
Gabriele Santin1

DeepWalk and node2vec

 MobS1 Lab, Fondazione Bruno Kessler,Trento, Italy

TABLE OF
CONTENTS

Learning graph
representations 01

03

02

04

05

The learning problem

Ideas from language
models: word2vec

Making graphs sequential
via random walks

Extension to edges

Learning graph representations01

Goal:
● Find a good representation of a graph G = (V, E)

Learning graph representations01

Goal:
● Find a good representation of a graph G = (V, E)

Node embedding:

Learning graph representations01

Goal:
● Find a good representation of a graph G = (V, E)

Node embedding:

Edge embedding:

Learning graph representations01

Usage of features: G=(V, E) with node features X

● Features f(V) that can be combined with the existing ones

● Any learning algorithm of [X, f(V)] -> structural features + original
features

● (similarly for the edges)

● Task independent features (vs. GNN)

Learning graph representations01

DeepWalk and node2vec:
● A good embedding preserves similarity between nodes (edges)
● The embedding is graph-dependent
● Based on a neighborhood preserving objective
● Based on a language model

DeepWalk: https://arxiv.org/pdf/1403.6652.pdf node2vec: https://arxiv.org/pdf/1607.00653.pdf

https://arxiv.org/pdf/1403.6652.pdf

Learning graph representations01

DeepWalk and node2vec:
● A good embedding preserves similarity between nodes (edges)
● The embedding is graph-dependent
● Based on a neighborhood preserving objective
● Based on a language model

DeepWalk: https://arxiv.org/pdf/1403.6652.pdf node2vec: https://arxiv.org/pdf/1607.00653.pdf

Here: Mix of the two, math mainly from node2vec

https://arxiv.org/pdf/1403.6652.pdf

Ideas from language models: word2vec02

Idea: Neighborhood preserving likelihood objective

● Vocabulary V (set of words v)

● sequence of words of fixed length (v_1, ..., v_n) from the corpus

● Learn function that maximizes P(v_n | (v_1, ..., v_{n-1})

Ideas from language models: word2vec02

Idea: Neighborhood preserving likelihood objective

● Vocabulary V (set of words v)

● sequence of words of fixed length (v_1, ..., v_n) from the corpus

● Learn function that maximizes P(v_n | (v_1, ..., v_{n-1})

Use the context to
predict a word

Ideas from language models: word2vec02

Idea: Neighborhood preserving likelihood objective

● Vocabulary V (set of words v)

● sequence of words of fixed length (v_1, ..., v_n) from the corpus

● Learn function that maximizes P(v_n | (v_1, ..., v_{n-1})

Use the context to
predict a word

More efficient: use a word to predict the context, forget order

● Window size w
● Predict P({w_{i-w}, \dots w_{-1}, w_{i+1}, \dots, w_{i+w}}| w_i)
● SkipGram

Ideas from language models: word2vec02

Problem: graphs are not sequential

Idea: use random walks

● V = (v_1, ..., v_n) random walk

● the set of words (the context) is a neighborhood

● work on one vertex at a time

Making graphs sequential via random walks03

Figure from https://arxiv.org/pdf/1403.6652.pdf

“Similar power law distribution
between occurrences of nodes in
short random walks and frequency
of words in texts if the degree
distribution of a connected graph
follows is scale-free

https://arxiv.org/pdf/1403.6652.pdf

Making graphs sequential via random walks03
Advantages of random walks:

● high parallelization
● easy to recompute if short length

and local modification

Making graphs sequential via random walks03

What similarities should be preserved?

Different notions of similarity:
 homophily vs. structural equivalence

Advantages of random walks:
● high parallelization
● easy to recompute if short length

and local modification

Making graphs sequential via random walks03

What similarities should be preserved?

Different notions of similarity:
 homophily vs. structural equivalence

Advantages of random walks:
● high parallelization
● easy to recompute if short length

and local modification

Sampling of random walks

● DeepWalk: use fixed sampling strategy
● Node2vec: use parametric sampling strategy

Making graphs sequential via random walks03
Common sampling strategies:

● Breadth-first Sampling (BFS)
○ Good: for structural equivalence (it's a local property)
○ Bad: very small exploration

Making graphs sequential via random walks03
Common sampling strategies:

● Breadth-first Sampling (BFS)
○ Good: for structural equivalence (it's a local property)
○ Bad: very small exploration

● Depth-first Sampling (DFS)
○ Good: for communities/homophily, large exploration
○ Bad: possible excessive distance

Making graphs sequential via random walks03
Common sampling strategies:

● Breadth-first Sampling (BFS)
○ Good: for structural equivalence (it's a local property)
○ Bad: very small exploration

● Depth-first Sampling (DFS)
○ Good: for communities/homophily, large exploration
○ Bad: possible excessive distance

Bad: both require long memory!

Making graphs sequential via random walks03
Unbiased random walk:

1. Start from random node u
2. Move to v with probability

Making graphs sequential via random walks03
Unbiased random walk:

1. Start from random node u
2. Move to v with probability

Transition probability, e.g.

For a weighted graph

Making graphs sequential via random walks03
Unbiased random walk:

1. Start from random node u
2. Move to v with probability

Transition probability, e.g.

For a weighted graph
Normalization
factor

Making graphs sequential via random walks03

Node2vec idea: Biased random walks

● Parametrize BFS vs DFS
● Parametrize “stay local” vs “explore”
● Second order random walk

Unbiased random walk:
1. Start from random node u
2. Move to v with probability

Transition probability, e.g.

For a weighted graph
Normalization
factor

Making graphs sequential via random walks03
Biased random walk:

Assume the walk is in t, moves to v, and
decides the next move:

Define the search bias

Making graphs sequential via random walks03

return parameter p:
● large -> exploration
● small -> backtrack, local

in-out parameter q:
● large -> stay close to t
● small -> exploration

Biased random walk:

Assume the walk is in t, moves to v, and
decides the next move:

Define the search bias

Modify

Making graphs sequential via random walks03
Details:

● 2nd order Markovian: small memory
requirements

● Sample length l, extract l-k walks
● Deep walk: p=1, q=1

Sample l=6, k=3: {u, s4, s5, s6, s8, s9}
1. u: s4,s5,s6
2. s4: s5,s6,s8
3. s5: s6,s8,s9

The learning problem04

Given an embedding function represented by a matrix

Define the similarity between v and u: probability

Symmetric in u, v

Dependent on f

The learning problem04

Given a neighborhood according to the sampling strategy S

Define of a probability of the neighborhood of u given u:

Similarity between v and u

The learning problem04

Given a neighborhood according to the sampling strategy S

Define of a global neighborhood likelihood given f:

The learning problem04

Given a neighborhood according to the sampling strategy S

Define of a global neighborhood likelihood given f:

The learning problem04

The learning problem04

The learning problem04

The learning problem04

Hard to compute -> all the graph is required!

DeepWalk:
hierarchical softmax

node2vec:
negative sampling

The learning problem04

Hard to compute -> all the graph is required!

DeepWalk:
hierarchical softmax

node2vec:
negative sampling

Extension to edges05

Based on aggregation of the node embedding f(u)

Define edge embedding

Aggregation function B:
● Average:

● Hadamard:

● Component-wise distance
● Component-wise squared distance
●

