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- Recall that D(x) is in [0, 1]
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l. Goodfellow et al., Generative Adversarial Nets. in Proc. of NIPS, 2014, pp. 2672--2680.

The Discriminator wants to max:
- Recall that D(x) is in [0, 1]
- First term: 

→ large if D(x) is close to 1
→ assign high probability to real objects

- Second term: 
→ large if 1-D(G(z) is close to 1
→ large if D(G(z)) is close to 0
→ assign low probability to fake objects
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l. Goodfellow et al., Generative Adversarial Nets. in Proc. of NIPS, 2014, pp. 2672--2680.

The Generator wants to min:
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l. Goodfellow et al., Generative Adversarial Nets. in Proc. of NIPS, 2014, pp. 2672--2680.

The Generator wants to min:
- Second term: 

→ small if 1-D(G(z) is close to 0
→ small if D(G(z) is close to 1
→ fool the discriminator into assigning high probability to fake objects

01 Generative Adversarial Networks (GANs)
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Results:
● Comparison of several features between original and 

generated graph. (Nb nodes, nb.edges, avg. degree, 
diameter, assortativity, etc ..)

● On several social interaction networks (Karate club, 
Football, Dolphins, Enron)
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NetGAN03

When to stop the training process?

EO-Criterion:

Stop the training process, when the 
input graph and the generated graph 
has an edge overlapping specified by 
the user.
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NetGAN03

How to build the graph?

1. Symmetrize

2. Ensure every node i has at least one edge

3. Continue sampling edges with probability 
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Jupyter Notebook

Code:
https://github.com/mmiller96/netgan_pytorch


