evaluated and presented. The 

number of false matches is manually determined and also presented in the final results. 

The conclusion and recommendations for feature works in this subject lead towards the 

improvement of these powerful algorithms to achieve a higher level of efficiency within 

the scope of its performance.                                                                 

(120 pages) 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1  Problem Statement 

 

 

Feature detection and image matching represent two important tasks in 

photogrammetry. Their application continues to grow in a variety of fields day by day. 

From simple photogrammetry tasks such as feature recognition, to the development of 

sophisticated 3D modeling software, there are several applications where image matching 

algorithms play an important role. Moreover, this has been a very active area of research 

in the recent decades and as indicated by the tremendous amount of work and 

documentation published around this. As needs change and become more demanding, 

researches are encouraged to develop new technologies in order to fulfill these needs. 

In this tenor, is worth mentioning that many methods published with source code 

satisfy the everyday needs of photogrammetry and computer vision including feature 

detection, matching and 3D modeling. This latter task has been an ongoing research topic 

in computer vision and photogrammetry for many years now. Obtaining 3D models is 

considered in many cases the ultimate purpose of feature detection and subsequent 

matching. More than a decade ago, the applications associated with 3D models and object 

reconstruction were mainly for the purpose of visual inspection and robotics. Today, 

these applications now include the use of 3D models in computer graphics, virtual reality, 

communication and others.    

But achieving highly reliable matching results from a pair of images is the task that 

some of the most popular matching methods are trying to accomplish. But none have 
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been universally accepted. And it seems that the selection the adequate method to 

complete a matching task significantly depends on the type of image to be matched and 

in the variations within an image and its matching pair in one or many of the following 

parameters: 

a) Scale: At least two elements of the set of images views have different scales  

b) Occlusion: Is the concept that two objects that are spatially separated in the 3D 

world might interfere with each other in the projected 2D image plane. For single-

view tasks, such as object recognition, occlusions are typically considered a 

nuisance requiring more robust algorithms (Hoiem et al., 2007) 

c) Orientation: The images views are rotated with respect to each other . A maximum 

orientation of 30 ̊ is a typical maximum value for most of the algorithms to 

perform a reliable match 

d) Object to be matched: Whether is a planar, textured or edgy object 

e) Clutter: This refers to the conditions of the image background. It is often difficult 

form the algorithm to understand the boundaries of the object of interest when it 

has a cluttered background 

f)  Illumination: Changes in illumination also represent a typical problem for 

accurate feature matching 

Current image matching algorithms may perform acceptably well in presence of 

some of the image conditions described above. But in general, none of the algorithms 

have truly accomplished total invariance to these parameters. More and more researchers 

in this area are trying to incorporate to the existing algorithms the necessary tools to 

achieve complete invariance to these fairly common matching problems. However, given 
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that this is a relative novel research area in photogrammetry, it is sometimes difficult to 

combine all the necessary elements into one algorithm without increasing its 

computational cost.  

Comparative studies have been published assessing the performance of the image 

matching algorithms methods in several aspects (Babbar et al., 2010) (Schenk, Krupnik, 

and Postolov, 2000).  However, these studies only evaluate the algorithms in terms of 

how well will one perform to the other. This study overcomes some of the shortfalls and 

limitations of the current comparative studies by incorporating the analysis of the 

algorithms using different scenes to determine under which circumstances they will 

provide optimum results.  

The challenge is to be able to evaluate the performance of each algorithm using 

objective criteria. This is needed to ensure the implementation of a proper methodology 

for the testing criteria. This will lead us to obtain results applicable to a number of 

possible situations. A must be evaluation focused on identifying characteristic images 

that when combined with a specific algorithm, will result in optimal matching. It is also 

necessary to determine whether the tested algorithms are capable to deliver a result that is 

adequate for 3D model generation.  

 

1.2  Scope and Purpose 

 

 

The main purpose of this research is to complement the already published 

comparative studies by adding a broader applicability that will allow the early 

identification of a method that will perform optimally for a given set of images. 
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It‟s within the scope of this research to provide an answer to the questions given in 

the problem statement. And also to discover, through an exhaustive and systematic 

testing program, the effectiveness of the results obtained with the image matching 

algorithms used in this study, when tested on different sets of images with a marked 

difference in texture, background clutter and other parameters. The results of each test 

will ultimately be used to compare the uniqueness and distinctiveness of each feature 

found and the final conclusion will serve as a reference for further research on this 

subject. In addition, is my intention to elaborate a comparative study that will present 

precise and condense information about the potential of each method to be used as the 

first step towards 3D modeling and object reconstruction. And finally, to clearly present 

all the derivate theory that will support such conclusions. 

 

1.3  Organization 

 

 

 This thesis encompasses 6 chapters. Chapter 1 is the Introduction. Chapter 2 

discusses the literature reviewed on the development of Image Matching Algorithms, 

their implementation, and their assessment. It is a comprehensive analysis of all the 

previous work in image matching algorithms development, implementation and 

assessment. Chapter 3 focuses on methodology. Here, the steps followed to perform the 

tests and to obtain the expected results are detailed. Also, it explains the method used to 

interpret the results. Chapter 4 provides the data analysis of the results. Chapter number 5 

presents the research conclusions. Chapter 5 presents recommendations for further 

research in this area.  
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CHAPTER 2 

LITERATURE REVIEW 

 

 

This literature review encompasses in detail all the previous work reviewed during 

this research.  To truly embrace image matching and 3D modeling it is important to 

understand the earlier works that preceded the chosen algorithms. Feature detection is the 

first step towards image matching which in turn represent the base for 3D modeling. The 

literature reviewed tracks the first attempts to achieve robust feature detection starting 

about two decades ago.  

During the process of looking for documentation on 3D modeling, a lot of work was 

found that addresses the early feature detection and the posterior image matching. This is 

a good indicator of their importance to this process. Most of the early implementations 

developed seemed to work well under certain limited image condition. The real challenge 

for those authors was to achieve true invariant feature detection under any image 

conditions (i.e. illumination, rotation, blurring, scale, clutter, etc). The consistency of the 

early results appears to have been mostly controlled by the type of images used.  

This literature review aims to provide with an insight on what have been done, what 

is currently being studied and where the future work is pointing in the field of image 

matching and automated 3D model reconstruction. 

 

2.1  Literature Overview: Introduction to Corners, Edges and Texture Based Detectors 

 

 

Robust feature detection, image matching and 3D models are concepts that have 

been around for many years now in the computer vision field. But it wasn‟t until the end 

of the last decade and the beginning of this one that the problem was really approached 
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by numerous researchers and professionals working in this field. It is well known that 

achieving true invariant object recognition has been one of the most important challenges 

in computer vision and photogrammetry. Recently, there has been a significant progress 

in the use and implementation of algorithms towards the detection of invariant features in 

every-day more complex images (Lowe, 1999).  

The first attempts towards digital image recognition were limited to the 

identification of corners and edges. This practice although effective had many limitations. 

The recognition of corners only in many cases was not enough for the elaboration of 3D 

models and object reconstruction.  It therefore evolved to include another class of 

algorithm focused on matching textures. Both of these types are reviewed. 

 

2.2  Feature-Based Matching Algorithms: Corner and Edge Detectors 

 

 

The beginnings of feature detection can be tracked with the work of Harris and 

Stephen and the later called Harris Corner Detector I (Harris, 1988). This publication 

was aimed to introduce a novel method for the detection and extraction of feature-points 

or corners. Harris was successful in detecting robust features in any given image meeting 

basic requirements. But since it was only detecting corners, his work suffered from a lack 

of connectivity of feature-points which represented a major limitation for obtaining major 

level descriptors such as surfaces and objects (Harris, 1988). Due to this issue, the points 

detected with this method did not have the level of invariance required to obtain reliable 

image matching and 3D reconstructions. Nevertheless, this corner detector was a 

revolutionary invention that has since then been widely used for some specific computer 

vision applications.  
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In 1988, Harris published a new state-of-the-art work that marked a new direction 

in the work of feature detection. As a way to overcome the limitations of his previous 

work, he determined that there is a need for consistency in the corners detected. This is a 

factor of prime importance for 3D interpretation of images (Harris, 1988). To achieve 

this, he combined the isolated corners detected with the Harris Detector with a 

corresponding connection edge. This way, the corners randomly detected by the Harris 

Detector where assigned to a specific space and geometry that could be more robustly 

matched. The work of Harris was later improved and showed its value for efficient 

motion tracking and the creation of 3D structures from motion recovery. 

By the end of the 1990‟s several corner and edge detectors were published and 

available to the general public. Some of these algorithms are worth mentioning because 

of the quality of their performance. The SUSAN corner detector and the WANG method 

are good examples of these algorithms (Smith and Brady, 1997); (Wang and Brady, 

1994). Since then, these works have been improved and therefore superseded.  

 

2.3  FAST Corner Detector 

 

 

In 1997, almost a decade after the Harris Detector was published; a new corner 

detector algorithm called FAST was presented (Trajkovic and Hedley, 1998). In this 

work, the authors recognized the importance of the existing theory in feature detection for 

many tasks in Machine Vision but complemented this theory by adding other important 

criteria. With FAST, the detection of corners was prioritized over edges as they claimed 

that corners are one of the most intuitive types of features that show a strong two 

dimensional intensity change, and are therefore well distinguished from the neighboring 
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points (Trajkovic and Hedley, 1998). Trajkovic and Hedley (1998) stated that to enable 

feature point matching from a detected corner, the corner detector should satisfy the 

following criteria: 

a) Consistency, detected positions should be insensitive to the variation of noise and, 

more importantly, they should not move when multiple images are acquired of the 

same scene; 

b) Accuracy, corners should be detected as close as possible to the correct positions; 

c) Speed, even the best corner detector is useless if it is not fast enough. 

According to a comparative study of the existing corner detectors based on the 

above criteria (Trajkovic and Hedley, 1998), was found that most of these detectors 

satisfied the first two criterions but failed in the third. Undoubtedly, the main contribution 

of FAST was the increment of the computational speed required in the detection of 

corners. This corner detector uses a corner response function (CRF) that gives a 

numerical value for the corner strength based on the image intensity in the local 

neighborhood. This CRF was computed over the image and corners which were treated as 

local maxima of the CRF. Along with this, a multi-grid technique is employed which was 

responsible for the improvement in the computational speed of the algorithm and also for 

the suppression of false corners being detected. The main contribution of FAST was 

summarized as: “A new algorithm which overcame some limitations of currently used 

corner detectors.” But FAST also modified the Harris detector so as to decrease the 

computational time of the algorithm without compromising the results (Trajkovic and 

Hedley, 1998). 
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Trajkovic and Hedley in his 1998 publication, compared The FAST algorithm with 

the top four corner detectors at the time: Harris, Modified Harris, SUSAN and Wang; the 

accuracy of FAST was found to be among the bests. When tested for consistency FAST 

performed very well; it fell just behind the best which was the Harris algorithm, but 

FAST was proved to be significantly faster than any other algorithm which is important 

for real time machine vision applications (Trajkovic and Hedley, 1998). 

After the success of the FAST algorithm, several authors took the fundamentals of 

this method to either improve it or to implement it in new applications. In 2010 was 

presented one of the most relevant application and improvements of the FAST algorithm 

and succeeded in achieving very distinctive matching features (Fraser, Jazayeri, and 

Cronk, 2010).  

In this publication was determined that the weakness of most of the corner detectors 

is the lack of effectiveness when detecting corner in a much clustered image background. 

This is because these detectors where based on the analysis of a pixel and its neighbors 

only, with no additional filtering processes this sometimes lead to erroneous detection. In 

the early publication already discussed (Trajkovic and Hedley, 1998) the authors were 

able to overcome this problem by using a linear inter-pixel approximation and lastly a 

multi-guard approach to reduce the sensitivity of the algorithm to false corners in 

textured regions of an image and to increase the computational speed of the algorithm.  

With the advent of a whole new era for photogrammetry which brought with it the 

matching and 3D reconstruction processes, the earlier corner detectors became the 

starting to tool to achieve those new tasks. It is at this point where the work presented by 

Fraser, Jazayeri and Cronk, becomes one of the strongest contributions to this subject. 
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Fraser, in collaboration with Jazayeri and Cronk, presented a novel approach for feature 

matching and 3D reconstruction. They named their work “A Feature Based Matching 

Strategy for Automated 3D Model Reconstruction in Multi-image Close Range 

Photogrammetry” and, as it name implies, this work presented a feature-based matching 

approach to automated 3D object reconstruction. Fraser, Jazayeri and Cronk used the 

FAST interest operator developed by Trajkovic and Hedley in 1998, along with a Wallis 

filter applied to the image of interest (Wallis, 1974).  

The work of Fraser, Jazayeri and Cronk (2000) brought FAST and the other corner-

edge detector algorithms back to the spot light when it proved that, if combined with the 

right computational processes such as the Wallis filter, the early FAST principles were 

extremely effective to achieve 3D image matching and reconstruction. These authors 

describe the FAST operator as both a very fast and robust algorithm that yields good 

localization (positional accuracy) and high point detection reliability. This can be 

illustrated in Figure 1a, b, and c. 

 

  

 

 

 

 

 

Figure 1. (a) Wallis filtered image; (b) Enlarged area showing FAST interest 

operator results on Wallis filtered image; (c) Enlarged area 

showing FAST operator results on original image. 
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The phenomenon of image matching through corner detectors algorithms had a 

strong manifestation in several more published yet seldom used algorithms. Some of 

them deserve to be mention for the importance of their contribution. Some of those are: 

a) Least square matching algorithm. Developed by D. Rosenholm (Rosenholm, 

1987)   

b) Parametric correspondence and chamfer matching. Developed by Barrow in 

collaboration with other authors (Barrow et al., 1977)  

c) Stereo image matching algorithm. This method has different approaches being the 

most used the layered, adaptive window and iterative approach (Kanade and 

Okutomi, 1994). 

 

2.4  Textured-based Algorithms 

 

 

After the development and climax of the corner detector algorithms, a new 

challenge was embraced: To achieve reliable image matching from textured image with 

cluttered backgrounds.  

Before understanding this, it is important to know that feature-based algorithms 

have been widely used as feature point detectors because comers and edges correspond to 

image locations with high information content, meaning this that they can be matched 

between images (e.g. temporal sequence or stereo pair) reliably (Trajkovic and Hedley, 

1998). But the feature-based detectors only perform accurately when the objects to be 

matched have a distinguishable corner or edge. In other words, feature-based detectors 

tend to be more suitable for matching planar surfaces and objects within a given image. 



12 

 

Furthermore, the feature-based algorithms do not perform as good as expected when 

images are subjected to variations in scale, illumination, rotation or affine transform. 

To overcome these limitations, a new class of image matching algorithm was 

developed simultaneously. These algorithms are known as texture-based algorithms 

because of their capability to match features between different images despite of the 

presence of textured backgrounds and lack of planar and well-defined edges. One of the 

first attempts towards this novel approach was undertaken by David Lowe (Lowe, 1999). 

His method is one of the most recognized and extensively used texture-based matching 

algorithms. 

2.5  Lowe‟s Approach 

 

 

The ground breaking work of Lowe (Lowe, 1999) demonstrated that it was possible 

to detect features invariant to image scaling, translation, rotation and partially invariant to 

illumination. Features were efficiently detected through a staged filtering approach that 

identifies stable points in scale space. On top of this, image keys were created that 

allowed for local geometric deformations by representing blurred image gradients in 

multiple orientation planes and at multiple scales ensuring the detection of points within 

very busy backgrounds. These keys created during the filtering step, are used as input to a 

nearest-neighbor indexing method that identifies candidate object matches.  

Final verification of each match is achieved by finding a low-residual least-squares 

solution for the unknown model parameters. Experimental results show that robust object 

recognition can be achieved in cluttered partially-occluded images with a computation 

time below 2 seconds. 
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Figure 2. Model of planar objects are in top row. 

Table 1. Results presented by Lowe showing the 

efficiency of SIFT  
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Table 1 presents some of the results obtained by Lowe with this work. It shows the 

percentage of keys found at matched locations and scales, and that also match in 

orientation (Lowe, 1999). As in the feature-based algorithms Lowe‟s approach worked 

really well for images of planar objects (see Figure 2), but it has a high computational 

cost.  

 

2.6  Mikolajczyk and Schmid‟s Approach 

 

 

Mikolajczyk and Schmid presented a novel approach for detecting interest points 

invariant to scale and affine transformations. Their approach combines the Harris detector 

with the Laplacian-based scale selection first presented by Lowe (Lowe, 1999). They 

addressed the problem of affine invariant transformation and presented a new feature 

detector that selects the points from a multi-scale representation (Mikolajczyk and 

Schmid, 2004). This methodology accomplished the detection of features invariant to 

affine transformations because it was suited to work with images with non-uniform 

scales, unlike the previous detectors. Schmid also worked in collaboration with Dorkó 

(Dorkó and Schmid, 2003), to present a method for constructing and selecting scale-

invariant objects parts. Rather than selecting features in the entire image, this descriptor 

was used to extract specific objects from a set of images. 

 

2.7  SIFT, PCA-SIFT and SURF Texture-Based Matching Algorithms 

 

 

Few years after his first publication on feature detection for textured images, Lowe 

published an improved version of his work and presented his results with the publication 

of the Scale Invariant Feature Transform (SIFT) algorithm (Lowe, 2004). The concepts 
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behind SIFT are briefly explained in the next section. Along with it, the description of 

other transcendental algorithms that followed SIFT is presented. These algorithms are the 

Principal Component Analysis-SIFT (PCA-SIFT) and the Speed-Up Robust Features 

(SURF). 

2.8  Scale Invariant Feature Transform: SIFT 

 

 

SIFT, as mentioned before, was developed by David Lowe in 2004 as a 

continuation of his previous work on invariant feature detection (Lowe, 1999), and it 

presents a method for detecting distinctive invariant features from images that can be 

later used to perform reliable matching between different views of an object or scene. 

Two key concepts are used in this definition: distinctive invariant features and reliable 

matching. What makes the Lowes features more suited to reliable matching than those 

obtained from any previous descriptor? The answer to this lies, in accordance to Lowe‟s 

explanation, in the cascade filtering approach used to detect the features that transforms 

image data into scale-invariant coordinates relative to local features. 

This approach is what Lowe‟s has named SIFT, and is broken down into four major 

computational stages: 

a) Scale-Space extrema detection 

b) Keypoint localization 

c) Orientation assignment 

d) Keypoint descriptor 

 

Each of these stages are execute in a descending order (that‟s why its referred to as 

a cascade approach) and on every stage a filtering process is made so that only the key 

points that are robust enough are allow to jump to the next stage. According to Lowe, this 
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will reduce significantly the cost of detecting the features. However, researches who 

tested the SIFT algorithm stated that although SIFT seemed to be the more appealing 

descriptor; the 128-dimensions of the descriptor vector turn the feature detection into a 

relatively expensive process. 

 

2.9  Principal Component Analysis for SIFT: PCA-SIFT 

 

 

In response to this issue, new algorithms emerged as an attempt to improve SIFT 

and eliminate the computational costs carried with Lowe‟s implementations. Ke and 

Sukthankar were the first in presenting the “improved” version of SIFT‟s descriptor: 

PCA-SIFT (Ke and Sukthankar, 2004). 

After an evaluation of the stable feature detection algorithms published by 

Mikolajczyk and Schmid (2004) that identified the SIFT algorithm as being the most 

resistant to common image transformation, Ke and Sukthankar decided to take a step 

further and improve the local image descriptor used by SIFT. That‟s how they created 

PCA-SIFT. This approach uses a Principal Component Analysis (PCA) to detect the local 

features instead of the SIFT‟s smoothed weighted histograms. Principal Component 

Analysis is a standard technique for dimensionality reduction and has been applied to a 

broad call of computer vision problem, including feature selection, object recognition and 

face recognition. While PCA suffers from a number of shortcomings, it remains popular 

due to its simplicity.  

The PCA-SIFT achieved the ability to speed up the SIFT‟s matching process by an 

order of magnitude, but it was proved to be less distinctive than SIFT. Right after the 

PCA-SIFT algorithm was released developed SURF (Bay et al., 2006). SURF stands for 
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Speeded-Up Robust Features and it is an algorithm aimed to re-build the strengths of the 

leading existing feature detectors and descriptors (i.e. SIFT and PCA-SIFT).  

 

2.10  Speeded-Up Robust Feature: SURF 

 

 

The Speed-Up Robust Feature detector (SURF) was conceived to ensure high speed 

in three of the feature detection steps: detection, description and matching (Bay et al., 

2006). Unlike PCA-SIFT, SURF speeded up the SIFT‟s detection process without 

scarifying the quality of the detected points.  The reason why SURF is capable of detect 

images features at the same level of distinctiveness as SIFT and at the same speed as 

PCA-SIFT is explained by their authors as follows: 

 An entire body of work is available on speeding up the matching step. All of them 

come at the expense of getting an approximate matching. Complementary to the 

current approaches we suggest the use of the Hessian matrix‟s trace to significantly 

increase the matching speed. Together with the descriptor‟s low dimensionality, any 

matching algorithm is bound to perform faster. (p.  

 

The SIFT, PCA-SIFT and SURF algorithms are nowadays the most widely used in 

the computer vision community. These algorithms have proven its efficiency and 

robustness in the invariant feature localization (Bay et al., 2006). 

 

2.11  Commercial Implementations 

 

 

A variety of applications of the image feature matching technology can be found. 

One of the most popular implementations is the software developed by the Microsoft 

Corporation known as Photosynth. As described by their creators: 

Photosynth is really two remarkable technical achievements in one product: a 

viewer for downloading and navigating complex visual spaces and a "synther" for 

creating them in the first place. Together they make something that seems 

impossible quite possible: reconstructing the 3D world from flat photographs. (p. 
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In simple terms, Photosynth allows you to take a bunch of photos of the same scene 

or object and automatically stitch them all together into one big interactive 3D viewing 

experience. The software uses techniques from the field of computer vision to examine 

the selected images and find similarities between them in order to determine the point 

from which is image was taken. All this information is used by Photosynth to recreate a 

3D scene quite similar to the real one. Other applications of the matching features include 

robotics, motion tracking, and human faces detection among others.  

These are the type of projects that clearly succeeded in the process of implementing 

the concepts of one of the algorithms studied herein. The creators of Photosynth claimed 

to make use of the SIFT principles as the base of their work. But the manipulations and 

further improvements of this method remain unknown.  

FAST, on the other hand, has been used in different projects by companies and 

individuals. A complete list of these commercial implementations can be found in the 

FAST web site, and it includes: Port for iphone applications, parallel tracking and 

mapping, Qualcomm Incorporated Technologies and others. 

Another important publication on this matter is the one presented by Barazzetti, 

Remondino and Scaioni in 2010. In their publication “Extraction of Accurate Tie Points 

For Automated Pose Estimation of Close-Range Blocks” they used of SIFT and SURF 

algorithms to develop what they claim to be a powerful and automated methodology to 

extract accurate image correspondences from different kinds of close range image blocks 

for their successive orientation with a bundle adjustment (Bazzaretti, Remondino, and 

Scaioni, 2010). In other words, they developed an improved version of the Photosynth 

and Samantha packages explained above.  
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2.12  Previous Work On Matching Algorithms Comparison 

 

 

During the course of this research, some people published different studies 

comparing Image Matching algorithms. Some of them have been very successful in 

comparing the most important aspects of the Image Matching algorithms.  

One of the most recent comparative studies of image matching algorithms named: 

“Comparative Study of Image Matching Algorithms” was published in 2010 (Babbar et 

al., 2010). This paper based its comparative analysis on the distinction between different 

matching “primitives” used for these algorithms. A primitive is defined as any initial 

method utilized by the algorithm to detect the feature points within a given image. Two 

types of primitives have been discussed in this literature review so far: Feature-Based and 

Texture-Based. Babbar limited the scope of his study to these two primitives which he 

divided into two broad categories: Area Based Algorithms and Feature Base Algorithms 

(Babbar et al., 2010).  

This study was very successful in comparing the performance of both types of 

algorithms in several criteria such as speed, convergence, sensitivity, occlusion and 

others. The conclusions of this comparative study positioned the Feature-Based 

algorithms as the optimal method for image matching problems in general. The reason 

why the Feature-Based algorithm performed the best in Babbar‟s study is solely 

explained by the results presented in this paper where it is clear that these algorithms 

yielded better results in almost all the criteria tested. However, this work does not present 

us with the images used for the study. This leaves the door open to many uncertain facts: 

Were the images used were more planar than textured?  If so, this may have tip the results 
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in favor to the feature based algorithms. Or, were the set of images used to derive the 

results a truly representative sample of the image data-set?  

Other authors have published comparative studies focusing on specific algorithms 

like Luo Juan and Oubong Gwun who compared the performance of SIFT, PCA-SIFT 

and SURF for scale changes, rotation, blur, illumination changes and affine 

transformation (Juan and Gwun, 2009). Again, this was a very comprehensive study 

where the supremacy of the texture-based algorithms was proven. The principal element 

of analysis for this study was the variation on the results obtained with texture-based 

algorithms when the set of images tested were subject to changes in the parameters above 

described.  

Unlike Babbar‟s study, Juan and Gwun presented the type of images used to 

complete their work (Figure 3).  It comes with no surprise that the types of images tested 

in this comparative study are highly textured.  

The selection of this type of images only makes stronger the argument that not all 

the images can be equally evaluated with any image matching algorithm. Juan and Gwun 

(2009) concluded their claiming that the selection of one method over the other mainly 

depends on the application and recommended the future research to go towards 

algorithms improvements and/or application of the methods in single areas such as image 

retrieval and stitching to determine the suitability of each algorithm to a given set of 

image. 

This latter comparative study concluded that SIFT was the most robust texture-

based algorithm from the three evaluated, but it is too slow. SURF is significantly faster 

than SIFT while maintaining a good performance (comparable with SIFT). PCA-SIFT on 
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the other hand, show its advantages in illumination and image rotation. Lastly, the study 

concluded with recommendations of a more in depth analysis of the images suitable to a 

given algorithm in dependence of the application. This is the main purpose of this 

research: To complement the already published comparative studies by adding a broader 

applicability that will allow the early identification of the method that will perform more 

accurately to their specific application. This is the topic that this research is expected to 

cover. 

There are others comparative studies on image matching algorithms and an 

important subject that has been addressed is the surface matching comparison (Schenk, 

Krupnik, and Postolov, 2000).  

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

Figure 3.  Images used for the SIFT, PCA-SIFT and SURF comparative 

study. 
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CHAPTER 3 

METHODOLOGY 

 

 

3.1  Overview 

 

 

Current methods for assessing the performance of image matching algorithms are 

based on comparisons of one algorithm over the other using the same image datasets. 

This has led to varied conclusions where sometimes one of the algorithms is presented as 

the best, while in other publications that same algorithms performed differently. It is 

believed that some algorithms are best suited to a particular type of image and that they 

will perform better when tested on these images. The proposed study will based its 

comparison on the use of different sets of images. With this, the hypothesis stating that 

the performance of the algorithms is dependent on the type of images evaluated will be 

tested. 

 

3.2  Source Of Data: Images and Algorithms 

 

 

The images to be used are representative of three different and common situations 

that may be present on a given set of images: 

a) Cluttered Background 

b) Planar Objects 

c) Repetitive Patterns 

The images are pictures taken from different scenes with a SONY CYBERSHOT 

DSC-W110 Digital Camara with a 7.2MP resolution. All the images correspond to day 

light scenes. The original images where resized to a lower resolution of approximately 
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457x630 pixels so the algorithms chosen can process them more efficiently. The images 

selected correspond to: 

a) A window from the Technology Building at Utah State University (Repetitive 

Pattern) 

b) A ventilation window in a brick wall (Repetitive pattern + Edge analysis) 

c) The Haddock Boat (Planar Object) 

d) Aggie Village Housing Building (Rotation) 

Figure 4 (a) through (d) shows the image datasets used for this study. 

As for the algorithms to be tested, we are using three of the most popular image 

matching algorithms: SIFT, SURF and FAST. 

SIFT is arguably the most popular algorithm that can match under different scales, 

rotations and lighting, but it was significantly slow. Many implementations can be found 

as open source codes in the web. For this study it is used the implementation published 

by Rob Hess. The first version was published in 2008 but has been continuously 

improved until 2010. This implementation is the most recent one compilable in the Visual 

Studio 2008 environment and has proven to provide very good as shown in Hess‟s 

publication (Hess, 2010). Figure 5 presents some of the results obtained with Rob Hess‟s 

implementation. 
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(a) Repetitive pattern and clutter 

 

  

 

 

 

 

 

 

(b) Edges and corners (Brick Wall) 

 

  

 

 

 

 

 

 

 

 

(c) The Haddock Boat 

 

 

 

 

 

 

(d) Rotation 

 

  

Figure 4. The four different datasets used as the input images for the tests. (a) 

Repetitive pattern and clutter; (b) Edges and corners (Brick Wall); (c) 

The Haddock Boat (Planar Surfaces); (d) Rotation. 
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SURF was published after SIFT and it was intended to overcome the computational 

cost derived from using this latter and also the amount of time consumed by the 

algorithm. The SURF implementation used in this study was developed by Christopher 

Evans in 2008  and has been continuously improved and revised up to May 2010. He also 

wrote the paper “Notes on the Open SURF Library” where is explained in detail the 

analysis of the Speeded-Up Robust Features computer vision algorithm along with a 

breakdown of the Open-SURF implementation. It also contains useful information on 

machine vision and image processing in general (Evans, 2008). This library is available 

in two versions: C++ and C#. The C++ version comes with the image matching 

component whereas the C# only has the feature detection component. Both the C++ and 

C# implementations are used in this study.   

Figure 5. Results presented by Rob Hess with the implementation of the SIFT algorithm 

for object recognition. Top: SIFT features detected in two images. Bottom: SIFT 

featured matches between the two images. 
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FAST is the only feature-based algorithm from the three used for this study. It was 

first developed by Trajkovic and Hedley in 1998. The implementation used was 

published by Edward Rosten (Rosten and Drummond, 2009) as well. All of these 

implementations utilize the OpenCV library of programming functions for real time 

computer vision. 

 

3.3  Experimental Process 

 

 

The images shown above will be tested with each algorithm and these, in turn, will 

be tested in different categories having as a final and principal goal the assessment of the 

intrinsic algorithm characteristics that will make it differ from another. Robustness, 

speed, number of features and number of matches are some of the parameters that will be 

evaluated. Due the nature of this research we need to ensure the applicability of its results 

to almost any derivate circumstance in which a comparative study image vs. algorithm 

performance may become handy. After the data have been chosen, we will undertake an 

Figure 6. FAST corner detection demonstration. 
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experimental process that is expected to reveal the effectiveness of the algorithms for 

different sets of images. 

The methodology to be followed is broken down into the following steps. 

 

 

3.3.1  Data selection 

 

The images selected were described and presented in section 3.2. Each of these 

datasets recreates one or more of the conditions that commonly affect images and that 

constitute a challenge for the matching algorithms. 

 

3.3.2  Image pairs 

 

The images used in this study will be taken in pairs with a difference in orientation 

no greater than 30° from one image to its matching pair. Some of the algorithms used in 

this study are unable to handle images with high pixel resolution (i. e. N x M pixel size 

greater or equal to 1 MP). Due to this, the images taken were cropped and resized to the 

maximum sizes that SIFT, SURF and FAST could efficiently process. The size used for 

this work is 457x630 pixels. The selection of the image pairs that were tested depended 

on the parameters that are more significant to our purposes. It is necessary to ensure that 

the image pairs selected represent at least one of the parameters mentioned in section 1.1. 

The image pairs are shown in Figures 7-10.   

 

3.3.3  Feature detection 

 

After the images pairs are selected, the feature detection component of each 

algorithm was run over the image pairs. SIFT, SURF and FAST all are coded to perform 

feature detection first. The purpose of this run is to quantify the difference between the 

numbers of features detected by the algorithms and also the “quality” of these features. 
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Figure 7. Windows (First Pair). 

Figure 8. Brick Wall (Second Pair). 
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Figure 9. The Boat (Third Pair). 

Figure 10. The building (Fourth Pair). 
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3.3.4  Manual detection of matches candidates 

 

The amount of features detected is not a measure of a „good‟ performance by itself. 

Better than detecting 100 features is detecting 100 important features in the image. 

Certain parts of the image contain more information than others and these are the one that 

will have a higher chance of finding a match candidate. A visual inspection of the 

features detected with SIFT, FAST and SURF was performed. A total of 20 features were 

manually matched at each of the image pairs (please refer to Appendix E for manual 

matching on image pairs).  Each pair of feature detected as a match was connected to 

each other with a straight line, as shown in Appendix E. The process was made for each 

image pair and each algorithm. FAST is the only one of the three algorithms tested that 

does not have a matching component available as an open code. The features detected 

with FAST in each image pair were manually matched to determine the amount of 

features from image A of the pair that has a correspondent feature on Image B. Although 

this could be somehow „unfair‟ for the other algorithms, because a manual match closely 

compares to a „perfect‟ model, a proportionality analysis can be performed to truly assess 

the behavior of the three algorithms as fair as possible.  

 

3.3.5  Automated detection of matching 

 

After the manual matching process was completed for each algorithm, the matching 

component of SIFT and SURF was run. This allowed the algorithms to automatically find 

the matches from the feature points previously detected.  
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3.3.6  Evaluating the results 

 

The results obtained from the previous steps were assessed in terms of the number 

of errors incurred in the detection of accurate matches by the algorithms. As a measure of 

the success, the errors will be classified utilizing the Type I and Type II error method. 

Type I error occurs when real matches are not detected by the algorithms. In this case 

having the algorithm found the same feature point on both images composing the pair; it 

does not recognize them as a match in the subsequent step. A Type II error is generated 

when the algorithm mismatches a feature. Typically, mismatches or false negative can be 

visually identified as crossing lines draw between the matches. This is further explained 

in Chapter 4.  

Type I errors were computed by determining the number of matches that the 

algorithm failed to identify as matches from the ones manually detected in section 3.3.4.  

We want the number of type I errors to be low because a high number of type I errors 

reflect failures in the algorithm to accurately detect matches.  For image matching 

algorithms we want the number of type II errors found to be low also. A high number of 

type II errors are a measure of inaccuracy in the algorithm because it is mismatching 

features within the pair.  

 

3.3.7  Final comparison 

 

After all the results have been collected and analyzed in depth, a comparison 

between the statistical values derived from the results of each method is evaluated. From 

this, the conclusions of this research will be shaped.  



32 

 

CHAPTER 4 

 

DATA ANALYSIS 

 

 

This chapter describes the step by step implementation of the methodology 

proposed. Some considerations and exceptions had to be made in some cases and these 

changes are also explained herein.  

 

4.1  Feature Detection 

 

 

4.1.1  SIFT feature detection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. SIFT feature detection algorithm. 
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The original implementation of the SIFT algorithm feature detection can be 

summarized with the diagram shown in Figure 11. 

Hess‟s implementation follows these steps in the algorithm. As explained in his 

paper, the SIFT Library itself comprises four main components: 

a) SIFT feature detector 

b) Kd-tree feature database information 

c) RANSAC transform computation 

d) Invariant image feature handling 

To detect the interest features for the input images it is only necessary to use the 

first component.  This SIFT Library allows you to call one of two function for detecting 

SIFT features both located at the “sift.h” header file that comes with the code. The first 

function will compute the feature detection process using the default parameters 

suggested by Lowe in 2004 (Lowe, 2004). The other function allows the user to select the 

desired parameter based on their particular interest or needs. For the tests showed here we 

used the default Lowe‟s parameters. 

Images presented in Appendix A Figures 18-21 show the image pairs after the SIFT 

detector was run on them. The results show the features as purple arrows with different 

magnitudes and directions. These arrows are vectors centered at the detected point. One 

row is draw for each feature detected. The magnitude and direction of these rows depend 

on the scale and the orientations assigned to the feature they represent, respectively.  
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4.1.2  SURF feature detection 

 

The OpenSURF Library is very similar to the SIFT Library when it comes to 

feature detection. The main difference relies on the use of an integral image from the first 

as the basis for this detection. The use of a very basic Hessian-matrix approximation 

facilitates the implementation of the integral image concept which in turn speeds up the 

detection. The detector is based on the Hessian matrix because of its good performance in 

accuracy. More precisely, the algorithm detects blob-like structures at locations where the 

determinant of this matrix is maximum (Bay et al., 2006).  

One important reason to implement this feature extraction method is because it 

provides complementary information about the region of interest that cannot be obtained 

from edge or corner detectors. Also, the improvement on speed achieved with this 

implementation is a very desirable factor for many processes. The OpenSURF Library 

used in this study follows the steps described above (Evans, 2008).  

This algorithm draws the features as ellipses of different sizes and colors. The size 

of each ellipse is governed by the function (g.DrawEllipse(Pen pen, int x, int y, 

int width, int height).  This function takes the x and y values from the coordinates 

of the feature detected. The width and height parameters have the same value and are 

denoted by the variable S.  Width and height are both factors of the feature scale. Their 

computation is achieved by using the following relation: 

 

 

 

 

Features are also colored blue or red on dependence of value of the Laplacian 

matrix. If the Laplacian value of a particular point is greater than 0, then the ellipse will 

int S = 2 * Convert.ToInt32(2.5f * ip.scale); 

 

(1) 
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be blue colored, otherwise, the resultant ellipse will be draw in red (please refer to 

Appendix A Figures 22-25). This is achieved by applying the following statement: 

 

 

 

 

The reason why the sign of the Laplacian is important for feature detection is 

explained in the next lines extracted from the notes on the OpenSURF Library (Evans, 

2008): 

SURF detector is based on the determinant of the Hessian matrix. In order to 

motivate the use of the Hessian, we consider a continuous function of two variables 

such that the value of the function at (x; y) is given by f(x; y). The Hessian matrix, 

H, is the matrix of partial derivates of the function f. 

 

 

 

 

 

 

 

 

 

The determinant of this matrix, known as the discriminant, is calculated by:  

 

 

 

 

 

 

 

 

The value of the discriminant is used to classify the maxima and minima of 

the function y the second order derivative test. Since the determinant is the product 

of eigenvalues of the Hessian we can classify the points based on the sign of the 

result. If the determinant is negative then the eigenvalues have different signs and 

hence the point is not a local extremum; if it is positive then either both eigenvalues 

are positive or both are negative and in either case the point is classified as an 

extremum. 

 

myPen = (ip.laplacian > 0 ? bluePen : 

redPen);  

 

(2) 

(3) 

(4) 
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4.1.3  FAST feature detection 

 

As mentioned previously, FAST is the only feature-based algorithm from the three 

presented in this work. Because of this difference the process through which FAST 

detects feature points varies significantly from SIFT and SURF. FAST relies on a corner 

response function (CRF) to robustly detect corners in a given scene. It also used a 

multigrid algorithm to detect corners that speeds the process significantly (Trajkovic and 

Hedley, 1998). The three-step multigrid algorithm used to detect comers is presented 

below. 

Step 1: In a low resolution image, compute the simple CRF at every pixel location. 

Classify pixels with a response higher than a define threshold T1 as „potential 

corners‟. 

Step 2: Using the full resolution image for each potential corner pixel, compute the CRF.  

If the response is lower than another threshold already detected, then the pixel is 

not a corner, and the upcoming step is not performed. If not, use a interpixel 

approximation and compute a new response. If the response is lower than the 

second threshold T2 then the pixel is not a comer.  

Step 3: Find pixels with a locally maximal CRF and mark them as corners. This step is 

necessary since in the vicinity of a corner more than one point will have high 

CRF, and only the largest CRF is declared to be a comer point. This is called non-

maximum suppression (NMS).  

Features detected with FAST are drawn as blue circles on the input image. The 

center of the circle is located at the x and y coordinates of the feature detected. These 

circles have a fixed radius and thickness of 5 and 1 P respectively. Refer to Appendix A 
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Figures 26-29 for the FAST feature detection results on the image pairs used for this 

study. 

4.2  Feature Matching 

 

 

4.2.1  SIFT feature matching 

 

The feature matching process is done through the match.c function in the SIFT 

Library. This function is explained in as follows (Hess, 2010): 

match.c: This application computes matches between SIFT key points detected in 

two images using the library's kd-tree functions and optionally computes a transform 

based on those matches using the library's RANSAC functions.  

 

This is again, a matching application of the SIFT algorithm that correspond very 

similarly to the one described by David Lowe in his 2004 publication.  The results 

obtained with this SIFT Library and the original are very comparable as shown in Table 

2.  

 

4.2.2  SURF feature matching  

 

SURF uses an indexing process to accelerate the matching stage. As explained 

before, typically the interest feature points are derived from blob structures and this, 

along with the sign of the Laplacian obtained during the detection step distinguishes 

bright blobs on dark backgrounds from the reverse situation (Bay et al., 2006). In the 

matching stage, it only compare features if they have the same type of contrast, see 

Figure 12. Hence, this minimal information allows for faster matching, without reducing 

the descriptor's performance. 
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Table 2. A comparison of keypoint matching and computed transform accuracy between 

the SIFT library and David Lowe's SIFT executable 

 

 
Key points 

Matched 
Match Percentage 

SIFT Library 858 of 3705 23.20% 

Lowe’s 

executable 
1087 of 4635 23.50% 

Figure 12. If the contrast between two interest points is different (dark on light 

background vs. light on dark background), the candidate is not 

considered a valuable match (Bay et al., 2006). 
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4.2.3  FAST feature matching 

 

FAST matching component is not yet available as an open source code. Therefore, 

the automatic detection of matches could not be used in this study. However, a manual 

detection of the matches as explained in the third step of the experimental process. The 

results of this analysis and how are these results comparable with the automated matches 

from SIFT and SURF is detailed in Chapter 5. 
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CHAPTER 5 

RESULTS AND CONCLUSIONS 

 

 

5.1  General Overview 

 

 

The experimental process followed up for this study yielded some expected results. 

One important consideration is that the image dataset used consists of images that 

represent typical cross-sections of scenes in the real world. The image size was modified 

to allow quick and efficient performance from the algorithms.  Table 3 summarizes the 

number of features detected by each algorithm for a given pair of images.  

 

5.2  Feature Detection Results 

 

 

While implementing the feature detection component on the images it was found 

that despite the image, SIFT detects more features than FAST or SURF.  The results of 

this feature detection process are shown in Figures 13 to 16. Given SIFT is a proven 

robust feature detector, it comes as no surprise the high amount of features detected in the 

images as shown in Appendix A Figures 18-21. The images present a high number of 

features detected by SIFT and these are presented by purple arrows (see section 4.1.1).  

However, in the majority of the images, SIFT detected features at places that did not 

seem to contain enough information for later matching. Corners, edges, highly 

contrasting, and important parts of the objects are considered good features. In the 

Windows pair for example (Figure 19, Appendix A), SIFT detected a lot of features in 

the bottom part where some tree branches are but did not detect stronger parts of the 

image such as corners on the window, edges, etc. Similarly, in the Brick Wall pair 
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(Figure 20, Appendix A) a lot of futures were detected in places that do not contain 

enough information. However, SIFT does detects good features in some cases. In the boat 

image pair for example (Figure 20, Appendix A), a lot of strong points on the boat were 

detected as features, but again, it can be appreciated that some features were detected in 

the air which doesn‟t seem to be a good key point candidate. 

SURF follows SIFT in the amount of features detected but the difference is 

considerable between both for the majority of the images. SURF, although finding less, 

detected more “robust” features (i.e. features with enough information for later match). If 

we compare the results of the features detected with SURF in the Window image pair 

(Figure 22, Appendix A) with those detected with SIFT on the same pair, it can be seen 

that SURF features are mostly detected on the edges of the windows. This is a good 

indication of the algorithm performance, because it is selecting features that are very 

likely to be matched. In the brick wall pair (Figure 23, Appendix A), SURF detected 

features along the edges of the ventilation window. Although with some missing parts 

and weak features detected the overall performance of SURF detector can be described as 

better than SIFT for most of the images. 

FAST on the other hand found very few features in all of the images tested. Given 

FAST is a feature-based detector, one could expect a higher amount of detections. But 

corner detectors usually limit themselves to detect pixels in the image with high contrast 

and rejected any other. Although features with more information are more desirable, this 

seemed to harm the performance of FAST in the quantitative aspect, but the quality of the 

features is undoubtedly among the best.  
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If we analyze the results obtain with FAST in the Window image pairs (Figure 26, 

Appendix A) with the results obtained with SIFT and SURF we can appreciate the 

robustness of FAST features over the others. These features majorly detected on the 

corners of the windows. FAST is not flawless, some weak features were also detected at 

the bottom of the Window pair. In the Brick Wall images pair (Figure 27, Appendix A), 

FAST did not find as much features as one would expect. This is presumably due to the 

lack of high contrast and poor illumination at the edges of the bricks. But FAST detected 

three of the four corners on the ventilation window. 

Having discussed the results of the feature detection part of this study, one can say 

that the amount of features by itself should not be taken as measure of the effectiveness 

of the algorithm. It is important to determine first, how many of those features are 

actually robust enough to survive further filtering steps and become a positive match.  

 

 

 

 

 

 

 

 

 

 

Table 3. Number of feature detected in the image dataset for the three algorithms 

Features Detected 

Pair Image SIFT SURF FAST 

Window Pair 
A 859 770 86 

B 754 734 128 

Brick Wall 

Pair 

A 1117 507 13 

B 1106 516 6 

Boat Pair 
A 484 209 50 

B 604 326 294 

Building Pair 
A 842 606 216 

B 550 202 52 
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Figure 13. Features detected in the Window image pair (Images A and B). 

Figure 14. Features detected in the Brick Wall Image pair (Images A and B). 
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Figure 15. Features detected in the Boat Image pair (Images A and B). 

Figure 16. Features detected in the Building Image pair (Images A and B). 
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Let‟s discuss the performance of each algorithm for a given type of images. The 

results of this are presented in the Figure 17. 

a) SIFT detected the most feature points on image No. 3. This image corresponds to 

the first view of the brick wall pair. This was expected because of the large 

amount of texture of this image (visually appreciated). On the other hand, SIFT 

had the lowest detection with image 5 corresponding to the first view of the 

Haddock Boat. This also confirm the hypothesis of SIFT performing at the 

highest levels when tested on textured images. This can be also checked by 

looking at the results for the other images.  

b) SURF is also a textured based matching algorithm but it seemed to get confused 

in textured images with illumination changes (as is the case with the brick wall 

pair). Because of this, it did not have its best performance with this pair. The 

image with most features detected by SURF was the corresponding second one 

for SIFT: The window image pair (Figure 22, Appendix A). The less feature 

detection occurred again in the pair corresponding to the boat (Figure 24, 

Appendix A). This proves that SIFTS and SURF being texture-based algorithms, 

do not perform well when tested on planar images. 

c) FAST, conversely to SIFT and SURF, detected more features in the pair 

comprised by the Haddock boat. Although in general the amount of features 

detected by FAST are significantly less than SIFT or SURF, it is appreciated that 

the best performance of this type of algorithms (feature-based) will be enhanced if 

the appropriate set of image is selected. And as explained before, FAST found the 

fewer amount of features in the Brick Wall image pair (Figure 27, Appendix A). 
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This is an unexpected result from FAST due to the large number of corners and 

edges within this image, but this is presumably because of the low contrast and 

poor illumination at the corners and edges of the brick. 

The results presented in Figure 17 provide evidence that how these two types of 

algorithms perform is dependent on the type of image used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image 1 and 2: First and second views of the Window Pair, respectively. 

Image 3 and 4: First and second views of the Brick Wall Pair, respectively. 

Image 5 and 6: First and second views of the Boat Pair, respectively. 

Image 7 and 8: First and second views of the Building Pair, respectively. 

Figure 17. Overall view of the features detected on each image. 
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5.3  Feature Matching Results 

 

 

The reason why accurate feature detection is so important is to facilitate matching. 

In this step, all the features detected in one image are tested one by one against the entire 

database holding all the values from all the features detected in the second image to find 

one containing the same information. When the same information is found then a new 

match is originated. However, sometimes these algorithms fail to detect simple matches.  

In order to measure the effectiveness and accuracy of the matching process on both 

SIFT and SURF algorithms, the steps described in the methodology, section 3.3, were 

followed. First, we created a truth dataset by taking the features detected by the algorithm 

and manually matching the features that that were expected the algorithm to identify as 

matches. For this part of the experiment we manually detected potential matches for the 

three algorithms. It is important to note that the source code for the matching component 

of FAST is not available and therefore does not take part in the detection of type II errors. 

The reason why the manual matches were also performed for FAST is because if this 

algorithm proves to be highly accurate in the detecting the same features on both images, 

the feature work in developing the matching component could be recommended.   

The images showing the manual matches detection for SIFT, SURF and FAST can 

be found in Appendix D. 

The following is a discussion of the algorithms matching performances for each 

pair of images: 

SIFT: Having consistently detected more features than SURF and FAST, SIFT was, 

as expected, the algorithm with more matches found for each image pair. SIFT detected a 

maximum total of 203 matches in the Building Image pair. The lowest matches for SIFT 
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correspond to the Windows pair with a total of 17. The pair with the Haddock boat had a 

total of 23 matches detected. Table 4 summarizes these results and gives a percentage of 

efficient based on the amount of matches found put of the totality of the features detected 

by SIFT. 

SURF: Again, it follows SIFT in the amount of matches found among the images, 

proving that the amount of features detected is indeed proportional to the amount of 

matches. SURF had the highest matches at the Building pair, as SIFT. And the lowest 

detection in the third pair which is the Haddock boat pair.  

FAST: As explained before, FAST does not have an automated matching 

component, and therefore the matches were manually identify in order to quantify the 

amount of features that are accurately detected in both images of the pair. The less 

matches were manually detected in the second image pair, the brick wall, and the most at 

the Building pair. However, this cannot be taken as a final conclusion because it is 

necessary to measure the efficiency of the matches rather than the quantity of these. 

Tables 4 to 6 present the number of matches detected by each algorithm for a given 

pair. The effectiveness of this process is also presented. The effectiveness was calculated 

using the following relation: 

 

                                   %𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
2∗#𝑚𝑎𝑡𝑐 ℎ𝑒𝑠

#𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  
                                  (5) 

                  

 

 

By looking at the results, it can be seen that the number of matches is very low in 

comparison with the amount of features detected. Knowing this, we can conclude that the 

number of matches by itself cannot be considered good. We need to compare that amount 

with the amount of features detected to see how many of those features is the algorithm 
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actually using. Automated matching from SIFT and SURF are presented in tables 4 and 

5. FAST manually matching is presented in table 6. Unfortunately, the manual matching 

that was made for FAST cannot be compared with the automated matches from SIFT and 

SURF without giving an artificial conclusion. However, the results obtained with these 

manual matches prove that FAST detects more robust features than SIFT and SURF and 

that therefore are more likely to derive good matches. This is discussed in further detail in 

section 5.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Matching performance for SIFT 

 

SIFT 

 

Features # Matches % Effectiveness 

Window 

Pair 

859 
17 2% 

754 

Brick 

Wall Pair 

1177 
113 10% 

1106 

Boat Pair 
484 

23 4% 
604 

Building 

Pair 

842 
203 29% 

550 

Table 5. Matching performance for SURF 

 

SURF 

 

Features # Matches % Effectiveness 

Window 

Pair 

770 
24 3% 

734 

Brick Wall 

Pair 

507 
72 14% 

516 

Boat Pair 
209 

10 4% 
326 

Building 

Pair 

606 
102 25% 

202 
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         Table 6. Matching performance for FAST 

 

 

 

 

 

 

 

 

 

More important than the amount of matches, is the quality of these matches. 

Another analysis that was undertaken to determine the quality of the matches was to 

measure the accuracy of each of the matches. In order to do this, the matching component 

of the algorithms was run and allowed to automatically detect matches. Once the matches 

were automatically detected, the accuracy of the matches was visually analyzed and 

compared with the manual matches done early (see section 3.3.4). For every match from 

the 20 manually detected that the algorithm missed a type I error was counted. The 

matching process depends on the feature detection. And it is expected for a good 

matching algorithm to detect all the matches that can be visually or manually detected. If 

the algorithm does not detect those manual matches, it can be said that the matching 

component of such algorithm does not perform as good as it should. On the other hand, 

every mismatch was counted as a type II error (matching two features without being a 

match in the image pair). The amount of type II errors is, for this study, a more important 

parameter than the amount of type I. Type I errors reflect weakness in the algorithm in 

 

FAST 

 

Features # Matches % Effectiveness 

Window 

Pair 

86 
17 16% 

128 

Brick Wall 

Pair 

13 
5 53% 

6 

Boat Pair 
50 

18 10% 
294 

Building 

Pair 

216 
26 19% 

52 
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detecting all the matches. Type II errors reflect a failure in the algorithm for matching 

features without being conjugate points. 

In Appendix B the automated matches detected for each pair are shown. Note that 

for the Brick Wall and the Building pair, SIFT and SURF again found a very large 

amount of matches. Therefore, it was decided to limit the number of matches detected, to 

make the manual error detection easier. The matches were restricted to about the same 

number by modifying the thresholds values. Appendix C has the matches after the 

parameters were modified to restrict the amount detected. The computation of type I and 

type II errors for SIFT and SURF is summarized in tables 7 and 8, respectively. 

By comparing these two algorithms in terms of the amount of type I and type II 

errors it is obvious that SIFT incurred, in proportion, more errors than SURF. The large 

number of features detected with SIFT are not as good as those detected with SURF and 

because of this, it fails to match them. It is important to keep in mind that with this 

analysis we are not comparing the type of images that are most suitable for one algorithm 

or the other, because both SIFT and SURF are texture based algorithms and were proven 

to work similarly on the same images. With that clarified, it can be stated that in general, 

the features detected by these texture algorithms will not provide features good enough to 

accurately extract objects from a given images. Mainly because of the amount of features 

detected in insignificant areas of the images (this can be visually checked with the images 

in Appendix A). 
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Table 7. Type I and Type II errors detection for SIFT matches 

SIFT 

Pair # Matches 
Type 

I  

Type 

II 
Type I % Type II % 

Window 17 12 14 60% 82% 

Brick Wall 53 11 7 55% 13% 

Boat 75 8 5 40% 7% 

Building 23 4 10 20% 43% 

 

 

Table 8. Type I and Type II errors detection for SURF matches 

 

 

 

 

 

 

 

 

5.4  Conclusions 

 

 

After reviewing the results obtained in this research we can conclude the following: 

a) The amount of features detected by SIFT, FAST and SURF is dependent on the 

type of images used. 

b) SIFT and SURF, as texture-based detectors, were found to detect more features 

when highly texture images were used. 

SURF 

Pair # Matches 
Type 

I  

Type 

II 

Type I 

% 

Type II 

% 

Window 24 5 13 25% 54% 

Brick Wall 51 9 14 45% 27% 

Boat 10 2 0 10% 0% 

Building 74 0 9 0% 12% 
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c) FAST on the other hand, performed more accurately where SIFT and SURF 

“failed”. This means that FAST, being a feature-based algorithm, will perform 

better in when tested to images containing planar objects. 

d) The amount of features is not a measure of success by itself but the “quality” of 

these features 

e) The amount of features detected is proportional to the amount of matches. 

f) SIFT was the algorithm detecting more features and matches in all the images. 

g) The amount of matches detected is not a good indication of the performance of 

the algorithm 

h) SIFT found more matches than SURF and FAST but also less effectiveness was 

measured  

i) The effectiveness ratios were not as promising as the amount of matches. 

Furthermore, the amounts of type I and II errors encountered in both SIFT and 

SURF determined that these two algorithms need to be improved to reject some 

useless features and detect more robust ones. 

j) FAST detected considerably less matches than SIFT but it had a better 

performance, proportionally. 

k) Features detected by FAST, although fewer, are more robust than those detected 

by SIFT and SURF. 
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CHAPTER 6 

RECOMMENDATIONS 

 

 

A comparative study of three image matching algorithms has been done in this 

research. Results obtained proved that the hypothesis that the performance of a given 

algorithm depends on the type of image used is true. Visually textured and non-textured 

images were used to prove this. It is recommended for future research in this area to use a 

method to statistically evaluate the texture of the images such as the maximum entropy 

method. These methods use statistical analysis to measure the parts of the images with 

more information and develop a model of the texture of the image base on this. 

It was concluded that FAST has the best overall performance above SIFT and 

SURF but it suffers from detecting very few features and therefore matches. It is 

recommended that the properties of this algorithm to be improved by creating a new 

implementation provided with a matching component. It is necessary to improve FAST 

by increasing the amount of features it can detect. But special care should be taken to 

preserve the robustness of the algorithm and avoid the detection of useless features.  

Future research in this area should focus on testing the accuracy of the algorithms in 

detecting a single object within a scene. Many of the new arising needs in 

photogrammetry address this problem and this work could be a first step towards a more 

in depth study. 

 The results reported in this work are likely a starting point for future research on 

this subject where a more in-depth analysis of the algorithms structures would be done. 

Also, an automated assessment of the algorithms performance could follow where future 
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researches would be able to consider a wider range of issues that need to be addressed 

when working with SIFT, SURF, and FAST. 
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Appendix A. Feature Detection Images 
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Figure 18. SIFT Features detected – Window Image Pair. 
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Figure 19. SIFT Features detected – Brick Wall Image Pair. 
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Figure 20. SIFT features detected – Boat Image Pair. 
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 Figure 21. SIFT Features detected – Building 

Image Pair. 
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 Figure 22. SURF Features detected – Window Image Pair. 
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  Figure 23. SURF Features detected – Brick Wall Image Pair. 
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Figure 24. SURF Features – Boat Image Pair. 



67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 25. SURF Features detected – 

Building Image Pair. 
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Figure 26. FAST Features detected – Window Image Pair. 
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Figure 27. FAST Features detected – Brick Wall Image Pair. 
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Figure 28. FAST Features detected – Boat Image Pair. 
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Figure 29. FAST Features detected – Building Image Pair. 
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Appendix B. Matches  
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Figure 30.  SIFT Matches – Window Image Pair. 
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Figure 31. SIFT Matches – Brick Image Pair. 
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Figure 32. SIFT Matches – Boat Image Pair. 
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Figure 33. SIFT Matches – Building Image Pair. 
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Figure 34. SURF Matches – Window Image Pair. 
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Figure 35. SURF Matches – Brick Wall Image Pair. 
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Figure 36. SURF Features for third pair – Boat Image Pair. 
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Figure 37.  SURF Matches – Building Image Pair. 
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Appendix C. Matches found after threshold modification 
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Figure 38. SIFT Matches after reducing the threshold ratio from 0.49 to 0.35. Brick 

Wall Image Pair. 
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Figure 39. SIFT Matches after reducing the threshold ratio from 0.49 to 

0.35. Brick Wall and Building Image Pairs. 
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Figure 40. SURF Matches after varying the threshold value – Brick Wall and Building 

Image Pairs. 
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Appendix D. Type II error detection (Mismatches) 
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Figure 41. SIFT incorrect matches – Window Image Pair. 
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Figure 42. SIFT Incorrect Matches – Brick Wall Image Pair. 
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Figure 43. SIFT incorrect matches – Boat Image Pair. 
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Figure 44. SIFT incorrect matches - Building Image Pair. 
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Figure 45. SURF incorrect matches – Window Image Pair. 
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Figure 46. SURF incorrect matches – Brick Wall Image Pair. 
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Figure 47. SURF incorrect matches – Boat Image Pair. 
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Figure 48. SURF incorrect matches – Building Image Pair. 
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Appendix E. Manual matching for detected features  
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Figure 49. Manually detected potential matches for SIFT – Window Image Pair. 
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Figure 50. Manually detected potential matches for SIFT –Brick Wall Image Pair. 
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Figure 51. Manually detected potential matches for SIFT –Boat Image pair. 
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Figure 52. Manually detected potential matches for SIFT-Building Image Pair. 



99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 53. Manually detected potential matches for SURF-Window Image Pair. 
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Figure 54. Manually detected potential matches for SURF – Brick Wall Image Pair. 
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Figure 55. Manually detected potential matches for SURF – Boat Image Pair. 
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Figure 56. Manually detected potential matches for SURF-Building Image Pair. 
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Figure 57. Manually detected potential matches for FAST-Window Image Pair. 
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Figure 58. Manually detected potential matches for FAST –Brick Wall Image Pair. 
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Figure 59. Manually detected potential matches for FAST-Boat Image Pair. 
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Figure 60. Manually detected potential matches for FAST-Building Image Pair. 
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