
Gabriele Santin1

DeepWalk and node2vec:
Implementation details

 MobS1 Lab, Fondazione Bruno Kessler,Trento, Italy

TABLE OF
CONTENTS

Recap 01

02 03

04

Biased random walks
Code and examples Simplifying the loss

node2vec vs DeepWalk

node2vec
Full implementation

Learning graph representations01

Goal:
● Find a good representation of a graph G = (V, E)

Node embedding:

Learning graph representations01

Goal:
● Find a good representation of a graph G = (V, E)

Node embedding:

Strategy:
● Optimize embedding to preserve similarities
● Similarities defined as a “neighborhood” notion
● Use (biased) random walks to define neighborhood

Biased random walks02

Biased random walks02
Unbiased random walk

Transition probability, e.g.

Biased random walks02
Unbiased random walk

Transition probability, e.g.

Normalization factor

Biased random walks02
Unbiased random walk

Transition probability, e.g.

Normalization factor

Biased random walk

Biased transition probability

Biased random walks02
Unbiased random walk

Transition probability, e.g.

Normalization factor

Biased random walk

Search bias

Biased transition probability

Biased random walks02
Unbiased random walk

Transition probability, e.g.

Normalization factor

Biased random walk

Search bias

Biased transition probability

return parameter p:
● large -> exploration
● small -> backtrack, local

in-out parameter q:
● large -> stay close to t
● small -> exploration

DeepWalk: q=p=1

Biased random walks02

Biased random walks02
Length

Biased random walks02
Length

In-out parameterReturn parameter

Biased random walks02
Length

In-out parameterReturn parameter

Length of the RW to extract from a
long sample

Sample l=6, k=3: {u, s4, s5, s6, s8, s9}
1. u: s4,s5,s6
2. s4: s5,s6,s8
3. s5: s6,s8,s9

Biased random walks02
Length

In-out parameterReturn parameter

Length of the RW to extract from a
long sample

Sample l=6, k=3: {u, s4, s5, s6, s8, s9}
1. u: s4,s5,s6
2. s4: s5,s6,s8
3. s5: s6,s8,s9

Biased random walks02

Biased random walks02
Loader over list of nodes

Biased random walks02
Loader over list of nodes

Biased random walks02
Loader over list of nodes

A batch of indices

Biased random walks02
Loader over list of nodes

A batch of indices

Biased random walks02
Loader over list of nodes

A batch of indices

torch.ops.torch_cluster.random_walk

Initial nodes

As before

Biased random walks02
Loader over list of nodes

A batch of indices

torch.ops.torch_cluster.random_walk

Initial nodes

As before

A fake RW

Biased random walks02

… notebook ...

Simplifying the loss03
Definition of the embedding f(v)

torch.nn.Embedding

Simplifying the loss03
Definition of the embedding f(v)

torch.nn.Embedding

Simplifying the loss03
Definition of the embedding f(v)

torch.nn.Embedding

Simplifying the loss03
The loss maximizes the
probability of a neighborhood given u

Simplifying the loss03
The loss maximizes the
probability of a neighborhood given u

Random walk

Simplifying the loss03
The loss maximizes the
probability of a neighborhood given u Expensive

Random walk

Simplifying the loss03

Negative sampling
(deepwalk uses hierarchical softmax)

● Manipulate the loss to

The loss maximizes the
probability of a neighborhood given u Expensive

Random walk

Simplifying the loss03

Negative sampling
(deepwalk uses hierarchical softmax)

● Manipulate the loss to

● Approximate p by defining a
positive/negative class

The loss maximizes the
probability of a neighborhood given u Expensive

Random walk

Simplifying the loss03

Negative sampling
(deepwalk uses hierarchical softmax)

● Manipulate the loss to

● Approximate p by defining a
positive/negative class

● Sample +/- by sampling true/fake RW

The loss maximizes the
probability of a neighborhood given u Expensive

Random walk

Simplifying the loss03

Negative sampling
(deepwalk uses hierarchical softmax)

● Manipulate the loss to

● Approximate p by defining a
positive/negative class

● Sample +/- by sampling true/fake RW

Details of math: On word embeddings - Part 2: Approximating the Softmax
https://ruder.io/word-embeddings-softmax/

The loss maximizes the
probability of a neighborhood given u Expensive

Random walk

https://ruder.io/word-embeddings-softmax/

Simplifying the loss03

Simplifying the loss03

Simplifying the loss03

Divide first node from the rest of the RW

Simplifying the loss03

Divide first node from the rest of the RW

Compute the embeddings

Simplifying the loss03

Divide first node from the rest of the RW

Compute the embeddings

Loss for the positive class: true RW

Simplifying the loss03

Divide first node from the rest of the RW

Compute the embeddings

Loss for the positive class: true RW

The same, but for the
negative class (fake RW)

Simplifying the loss03

Divide first node from the rest of the RW

Compute the embeddings

Loss for the positive class: true RW

The same, but for the
negative class (fake RW)

Total loss

Simplifying the loss03

Divide first node from the rest of the RW

Compute the embeddings

Loss for the positive class: true RW

The same, but for the
negative class (fake RW)

Total loss

Mean over the batch of RWs

node2vec: Full implementation04

node2vec: Full implementation04

node2vec: Full implementation04

… notebook ...

