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01 Graph prediction

Equivalent to having a virtual “supernode” in the last layer connected to 
all the nodes in the graph

Pooling the node embeddings all together do not capture hierarchical
representations of the network
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01 Graph prediction

Equivalent to having a virtual “supernode” in the last layer connected to 
all the nodes in the graph

Pooling the node embeddings all together do not capture hierarchical
representations of the network

DIFFPOOL:  hierarchical nodes pooling strategy
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02 DIFFPOOL1

DIFFerentiable POOLing: Compute an hierarchical representation of the graph by 
aggregating  “close” nodes 

Ying et al, Hierarchical Graph Representation Learning with Differentiable Pooling, NIPS ‘18
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02 DIFFPOOL1

DIFFerentiable POOLing: Compute an hierarchical representation of the graph by 
aggregating  “close” nodes 

Ying et al, Hierarchical Graph Representation Learning with Differentiable Pooling, NIPS ‘18

Image taken from the original publication.
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02 DIFFPOOL

Idea: stack several GNN and pooling layer on top of each other

GNN1 GNN2 GNNL POOLPOOLPOOL
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arbitrary GNN that computes K iterations, Z = XK
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DIFFPOOL02

Given          and           , find a coarse representation of the graph

with

Solution -> learn a cluster assignment for each node
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Pooling in DIFFPOOL03
The final representation is obtained by coarsening the graph in        
hierarchical steps. To do that, at 
each step a cluster assignment matrix 
is learned.
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Pooling in DIFFPOOL03
The final representation is obtained by coarsening the graph in        
hierarchical steps. To do that, at 
each step a cluster assignment matrix 
Is learned.

= number of cluster at the next step 

= number of clusters at the current step

= number of nodes in the graph

transposed

The number of clusters at 
each step is an 
hyperparameter!
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Learning the assignment matrix04
How is the cluster matrix learned?
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Learning the assignment matrix04
How is the cluster matrix learned?

outputs

Softmax is applied row-wise, it assigns probabilities to 
which clusters to belong to in the next step.
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Prediction04
How is the cluster matrix learned?

outputs

Softmax is applied row-wise, it assigns probabilities to 
which clusters to belong to in the next step.

differentiable!
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Final prediction05

At the last step the graph is condensed in one single node (vector). The 
final prediction is the output of a MLP.
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Final prediction05

At the last step the graph is condensed in one single node (vector). The 
final prediction is the output of a MLP.

Let’s switch to the notebook...


