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" Goal: '/
/\i“o/Find a good representation of a graph G = (V, E)
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e Finda good representation of a graph G = (V, E)

//4

Node embedding:

v [f1(v), .., fa(v)]
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- e Find a good representation of a graph G = (V. E)

Node embedding:

o= [fi(0),., fao)

Q \ Edge embedding:

(4, 0) = [g1 (4, ), - .., gn (u, )]
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P Usage/oﬁ“\features: G=(V, E) with node features X

Features f(V) that can be combined with the existing ones

Any learning algorithm of [X, f(V)] -> structural features + original
features

(similarly for the edges)

Task independent features (vs. GNN)
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" DeepWalk and node2vec:
e A good embedding preserves similarity between nodes (edges)
e The embedding is graph-dependent
e Based on aneighborhood preserving objective
e Based on alanguage model

DeepWalk: https://arxiv.org/pdf/1403.6652.pdf node2vec: https://arxiv.org/pdf/1 607.006.53.pdf
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N | Ijeep/V\Ialk and node2vec:
,,,f?:J e Agood embedding preserves similarity between nodes (edges)
~ e The embedding is graph-dependent
e Based on aneighborhood preserving objective
e Based on alanguage model

Here: Mix of the two, math mainly from node2vec

DeepWalk: https://arxiv.org/pdf/1403.6652.pdf node2vec: https://arxiv.org/pdf/1 607.006.53.pdf
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/ 02 Ideas from language models: word2vec

i Il(ieai/ﬂefghborhood preserving likelihood objective
e Vocabulary V (set of words v)
e sequence of words of fixed length (v_T1, ..., v_n) from the corpus

e Learn function that maximizes P(v_n | (v_1, ..., v_{n-1})
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/ 02 Ideas from language models: word2vec

N Idea':_/l;lei;ghborhood preserving likelihood objective

Vocabulary V (set of words v)

Use the context to

sequence of words of fixed length (v_T1, ..., v_n) from the corpus predict a word

Learn function that maximizes P(v_n | (v_1, ..., v_{n-1})
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IHeaﬁ:ﬁ_/Nei‘ghborhood preserving likelihood objective

J

Vocabulary V (set of words v)

sequence of words of fixed length (v_T1, ..., v_n) from the corpus

Learn function that maximizes P(v_n | (v_1, ..., v_{n-1})

More efficient: use a word to predict the context, forget order

Window size w

Predict P({w_{i-w}, \dots w_{-1}, w_{i+1}, \dots, w_{i+w}}| w_i)
SkipGram

: word2vec

Use the context to
predict a word
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__Problem: graphs are not sequential

Idea: use random walks

e V=(v_1,..,v_n)random walk
e the set of words (the context) is a neighborhood

° work on one vertex at a time
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X |
:\. Flrgguency of Vertex Occurrgnce in §hort Random Walks o vFrequency of Word Occurrence in Wikipedia “Slmllar power IaW dIStrIbUtlon
| 10° ) 1 between occurrences of nodes in
1 short random walks and frequency
2 3 \ of words in texts if the degree
, \ distribution of a connected graph
A - . ol | . follows is scale-free

Vertex visitation count Word mention count

(a) YouTube Social Graph (b) Wikipedia Article Text

Figure from https://arxiv.org/pdf/1403.6652.pdf
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. Advantages of random walks:
——— & _high'parallelization
~ /e easytorecompute if short length
/' _~and local modification
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. Advantages of random walks:
——— & _high'parallelization
" @ easytorecompute if short length
' _~and local modification

What similarities should be preserved?

Different notions of similarity:
homophily vs. structural equivalence

{u, s1, s '{S Sy} \
s 9]y 02y 035 04 .
{857 S6, ST, S8, 89} {u7 86}
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. Advantages of random walks:
——— & _high'parallelization
e easytorecompute if short length
_and local modification

What similarities should be preserved?

Different notions of similarity:
homophily vs. structural equivalence

/

{u, 51,52, 53, 34} {U, 86} Sampling of random walks

S5, S, S7, S8, S
{s5, 56, 57, 58, 50} e DeepWalk: use fixed sampling strategy

e Node2vec: use parametric sampling strategy
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- C:om/monsamplil/jg strategies:

< : J/,,///
/e Breadth-first Sampling (BFS)
~ o Good: for structural equivalence (it's a local property)
o  Bad: very small exploration
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*_Common sampling strategies:

. Breadth-first Sampling (BFS)
- o (ood: for structural equivalence (it's a local property)
o  Bad: very small exploration

e Depth-first Sampling (DFS)
o  Good: for communities/homophily, large exploration
o  Bad: possible excessive distance
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= Com"monsampli?g strategies: . Bad: both require long memory!

< : J/,,///
/e Breadth-first Sampling (BFS)
~ o Good: for structural equivalence (it's a local property)
o  Bad: very small exploration

e Depth-first Sampling (DFS)
o  Good: for communities/homophily, large exploration
o  Bad: possible excessive distance
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. Unbiased random walk:
———— P Start from random node u
~ /2. Move'to v with probability

if (v,u) € E

P = ol = ) S



L / 03 Making graphs sequential via random walks

%

| A
| ¥

2 1“*Unbié'sea raﬁdom walk:
—— T Start fronf random node u
~ /2. Moveto v with probability

e if (v,u) € E

/ ,P<Nz'—{—1 — 'U|N’Z — U) — O OtherWiSe

7Tuv '

Transition probability, e.qg.
Ty — Wy
For a weighted graph
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i “‘\‘U;nbiéﬁsea raﬁdom walk:
P . Start fror}j random node u
~ /2. Moveto v with probability

e if (v,u) € E

P(Niw1=v|N;=u) = 0 gtherwise

s .

Transition probability, e.qg.
Twy = Wy Z/ 3 Normalization o

For a weighted graph factor
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o ‘Unbiase‘(‘l random walk:
T _Start fromf random node u
/2. Move'to v with probability

e if (v,u) € E

"P(Ni i = v|N, = u) =
( i+1 | L ) 0 otherwise Node2vec idea: Biased random walks

e Parametrize BFS vs DFS
e Parametrize “stay local” vs “explore”

7T e Second order random walk :

Transition probability, e.qg.
Twy = Wy Z/ 3 Normalization o

For a weighted graph factor
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. Biased random vﬁv’fjalk:

| Assume the walk is in t, moves to v, and
_~decides the next move:

Define the search bias

&Pq(tv SIZ) —

X = = S
. | S— .
o)

S~
=



| / 03 Making graphs sequential via random walks

" Biased random walk:

_» [

Assume the walk is in t, moves to v, and

decides the next move:

Define the search bias
1 :r
p
1 return parameter p: .
1 f - e large -> exploration
q 1 dtx 2 e small -> backtrack, local

in-out parameter q:

Modify ﬂvx — Oépq(t’ x) . wUZC e large ->stay closetot

e small -> exploration
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. Details:|
/e 2ndorder Markovian: small memory
_“requirements
/ e  Sample length |, extract |-k walks
e Deepwalk: p=1,g=1

Sample 1=6, k=3: {u, s4, s5, 6, $8, $9}
1. u: s4,55,s6 !
2. s4:5556,58
3. 85:56,58,59
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7 (féive{ngn/émbedding function f -V = Rd represented bya‘V‘ X (] matrix

Define the similarity between v and u:

- [O, 1] probability
Pr(olu) = — SR F() /
J > wev exp(f(w)Tf(w))

/ Symmetric in u, v

Dependent on f
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Given_gn‘éighborhood N S (U) according to the sampling strategy S

Define of a probability of the neighborhood of u given u:

Pr(Ns(u)lu) = || Pf (v]u)
vENg(u

Similarity between v and u
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Given_gn‘éighborhood N S (U) according to the sampling strategy S

Define of a global neighborhood likelihood given f:

> Pr(Ns(u)u)

ueV
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P\ Givep_g,n‘éighborhood N S (U) according to the sampling strategy S

Define of a global neighborhood likelihood given f:

Z log Pf(NS(U> u)

ueV



7 / 0 Ll-The learning problem

' /;j/f max Z log P f (N S (u) ‘U)
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Zlogpf Zlog( II Bl U) =

T ‘ I ueV vENg(u

. exp(f(v)" f(u))
z( [ o )

VEN(
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| Zlong Zlog( H Pr(v u) =

s N > exp(f(w)" f(u)
Py oo(f)fw) \ __——— weV

| uezvlg( L1 zqevexp Fw)Tf <>>)

VEN(
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Zlong Zlog( H Pr(v u) =

= G VAV M= W > exp(f(w)" f(u)
,, exp(f (v)" f(u)) _—  wev
= 1
uezv & (161[\_[ > wev exp(f(w)" f ) Hard to compute -> all the graph is required!

DeepWalk:

hierarchical softmax

node2vec:
negative sampling
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X PNl Zlog( 11 Pf<vu>) -

> exp(f(w)’ f(u)

_ue M | ueV veN,(u)
F l///
3| [ <SRU@ ) R
wey” vEN, (1) > wev exp(f(w)! f(u)) Hard to compute -> all the graph is required!
DeepWalk:

hierarchical softmax

node2vec:
negative sampling
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‘,Based/‘\on aggregation of the node embedding f(u)

Define edge embedding

g VxV SR
(w,0) = B(f(u), ()

Aggregation function B:
e Average: B(f(u), f(v)) = f(u) —; f()

o Hadamard:  B(f(u), f(v)) = f(u) © f(v)

e Component-wise distance
e Component-wise squared distance



