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Adversarially regularized graph autoencoder (ARGA) 
Adversarially regularized variational  graph  autoencoder (ARVGA)

S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, Adversarially regularized graph 
autoencoder for graph embedding. in Proc. of IJCAI, 2018, pp. 2609–2615.

We have a look at 
adversarial training
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- Recall that D(x) is in [0, 1]
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l. Goodfellow et al., Generative Adversarial Nets. in Proc. of NIPS, 2014, pp. 2672--2680.

The Generator wants to min:
- Second term: 

→ small if 1-D(G(z) is close to 0
→ small if D(G(z) is close to 1
→ fool the discriminator into assigning high probability to fake objects
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Picture from S. Pan et al.

Architecture as in GAE/VGAE:
- Encoder: 2-layer GCN (with 2x 

for mean and logstd in VGAE)
- Decoder: inner product

→ Same loss as GAE/VGAE:
- GAE: reconstruction loss
- VGAE: rec. + KL regularization
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Picture from S. Pan et al.

Architecture of the discriminator:
- Standard fully connected NN with 3 layers

Working on the latent space 
→ continuous values!

→ Adversarial loss:
Real: samples from N(0, 1)
Fake: samples from the latent encoding
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Picture from S. Pan et al.

This is: Z = E(X, A)

These are the usual GAE/VGAE losses
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Picture from S. Pan et al.

K training loops of the discriminator

Sample fake gaussians

Sample true gaussians

Update the discriminator

Missing: update the encoder
(written in the text)
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