11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

C++ Programming: Code patterns design

Programming Patterns

Software design patterns are abstractions that help structure system designs. While not new, since the concept was already
described by Christopher Alexander in its architectural theories, it only gathered some traction in programming due to the
publication of Design Patterns: Elements of Reusable Object-Oriented Software book in October 1994 by Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissides, known as the Gang of Four (GoF), that identifies and describes 23
classic software design patterns.

A design pattern is neither a static solution, nor is it an algorithm. A pattern is a way to describe and address by name
(mostly a simplistic description of its goal), a repeatable solution or approach to a common design problem, that is, a
common way to solve a generic problem (how generic or complex, depends on how restricted the target goal is). Patterns
can emerge on their own or by design. This is why design patterns are useful as an abstraction over the implementation
and a help at design stage. With this concept, an easier way to facilitate communication over a design choice as

normalization technique is given so that every person can share the design concept.

Depending on the design problem they address, design patterns can be classified in different categories, of which the main

categories are:

= Creational Patterns

= Structural Patterns

= Behavioral Patterns.
Patterns are commonly found in objected-oriented programming languages like C++ or Java. They can be seen as a
template for how to solve a problem that occurs in many different situations or applications. It is not code reuse, as it
usually does not specify code, but code can be easily created from a design pattern. Object-oriented design patterns
typically show relationships and interactions between classes or objects without specifying the final application classes or

objects that are involved.
Each design pattern consists of the following parts:

Problem/requirement
To use a design pattern, we need to go through a mini analysis design that may be coded to test
out the solution. This section states the requirements of the problem we want to solve. This is
usually a common problem that will occur in more than one application.

Forces
This section states the technological boundaries, that helps and guides the creation of the
solution.

Solution
This section describes how to write the code to solve the above problem. This is the design part
of the design pattern. It may contain class diagrams, sequence diagrams, and or whatever is
needed to describe how to code the solution.

Design patterns can be considered as a standardization of commonly agreed best practices to solve specific design
problems. One should understand them as a way to implement good design patterns within applications. Doing so will
reduce the use of inefficient and obscure solutions. Using design patterns speeds up your design and helps to communicate

it to other programmers.

Creational Patterns

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 1/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

In software engineering, creational design patterns are design patterns that deal with object creation mechanisms,
trying to create objects in a manner suitable to the situation. The basic form of object creation could result in design
problems or added complexity to the design. Creational design patterns solve this problem by somehow controlling this
object creation.

In this section of the book we assume that the reader has enough familiarity with functions, global variables, stack vs. heap,

classes, pointers, and static member functions as introduced before.

As we will see there are several creational design patterns, and all will deal with a specific implementation task, that will

create a higher level of abstraction to the code base, we will now cover each one.

Builder

The Builder Creational Pattern is used to separate the construction of a complex object from its representation so that the

same construction process can create different objects representations.

Problem
We want to construct a complex object, however we do not want to have a complex constructor
member or one that would need many arguments.

Solution
Define an intermediate object whose member functions define the desired object part by part
before the object is available to the client. Builder Pattern lets us defer the construction of the
object until all the options for creation have been specified.

i#include <string>
E#include <iostream>
winclude <memory>
Eusing namespace std;
H

i// "Product"”

string m_dough;
string m_sauce;
string m_topping;

iclass Pizza

i{

‘public:

i void setDough(const string& dough)
oo

E m_dough = dough;

o)

! void setSauce(const string& sauce)
A

' m_sauce = sauce;

o)

i void setTopping(const string& topping)
v q

| m_topping = topping;

Pl

E void open() const

oo

! cout << "Pizza with " << m_dough << " dough, " << m_sauce << " sauce and "
E << m_topping << " topping. Mmm." << endl;
L)

private:

E// "Abstract Builder"”
iclass PizzaBuilder

{
‘public:

i virtual ~PizzaBuilder() {};

Pizza* getPizza()

i

i

Ao

! return m_pizza.release();
.

. void createNewPizzaProduct()

P

i m_pizza = make_unique<Pizza>();
' ¥

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 2/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

1 virtual void buildDough() = ©;
E virtual void buildSauce() = ©;
i virtual void buildTopping() = ©;
lprotected:

i unique_ptr<Pizza> m_pizza;

1} i
Lo ;
iclass HawaiianPizzaBuilder : public PizzaBuilder E
i i
public !
i virtual ~HawaiianPizzaBuilder() {}; i
| virtual void buildDough()

i { :
E m_pizza->setDough("cross"); E
i } i
! virtual void buildSauce()

P :
H m_pizza->setSauce("mild"); H
. i
i virtual void buildTopping() i
i { i
i m_pizza->setTopping("ham+pineapple"); i
) i
i} :
Eclass SpicyPizzaBuilder : public PizzaBuilder E
i i
public: :
i virtual ~SpicyPizzaBuilder() {}; |
E virtual void buildDough()

P i
' m_pizza->setDough("pan baked"); '
. i
i virtual void buildSauce()

i { i
i m_pizza->setSauce("hot"); E
: b i
E virtual void buildTopping() E
i { i
! m_pizza->setTopping("pepperoni+salami™); !
LY :
i// -- i
iclass Cook i
i i
ipublic: '
1 void openPizza()

L i
i m_pizzaBuilder->getPizza()->open(); i
: ¥ i
i void makePizza(PizzaBuilder* pb) i
i { i
E m_pizzaBuilder = pb;

| m_pizzaBuilder->createNewPizzaProduct(); |
! m_pizzaBuilder->buildDough(); !
| m_pizzaBuilder->buildSauce(); |
i m_pizzaBuilder->buildTopping(); i
bl :
iprivate: i
! PizzaBuilder* m_pizzaBuilder; !
) :
iint main() E
i i
! Cook cook; !
| HawaiianPizzaBuilder hawaiianPizzaBuilder; |
H SpicyPizzaBuilder spicyPizzaBuilder; i
i cook.makePizza(&hawaiianPizzaBuilder); i
! cook.openPizza();

i cook.makePizza(&spicyPizzaBuilder); i
; cook.openPizza();

i :

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 3/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world
Factory

Definition: A utility class that creates an instance of a class from a family of derived classes

Abstract Factory

Definition: A utility class that creates an instance of several families of classes. It can also return a factory for a certain

group.

The Factory Design Pattern is useful in a situation that requires the creation of many different types of objects, all derived
from a common base type. The Factory Method defines a method for creating the objects, which subclasses can then
override to specify the derived type that will be created. Thus, at run time, the Factory Method can be passed a description
of a desired object (e.g., a string read from user input) and return a base class pointer to a new instance of that object. The

pattern works best when a well-designed interface is used for the base class, so there is no need to cast the returned object.

Problem
We want to decide at run time what object is to be created based on some configuration or
application parameter. When we write the code, we do not know what class should be
instantiated.

Solution
Define an interface for creating an object, but let subclasses decide which class to instantiate.
Factory Method lets a class defer instantiation to subclasses.

In the following example, a factory method is used to create laptop or desktop computer objects at run time.

Let's start by defining Computer, which is an abstract base class (interface) and its derived classes: Laptop and Desktop.

class Computer

{
public:
virtual void Run() = 0;
virtual void Stop() = ©;
virtual ~Computer() {}; /* without this, you do not call Laptop or Desktop destructor in this example! */
s
class Laptop: public Computer
{
public:

void Run() override {mHibernating = false;};

void Stop() override {mHibernating = true;};

virtual ~Laptop() {}; /* because we have virtual functions, we need virtual destructor */
private:

bool mHibernating; // Whether or not the machine is hibernating
s
class Desktop: public Computer
{
public:

void Run() override {mOn = true;};

void Stop() override {mOn = false;};

virtual ~Desktop() {};
private:

bool mOn; // Whether or not the machine has been turned on

class ComputerFactory

o i
1 public: i
i static Computer *NewComputer(const std::string &description) i
i { i
E if(description == "laptop") E
i return new Laptop; i
' if(description == "desktop") !
i return new Desktop; |
i return nullptr;

: } :
i} i

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 4/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

Let's analyze the benefits of this design. First, there is a compilation benefit. If we move the interface Computer into a
separate header file with the factory, we can then move the implementation of the NewComputer() function into a separate
implementation file. Now the implementation file for NewComputer() is the only one that requires knowledge of the
derived classes. Thus, if a change is made to any derived class of Computer, or a new Computer subtype is added, the
implementation file for NewComputer() is the only file that needs to be recompiled. Everyone who uses the factory will

only care about the interface, which should remain consistent throughout the life of the application.

Also, if there is a need to add a class, and the user is requesting objects through a user interface, no code calling the factory
may be required to change to support the additional computer type. The code using the factory would simply pass on the
new string to the factory, and allow the factory to handle the new types entirely.

Imagine programming a video game, where you would like to add new types of enemies in the future, each of which has
different AI functions and can update differently. By using a factory method, the controller of the program can call to the
factory to create the enemies, without any dependency or knowledge of the actual types of enemies. Now, future developers
can create new enemies, with new Al controls and new drawing member functions, add it to the factory, and create a level
which calls the factory, asking for the enemies by name. Combine this method with an XML description of levels, and
developers could create new levels without having to recompile their program. All this, thanks to the separation of creation

of objects from the usage of objects.

Another example:

i#include <stdexcept>

E#include <iostream>

Winclude <memory>

iusing namespace std;

iclass Pizza {

ipublic:

i virtual int getPrice() const = 0;

E virtual ~Pizza() {}; /* without this, no destructor for derived Pizza's will be called. */

i};

Eclass HamAndMushroomPizza : public Pizza {
jpublic:

E virtual int getPrice() const { return 850; };
i virtual ~HamAndMushroomPizza() {};

s

iclass DeluxePizza : public Pizza {

Epublic:

i virtual int getPrice() const { return 1050; };
virtual ~DeluxePizza() {};

i};

Eclass HawaiianPizza : public Pizza {
ipublic:

' virtual int getPrice() const { return 1150; };
E virtual ~HawaiianPizza() {};

i}

iclass PizzaFactory {
public:

! enum PizzaType {
HamMushroom,
Deluxe,
Hawaiian

3

static unique_ptr<Pizza> createPizza(PizzaType pizzaType) {
switch (pizzaType) {
case HamMushroom: return make_unique<HamAndMushroomPizza>();

case Deluxe: return make_unique<DeluxePizza>();
case Hawaiian: return make_unique<HawaiianPizza>();
}
throw "invalid pizza type.";
}
};
i
V/*

E* Create all available pizzas and print their prices

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 5/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world
i/
Evoid pizza_information(PizzaFactory::PizzaType pizzatype)
i{

unique_ptr<Pizza> pizza = PizzaFactory::createPizza(pizzatype);

s "

cout << "Price of " << pizzatype << " is " << pizza->getPrice() << std::endl;

i

1

1
} i

i
iint main() i
At i
i pizza_information(PizzaFactory: :HamMushroom); i
H pizza_information(PizzaFactory: :Deluxe); H
E pizza_information(PizzaFactory: :Hawaiian); E
1) :
1 1
L e e e e e e e e e e e T o4
Prototype

A prototype pattern is used in software development when the type of objects to create is determined by a prototypical
instance, which is cloned to produce new objects. This pattern is used, for example, when the inherent cost of creating a

new object in the standard way (e.g., using the new keyword) is prohibitively expensive for a given application.

Implementation: Declare an abstract base class that specifies a pure virtual clone() method. Any class that needs a

"polymorphic constructor” capability derives itself from the abstract base class, and implements the clone() operation.

Here the client code first invokes the factory method. This factory method, depending on the parameter, finds out the

concrete class. On this concrete class, the clone () method is called and the object is returned by the factory method.

= This is a sample implementation of Prototype method. We have the detailed description of all the components here.

= Record class, which is a pure virtual class that has a pure virtual method clone().
= CarRecord, BikeRecord and PersonRecord as concrete implementation of a Record class.
= An enum RecordType as one to one mapping of each concrete implementation of Record class.

= RecordFactory class that has a Factory method CreateRecord(..). This method requires an enum RecordType
as parameter and depending on this parameter it returns the concrete implementation of Record class.

1

E/** Implementation of Prototype Method **/
E#include <iostream>

Winclude <unordered_map>

i#include <string>

#include <memory>

iusing namespace std;

1

/** Record is the base Prototype */

Eclass Record

{

public:

i virtual ~Record() {}

| virtual void print() = 0;

! virtual unique_ptr<Record> clone() = 0;
i}

E/** CarRecord 1is a Concrete Prototype */
iclass CarRecord : public Record

i
iprivate:

i string m_carName;

E int m_ID;

ipublic:

i CarRecord(string carName, int ID) : m_carName(carName), m_ID(ID)
P

' }

i void print() override

oo

i cout << "Car Record" << endl

! << "Name : " << m_carName << endl

i << "Number: " << m_ID << endl << endl;

L)

i unique_ptr<Record> clone() override

1

| {

i return make_unique<CarRecord>(*this);

| }

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 6/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world
s

E/** BikeRecord is the Concrete Prototype */
Eclass BikeRecord : public Record

i{

‘private:

| string m_bikeName;

! int m_ID;

1

ipublic:

! BikeRecord(string bikeName, int ID) : m_bikeName(bikeName), m_ID(ID)
oo

L)

1 void print() override

1

! cout << "Bike Record" << endl

! << "Name " << m_bikeName << endl
E << "Number: " << m_ID << endl << endl;
| ¥

i unique_ptr<Record> clone() override

1

o {

E return make_unique<BikeRecord>(*this);
L)

s

E/** PersonRecord is the Concrete Prototype */
iclass PersonRecord : public Record

i{

Eprivate:

i string m_personName;

! int m_age;

jpublic:

! PersonRecord(string personName, int age) : m_personName(personName), m_age(age)
Lo

L)

i void print() override

oo

i cout << "Person Record" << endl

' << "Name : " << m_personName << endl

| << "Age " << m_age << endl << endl;
o)

i unique_ptr<Record> clone() override

oo

i return make_unique<PersonRecord>(*this);
o)

BF

V/** Opaque record type, avoids exposing concrete implementations */
Eenum RecordType

i{

' CAR,

| BIKE,

' PERSON
i}

E/** RecordFactory 1is the client */
iclass RecordFactory

i
private:

i unordered_map<RecordType, unique_ptr<Record>, hash<int> > m_records;
ipublic:

i RecordFactory()

P

i m_records[CAR] = make_unique<CarRecord>("Ferrari", 5050);

! m_records[BIKE] = make_unique<BikeRecord>("Yamaha", 2525);

i m_records[PERSON] = make_unique<PersonRecord>("Tom", 25);

L)

| unique_ptr<Record> createRecord(RecordType recordType)

v q

i return m_records[recordType]->clone();

i)

s

Eint main()

it

H RecordFactory recordFactory;

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 7144

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

auto record = recordFactory.createRecord(CAR);
record->print();

record = recordFactory.createRecord(BIKE);
record->print();

record = recordFactory.createRecord(PERSON);
record->print();

Another example:

To implement the pattern, declare an abstract base class that specifies a pure virtual clone() member function. Any class
that needs a "polymorphic constructor" capability derives itself from the abstract base class, and implements the clone()

operation.

The client, instead of writing code that invokes the new operator on a hard-wired class name, calls the clone() member
function on the prototype, calls a factory member function with a parameter designating the particular concrete derived
class desired, or invokes the clone() member function through some mechanism provided by another design pattern.

class CPrototypeMonster

double _roomAvailableInBelly;

{ i
i protected: :
i CString _name;

i public: |
H CPrototypeMonster();

E CPrototypeMonster(const CPrototypeMonster& copy); E
i virtual ~CPrototypeMonster(); i
E virtual CPrototypeMonster* Clone() const=0; // This forces every derived class to provide an override for this
function. '
E void Name(CString name); E
| CString Name() const;

Rz |
i :
i class CGreenMonster : public CPrototypeMonster i
Rt :
i protected: i
! int _numberOfArms; !
| double _slimeAvailable; |
1 public: .
| CGreenMonster();

E CGreenMonster(const CGreenMonster& copy); E
! ~CGreenMonster();

i virtual CPrototypeMonster* Clone() const; i
E void NumberOfArms(int numberOfArms); E
| void SlimeAvailable(double slimeAvailable); |
| int NumberOfArms () const; |
: double SlimeAvailable() const; :
i |
i class CPurpleMonster : public CPrototypeMonster i
F{ i
i protected: :
E int _intensityOfBadBreath; E
| double _lengthOfWhiplikeAntenna; |
! public: !
E CPurpleMonster();

i CPurpleMonster(const CPurpleMonster& copy); i
E ~CPurpleMonster();

i virtual CPrototypeMonster* Clone() const; i
i void IntensityOfBadBreath(int intensityOfBadBreath); i
E void LengthOfWhiplikeAntenna(double lengthOfWhiplikeAntenna); E
i int IntensityOfBadBreath() const; i
E double LengthOfWhiplikeAntenna() const; E
Db i
i class CBellyMonster : public CPrototypeMonster i
| |
! protected: !

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 8/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

| public: ;
| CBellyMonster();

! CBellyMonster(const CBellyMonster& copy); !
E ~CBellyMonster();

E virtual CPrototypeMonster* Clone() const; i
i void RoomAvailableInBelly(double roomAvailableInBelly); i
E double RoomAvailableInBelly() const; E
LY i
i :
i CPrototypeMonster* CGreenMonster::Clone() const i
Rt :
| return new CGreenMonster(*this); |
D) i
i CPrototypeMonster* CPurpleMonster::Clone() const i
o :
| return new CPurpleMonster(*this); |
D) :
i CPrototypeMonster* CBellyMonster::Clone() const i
v o{ i
E return new CBellyMonster(*this); E
P :
1 1
T T L L L L L L e L T TP o

A client of one of the concrete monster classes only needs a reference (pointer) to a CPrototypeMonster class object to be

able to call the ‘Clone’ function and create copies of that object. The function below demonstrates this concept:

void DoSomeStuffWithAMonster(const CPrototypeMonster* originalMonster)

{ { i
i CPrototypeMonster* newMonster = originalMonster->Clone(); i
! ASSERT(newMonster);

i newMonster->Name ("MyOwnMonster"); i
! // Add code doing all sorts of cool stuff with the monster. H
E delete newMonster;

V) i
1 1

Now originalMonster can be passed as a pointer to CGreenMonster, CPurpleMonster or CBellyMonster.

Singleton

The Singleton pattern ensures that a class has only one instance and provides a global point of access to that instance. It
is named after the singleton set, which is defined to be a set containing one element. This is useful when exactly one object

is needed to coordinate actions across the system.
Check list

= Define a private static attribute in the "single instance" class.

= Define a public static accessor function in the class.

= Do "lazy initialization" (creation on first use) in the accessor function.

= Define all constructors to be protected or private.

= Clients may only use the accessor function to manipulate the Singleton.

Let's take a look at how a Singleton differs from other variable types.

Like a global variable, the Singleton exists outside of the scope of any functions. Traditional implementation uses a static
member function of the Singleton class, which will create a single instance of the Singleton class on the first call, and
forever return that instance. The following code example illustrates the elements of a C++ singleton class, that simply
stores a single string.

class StringSingleton
{
public:
// Some accessor functions for the class, itself
std::string GetString() const
{return mString;}
void SetString(const std::string &newStr)

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 9/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

{mString = newStr;}

// The magic function, which allows access to the class from anywhere
// To get the value of the instance of the class, call:

// StringSingleton: :Instance().GetString();
static StringSingleton &Instance()
{

// This line only runs once, thus creating the only instance in existence
static std::auto_ptr<StringSingleton> instance(new StringSingleton);

// dereferencing the variable here, saves the caller from having to use
// the arrow operator, and removes temptation to try and delete the

// returned instance.

return *instance; // always returns the same instance

}

private:
// We need to make some given functions private to finish the definition of the singleton
StringSingleton(){} // default constructor available only to members or friends of this class

// Note that the next two functions are not given bodies, thus any attempt

// to call them implicitly will return as compiler errors. This prevents

// accidental copying of the only instance of the class.

StringSingleton(const StringSingleton &old); // disallow copy constructor

const StringSingleton &operator=(const StringSingleton &old); //disallow assignment operator

// Note that although this should be allowed,
// some compilers may not implement private destructors
// This prevents others from deleting our one single instance, which was otherwise created on the heap
~StringSingleton(){}
private: // private data for an instance of this class
std::string mString;

Variations of Singletons:
Applications of Singleton Class:

One common use of the singleton design pattern is for application configurations. Configurations may need to be accessible
globally, and future expansions to the application configurations may be needed. The subset C's closest alternative would
be to create a single global struct. This had the lack of clarity as to where this object was instantiated, as well as not

guaranteeing the existence of the object.

Take, for example, the situation of another developer using your singleton inside the constructor of their object. Then, yet
another developer decides to create an instance of the second class in the global scope. If you had simply used a global
variable, the order of linking would then matter. Since your global will be accessed, possibly before main begins executing,
there is no definition as to whether the global is initialized, or the constructor of the second class is called first. This
behavior can then change with slight modifications to other areas of code, which would change order of global code
execution. Such an error can be very hard to debug. But, with use of the singleton, the first time the object is accessed, the
object will also be created. You now have an object which will always exist, in relation to being used, and will never exist if

never used.

A second common use of this class is in updating old code to work in a new architecture. Since developers may have used
globals liberally, moving them into a single class and making it a singleton, can be an intermediary step to bring the

program inline to stronger object oriented structure.

Another example:

#include <iostream>

Eusing namespace std;

i

i

E/* Place holder for thread synchronization mutex */

iclass Mutex

" /* placeholder for code to create, use, and free a mutex */

i}

E/* Place holder for thread synchronization lock */

iclass Lock

o public:

: Lock(Mutex& m) : mutex(m) { /* placeholder code to acquire the mutex */ }
~Lock() { /* placeholder code to release the mutex */ }

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 10/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

i private:

E Mutex & mutex;

i}

iclass Singleton

{ public:

i static Singleton* GetInstance();
int a;

~Singleton() { cout << "In Destructor" << endl; }

private:
Singleton(int _a) : a(_a) { cout << "In Constructor" << endl; }

static Mutex mutex;
// Not defined, to prevent copying
Singleton(const Singleton&);

Singleton& operator =(const Singleton& other);

}s

Mutex Singleton::mutex;

iSingleton* Singleton::GetInstance()

i

| Lock lock(mutex);

E cout << "Get Instance" << endl;

E // Initialized during first access

i static Singleton inst(1);

| return &inst;

D

iint main()

i

i Singleton* singleton = Singleton::GetInstance();
1 cout << "The value of the singleton: " << singleton->a << endl;
! return 0;

i}

Structural Patterns

Adapter

Convert the interface of a class into another interface that clients expect. Adapter lets classes work together that couldn't

otherwise because of incompatible interfaces.

#include <iostream>
1
1
iclass Hindu { // Abstract Target
public:
virtual ~Hindu() = default;
virtual void performsHinduRitual() const = 0;

s

i

Eclass HinduFemale : public Hindu { // Concrete Target

i public:

virtual void performsHinduRitual() const override {std::cout << "Hindu girl performs Hindu ritual." <<

istd::endl;}
i}

iclass Muslim { // Abstract Adaptee
public:
virtual ~Muslim() = default;
virtual void performsMuslimRitual() const = 0;

}s

Eclass MuslimFemale : public Muslim { // Concrete Adaptee
i public:

: virtual void performsMuslimRitual() const override {std::cout << "Muslim girl performs Muslim ritual." <<
istd: :endl;}

i}

1

iclass HinduRitual {
i public:

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 11/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

void carryOutRitual (Hindu* hindu) {
std::cout << "On with the Hindu rituals!" << std::endl;
hindu->performsHinduRitual();

}
s
class HinduAdapter : public Hindu { // Adapter
private:
Muslim* muslim;
public:

HinduAdapter (Muslim* m) : muslim(m) {}
virtual void performsHinduRitual() const override {muslim->performsMuslimRitual();}

i};

1
Eint main() { // Client code
HinduFemale* hinduGirl = new HinduFemale;
MuslimFemale* muslimGirl = new MuslimFemale;
HinduRitual hinduRitual;
// hinduRitual.carryOutRitual (muslimGirl); // Will not compile of course since the parameter must be of type Hindu*.
HinduAdapter* adaptedMuslim = new HinduAdapter (muslimGirl); // muslimGirl has adapted to become a Hindu!

hinduRitual.carryOutRitual (hinduGirl);

hinduRitual.carryOutRitual (adaptedMuslim); // So now muslimGirl, in the form of adaptedMuslim, participates in the

// Note that muslimGirl 1is carrying out her own type of ritual in hinduRitual though.

delete adaptedMuslim; // adaptedMuslim is not needed anymore
delete muslimGirl; // muslimGirl is not needed anymore
delete hinduGirl; // hinduGirl is not needed anymore, too

i

1

1
thinduRitual !
i

1

1

E return 0;
i

Bridge

The Bridge Pattern is used to separate out the interface from its implementation. Doing this gives the flexibility so that

both can vary independently.

The following example will output:

IAPT1.circle at 1:2 7.5
iAPIZ.cir‘cle at 5:7 27.5

#include <iostream>
1

using namespace std;
i
i

i/* Implementor*/

iclass DrawingAPI {

i public:

virtual void drawCircle(double x, double y, double radius) = 0;
virtual ~DrawingAPI() {}

}s

E/* Concrete ImplementorA*/

iclass DrawingAPI1 : public DrawingAPI {

public:

void drawCircle(double x, double y, double radius) {
cout << "APIl.circle at " << x << <<y <<

<< radius << endl;

}
}s

|
E/* Concrete ImplementorB*/

iclass DrawingAPI2 : public DrawingAPI {

Epublic:

i void drawCircle(double x, double y, double radius) {
! cout << "API2.circle at " << x << ":' <<y <«

<< radius << endl;

}
i}

i/* Abstraction*/

‘class Shape {

i public:

virtual ~Shape() {}

virtual void draw() = 9;

virtual void resizeByPercentage(double pct) = 0;

};
https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory

12/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

E/* Refined Abstraction*/
iclass CircleShape : public Shape {
public:

m_x(x), m_y(y), m_radius(radius),

{}

void draw() {
m_drawingAPI->drawCircle(m_x, m_y,

}

void resizeByPercentage(double pct) {
m_radius *= pct;

}

private:

double m_x, m_y, m_radius;

DrawingAPI *m_drawingAPI;

s

int main(void) {

circlel.resizeByPercentage(2.5);
circle2.resizeByPercentage(2.5);
circlel.draw();
circle2.draw();

CircleShape(double x, double y,double radius, DrawingAPI *drawingAPI) :

m_drawingAPI(drawingAPI)

m_radius);

CircleShape circlel(1,2,3,new DrawingAPI1());
CircleShape circle2(5,7,11,new DrawingAPI2());

return 0;
}
Composite

Composite lets clients treat individual objects and compositions of objects uniformly. The Composite pattern can represent

both the conditions. In this pattern, one can develop tree structures for representing part-whole hierarchies.

Winclude <vector>

E#include <iostream> // std::cout
winclude <memory> // std::auto_ptr
E#include <algorithm> // std::for_each
iusing namespace std;

iclass Graphic

i{

‘public:

i virtual void print() const = 0;
virtual ~Graphic() {}

s

Eclass Ellipse : public Graphic
{

public:

E void print() const {

| cout << "Ellipse \n";

Pt

i}

Eclass CompositeGraphic : public Graphic
i
‘public:
i void print() const {

for(Graphic * a: graphicList_) {

a->print();

}

}

void add(Graphic *aGraphic) {
graphicList_.push_back(aGraphic);
}

private:
vector<Graphic*> graphiclList_;

i};
iint main()
o{

\ // Initialize four ellipses

const auto_ptr<tEllipse> ellipsel(new Ellipse());
const auto_ptr<Ellipse> ellipse2(new Ellipse());
const auto_ptr<Ellipse> ellipse3(new Ellipse());
const auto_ptr<Ellipse> ellipsed4(new Ellipse());

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory

13/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

// Initialize three composite graphics

const auto_ptr<CompositeGraphic> graphic(new CompositeGraphic());
const auto_ptr<CompositeGraphic> graphicl(new CompositeGraphic());
const auto_ptr<CompositeGraphic> graphic2(new CompositeGraphic());

// Composes the graphics

graphicl->add(ellipsel.get());
graphicl->add(ellipse2.get());
graphicl->add(ellipse3.get());

graphic2->add(ellipse4d.get());

graphic->add(graphicl.get());
graphic->add(graphic2.get());

// Prints the complete graphic (four times the string "Ellipse")
graphic->print();
return 0;

Decorator

The decorator pattern helps to attach additional behavior or responsibilities to an object dynamically. Decorators provide a
flexible alternative to subclassing for extending functionality. This is also called “Wrapper”. If your application does some

kind of filtering, then Decorator might be good pattern to consider for the job.

#include <string>
E#include <iostream>
iusing namespace std;
i

i

iclass Car //Our Abstract base class

i
ﬁ protected:
string _str;
public:
Car()
{
_str = "Unknown Car";
¥
virtual string getDescription()
{
return _str;
¥
virtual double getCost() = 0;
virtual ~Car()
{
cout << "~Car()\n";
¥
s
class OptionsDecorator : public Car //Decorator Base class
{

public:
virtual string getDescription() = 0;

virtual ~OptionsDecorator()

{
cout<<"~0OptionsDecorator()\n";
¥
s
class CarModell : public Car
{
public:
CarModell()
{
_str = "CarModell";
¥
virtual double getCost()
{
return 31000.23;
¥

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 14/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

~CarModell1()
{

}

cout<<"~CarModell()\n";

};

class Navigation: public OptionsDecorator

//Create our Car that we want to buy
Car *b = new CarModell();

i i
1 1
! i
! i
1 1
! i
Ot i
i Car *_b;

' public:

E Navigation(Car *b) i
: { i
: _b = b; '
i } i
1 string getDescription() i
: { i
i return _b->getDescription() + ", Navigation";

: } |
1 1
! i
' double getCost() i
i { i
i return 300.56 + _b->getCost(); |
i } i
: ~Navigation()

1 1
1 1
E cout << "~Navigation()\n"; E
i delete _b; E
: } i
i '
iclass PremiumSoundSystem: public OptionsDecorator i
i :
! Car *_b;

| public:

H PremiumSoundSystem(Car *b) i
: { :
; _b = b; |
i ¥ i
i string getDescription() E
: { :
E return _b->getDescription() + ", PremiumSoundSystem";

i } i
! i
| double getCost() |
! { :
E return ©0.30 + _b->getCost(); i
: } :
! ~PremiumSoundSystem() :
: { |
i cout << "~PremiumSoundSystem()\n"; i
E delete _b; E
: ¥ :
i '
iclass ManualTransmission: public OptionsDecorator i
i i
i Car *_b;

! public:

i ManualTransmission(Car *b) E
i { :
! _b =b; i
; } :
! string getDescription() i
i { i
1 return _b->getDescription()+ ", ManualTransmission";

: X :
E double getCost() i
i { i
! return ©.30 + _b->getCost(); |
: } i
| ~ManualTransmission() |
: { |
| cout << "~ManualTransmission()\n"; |
H delete _b; H
' } '
¥ i
iint main() i
it i

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 15/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

cout << "Base model of " << b->getDescription() << " costs $" << b->getCost() << "\n";

//Who wants base model let's add some more features

b = new Navigation(b);

cout << b->getDescription() <<
b = new PremiumSoundSystem(b);
b = new ManualTransmission(b);
cout << b->getDescription() <«

will cost you $" << b->getCost() << "\n";

will cost you $" << b->getCost() << "\n";

// WARNING! Here we leak the CarModell, Navigation and PremiumSoundSystem objects!
// Either we delete them explicitly or rewrite the Decorators to take

// ownership and delete their Cars when destroyed.

delete b;

return 0;

Base model of CarModell costs $31000.2
ECarModell, Navigation will cost you $31300.8
iCarModell, Navigation, PremiumSoundSystem, ManualTransmission will cost you $31301.4
I~ManualTransmission

E~PremiumSoundSystem()

E~Navigation()

~CarModell

i~Car()

~OptionsDecorator()

i~Car()

i~OptionsDecorator()

i~Car()

E~OptionsDecorator()

~Car()

Wwinclude <iostream>
E#include <string>
i#include <memory>
iclass Interface {
public:
virtual ~Interface() { }
virtual void write (std::string&) = 0;

p;

iclass Core : public Interface {

: public:

~Core() {std::cout << "Core destructor called.\n";}

virtual void write (std::string& text) override {}; // Do nothing.

i}
i
Eclass Decorator : public Interface {
private:
std: :unique_ptr<Interface> interface;
public:

Decorator (std::unique_ptr<Interface> c) {interface = std::move(c);}
virtual void write (std::string& text) override {interface->write(text);}

s
class MessengerWithSalutation : public Decorator {
private:
std: :string salutation;
public:

MessengerWithSalutation (std::unique_ptr<Interface> c, const std::string& str) : Decorator(std::move(c)),
salutation(str) {}
~MessengerWithSalutation() {std::cout << "Messenger destructor called.\n";}
virtual void write (std::string& text) override {
text = salutation + "\n\n" + text;
Decorator: :write(text);

s
class MessengerWithValediction : public Decorator {

private:
std: :string valediction;

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory

16/44

11/14/2018

public:
MessengerWithValediction (std::unique_ptr<Interface> c, const std::string& str) : Decorator(std::move(c)),
valediction(str) {}
~MessengerWithValediction() {std::cout << "MessengerWithValediction destructor called.\n";}

virtual void write (std::string& text) override {

C++ Programming: Code patterns design - Wikibooks, open books for an open world

Decorator: :write(text);
text += "\n\n" + valediction;

};
int main() {

const std::string salutation = "Greetings,";

const std::string valediction = "Sincerly, Andy";

std::string messagel = "This message is not decorated.";

std::string message2 = "This message is decorated with a salutation."”;

std::string message3 = "This message is decorated with a valediction.";

std::string message4 = "This message is decorated with a salutation and a valediction.";

std: :unique_ptr<Interface> messengerl = std::make_unique<Core>();

std: :unique_ptr<Interface> messenger2 = std::make_unique<MessengerWithSalutation> (std::make_unique<Core>(),
isalutation);
E std::unique_ptr<Interface> messenger3 = std::make_unique<MessengerWithValediction> (std::make_unique<Core>(),
ivalediction);
! std: :unique_ptr<Interface> messenger4 = std::make_unique<MessengerWithValediction>

E(std::make_unique<MessengerwithSalutation>

messengerl->write(messagel);
std::cout << messagel << '\n';

(std::make_unique<Core>(), salutation), valediction);

i

| std:icout << "\Mm-- e \n\n"
E messenger2->write(message2);

i std::cout << message2 << '\n';

! std::cout << "\n--------mmm e \n\n"
1

i messenger3->write(message3);

E std::cout << message3 << '\n';

| std::icout << "\N-----mmmme e \n\n"
i

E messenger4->write(message4);

\ std::cout << messaged4 << '\n’';

E std::cout << "\N-------mmmmmee e \n\n";
i

:. --- -
The output of the program above is:

'This message is not decorated.

iGreetings,

EThis message is decorated with a salutation.

'This message is decorated with a valediction.

iSincerly, Andy

iGreetings,

IThis message is decorated with a salutation and a valediction.

iSincerly, Andy

MessengerWithValediction destructor called.
EMessenger destructor called.
iCore destructor called.
MessengerWithValediction destructor called.
ECore destructor called.
Messenger destructor called.
ECore destructor called.
iCore destructor called.

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory

17/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world
Facade

The Facade Pattern hides the complexities of the system by providing an interface to the client from where the client can
access the system on a unified interface. Facade defines a higher-level interface that makes the subsystem easier to use. For
instance making one class method perform a complex process by calling several other classes.

V/*Facade 1is one of the easiest patterns I think... And this 1is very simple example.

iImagine you set up a smart house where everything is on remote. So to turn the lights on you push lights on button - And
\same for TV,

AC, Alarm, Music, etc...

i

1

Ewhen you leave a house you would need to push a 100 buttons to make sure everything is off and are good to go which could
be Little

Eannoying if you are lazy Llike me

iso I defined a Facade for Lleaving and coming back. (Facade functions represent buttons...) So when I come and leave I just
imake one

EcaLL and it takes care of everything...

>/

i

#include <string>

i#include <iostream>

i
iusing namespace std;
i

iclass Alarm

void goToWork()

ac.acoff();
tv.tvoff();

i i
public: !
| void alarmon()
E ¢ cout << "Alarm is on and house is secured“<<endl; E
Pod i
i void alarmOff()
E { cout << "Alarm is off and you can go into the house"<<endl; E
) i
a5 |
iclass Ac i
H{ i
ipublic: i
! void acOn()
Pt i
! cout << "Ac is on"<<endl; !
o i
E void acOff()
P i
! cout << "AC is off"<<endl; !
P} i
D |
iclass Tv i
it i
public: !
i void tvOn()
P i
i cout << "Tv is on"<<endl; ;
P i
| void tvoff()
i { i
| cout << "TV is off"<<endl; ;
) i
i i
Eclass HouseFacade E
i :
Alarm alarm; i
Ac ac; |
Tv tv; i
public: i

i HouseFacade(){}

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 18/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

alarm.alarmOn();

P i
i void comeHome()

i { i
i alarm.alarmOff(); i
1 ac.acon(); '
| tv.tvon(); |
) :
s |
iint main() i
i :
i HouseFacade hf;

i //Rather than calling 100 different on and off functions thanks to facade I only have 2 functions... i
H hf.goToWork();

! hf.comeHome();

i i

AC is off

TV is off

Alarm is on and house is secured

‘Alarm is off and you can go into the house
iAc is on

iTv is on

Flyweight

The pattern for saving memory (basically) by sharing properties of objects. Imagine a huge number of similar objects which
all have most of their properties the same. It is natural to move these properties out of these objects to some external data

structure and provide each object with the link to that data structure.

H
#include <iostream>
i#include <string>
E#include <vector>

wdefine NUMBER_OF_SAME_TYPE_CHARS 3;

E/* Actual flyweight objects class (declaration) */
iclass FlyweightCharacter;

i/ *
i FlyweightCharacterAbstractBuilder is a class holding the properties which are shared by
E many objects. So instead of keeping these properties in those objects we keep them externally, making
i objects flyweight. See more details in the comments of main function.
v/
iclass FlyweightCharacterAbstractBuilder {
FlyweightCharacterAbstractBuilder() {}
~FlyweightCharacterAbstractBuilder() {}
public:
static std::vector<float> fontSizes; // lets imagine that sizes may be of floating point type
static std::vector<std::string> fontNames; // font name may be of variable length (lets take 6 bytes is average)

static void setFontsAndNames();

static FlyweightCharacter createFlyweightCharacter(unsigned short fontSizeIndex,
unsigned short fontNameIndex,
unsigned short positionInStream);

¥

istd::vector<float> FlyweightCharacterAbstractBuilder: :fontSizes(3);

Istd: :vector<std::string> FlyweightCharacterAbstractBuilder::fontNames(3);
Evoid FlyweightCharacterAbstractBuilder: :setFontsAndNames() {

fontSizes[0] = 1.0;

fontSizes[1] = 1.5;

fontSizes[2] = 2.0;

1

1

1

| fontNames[0] = "first font";
i fontNames[1] = "second_font";
E fontNames[2] = "third_font";
i}
i
1
1

class FlyweightCharacter {

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 19/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world
unsigned short fontSizelIndex; // index instead of actual font size
unsigned short fontNamelIndex; // index instead of font name

unsigned positionInStream;

public:

fontSizeIndex(fontSizeIndex), fontNameIndex(fontNameIndex), positionInStream(positionInStream) {}
void print() {
std::cout << "Font Size:

<< FlyweightCharacterAbstractBuilder: :fontSizes[fontSizeIndex]
<< FlyweightCharacterAbstractBuilder::fontNames[fontNameIndex]

<<
<<

, font Name:
, character stream position:

<< positionInStream << std::endl;

¥

i
1
1
i FlyweightCharacter(unsigned short fontSizeIndex, unsigned short fontNameIndex, unsigned short positionInStream):
i
1
1
E ~FlyweightCharacter() {}

i}

iFlyweightCharacter FlyweightCharacterAbstractBuilder: :createFlyweightCharacter(unsigned short fontSizeIndex, unsigned short
‘fontNameIndex, unsigned short positionInStream) {
FlyweightCharacter fc(fontSizeIndex, fontNameIndex, positionInStream);

return fc;

int main(int argc, char** argv) {
std: :vector<FlyweightCharacter> chars;

FlyweightCharacterAbstractBuilder: :setFontsAndNames();
unsigned short limit = NUMBER_OF_SAME_TYPE_CHARS;

for (unsigned short i = 0; i < limit; i++) {
chars.push_back(FlyweightCharacterAbstractBuilder: :createFlyweightCharacter(0, 0, i));
chars.push_back(FlyweightCharacterAbstractBuilder: :createFlyweightCharacter(1, 1, i + 1 * limit));
chars.push_back(FlyweightCharacterAbstractBuilder: :createFlyweightCharacter(2, 2, i + 2 * limit));

Each char stores links to its fontName and fontSize so what we get 1is:

each object instead of allocating 6 bytes (convention above) for string
and 4 bytes for float allocates 2 bytes for fontNameIndex and fontSizelIndex.

That means for each char we save 6 + 4 - 2 - 2 = 6 bytes.

Now imagine we have NUMBER_OF_SAME_TYPE_CHARS = 1000 i.e. with our code

we will have 3 groups of chars with 1000 chars in each group which will save
3 %1000 * 6 - (3 *6 + 3 * 4) = 17970 saved bytes.

3 *6 + 3 * 4 is a number of bytes allocated by FlyweightCharacterAbstractBuilder.

So the idea of the pattern is to move properties shared by many objects to some
external container. The objects in that case don't store the data themselves they
store only links to the data which saves memory and make the objects Lighter.
The data size of properties stored externally may be significant which will save REALLY
huge amount of memory and will make each object super Light in comparison to its counterpart.
That's where the name of the pattern comes from: flyweight (i.e. very Llight).
*/
for (unsigned short i = @; i < chars.size(); i++) {
chars[i].print();

¥

std::cin.get(); return 0;
}
Proxy

The Proxy Pattern will provide an object a surrogate or placeholder for another object to control access to it. It is used
when you need to represent a complex object with a simpler one. If creation of an object is expensive, it can be postponed
until the very need arises and meanwhile a simpler object can serve as a placeholder. This placeholder object is called the

“Proxy” for the complex object.

Curiously Recurring Template

This technique is known more widely as a mixin. Mixins are described in the literature to be a powerful tool for expressing

abstractionslcitation needed]

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 20/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world
Interface-based Programming (IBP)

Interface-based programming is closely related with Modular Programming and Object-Oriented Programming, it defines
the application as a collection of inter-coupled modules (interconnected and which plug into each other via interface).
Modules can be unplugged, replaced, or upgraded, without the need of compromising the contents of other modules.

The total system complexity is greatly reduced. Interface Based Programming adds more to modular Programming in that
it insists that Interfaces are to be added to these modules. The entire system is thus viewed as Components and the
interfaces that helps them to co-act.

Interface-based Programming increases the modularity of the application and hence its maintainability at a later
development cycles, especially when each module must be developed by different teams. It is a well-known methodology
that has been around for a long time and it is a core technology behind frameworks such as CORBA.

This is particularly convenient when third parties develop additional components for the established system. They just

have to develop components that satisfy the interface specified by the parent application vendor.

Thus the publisher of the interfaces assures that he will not change the interface and the subscriber agrees to implement
the interface as whole without any deviation. An interface is therefore said to be a Contractual agreement and the

programming paradigm based on this is termed as "interface based programming".

Behavioral Patterns

Chain of Responsibility

Chain of Responsibility pattern has the intent to avoid coupling the sender of a request to its receiver by giving more than
one object a chance to handle the request. Chains the receiving objects and passes the requests along the chain until an
object handles it.

H
Winclude <iostream>
H

iusing namespace std;
1
iclass Handler {
protected:
Handler *next;

public:
Handler() {
next = NULL;
}

virtual ~Handler() { }
virtual void request(int value) = 0;

void setNextHandler(Handler *nextInLine) {
next = nextInLine;
}
s

class SpecialHandler : public Handler {
private:
int myLimit;
int myId;

public:
SpecialHandler(int limit, int id) {
myLimit = limit;
myId = id;
}

~SpecialHandler() { }

void request(int value) {
if(value < myLimit) {
cout << "Handler " << myId << " handled the request with a limit of " << myLimit << endl;

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 21/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

} else if(next != NULL) {
next->request(value);
} else {
cout << "Sorry, I am the last handler (" << myId << ") and I can't handle the request." << endl;

}
s
int main () {
Handler *hl = new SpecialHandler(10, 1);
Handler *h2 = new SpecialHandler(20, 2);
Handler *h3 = new SpecialHandler(30, 3);

h1l->setNextHandler(h2);
h2->setNextHandler(h3);

h1l->request(18);

hl->request(40);

delete hi;
delete h2;
delete h3;
return 0;
}
Command

Command pattern is an Object behavioral pattern that decouples sender and receiver by encapsulating a request as an
object, thereby letting you parameterize clients with different requests, queue or log requests, and support undo-able

operations. It can also be thought as an object oriented equivalent of call back method.

Call Back: It is a function that is registered to be called at later point of time based on user actions.

#include <iostream>
H

iusing namespace std;
:

i/*the Command interface*/
iclass Command

o

ipublic:

! virtual void execute()=90;
B¥

E/*Receiver class*/
iclass Light {

}s

ipublic:

P Light() {)

i void turnOn()

oo

| cout << "The light is on" << endl;
b

i void turnOff()

v {

i cout << "The light is off" << endl;
P

!/*the Command for turning on the light*/
iclass FlipUpCommand: public Command

it
public:

FlipUpCommand(Light& light):theLight(light)

o
L
E virtual void execute()
E ¢ theLight.turnOn();
.

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 22/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

Eprivate:
i Light& theLight;

i}

E/*the Command for turning off the Llight*/

iclass FlipDownCommand: public Command

it

public:

; FlipDownCommand(Light& light) :theLight(light)
{

}

virtual void execute()

{
}

private:
Light& theLight;

i theLight.turnoff();

NE

Eclass Switch {

ipublic:

Switch(Command& flipUpCmd, Command& flipDownCmd)

:flipUpCommand (f1ipUpCmd),f1lipDownCommand(f1lipDownCmd)
{

}
void flipUp()

flipUpCommand.execute();
¥

void flipDown()
{

¥

flipDownCommand.execute();

private:
Command& flipUpCommand;
Command& flipDownCommand;

}s

i/*The test class or client*/

Eint main()

{

| Light lamp;
FlipUpCommand switchUp(lamp);
FlipDownCommand switchDown(lamp);

i
1
i Switch s(switchUp, switchDown);
i
1

s.flipUp();
s.flipDown();
}
Interpreter

Given a language, define a representation for its grammar along with an interpreter that uses the representation to

interpret sentences in the language.

#include <iostream>
E#include <string>
Winclude <map>
Hinclude <list>

inamespace wikibooks_design_patterns

H
E// based on the Java sample around here

itypedef std::string String;

Estruct Expression;

itypedef std: :map<String,Expression*> Map;
'typedef std::list<Expression*> Stack;

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 23/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

struct Expression {
virtual int interpret(Map variables) = 0;
virtual ~Expression() {}

¥

iclass Number : public Expression {

Eprivate:

i int number;

‘public:

: Number(int number) { this->number = number; }

i int interpret(Map variables) { return number; }
i}
iclass Plus : public Expression {
i Expression* leftOperand;
Expression* rightOperand;
public:

Plus(Expression* left, Expression* right) {
leftOperand = left;
rightOperand = right;

}

~Plus(){

delete leftOperand;
delete rightOperand;
¥

int interpret(Map variables) {
return leftOperand->interpret(variables) + rightOperand->interpret(variables);

}

155
'
'
'

iclass Minus : public Expression {

Expression* leftOperand;

Expression* rightOperand;

public:

Minus(Expression* left, Expression* right) {
leftOperand = left;
rightOperand = right;

}

~Minus(){

delete leftOperand;

delete rightOperand;

¥

int interpret(Map variables) {
return leftOperand->interpret(variables) - rightOperand->interpret(variables);
}
¥

iclass Variable : public Expression {
! String name;

ipublic:

1 Variable(String name) { this->name = name; }

| int interpret(Map variables) {

: if(variables.end() == variables.find(name)) return 0;
E return variables[name]->interpret(variables);

P

i}

E// While the interpreter pattern does not address parsing, a parser is provided for completeness.

iclass Evaluator : public Expression {
Expression* syntaxTree;

public:
Evaluator(String expression){
Stack expressionStack;

size_t last = 0;
for (size_t next = 0; String::npos != last; last = (String::npos == next) ? next : (1+next)) {
next = expression.find(' ', last);
String token(expression.substr(last, (String::npos == next) ? (expression.length()-last) : (next-last)));

if (token == "+") {

Expression* right = expressionStack.back(); expressionStack.pop_back();
Expression* left = expressionStack.back(); expressionStack.pop_back();
Expression* subExpression = new Plus(right, left);
expressionStack.push_back(subExpression);

else if (token == "-") {
// it's necessary remove first the right operand from the stack

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 24/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

Expression* right = expressionStack.back(); expressionStack.pop_back();
// ..and after the left one
Expression* left = expressionStack.back(); expressionStack.pop_back();
Expression* subExpression = new Minus(left, right);
expressionStack.push_back(subExpression);

}

else
expressionStack.push_back(new Variable(token));

}

syntaxTree = expressionStack.back(); expressionStack.pop_back();

}

~Evaluator() {
delete syntaxTree;

}

int interpret(Map context) {
return syntaxTree->interpret(context);

¥
s
}
wvoid main()
At
i using namespace wikibooks_design_patterns;
E Evaluator sentence("w x z - +");
i static
| const int sequences[][3] = {
: {SJ 19) 42}) {11 31 2}: {7) 9) _5})
i s
i for (size_t i = 0; sizeof(sequences)/sizeof(sequences[0]) > i; ++i) {
! Map variables;
i variables["w"] = new Number(sequences[i][©]);
1 variables["x"] = new Number(sequences[i][1]);
E variables["z"] = new Number(sequences[i][2]);
i int result = sentence.interpret(variables);
! for (Map::iterator it = variables.begin(); variables.end() != it; ++it) delete it->second;
i std::cout<<"Interpreter result: "<<result<<std::endl;
| }
i
Iterator

The 'iterator' design pattern is used liberally within the STL for traversal of various containers. The full understanding of

this will liberate a developer to create highly reusable and easily understandablelcitation needed] 45 containers.

The basic idea of the iterator is that it permits the traversal of a container (like a pointer moving across an array). However,
to get to the next element of a container, you need not know anything about how the container is constructed. This is the
iterators job. By simply using the member functions provided by the iterator, you can move, in the intended order of the
container, from the first element to the last element.

Let us start by considering a traditional single dimensional array with a pointer moving from the start to the end. This
example assumes knowledge of pointer arithmetic. Note that the use of "it" or "itr," henceforth, is a short version of

"iterator."”

const int ARRAY_LEN = 42;

int *myArray = new int[ARRAY_LEN];

// Set the iterator to point to the first memory Llocation of the array

int *arrayItr = myArray;

// Move through each element of the array, setting it equal to its position in the array
for(int i = 9; i < ARRAY_LEN; ++i)

{
// set the value of the current Llocation in the array
*arrayItr = i;
// by incrementing the pointer, we move it to the next position in the array.
// This 1is easy for a contiguous memory container, since pointer arithmetic
// handles the traversal.
++arrayltr;

}

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 25/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

// Do not be messy, clean up after yourself
delete[] myArray;

This code works very quickly for arrays, but how would we traverse a linked list, when the memory is not contiguous?
Consider the implementation of a rudimentary linked list as follows:

class IteratorCannotMoveToNext{}; // Error class
class MyIntLList
{
public:
// The Node class represents a single element in the Llinked Llist.
// The node has a next node and a previous node, so that the user
// may move from one position to the next, or step back a single
// position. Notice that the traversal of a linked List is O(N),
// as 1is searching, since the list is not ordered.
class Node
{
public:
Node () :mNextNode(©),mPrevNode(0),mValue(0){}
Node *mNextNode;
Node *mPrevNode;
int mvalue;
¥
MyIntLList():mSize(0)
{}
~MyIntLList()

while(!Empty())
pop_front();
} // See expansion for further implementation;
int Size() const {return mSize;}
// Add this value to the end of the Llist
void push_back(int value)
{
Node *newNode = new Node;
newNode->mValue = value;
newNode->mPrevNode = mTail;
mTail->mNextNode = newNode;
mTail = newNode;
++mSize;
}
// Remove the value from the beginning of the Llist
void pop_front()

if (Empty())
return;
Node *tmpnode = mHead;
mHead = mHead->mNextNode;
delete tmpnode;
--mSize;
}
bool Empty()
{return mSize == 0;}

// This is where the iterator definition will go,
// but Llets finish the definition of the Llist, first

private:
Node *mHead;
Node *mTail;
int mSize;

This linked list has non-contiguous memory, and is therefore not a candidate for pointer arithmetic. And we do not want to

expose the internals of the list to other developers, forcing them to learn them, and keeping us from changing it.

This is where the iterator comes in. The common interface makes learning the usage of the container easier, and hides the
traversal logic from other developers.

Let us examine the code for the iterator, itself.
* The iterator class knows the internals of the Llinked Llist, so that it

* may move from one element to the next. In this implementation, I have
* chosen the classic traversal method of overloading the increment

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 26/44

11/14/2018

C++ Programming: Code patterns design - Wikibooks, open books for an open world

* operators. More thorough implementations of a bi-directional Llinked
List would include decrement operators so that the iterator may move

* 1in the opposite direction.
*/
class Iterator
{
public:
Iterator(Node *position):mCurrNode(position){}
// Prefix increment
const Iterator &operator++()

{
if(mCurrNode == @ || mCurrNode->mNextNode == 0)
throw IteratorCannotMoveToNext();e
mCurrNode = mCurrNode->mNextNode;
return *this;
}

// Postfix increment
Iterator operator++(int)

{
Iterator tempItr = *this;
++(*this);
return tempItr;

}

// dereferencing operator
Node * operator*()
{return mCurrNode;}

private:
Node *mCurrNode;
¥
// The following two functions make it possible to create
// 1iterators for an instance of this class.

Iterator Begin(){return Iterator(mHead);}

Iterator End(){return Iterator(®);}

// Dereferencing operator returns the current node, which should then
// be dereferenced for the int. TODO: Check syntax for overloading

// TODO: implement arrow operator and clean up example usage following

// First position for iterators should be the first element in the container.

// Final position for iterators should be one past the last element in the container.

With this implementation, it is now possible, without knowledge of the size of the container or how its data is organized, to

move through each element in order, manipulating or simply accessing the data. This is done through the accessors in the

MyIntLList class, Begin() and End().

// Create a list
MyIntLList myList;
// Add some items to the Llist
for(int i = 0; i < 10; ++1)
myList.push_back(i);
// Move through the list, adding 42 to each item.

(*it)->mvValue += 42;

for(MyIntLList::Iterator it = myList.Begin(); it != myList.End(); ++it)

H
L/ K oK KKK SRR KK SR SK KR SR K K K KK SR K KK SR SR K K SR K S K Kk K Sk KR KoKk Sk oK/
H

i/* Iterator.h */

Hifndef MY _ITERATOR_HEADER
wtdefine MY_ITERATOR_HEADER
'

E#include <iterator>
i#include <vector>
#include <set>

1/11111111111111011011011711171711111711717717717117717717717777777177177
Etemplate<c1ass T, class U>
iclass Iterator

i

ipublic:

typedef typename std::vector<T>::iterator iter_type;
Iterator(U *pData):m_pData(pData){

}

m_it = m_pData->m_data.begin();

void first()

{

m_it = m_pData->m_data.begin();

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory

27/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

U *m_pData;
iter_type m_it;

b

E void next()

Ao

1 m_it++;

.

i bool isDone()
oA

! return (m_it == m_pData->m_data.end());
.

E iter_type current()
oA

! return m_it;

' }

private:

i}

itemplate<class T, class U, class A>
iclass setIterator

ht

ipublic:

i typedef typename std::set<T,U>::iterator iter_type;
E setIterator(A *pData):m_pData(pData)
oo

' m_it = m_pData->m_data.begin();
' }

E void first()

oA

! m_it = m_pData->m_data.begin();
ol

E void next()

I

H m_it++;

' }

E bool isDone()

oo

' return (m_it == m_pData->m_data.end());
' }

i iter_type current()

oo

H return m_it;

' ¥

Eprivate:

| A *m_pData;

: iter_type m_it;

i}

wendif

E/**/
E/* Aggregate.h */
Hifndef MY_DATACOLLECTION HEADER

i#define MY_DATACOLLECTION_HEADER

#include "Iterator.h”

i

i

i

itemplate <class T>

Iclass aggregate

{

: friend class Iterator<T, aggregate>;
public:

| void add(T a)

L

' m_data.push_back(a);

P

i Iterator<T, aggregate> *create_iterator()
P {

i return new Iterator<T, aggregate>(this);
i ¥

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 28/44

11/14/2018

iprivate:

i}

std: :vector<T> m_data;

Etemplate <class T, class U>
iclass aggregateSet

C++ Programming: Code patterns design - Wikibooks, open books for an open world

i
1
i |
! friend class setIterator<T, U, aggregateSet>; !
jpublic: i
! void add(T a)
P :
! m_data.insert(a);
. :
E setIterator<T, U, aggregateSet> *create_iterator() E
i { i
i return new setIterator<T,U,aggregateSet>(this); i
oo :
E void Print()
P :
H copy(m_data.begin(), m_data.end(), std::ostream_iterator<T>(std::cout, "\n")); H
S :
iprivate: i
| std::set<T,U> m_data;
1} i
i#endif i

]
:/**/

1
/* Iterator Test.cpp
:/**/

E#include <iostream>
#include <string>
#include "Aggregate.h"
iusing namespace std;

1

iclass Money

o{

public:

I Money(int a = ©): m_data(a) {}
i void SetMoney(int a)

oo

H m_data = a;

o)

i int GetMoney()

oo

H return m_data;

| }

Eprivate:

| int m_data;

s

iclass Name

i

ipublic:

1 Name(string name): m_name(name) {}
1

1

i const string &GetName() const
' {

| return m_name;

L)

i friend ostream &operator<<(ostream& out, Name name)
| {

i out << name.GetName();

H return out;

o)

iprivate:

| string m_name;

i}

istruct NamelLess

i

bool operator()(const Name &lhs, const Name &rhs) const

{
return (lhs.GetName() < rhs.GetName());

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory

*/

29/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

P

i

iint main()

o

i //sample 1

! cout << " Iterator with int " << endl;
E aggregate<int> agg;

E for (int i = 0; 1 < 10; i++)

i agg.add(i);

i Iterator< int,aggregate<int> > *it = agg.create_iterator();

' for(it->first(); !it->isDone(); it->next())

E cout << *it->current() << endl;

E //sample 2

| aggregate<Money> agg2;

i Money a(100), b(1000), c(10000);

E agg2.add(a);

i agg2.add(b);

! agg2.add(c);

i cout << " Iterator with Class Money " << endl;
E Iterator<Money, aggregate<Money> > *it2 = agg2.create_iterator();

i for (it2->first(); !it2->isDone(); it2->next())

! cout << it2->current()->GetMoney() << endl;

i //sample 3

E cout << " Set Iterator with Class Name " << endl;
i aggregateSet<Name, NamelLess> aset;

| aset.add(Name("Qmt"));

H aset.add(Name("Bmt"));

E aset.add(Name("Cmt"));

i aset.add(Name("Amt"));

i setIterator<Name, NameLess, aggregateSet<Name, NamelLess> > *it3 = aset.create_iterator();
H for (it3->first(); !it3->isDone(); it3->next())

E cout << (*it3->current()) << endl;

i

i Iterator with int
i
i

1 Iterator with Class Money

! Set Iterator with Class Name

Mediator

Define an object that encapsulates how a set of objects interact. Mediator promotes loose coupling by keeping objects from

referring to each other explicitly, and it lets you vary their interaction independently.

#include <iostream>
i#include <string>
Winclude <Llist>

iclass MediatorInterface;

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory

30/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

iclass ColleagueInterface {
std: :string name;
public:
ColleagueInterface (const std::string& newName) : name (newName) {}
std::string getName() const {return name;}
virtual void sendMessage (const MediatorInterface&, const std::string&) const = 0;
virtual void receiveMessage (const ColleagueInterface*, const std::string&) const = 0;

}s

class Colleague : public ColleagueInterface {
public:

using ColleagueInterface::Colleaguelnterface;

virtual void sendMessage (const MediatorInterface&, const std::string&) const override;
private:

virtual void receiveMessage (const ColleagueInterface*, const std::string&) const override;

i}
iclass MediatorInterface {
private:
std::1ist<ColleagueInterface*> colleaguelist;
public:

const std::list<ColleagueInterface*>& getColleaguelList() const {return colleaguelList;}
virtual void distributeMessage (const ColleagueInterface*, const std::string&) const = 0;
virtual void registerColleague (ColleaguelInterface* colleague) {colleaguelList.emplace_back (colleague);}

:};

iclass Mediator : public MediatorInterface {
E virtual void distributeMessage (const Colleaguelnterface*, const std::string&) const override;

ivoid Colleague: :sendMessage (const MediatorInterface& mediator, const std::string& message) const {
H mediator.distributeMessage (this, message);

)

Evoid Colleague::receiveMessage (const ColleagueInterface* sender, const std::string& message) const {
i std::cout << getName() << received the message from " << sender->getName() << << message << std::endl;

1

ivoid Mediator: :distributeMessage (const ColleagueInterface* sender, const std::string& message) const {
i for (const Colleaguelnterface* x : getColleaguelList())
if (x != sender) // Do not send the message back to the sender

x->receiveMessage (sender, message);

}

int main() {

Colleague *bob = new Colleague ("Bob"), *sam = new Colleague ("Sam"), *frank = new Colleague ("Frank"), *tom = new
Colleague ("Tom");

Colleague* staff[] = {bob, sam, frank, tom};

Mediator mediatorStaff, mediatorSamsBuddies;

for (Colleague* x : staff)

mediatorStaff.registerColleague(x);

bob->sendMessage (mediatorStaff, "I'm quitting this job!");

mediatorSamsBuddies.registerColleague (frank); mediatorSamsBuddies.registerColleague (tom); // Sam's buddies only

sam->sendMessage (mediatorSamsBuddies, "Hooray! He's gone! Let's go for a drink, guys!");

o
<

return 0;
}
Memento

Without violating encapsulation the Memento Pattern will capture and externalize an object’s internal state so that the
object can be restored to this state later. Though the Gang of Four uses friend as a way to implement this pattern it is not
the best designl¢itation needed] Tt can also be implemented using PIMPL (pointer to implementation or opaque pointer).
Best Use case is 'Undo-Redo' in an editor.

The Originator (the object to be saved) creates a snap-shot of itself as a Memento object, and passes that reference to the
Caretaker object. The Caretaker object keeps the Memento until such a time as the Originator may want to revert to a
previous state as recorded in the Memento object.

See memoize (http://perldoc.perl.org/Memoize.html) for an old-school example of this pattern.

i#include <iostream>
i#include <string>
include <sstream>
E#include <vector>

i

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 31/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

iconst std::string NAME = "Object";

rtemplate <typename T>

istd: :string toString (const T& t) {
! std::stringstream ss;

ss << t;

return ss.str();

}

class Memento;

class Object {
private:
int value;
std: :string name;
double decimal; // and suppose there are loads of other data members
public:

void increaseByOne() {value++; name = NAME + toString (value); decimal = (float)value / 100;}
int getValue() const {return value;}

std::string getName() const {return name;}

double getDecimal() const {return decimal;}

Memento* createMemento() const;

void reinstateMemento (Memento* mem);

Iy
iclass Memento {
private:
Object object;
public:

Memento (const Object& obj): object (obj) {}

}s

Memento* Object::createMemento() const {
! return new Memento (*this);

i

Evoid Object::reinstateMemento (Memento* mem) {

i *this = mem->snapshot();

D

iclass Command {
! private:
typedef void (Object::*Action)();
Object* receiver;
Action action;
static std::vector<Command*> commandList;
static std::vector<Memento*> mementolList;
static int numCommands;
static int maxCommands;
public:
Command (Object *newReceiver, Action newAction): receiver (newReceiver), action (newAction) {}
virtual void execute() {
if (mementoList.size() < numCommands + 1)
mementoList.resize (numCommands + 1);
mementoList[numCommands] = receiver->createMemento(); // saves the last value
if (commandList.size() < numCommands + 1)
commandList.resize (numCommands + 1);
commandList[numCommands] = this; // saves the Llast command
if (numCommands > maxCommands)
maxCommands = numCommands;
numCommands++;
(receiver->*action)();

}
static void undo() {
if (numCommands == 0)
{
std::cout << "There is nothing to undo at this point." << std::endl;
return;
}
commandList[numCommands - 1]->receiver->reinstateMemento (mementoList[numCommands - 1]);
numCommands--;
}

void static redo() {
if (numCommands > maxCommands)
{
std::cout << "There is nothing to redo at this point." << std::endl;
return ;

}

Command* commandRedo = commandList[numCommands];

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory

Object (int newvalue): value (newValue), name (NAME + toString (value)), decimal ((float)value / 100) {}
void doubleValue() {value = 2 * value; name = NAME + toString (value); decimal = (float)value / 100;}

Object snapshot() const {return object;} // want a snapshot of Object itself because of its many data members

32/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

(commandRedo->receiver->*(commandRedo->action))();
numCommands++;

i}

istd: :vector<Command*> Command: :commandList;
istd: :vector<Memento*> Command: :mementoList;

1int Command::numCommands = 0;
iint Command: :maxCommands = 0;
iint main()
i{

int i;

std::cout << "Please enter an integer: ";
std::cin >> i;
Object *object = new Object(i);

Command *commands[3];
commands[1] = new Command(object, &0bject::doubleValue);
commands[2] = new Command(object, &0bject::increaseByOne);

std::cout << "@.Exit, 1.Double, 2.Increase by one, 3.Undo, 4.Redo: ";
std::cin >> i;

while (i != @)
{
if (i == 3)
Command: :undo();
else if (i == 4)
Command: :redo();
else if (i > @ && i <= 2)
commands[i]->execute();
else
{
std::cout << "Enter a proper choice: ";
std::cin >> i;
continue;
}
std::cout << " " << object->getvValue() << " " << object->getName() << " " << object->getDecimal() <<
std::endl;
std::cout << "@.Exit, 1.Double, 2.Increase by one, 3.Undo, 4.Redo: ";
std::cin >> i;

Observer

The Observer Pattern defines a one-to-many dependency between objects so that when one object changes state, all its

dependents are notified and updated automatically.

Problem
In one place or many places in the application we need to be aware about a system event or an
application state change. We'd like to have a standard way of subscribing to listening for system
events and a standard way of notifying the interested parties. The notification should be
automated after an interested party subscribed to the system event or application state change.
There also should be a way to unsubscribe.

Forces
Observers and observables probably should be represented by objects. The observer objects
will be notified by the observable objects.

Solution
After subscribing the listening objects will be notified by a way of method call.

i#include <list>

E#include <algorithm>
winclude <iostream>
iusing namespace std;

E// The Abstract Observer
iclass ObserverBoardInterface
{

‘public:

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 33/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world
; virtual void update(float a,float b,float c) = 0;
i}

E// Abstract Interface for Displays
iclass DisplayBoardInterface

i

ipublic:

' virtual void show() = 0;
1}

i// The Abstract Subject
iclass WeatherDataInterface

i
public:

i virtual void registerOb(ObserverBoardInterface* ob) = 0;
E virtual void removeOb(ObserverBoardInterface* ob) = 0;

| virtual void notifyOb() = 0;

i}

// The Concrete Subject
iclass ParalWeatherData: public WeatherDataInterface
o{
public:
i void SensorDataChange(float a,float b,float c)
{
m_humidity = a;
m_temperature = b;
m_pressure = C;
notifyob();
}

void registerOb(ObserverBoardInterface* ob)

{
}

m_obs.push_back(ob);

void removeOb(ObserverBoardInterface* ob)

{

¥
protected:
void notifyOb()

{

m_obs.remove(ob);

list<ObserverBoardInterface*>::iterator pos = m_obs.begin();

while (pos != m_obs.end())

{
((ObserverBoardInterface*)(*pos))->update(m_humidity,m_temperature,m_pressure);
(dynamic_cast<DisplayBoardInterface*>(*pos))->show();
++pos;

¥

private:
float m_humidity;
float m_temperature;
float m_pressure;
list<ObserverBoardInterface* > m_obs;

}s

E// A Concrete Observer
‘class CurrentConditionBoard : public ObserverBoardInterface, public DisplayBoardInterface

it

public:

i CurrentConditionBoard(ParaWeatherData& a):m_data(a)
{

m_data.registerOb(this);

void show()

P

E cout<<" CurrentConditionBoard "<<endl;
i cout<<"humidity: "<<m_h<<endl;

i cout<<"temperature: "<<m_t<<endl;

1 cout<<"pressure: "<<m_p<<endl;

E coutc<” "<<endl;
}

i void update(float h, float t, float p)

oA

! m_h = h;

i mt =t;

i m_p =p;

' }

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 34/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

iprivate:

float m_h;

float m_t;

float m_p;
ParalWeatherData& m_data;

s

i// A Concrete Observer
Eclass StatisticBoard : public ObserverBoardInterface, public DisplayBoardInterface

i{
‘public:
: StatisticBoard(ParaWeatherData& a):m_maxt(-1000),m_mint(1000),m_avet(0),m_count(0),m_data(a)
{
m_data.registerOb(this);
}
void show()
{
cout<<" StatisticBoard "<<endl;
cout<<"lowest temperature: "<<m_mint<<endl;
cout<<"highest temperature: "<<m_maxt<<endl;
cout<<"average temperature: "<<m_avet<<endl;
cout<<"” "<<endl;
}
void update(float h, float t, float p)
{
++m_count;
if (t>m_maxt)
{
m_maxt = t;
if (t<m_mint)
{
m_mint = t;
}
m_avet = (m_avet * (m_count-1) + t)/m_count;
}
private:
float m_maxt;
float m_mint;
float m_avet;
int m_count;
ParaWeatherData& m_data;
s

int main(int argc, char *argv[])

ParaWeatherData * wdata = new ParaWeatherData;
CurrentConditionBoard* currentB = new CurrentConditionBoard(*wdata);
StatisticBoard* statisticB = new StatisticBoard(*wdata);

wdata->SensorDataChange(10.2, 28.2, 1001);
wdata->SensorDataChange(12, 30.12, 1003);
wdata->SensorDataChange(10.2, 26, 806);
wdata->SensorDataChange(10.3, 35.9, 900);
wdata->removeOb(currentB);
wdata->SensorDataChange(100, 40, 1900);
delete statisticB;

delete currentB;

delete wdata;

return 0;

State

The State Pattern allows an object to alter its behavior when its internal state changes. The object will appear as having

changed its class.

1

Winclude <iostream>
E#include <string>

1

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 35/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

i#include <cstdlib>
#include <ctimes
i#include <memory>

ienum Input {DUCK_DOWN, STAND_UP, JUMP, DIVE};

1
iclass Fighter;
iclass StandingState; class JumpingState; class DivingState;

iclass FighterState {
public:

static std::shared_ptr<StandingState> standing;
static std::shared_ptr<DivingState> diving;
virtual ~FighterState() = default;
virtual void handleInput (Fighter&, Input) = 0;
virtual void update (Fighter&) = 0;

s

class DuckingState : public FighterState {

private:
int chargingTime;
static const int FullRestTime = 5;

public:
DuckingState() : chargingTime(@) {}
virtual void handleInput (Fighter&, Input) override;
virtual void update (Fighter&) override;

}s

class StandingState : public FighterState {
public:
virtual void handleInput (Fighter&, Input) override;
virtual void update (Fighter&) override;

s
iclass JumpingState : public FighterState {
private:
int jumpingHeight;
public:

JumpingState() {jumpingHeight = std::rand() % 5 + 1;}
virtual void handleInput (Fighter&, Input) override;
virtual void update (Fighter&) override;

}s

1
1
iclass DivingState : public FighterState {

| public:

! virtual void handleInput (Fighter&, Input) override;

E virtual void update (Fighter&) override;

i}

istd::shared_ptr<standingstate> FighterState::standing (new StandingState);
std: :shared_ptr<DivingState> FighterState::diving (new DivingState);

iclass Fighter {

private:
std::string name;
std: :shared_ptr<FighterState> state;
int fatiguelLevel = std::rand() % 10;

public:
Fighter (const std::string& newName) : name (newName), state (FighterState::standing) {}
std::string getName() const {return name;}
int getFatigueLevel() const {return fatigueLevel;}
virtual void handleInput (Input input) {state->handleInput (*this, input);} // delegate input handling to 'state'.
void changeState (std::shared_ptr<FighterState> newState) {state = newState; updateWithNewState();}
void standsUp() {std::cout << getName() << " stands up." << std::endl;}
void ducksDown() {std::cout << getName() << " ducks down." << std::endl;}
void jumps() {std::cout << getName() << " jumps into the air." << std::endl;}
void dives() {std::cout << getName() << " makes a dive attack in the middle of the jump!" << std::endl;}
void feelsStrong() {std::cout << getName() << " feels strong!" << std::endl;}
void changeFatiguelLevelBy (int change) {fatiguelLevel += change; std::cout << "fatiguelLevel =

std::endl;}

private:

virtual void updateWithNewState() {state->update(*this);} // delegate updating to 'state’

"

<< fatiguelLevel <<

}s

void StandingState::handleInput (Fighter& fighter, Input input) {
switch (input) {

case STAND UP: std::cout << fighter.getName() << remains standing." << std::endl; return;

case DUCK_DOWN: fighter.changeState (std::shared_ptr<DuckingState> (new DuckingState)); return
fighter.ducksDown();

case JUMP: fighter.jumps(); return fighter.changeState (std::shared_ptr<JumpingState> (new JumpingState));

default: std::cout << "One cannot do that while standing. " << fighter.getName() << remains standing by
default." << std::endl;

¥
https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 36/44

"

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world
Bl

ivoid StandingState: :update (Fighter& fighter) {
! if (fighter.getFatiguelLevel() > 0)
fighter.changeFatiguelLevelBy(-1);

}

void DuckingState::handleInput (Fighter& fighter, Input input) {
switch (input) {
case STAND UP: fighter.changeState (FighterState::standing); return fighter.standsUp();
case DUCK_DOWN:
std::cout << fighter.getName() << " remains in ducking position, ";
if (chargingTime < FullRestTime) std::cout << "recovering in the meantime." << std::endl;
else std::cout << "fully recovered." << std::endl;
return update (fighter);
default:
std::cout << "One cannot do that while ducking.
default.” << std::endl;
update (fighter);

<< fighter.getName() << remains in ducking position by

}
}
void DuckingState::update (Fighter& fighter) {
chargingTime++;
std::cout << "Charging time = " << chargingTime << "." << std::endl;

if (fighter.getFatiguelLevel() > 0)
fighter.changeFatiguelLevelBy(-1);

if (chargingTime >= FullRestTime && fighter.getFatiguelLevel() <= 3)
fighter.feelsStrong();

}

void JumpingState::handleInput (Fighter& fighter, Input input) {
switch (input) {
case DIVE: fighter.changeState (FighterState::diving); return fighter.dives();
default:
std::cout << "One cannot do that in the middle of a jump.
is now standing again." << std::endl;
fighter.changeState (FighterState::standing);

<< fighter.getName() << " lands from his jump and

}
}

void JumpingState::update (Fighter& fighter) {
std: :cout << fighter.getName() << " has jumped
if (jumpingHeight >= 3)
fighter.changeFatiguelLevelBy(1);

"

<< jumpingHeight << " feet into the air." << std::endl;

}

wvoid DivingState::handleInput (Fighter& fighter, Input) {
E std::cout << "Regardless of what the user input is,
iagain." << std::endl;

! fighter.changeState (FighterState::standing);

b

<< fighter.getName() << " lands from his dive and is now standing

Evoid DivingState::update (Fighter& fighter) {

: fighter.changeFatiguelLevelBy(2);
i

Hnt main() {
1 std::srand(std: :time(nullptr));
Fighter rex ("Rex the Fighter"), borg ("Borg the Fighter");
std::cout << rex.getName() << " and " << borg.getName() <<
int choice;
auto chooseAction = [&choice](Fighter& fighter) {

std::cout << std::endl << DUCK_DOWN + 1 << ") Duck down " << STAND_UP + 1 << ") Stand up " << JUMP + 1

<< ") Jump " << DIVE + 1 << ") Dive in the middle of a jump" << std::endl;

std::cout << "Choice for " << fighter.getName() << "? ";

std::cin >> choice;

const Input inputl = static_cast<Input>(choice - 1);

fighter.handleInput (inputl);

are currently standing." << std::endl;

s

while (true) {
chooseAction (rex);
chooseAction (borg);

Strategy

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 37/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

Defines a family of algorithms, encapsulates each one, and make them interchangeable. Strategy lets the algorithm vary

independently from clients who use it.

i#include <iostream>

Eusing namespace std;

1

1

iclass StrategyInterface

o{

| public:

i virtual void execute() const = 0;

i};

1
iclass ConcreteStrategyA: public StrategyInterface

! public:

i void execute() const override

' {

E cout << "Called ConcreteStrategyA execute method" << endl;
i }

Eclass ConcreteStrategyB: public StrategyInterface
o

H public:

E void execute() const override

: {

! cout << "Called ConcreteStrategyB execute method" << endl;
i }

iclass ConcreteStrategyC: public StrategyInterface
At

| public:

' void execute() const override

i {

i cout << "Called ConcreteStrategyC execute method" << endl;

; }

i}

Eclass Context

i

! private:

E StrategyInterface * strategy_;

E public:

i explicit Context(StrategyInterface *strategy):strategy_(strategy)

; {

! }

i

E void set_strategy(StrategyInterface *strategy)

| {

! strategy_ = strategy;

i }

i

! void execute() const

: {

! strategy_->execute();

i }

i3

i

iint main(int argc, char *argv[])

i

i ConcreteStrategyA concreteStrategyA;

H ConcreteStrategyB concreteStrategyB;

E ConcreteStrategyC concreteStrategyC;

i Context contextA(&concreteStrategyA);

i Context contextB(&concreteStrategyB);

H Context contextC(&concreteStrategyC);

i contextA.execute(); // output: "Called ConcreteStrategyA execute method"
! contextB.execute(); // output: "Called ConcreteStrategyB execute method"
i contextC.execute(); // output: "Called ConcreteStrategyC execute method"
E contextA.set_strategy(&concreteStrategyB);

i contextA.execute(); // output: "Called ConcreteStrategyB execute method"
H contextA.set_strategy(&concreteStrategyC);

E contextA.execute(); // output: "Called ConcreteStrategyC execute method"
1

1

E return 0;

D

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory

38/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

Template Method

By defining a skeleton of an algorithm in an operation, deferring some steps to subclasses, the Template Method lets

subclasses redefine certain steps of that algorithm without changing the algorithm's structure.

#include <ctime>

E#include <assert.h>

i#include <iostream>

inamespace wikibooks_design_patterns
i{

i/**

* playing at a given time.

*/
iclass Game
i
ipublic:
H Game(): playersCount(@), movesCount(©), playerWon(-1)
i srand((unsigned)time(NULL));
)
i /* A template method : */
E void playOneGame(const int playersCount = 0)
oo
! if (playersCount)
E this->playersCount = playersCount;
| }
E InitializeGame();
i assert(this->playersCount);
E int j = 0;
i while (!endOfGame())
' {
| makePlay(j);
1 j = (j + 1) % this->playersCount;
i if (13)
E ++movesCount;
i }
; }
! printWinner();
o)
iprotected:
' virtual void initializeGame() = ©;
i virtual void makePlay(int player) = 0;
i virtual bool endOfGame() = 0;
! virtual void printWinner() = 0;
iprivate:
| void InitializeGame()
oo
! movesCount = 0;
| playerWon = -1;
| initializeGame();
Pl
iprotected:
! int playersCount;
E int movesCount;
i int playerWon;
s

E//Now we can extend this class in order
E//to implement actual games:

iclass Monopoly: public Game {

void initializeGame() {

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory

* An abstract class that is common to several games 1in
* which players play against the others, but only one 1is

/* Implementation of necessary concrete methods */

39/44

11/14/2018

i}

// Initialize players

playersCount = rand() * 7 / RAND_MAX + 2;
// Initialize money

}

void makePlay(int player) {
// Process one turn of player

// Decide winner
if (movesCount < 20)
return;
const int chances = (movesCount > 199) ? 199 : movesCount;
const int random = MOVES_WIN_CORRECTION * rand() * 200 / RAND_MAX;
if (random < chances)
playerWon = player;
¥
bool endOfGame() {
// Return true if game is over
// according to Monopoly rules
return (-1 != playerWon);
¥
void printWinner() {
assert(playerWon >= 0);
assert(playerWon < playersCount);

// Display who won

std: :cout<<"Monopoly, player "<<playerWon<<" won in "<<movesCount<<" moves

¥

private:

enum

{
I

MOVES_WIN_CORRECTION = 20,

iclass Chess: public Game {

i}

/* Implementation of necessary concrete methods */
void initializeGame() {

// Initialize players
playersCount = 2;

// Put the pieces on the board

void makePlay(int player) {
assert(player < playersCount);

// Process a turn for the player

// decide winner
if (movesCount < 2)
return;
const int chances = (movesCount > 99) ? 99 : movesCount;
const int random = MOVES_WIN_CORRECTION * rand() * 100 / RAND_MAX;
//std: :cout<<random<<™ : "<<chances<<std::endl;
if (random < chances)
playerWon = player;
}
bool endOfGame() {
// Return true if in Checkmate or
// Stalemate has been reached
return (-1 != playerWon);
¥
void printWinner() {
assert(playerWon >= 0);
assert(playerWon < playersCount);

// Display the winning player

L<<std

std: :cout<<"Player "<<playerWon<<" won in "<<movesCount<<" moves."<<std::endl;

¥

private:

enum

{
MOVES_WIN_CORRECTION = 7,

I

Eint main()

{

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory

using namespace wikibooks_design_patterns;

C++ Programming: Code patterns design - Wikibooks, open books for an open world

::endl;

40/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

Game* game = NULL;

Chess chess;

game = &chess;

for (unsigned i = 0; i < 100; ++i)
game->playOneGame();

game = &monopoly;
for (unsigned i = 0; i < 100; ++i)
game->playOneGame();

i Monopoly monopoly;

return 0;
}
Visitor

The Visitor Pattern will represent an operation to be performed on the elements of an object structure by letting you define

a new operation without changing the classes of the elements on which it operates.

#include <string>
E#include <iostream>
i#include <vector>

[
iusing namespace std;
i

Eclass Wheel;
iclass Engine;
'class Body;
iclass Car;

E// interface to all car 'parts’
istruct CarElementVisitor

i
i virtual void visit(Wheel& wheel) const = 0;
virtual void visit(Engine& engine) const =

virtual void visit(Body& body) const = 9;

9;

virtual void visitCar(Car& car) const = 0;
virtual ~CarElementVisitor() {};

}s

E// interface to one part

istruct CarElement

o

1

i virtual void accept(const CarElementVisitor& visitor) = 0;
' virtual ~CarElement() {}

]
o
]
]

E// wheel element, there are four wheels with unique names
iclass Wheel : public CarElement

i

ipublic:

! explicit Wheel(const string& name) :
! name_(name)

P

VoY

i const string& getName() const

Lo

! return name_;

P}

' void accept(const CarElementVisitor& visitor)
b

' visitor.visit(*this);

private:

! string name_;

i}

i

E// engine

iclass Engine : public CarElement

i

ipublic:

1 void accept(const CarElementVisitor& visitor)
Poo

i visitor.visit(*this);

VoY

i}

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 41/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

i// body
iclass Body : public CarElement
H
jpublic:
i void accept(const CarElementVisitor& visitor)
{
visitor.visit(*this);

}

1
1
1

E// car, all car elements(parts) together

iclass Car

i

jpublic:

I vector<CarElement*>& getElements()

{
return elements_;

}

Car()

{
// assume that neither push_back nor Wheel (const string&) may throw
elements_.push_back(new Wheel("front left"));
elements_.push_back(new Wheel("front right"));
elements_.push_back(new Wheel("back left"));
elements_.push_back(new Wheel("back right"));
elements_.push_back(new Body());
elements_.push_back(new Engine());

}
~Car()
{
for(vector<CarElement*>::iterator it = elements_.begin();
it != elements_.end(); ++it)
{
delete *it;
¥
}
private:

vector<CarElement*> elements_;

i}

1

E// PrintVisitor and DoVisitor show by using a different implementation the Car class is unchanged
V// even though the algorithm is different in PrintVisitor and DoVisitor.

Eclass CarkElementPrintVisitor : public CarElementVisitor

h
‘public:
i void visit(Wheel& wheel) const
{ cout << "Visiting " << wheel.getName() << " wheel" << endl;
3oid visit(Engine& engine) const
{ cout << "Visiting engine" << endl;
5oid visit(Body& body) const
{ cout << "Visiting body" << endl;
ioid visitCar(Car& car) const
{

cout << endl << "Visiting car" << endl;
vector<CarElement*>& elems = car.getElements();
for(vector<CarElement*>::iterator it = elems.begin();
it != elems.end(); ++it)
{
(*it)->accept(*this); // this issues the callback i.e. to this from the element
¥

cout << "Visited car" << endl;

}

N
R
]
]

iclass CarElementDoVisitor : public CarElementVisitor

i{

Epublic:

// these are specific implementations added to the original object without modifying the original struct
void visit(Wheel& wheel) const

{

cout << "Kicking my " << wheel.getName() << " wheel" << endl;
void visit(Engine& engine) const
{

cout << "Starting my engine" << endl;

}
https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 42/44

L)

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

i void visit(Body& body) const

b

1

i cout << "Moving my body" << endl;

Vot

i void visitCar(Car& car) const

PoAq

E cout << endl << "Starting my car" << endl;

i vector<CarElement*>& elems = car.getElements();
! for(vector<CarElement*>::iterator it = elems.begin();
| it != elems.end(); ++it)

{
¥

cout << "Stopped car" << endl;

}
i}

(*it)->accept(*this); // this issues the callback i.e. to this from the element

iint main()

it

Car car;

CarElementPrintVisitor printvisitor;
CarElementDoVisitor doVisitor;

printVisitor.visitCar(car);
dovisitor.visitCar(car);

return 0;

Model-View-Controller (MVC)

A pattern often used by applications that need the ability to maintain multiple views of the same data. The model-view-
controller pattern was until recentlyl¢itation needed] 5 very common pattern especially for graphic user interlace

programming, it splits the code in 3 pieces. The model, the view, and the controller.

The Model is the actual data representation (for example, Array vs Linked List) or other objects representing a database.
The View is an interface to reading the model or a fat client GUI. The Controller provides the interface of changing or
modifying the data, and then selecting the "Next Best View" (NBV).

Newcomers will probably see this "MVC" model as wasteful, mainly because you are working with many extra objects at
runtime, when it seems like one giant object will do. But the secret to the MVC pattern is not writing the code, but in
maintaining it, and allowing people to modify the code without changing much else. Also, keep in mind, that different
developers have different strengths and weaknesses, so team building around MVC is easier. Imagine a View Team that is
responsible for great views, a Model Team that knows a lot about data, and a Controller Team that see the big picture of
application flow, handing requests, working with the model, and selecting the most appropriate next view for that client.

For example: A naive central database can be organized using only a "model", for example, a straight array. However, later
on, it may be more applicable to use a linked list. All array accesses will have to be remade into their respective Linked List

form (for example, you would change myarray[5] into mylist.at(5) or whatever is equivalent in the language you use).

Well, if we followed the MVC pattern, the central database would be accessed using some sort of a function, for example,
myarray.at(5). If we change the model from an array to a linked list, all we have to do is change the view with the model,
and the whole program is changed. Keep the interface the same but change the underpinnings of it. This would allow us to
make optimizations more freely and quickly than before.

One of the great advantages of the Model-View-Controller Pattern is obviously the ability to reuse the application's logic
(which is implemented in the model) when implementing a different view. A good example is found in web development,
where a common task is to implement an external API inside of an existing piece of software. If the MVC pattern has
cleanly been followed, this only requires modification to the controller, which can have the ability to render different types

of views dependent on the content type requested by the user agent.

Retrieved from "https://en.wikibooks.org/w/index.php?
title=C%2B%2B_Programming/Code/Design_Patterns&oldid=3449056"

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 43/44

11/14/2018 C++ Programming: Code patterns design - Wikibooks, open books for an open world

This page was last edited on 8 August 2018, at 12:35.

Text is available under the Creative Commons Attribution-ShareAlike License.; additional terms may apply. By using this
site, you agree to the Terms of Use and Privacy Policy.

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Factory 44/44

