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PROBLEMS:

■ Different sizes

■ NOT invariant to nodes ordering

𝙂

𝙂’

𝙂 = 𝙂’

Adj(𝙂)

Adj(𝙂’)

Adj(𝙂)≠ Adj(𝙂’)
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Neural Networks
Ordering invariant 

Aggregation

Sum 
Average

XA

XB

XE
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How much features of node “c” are important to node “i”?

Can we learn such importance, in an automatic manner?

YES, with GAT
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INPUT:  a set of node features 

OUTPUT:  a new set of node features 
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2) Self attention

Specify the importance of node j’s features to node i
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3) Normalization



Graph Attention layer03

4) Attention mechanism

Is a single-layer feed forward neural network  
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Graph Attention layer03
5) Use it :)
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Graph Attention layer03
6) Multi-head attention
 

Concatenation
 

Average
 

● On the final (prediction) layer of the 
network
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Pros of GAT04

● Computationally efficient 

● Allows to assign different importances to nodes of a same neighborhood

● It is applied in a shared manner to all edges in the graph

● Works in both:

Not required to have the entire graph

Transductive learning (Cora, Citeseer, Pubmed)

Inductive learning (PPI)

Self-attention layers can be parallelized across edges

Output features can be parallelized across nodes
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Differentiable function 
Eg: MLP

Differentiable function 
Eg: MLP

PyTorch Geometric provides the MessagePassing base class. 

message()update()

Aggregation

Sum, avg, concat
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Message passing implementation05
PyTorch Geometric provides the MessagePassing base class.

METHODS 

Aggregates messages from neighbors 
(sum, mean, max)

Constructs messages from node j  to 
node i in analogy to ϕΘ

Propagate messages

Updates node embeddings in 
analogy to γΘ
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Layer Name

GCNConv inherits from MessagePassing

Initialize the class, call “super” specifying your 
aggregations (add,max,mean)

HOW TO USE IT?

Forward and propagate

Compute the message
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Implement our GCNConv06
Simple example

In steps:
1. Add self loops
2. A linear transformation to node feature matrix
3. Compute normalization coefficients
4. Normalize node features
5. Sum up neighboring node features

Forward method

Message method
int
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Implement our GCNConv06

1) Add self loops
2)      A linear transformation to node feature matrix

3)       Compute normalization coefficients

4)     Normalize node features

5)     Sum up neighboring node features

GCNConv inherits from MessagePassing
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