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Goal:
● Find a good representation of a graph G = (V, E)
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Usage of features: G=(V, E) with node features X

● Features f(V) that can be combined with the existing ones

● Any learning algorithm of [X, f(V)] -> structural features + original 
features

● (similarly for the edges)

● Task independent features (vs. GNN)
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DeepWalk and node2vec:
● A good embedding preserves similarity between nodes (edges)
● The embedding is graph-dependent
● Based on a neighborhood preserving objective
● Based on a language model

DeepWalk: https://arxiv.org/pdf/1403.6652.pdf                           node2vec: https://arxiv.org/pdf/1607.00653.pdf

https://arxiv.org/pdf/1403.6652.pdf
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DeepWalk and node2vec:
● A good embedding preserves similarity between nodes (edges)
● The embedding is graph-dependent
● Based on a neighborhood preserving objective
● Based on a language model

DeepWalk: https://arxiv.org/pdf/1403.6652.pdf                           node2vec: https://arxiv.org/pdf/1607.00653.pdf

Here: Mix of the two, math mainly from node2vec

https://arxiv.org/pdf/1403.6652.pdf
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Idea:  Neighborhood preserving likelihood objective

● Vocabulary V (set of words v)

● sequence of words of fixed length (v_1, ..., v_n) from the corpus

● Learn function that maximizes P(v_n | (v_1, ..., v_{n-1})
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Idea:  Neighborhood preserving likelihood objective

● Vocabulary V (set of words v)

● sequence of words of fixed length (v_1, ..., v_n) from the corpus

● Learn function that maximizes P(v_n | (v_1, ..., v_{n-1})

Use the context to 
predict a word

More efficient: use a word to predict the context, forget order

● Window size w
● Predict P({w_{i-w}, \dots w_{-1}, w_{i+1}, \dots, w_{i+w}}| w_i)
● SkipGram
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Problem: graphs are not sequential

Idea: use random walks

● V = (v_1, ..., v_n) random walk

● the set of words (the context) is a neighborhood

●  work on one vertex at a time



Making graphs sequential via random walks03

Figure from https://arxiv.org/pdf/1403.6652.pdf  

“Similar power law distribution 
between occurrences of nodes in 
short random walks and frequency 
of words in texts if  the  degree  
distribution of a connected  graph  
follows  is scale-free

https://arxiv.org/pdf/1403.6652.pdf
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Advantages of random walks:

● high parallelization
● easy to recompute if short length 

and local modification
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What similarities should be preserved?

Different notions of similarity:
 homophily vs. structural equivalence

Advantages of random walks:
● high parallelization
● easy to recompute if short length 

and local modification

Sampling of random walks

● DeepWalk: use fixed sampling strategy
● Node2vec: use parametric sampling strategy
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Common sampling strategies:

● Breadth-first Sampling (BFS)
○ Good: for structural equivalence (it's a local property)
○ Bad:  very small exploration
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Common sampling strategies:

● Breadth-first Sampling (BFS)
○ Good: for structural equivalence (it's a local property)
○ Bad:  very small exploration

● Depth-first Sampling (DFS)
○ Good: for communities/homophily, large exploration
○ Bad: possible excessive distance

Bad: both require long memory!
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Node2vec idea: Biased random walks

● Parametrize BFS vs DFS
● Parametrize “stay local” vs “explore”
● Second order random walk

Unbiased random walk:
1. Start from random node u
2. Move to v with probability 

Transition probability, e.g. 

For a weighted graph
Normalization 
factor
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Biased random walk:

Assume the walk is in t, moves to v, and 
decides the next move:

Define the search bias



Making graphs sequential via random walks03

return parameter p: 
● large -> exploration
● small -> backtrack, local

in-out parameter q: 
● large -> stay close to t
● small -> exploration

Biased random walk:

Assume the walk is in t, moves to v, and 
decides the next move:

Define the search bias

Modify 



Making graphs sequential via random walks03
Details:

● 2nd order Markovian: small memory 
requirements

● Sample length l, extract l-k walks
● Deep walk: p=1, q=1

Sample l=6, k=3: {u, s4, s5, s6, s8, s9}
1. u:  s4,s5,s6
2. s4: s5,s6,s8
3. s5: s6,s8,s9



The learning problem04

Given an embedding function                                               represented by a                               matrix

Define the similarity between v and u: probability

Symmetric in u, v

Dependent on f
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Given a neighborhood                         according to the sampling strategy S                                               

Define of a probability of the neighborhood of u given u: 

Similarity between v and u
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Hard to compute -> all the graph is required!

DeepWalk:
hierarchical softmax

node2vec:
negative sampling
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Based on aggregation of the node embedding f(u)

Define edge embedding

Aggregation function B:
● Average: 

● Hadamard: 

● Component-wise distance
● Component-wise squared distance
● ....


