
Antonio Longa1,2

Graph attention Networks (GAT)
 MobS1 Lab, Fondazione Bruno Kessler,Trento, Italy

SML2 Lab, University of Trento, Italy

TABLE OF
CONTENTS

Recap 01

03

02
04

05

06

Pros of GAT

Introduction

Graph attention layer
(GAT)

Message passing
Implementation

Implement our
GCNConv

07 GAT implementation

Recap01

Recap01

PROBLEMS:

■ Different sizes

Recap01

PROBLEMS:

■ Different sizes

■ NOT invariant to nodes ordering

𝙂

𝙂’

𝙂 = 𝙂’

Adj(𝙂)

Adj(𝙂’)

Adj(𝙂)≠ Adj(𝙂’)

Recap01
COMPUTATION GRAPH

The neighbour of a node defines its computation graph

INPUT GRAPH

Recap01
COMPUTATION GRAPH

The neighbour of a node defines its computation graph

INPUT GRAPH COMPUTATION GRAPH

Recap01
COMPUTATION GRAPH

The neighbour of a node defines its computation graph

INPUT GRAPH COMPUTATION GRAPH

Recap01
COMPUTATION GRAPH

The neighbour of a node defines its computation graph

INPUT GRAPH COMPUTATION GRAPH

Recap01

Neural Networks
Ordering invariant

Aggregation

Sum
Average

XA

XB

XE

Introduction02

Introduction02

Introduction02

Introduction02

How much features of node “c” are important to node “i”?

Introduction02

How much features of node “c” are important to node “i”?

Can we learn such importance, in an automatic manner?

Introduction02

How much features of node “c” are important to node “i”?

Can we learn such importance, in an automatic manner?

YES, with GAT

Graph Attention Networks GAT03
Petar

Veličković
Senior Research Scientist at DeepMind

Graph Attention layer03

INPUT: a set of node features

OUTPUT: a new set of node features

Graph Attention layer03

1) apply a parameterized linear transformation to every node

Graph Attention layer03

1) apply a parameterized linear transformation to every node

Graph Attention layer03

1) apply a parameterized linear transformation to every node

Graph Attention layer03

2) Self attention

Graph Attention layer03

2) Self attention

Graph Attention layer03

2) Self attention

Specify the importance of node j’s features to node i

Graph Attention layer03

3) Normalization

Graph Attention layer03

4) Attention mechanism

Is a single-layer feed forward neural network

Graph Attention layer03
4) Attention mechanism

Graph Attention layer03
4) Attention mechanism

Graph Attention layer03
4) Attention mechanism

Graph Attention layer03
4) Attention mechanism

Graph Attention layer03
4) Attention mechanism

Graph Attention layer03
4) Attention mechanism
 max(0.2x, x)

Graph Attention layer03
4) Attention mechanism
 max(0.2x, x)

Graph Attention layer03
4) Attention mechanism

Graph Attention layer03
4) Attention mechanism

Graph Attention layer03
4) Attention mechanism

Graph Attention layer03
4) Attention mechanism

Graph Attention layer03
4) Attention mechanism

1

Graph Attention layer03
4) Attention mechanism

1
1

Graph Attention layer03
4) Attention mechanism

1
1

Graph Attention layer03
5) Use it :)

Graph Attention layer03
6) Multi-head attention

Graph Attention layer03
6) Multi-head attention

Graph Attention layer03
6) Multi-head attention

Graph Attention layer03
6) Multi-head attention

Concatenation

Average

● On the final (prediction) layer of the
network

Pros of GAT04

● Computationally efficient

Self-attention layers can be parallelized across edges

Output features can be parallelized across nodes

Pros of GAT04

● Computationally efficient

● Allows to assign different importances to nodes of a same neighborhood

Self-attention layers can be parallelized across edges

Output features can be parallelized across nodes

Pros of GAT04

● Computationally efficient

● Allows to assign different importances to nodes of a same neighborhood

● It is applied in a shared manner to all edges in the graph
Not required to have the entire graph

Self-attention layers can be parallelized across edges

Output features can be parallelized across nodes

Pros of GAT04

● Computationally efficient

● Allows to assign different importances to nodes of a same neighborhood

● It is applied in a shared manner to all edges in the graph

● Works in both:

Not required to have the entire graph

Transductive learning (Cora, Citeseer, Pubmed)

Inductive learning (PPI)

Self-attention layers can be parallelized across edges

Output features can be parallelized across nodes

Message passing implementation05

Features representations of
node i at the k-th layer

Message passing implementation05

Features representations of
node i at the k-th layer

Differentiable function
Eg: MLP

Message passing implementation05

Features representations of
node i at the k-th layer

Differentiable function
Eg: MLP

● Feature rep of node i at
the (k-1)-th layer

● Feature rep of node j at
the (k-1)-th layer

● [optionally] features of
edge (i,j)

Message passing implementation05

Features representations of
node i at the k-th layer

Differentiable function
Eg: MLP

● Feature rep of node i at
the (k-1)-th layer

● Feature rep of node j at
the (k-1)-th layer

● [optionally] features of
edge (i,j)

Differentiable, ordering
invariant function.
For every j in the

neighbourhood of i.
Eg: sum, average, etc...

Message passing implementation05

Features representations of
node i at the k-th layer

Differentiable function
Eg: MLP

● Feature rep of node i at
the (k-1)-th layer

● Feature rep of node j at
the (k-1)-th layer

● [optionally] features of
edge (i,j)

Differentiable, ordering
invariant function.
For every j in the

neighbourhood of i.
Eg: sum, average, etc...

Differentiable function
Eg: MLP

Message passing implementation05
PyTorch Geometric provides the MessagePassing base class.

Message passing implementation05

Differentiable function
Eg: MLP

PyTorch Geometric provides the MessagePassing base class.

message()

Message passing implementation05

Differentiable functions
Eg: MLP

Differentiable function
Eg: MLP

PyTorch Geometric provides the MessagePassing base class.

message()update()

Message passing implementation05

Differentiable function
Eg: MLP

Differentiable function
Eg: MLP

PyTorch Geometric provides the MessagePassing base class.

message()update()

Aggregation

Sum, avg, concat

Message passing implementation05
PyTorch Geometric provides the MessagePassing base class.

PARAMETERS

Message passing implementation05
PyTorch Geometric provides the MessagePassing base class.

PARAMETERS

Message passing implementation05
PyTorch Geometric provides the MessagePassing base class.

PARAMETERS

Message passing implementation05
PyTorch Geometric provides the MessagePassing base class.

METHODS

Aggregates messages from neighbors
(sum, mean, max)

Message passing implementation05
PyTorch Geometric provides the MessagePassing base class.

METHODS

Aggregates messages from neighbors
(sum, mean, max)

Constructs messages from node j to
node i in analogy to ϕΘ

Message passing implementation05
PyTorch Geometric provides the MessagePassing base class.

METHODS

Aggregates messages from neighbors
(sum, mean, max)

Constructs messages from node j to
node i in analogy to ϕΘ

Propagate messages

Message passing implementation05
PyTorch Geometric provides the MessagePassing base class.

METHODS

Aggregates messages from neighbors
(sum, mean, max)

Constructs messages from node j to
node i in analogy to ϕΘ

Propagate messages

Updates node embeddings in
analogy to γΘ

Message passing implementation05

Layer Name

HOW TO USE IT?

Message passing implementation05

Layer Name

GCNConv inherits from MessagePassing

HOW TO USE IT?

Message passing implementation05

Layer Name

GCNConv inherits from MessagePassing

Initialize the class, call “super” specifying your
aggregations (add,max,mean)

HOW TO USE IT?

Message passing implementation05

Layer Name

GCNConv inherits from MessagePassing

Initialize the class, call “super” specifying your
aggregations (add,max,mean)

HOW TO USE IT?

Forward and propagate

Message passing implementation05

Layer Name

GCNConv inherits from MessagePassing

Initialize the class, call “super” specifying your
aggregations (add,max,mean)

HOW TO USE IT?

Forward and propagate

Compute the message

Implement our GCNConv06
Simple example

Implement our GCNConv06
Simple example

Implement our GCNConv06
Simple example

Implement our GCNConv06
Simple example

In steps:
1. Add self loops
2. A linear transformation to node feature matrix
3. Compute normalization coefficients
4. Normalize node features
5. Sum up neighboring node features

Implement our GCNConv06
Simple example

In steps:
1. Add self loops
2. A linear transformation to node feature matrix
3. Compute normalization coefficients
4. Normalize node features
5. Sum up neighboring node features

Forward method

Message method
int

Implement our GCNConv06
GCNConv inherits from MessagePassing

Implement our GCNConv06

1) Add self loops

GCNConv inherits from MessagePassing

Implement our GCNConv06

1) Add self loops
2) A linear transformation to node feature matrix

GCNConv inherits from MessagePassing

Implement our GCNConv06

1) Add self loops
2) A linear transformation to node feature matrix

3) Compute normalization coefficients

GCNConv inherits from MessagePassing

Implement our GCNConv06

1) Add self loops
2) A linear transformation to node feature matrix

3) Compute normalization coefficients

4) Normalize node features

GCNConv inherits from MessagePassing

Implement our GCNConv06

1) Add self loops
2) A linear transformation to node feature matrix

3) Compute normalization coefficients

4) Normalize node features

5) Sum up neighboring node features

GCNConv inherits from MessagePassing

GAT implementation06

Jupyter-Notebook

