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Learning graph representations01

Goal:
● Find a good representation of a graph G = (V, E)

Node embedding:

Strategy:
● Optimize embedding to preserve similarities
● Similarities defined as a “neighborhood” notion
● Use (biased) random walks to define neighborhood
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Biased random walks02
Unbiased random walk

Transition probability, e.g. 

Normalization factor

Biased random walk

Search bias

Biased transition probability

return parameter p: 
● large -> exploration
● small -> backtrack, local

in-out parameter q: 
● large -> stay close to t
● small -> exploration

DeepWalk: q=p=1
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Biased random walks02
Loader over list of nodes

A batch of indices

torch.ops.torch_cluster.random_walk

Initial nodes

As before

A fake RW
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Simplifying the loss03

Negative sampling 
(deepwalk uses hierarchical softmax)

● Manipulate the loss to

● Approximate p by defining a 
positive/negative class

● Sample +/- by sampling true/fake RW

Details of math: On word embeddings - Part 2: Approximating the Softmax
https://ruder.io/word-embeddings-softmax/

The loss maximizes the 
probability of a neighborhood given u Expensive

Random walk

https://ruder.io/word-embeddings-softmax/
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Divide first node from the rest of the RW

Compute the embeddings

Loss for the positive class: true RW

The same, but for the 
negative class (fake RW)

Total loss

Mean over the batch of RWs
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