
MusicHoster

MusicHoster is a web application that provides a forum where we can

upload the video

After we have finished the code for the API endpoints and tested them,

we must now provide a user interface which can help users take

advantage of the backend code.

• BRIEF UNDERSTANDING OF Musichoster WEBAPP:

To design the frontend, we must first be familiar with the functionality

of the web application we are developing. This will help us in designing

a basic site map of the web application.

Here are the specifications of the MusicHoster web application:

• USER

• Sign Up: Users can create their accounts

• Sign In: Users can login into their accounts

• Sign Out: Users can sign out of their accounts on the

web application.

When the user is successfuly signIn he can successfully upload the music

files.

• THE SITEMAP:

Now based on the understanding of how backend works

and what is expected out of our web applications, we will

now look at the pages necessary for our web application.

These are listed below:

• Home Page

• Sign In Page

• Sign Up Page

• Dashboard (It will be display after the user is succesfully

signup)

Description of the pages are:-

Home Page:- It should contain a navbar with the SignIn and SignUp button

.

Sign Up:-

It should contain:-First Name ,Last Name,Email Address,Password,Mobile

Number

Sign In:-Email Address and Password

DashBoard:-It should contain a navbar with the logout button and in the

page we can upload the music.

BACKEND DEVELOPMENT

In this project, you will work on developing REST API endpoints of various functionalities

required for a MusicHoster app from scratch. In order to observe the functionality of the

endpoints, you will use the Swagger user interface and store the data in

the PostgreSQL database. Also, the project has to be implemented using Java Persistence

API (JPA).

This is a group project, you would be working in a group of 3 or 4 students and there would

be one final submission. Use Git and GitHub to conduct version control of your assignment

code throughout your assignment development.

• As you have learnt in the version control module, it is a good software engineering

practice to use version control while developing software.

• In your submission, include a link to your GitHub repo that contains the course 5

project code.

Github Collaboration Instructions

One of the team members should act as the project lead, create a master repository for the

project, and push the initial code stub to the master repository. After which, the project lead

would create different branches for different functionalities to be developed, and share the

repository URL with other team members.

The other team members should then fork and clone the master repository to their own

repository on GitHub, so they can work on a specific branch and make updates on the project

via pull requests. Also, it would be the project leader's responsibility to merge the pull

requests into the master repository. It is always a good practice for each member of the team

to review a pull request before it is merged into the master repository and give your

comments on the pull request to help the project leader.

Lastly, if you are working off a fork, don't forget to fetch from the upstream

repository often, so you can get the latest commits and updates of the various branches in the

upstream repository. Also, once all the required code implementation is done on a specific

branch and is working fine, then the project lead can go ahead and merge the branch with the

master repository.

A few additional notes to help your collaboration between teammates:

1. Use Github to track issues and bugs for the project.

2. Use Github to conduct code reviews, so each push request or commits are reviewed

by another teammate before the code changes are merged into the main repository.

Database Schema

The database schema required for the project is designed and provided, as shown below.As

we will be using JPA repository, so we have to follow the similar approach to create database

entities using @Entity model approach using javax.persistence library.

TABLE DEFENITIONS

USERS MUSICS

https://help.github.com/articles/syncing-a-fork/
https://help.github.com/articles/syncing-a-fork/
https://guides.github.com/features/issues/
https://github.com/features/code-review

1. UserId musicId

2. firstName music

3. lastName name

4. email description

5. Mobile user_id(FK)

6. password TIMESTAMP

• You need to manually create a database named "MusicHoster" in your PostgreSQL.

• You don’t have to create the relations manually, create the model classes with the

respective annotations from javax.persistence package.

• You need to do the mappings for the relations. E.g; @OneToMany, @OneToOne, etc

wherever needed even bi-directional mappings.

• You need to update the environment variables such as server port, database name,

database password in application.properties file in the folder located in src/main/resources

to integrate the database into your system with the project.

Let us recall the concept of the foreign key when a column in a table references the primary

key of some other table for its reference. The table containing the primary key is a parent

table and the child table contains a foreign key. When a table is related by some other table in

the database and you try to delete a record from the parent table, what will happen?

PostgreSQL gives the following option:

DELETE CASCADE - In this case, all the referenced records in the child table will be

deleted first and then the parent record will be deleted.

In the MusicHoster project, we have used DELETE CASCADE option to delete all the

referenced records in the child table first and then the record in the parent table. You can

use @OnDelete(action = OnDeleteAction.CASCADE) annotation in JPA to specify the

foreign key attribute in the Java class for DELETE CASCADE option.

Project Structure

The project must follow a definite structure in order to help the co-developers and reviewers

for easy understanding. So, for better understanding follow the below project structure :-

MusicHoster(Project folder)

➔ Model

➔ Controller

➔ Repository

➔ Security

➔ Service

➔ Filters

➔ Exception

For Exception handling Please follow the below commit

Added Exception · rahul10-pu/techblog@0d90027 (github.com)

You can refer to the technicalBlog Application for the project structure

GitHub - rahul10-pu/techblog: Backend Development for a Blogging Application.

In this project, you will learn how to develop REST API endpoints in the following

controllers:

1. Signup-controller: In this controller, the user will able to sign up for an account.

2. Authentication-controller: After signing up, the user needs to sign in. This

controller authenticates the user based on the credentials provided. After

https://github.com/rahul10-pu/techblog/commit/0d90027a494c365507e5a2d222fb75ee2ec17f54
https://github.com/rahul10-pu/techblog

authentication, the user will be given an ‘access token’, which will be required to

perform any further operation.

3. Music-Upload-controller: Using the ‘access token’, the user can upload music files

through this controller.

Spring, Unit Testing, and Mocking

1. For testing, mocking, adding dependency & testing http endpoints check the

commits for reference below:-

junit postController · rahul10-pu/techblog@fcbbe1d · GitHub

HTTP status

As you have already learnt about different HTTP response status codes, implement the same

when creating the API endpoints and return the corresponding HTTP status code based on the

functionality or message. The most commonly used response codes in this project are as

follows:

• HttpStatus.OK

• HttpStatus.CREATED

• HttpStatus.UNAUTHORIZED

• HttpStatus.FORBIDDEN

• HttpStatus.NOT_FOUND

Version Control Best Practices

Please follow the following best practice as you are using Git and Github to conduct version

control of your code. This will make you a more effective software engineer.

• Commit often

https://github.com/rahul10-pu/techblog/commit/fcbbe1dd79e3119e9247e9696fd9ba15d2d8b350

• Make small, incremental commits

• Write good commit messages

• Make sure your code works before committing it

Here are some additional readings on best Git practices:

• Git Common Practices

• Commit Often, Fix it Later, Publish Once- Git Best Practices

TECHNOLOGY TO BE USED IN THIS PROBLEM STATEMENT:

1. SPRING BOOT

2. SPRING DATA JPA

3. ADVANCED JAVA OOPS CONCEPT

4. EXCEPTION HANDLING

5. JUNIT, MOCKITO

6. WEB-MVC

7. JWT AUTHENTICATION

8. POSTGRESQL

9. SWAGGER/OPEN-API

10. ORM FRAMEWORK

Signup:

In this segment, you will develop signup-controller, which contains the ‘/usersignup’

endpoint :

• It should be a POST request

• Create a new user by passing the required request payload.

• Once the user enters the password, you will need to write a code to store that password in

an encrypted form in the database.

• Return a success message in the response “USER REGISTERED SUCCESSFULLY”.

https://github.com/trein/dev-best-practices/wiki/Git-Commit-Best-Practices
https://gist.github.com/SethRobertson/1540906/68feeabfe906ec1eb893e4fa45f402795ed6e62c

Authentication:

In this segment, you will develop authentication-controller, which contains the ‘/auth/login’

endpoint. Any user who wishes to access the functionalities of the Music Hoster application

needs to authenticate himself/herself by providing valid credentials.

If the credentials of the user's is correct, you will receive the following response:

If the user's email address is incorrect, you will get a message in the Response Body

indicating that the user with that email is not found.

If the user's password is incorrect, you will get a message in the Response Body indicating

password failure.

Music-Upload:

Now you have created signup-controller to signup and authentication-controller to sign in

to the Music Hoster application. In this segment, you will work on music-upload-

controller to upload a music file. The user needs to enter the access token in the

authorisation header to upload a music file url, provided to the user in Response Header at the

time of signing in to the Music Hoster application.

Since the size of music file is large, storing and retreiving music files from database is not

practical. Therefore here the approach is to store the url of the music file instead.

Music-Upload-Controller: '/musicupload'

• It should be a POST request

• Upload a music by passing the required request payload.

• Return a success message in the response “MUSIC UPLOADED SUCCESSFULLY”.

In case of wrong access token being entered, the message in the Response Body says 'User is

not Signed in, sign in to upload'.

