Atmosphere Framework
White Paper

Jeanfrancois Arcand (jfarcand@apache.org)

Version 0.6

Atmosphere Framework - White Paper 1

39U (oY 10 Uot o) o 1FFE TP 4
102 003000 o o PP 4
N PP 4
What is the Atmosphere FrameWOrK? ... iisssssssssssssssssssssssssssssssssssssssens 5
(100 0¥ o]) o =Y PP 6
AtmOoSphere Main CONCEPL .. ssssssessssssssssssssssssssssssesssssssns 8
Chapter 1: Atmosphere Jersey (Asynchronous RESTful web Application)cccueeveenee 9
THE CONCEPES e bbbt 9
(I VT 011 s Lo ST 10

LG 2T 1 40 PP 11
(205 (o - Ua U=] v 11
INJECLADIE ODJECLS ..t 14
Writing a simple Chat application using Atmosphere Jersey ... 14
Chapter 2: Atmosphere Runtime (Comet Portable RuUntime)ccoummnenensensesnenennes 16
THE CONCEPLS ot s 16
ALMOSPNETIERESOUICE ...t 16
AtmMOSPhereRESOUICEEVENT ...t sssssesens 17
Ready to use AtmosphereHandler ... ssssssssssssssssssssssseens 17
Writing a simple Chat application using Atmosphere runtimecoeconeenreereesseenees 19
Chapter 3: ATMOSPNETe MELEOT ..o ssesnes 25
THE CONCEPES it ssesssss s 25
Writing a simple Chat application using Atmosphere Meteorcoeneenreereeseenees 26
Chapter 4: AtmMOSPhere PIUG IN.... et ssesssenans 28
Atmosphere Grizzly PIUg IN .. sesssssssessssssessenns 28
Use Project Grizzly Web Framework to embed Atmosphereccouvnennecrereenenn. 28
Deploying your AtmosphereAdapter using GlassFish ... 28
Atmosphere CIUSTEr PIUG IN .ot sesses s sesssssssessssssesseens 29

Atmosphere Framework - White Paper 2

Chapter 5: AtMOSPhEre SPAde SEIVET ... eneenesessesnes 30
Chapter 6: Support for the Bayeux ProtocCol...... o isssssssssssssssssssessesesseses 32

WED SEIVET AiffEIrEINICES oottt se e e e e s s e e e se e se s se s sesbnrsbansrenens 33

Atmosphere Framework - White Paper 3

Introduction

The Atmosphere Framework is designed to make it easier to build
asynchronous/Comet-based Web applications that include a mix of Comet and
RESTful behavior. The Atmosphere Framework is portable and can be deployed on
any Web Server that supports the Servlet Specification 2.3. This document
introduces the framework and its module. For any questions or feedback, post them
at users@atmosphere.dev.java.net

Terminology

* Suspend: The action of suspending consist of telling the underlying Web
Server to not commit the response, e.g. to not send back to the browser the
final bytes the browser is waiting for before considering the request
completed.

* Resume: The action of resuming consist of completing the response, e.g.
committing the response by sending back to the browser the final bytes the
browser is waiting for before considering the request completed.

* Broadcast: The action of broadcasting consists of producing an event and
distributing that event to one or many suspended response. The suspended
response can then decide to discard the event or send it back to the browser.

* Long Polling: Long polling consists of resuming a suspended response as
soon as event is getting broadcasted.

* Http Streaming: Http Streaming, also called forever frame, consists of
resuming a suspended response after multiples events are getting
broadcasted.

* Native Asynchronous API: A native asynchronous APl means an API that is
proprietary, e.g. if you write an application using that API, the application
will not be portable across Web Server.

Note

If you have used previous version or Atmosphere like 0.3.1, we have reformulated
and red-designed the AtmosphereHandler. Please read the document titled
Migrating your Atmosphere Application from 0.3.x to 0.4.

Atmosphere Framework - White Paper 4

What is the Atmosphere Framework?

The Atmosphere Framework contains several modules, which can be used
depending on your needs:

Atmosphere Runtime (Comet Portable Runtime): This module can be used
to write POJO written in Java, JRuby or Groovy. The main component of this
module is an AtmosphereHandler. An AtmosphereHandler can be used to
suspend, resume and broadcast and allow the wuse of the usual
HttpServletRequest and HttpServletResponse set of API.

Atmosphere Annotations: This module defines the set of annotations that
can be implemented to support Atmosphere concepts. By default, the
Atmosphere Jersey module implements them, but any framework can also
add an implementation.

Atmosphere Jersey: This module can be used to write REST &
Asynchronous Web application. The REST engine used is Jersey (Sun’s JAX
RS implementation).

Atmosphere Meteor: This module can be used with existing Servlet or
Servlet based technology like JSP, JSF, Struts, etc. The main component is a
Meteor that can easily be looked up from any Java Object.

Atmosphere Bayeux: This module support the work done by the comed.org
group: The Bayeux Protocol.

Atmosphere Guice: This module allow the use of Google Guice to configure
your Atmosphere application

This tutorial will cover in details all of them. The Framework also contains plug-in
that can be added on the fly:

Shoal Plug-in: Allow the creation of Atmosphere Cluster using the Shoal
Framework.

JGroups Plug-in: Allow the creation of Atmosphere Cluster using the JGroups
Framework

JMS Plug In: Allow the creation of Atmosphere Cluster using JMS
Queue/Topics

Grizzly Plug In: Allow Atmosphere application to be natively embedded
within the Grizzly Framework. A single builder API is available to help
embedding an Atmosphere based application.

The Framework also contains it's own ready to use Web Server named the
Atmosphere Spade Server, which consist of an end to end stack containing the
Grizzly Web Server, Jersey and all Atmosphere modules and Plug-in.

The Atmosphere Framework supports natively the following Web Server
asynchronous API:

* WebLogic's AbstractAsyncServlet

Atmosphere Framework - White Paper 5

* Tomcat's CometProcessor

* GlassFish’s CometHandler

* Jetty’s Continuation

* JBoss’ HttpEvent

* Grizzly's CometHandler

e Servlet 3.0’s AsyncListener

* Google App Engine restricted environment.

If Atmosphere fails to detect the above native API, it will instead use its own
asynchronous API implementation, which will consist of blocking a Thread per
suspended connections. That means Atmosphere applications are guarantee to work
on any Web Server supporting the Servlet specification version 2.3 and up. Note that
it is also possible to write your own native implementation and replace the one used
by default in Atmosphere by providing an implementation of the CometSupport SPI.
See next section for more information.

Getting started

Independent of the module you decide to use, the following WAR file structure is
required when using Atmosphere. Since Atmosphere uses Maven as build system,
you can use Maven to generate the skeleton for your application:

% mvn archetype:create -DgroupId=sample -DartifactId=<YOUR APP NAME> -
DarchetypeArtifactId=maven-archetype-webapp

The web.xml here will be used to either define the AtmosphereServlet or
MeteorServlet. In order to make your application portable amongst all Web Servers,
a file named context.xml is required. The file contains:

<Context>
<Loader delegate="true"/>
</Context>

This file is required in order to run inside the Tomcat and JBoss’ Web Server.
Tomcat will looks under META-INF /context.xml, JBoss under WEB-INF /context.xml.
If you are not planning to use those Web Server, then you don’t need to add that file.
But we strongly recommend you always include it so you application is portable
across Web Servers.

To add support for the Atmosphere Framework, you need to define the
AtmosphereServlet or AtmosphereFilter inside your application web.xml:

<display-name>Atmosphere Servlet</display-name>
<servlet>
<description>AtmosphereServlet</description>
<servlet-name>AtmosphereServlet</servlet-name>
<servlet-
class>org.atmosphere.cpr.AtmosphereServlet |AtmosphereFilter</servlet-
class>

Atmosphere Framework - White Paper 6

<!-- Uncomment if you want to use Servlet 3.0 Async Support
<async-supported>true</async-supported>
-—>
<!—init-param are optional
<init-param>org.atmosphere.*</init-param>
<init-value> </init-value>
-—>
<load-on-startup>0</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>AtmosphereServlet</servlet-name>
<url-pattern>/*</url-pattern>
</servlet-mapping>

Mainly, all you need to do is to define the AtmosphereServlet or
AtmosphereFilter depending on how you want to use the framework. You can
optionally configure some init-param the framework will use:

e org.atmosphere.useNative: You «can tell the framework which
Asynchronous API: the Web Server native one or if available, the Servlet 3.0
Async API.

e org.atmosphere.useBlocking: You can tell the framework to use blocking
[/0 approach instead of using the underlying Asynchronous Native API or
Servlet 3.0. When using blocking I/0, the calling Thread will block as soon as
you suspend the response, and will finish its execution once the response
gets resumed.

e org.atmosphere.jersey.servlet-mapping: define the context-root of a
class/resources, which use atmosphere-core.

IMPORTANT: If you decide to use the framework using the AtmosphereFilter, be
aware that only GlassFish, Grizzly and Jetty will take advantages of their
asynchronous native API. Tomcat, JBoss, WebLogic etc. will use the blocking 1/0
approach. If you need to use the Asynchronous Native API all the time, make sure
you write your Atmosphere application use the AtmosphereServlet.

Note that if you deploy your application inside a Web Server that doesn’t have any
Asynchronous Native API, the framework will detect it and use a blocking I/0
approach (ex: Resin). Thus you are always guaranteed that your application can be
deployed inside any Web Server that support the Servlet Specification 2.3 and up.

An Atmosphere application can be configured using a file called atmosphere.xml,
located under META-INF/. The file is optional and the framework will use default
value if not specified. When not specified, the framework will scan classes under
WEB-INF/classes and load and register the one that implement the
AtmosphereHandler interface. The atmosphere.xml contains information about
AtmosphereHandler and their URL mapping, Broadcaster, Servlet, etc. The file takes
the form of:

<atmosphere-handlers>

<atmosphere-handler context-root="/twitter" class-
name="org.atmosphere.samples.twitter.TwitterAtmosphereHandler"/>

Atmosphere Framework - White Paper 7

<property name="" value=""/>

<atmosphere-handler ../>

</atmosphere-handlers>

From that file, Atmosphere can configure for an application:

context-root: The context-root used to map the request with the
AtmosphereHandler. As an example, if you want to map a request that takes
the form of /foo/bar, you will maps the AtmosphereServlet to /foo, and set
the context-root to /bar.

class-name: The full qualified name of your AtmosphereHandler
implementation

broadcaster: The full qualified name of your AtmosphereHandler
implementation

property: A name/value pair that can be used to configure an
AtmosphereHandler. As an example, defining <property name="servletClass"
value="foo"/> will invokes on the AtmosphereHandler.setServletClass
method with the value defined. Any property can then be configured at
runtime using property.

comet-support: An implementation of the CometSupport SPI. You can define
your own Comet implementation that will be used by your application.

session-support: By default, the Atmosphere Runtime uses Sessions to
store some info, but Atmosphere Jersey by default doesn’t uses Sessions. You
can turn on Sessions by setting the value to true.

Atmosphere Main Concept

There are really three main operations an asynchronous application might require.
The first one is the ability to suspend the execution of a request/response
processing until an asynchronous events occurs. Once the event occurs, you may
want to resume the normal request/response processing, depending on the
technique your application support (long polling or http streaming). The third
operation consists of being able to broadcast or push asynchronous events and
deliver them to suspended responses.

Atmosphere Framework - White Paper 8

Chapter 1: Atmosphere Jersey (Asynchronous RESTful web
Application)

The Concepts

Atmosphere Jersey is a module that allows the creation of Asynchronous RESTFul
web service. The module extends Project Jersey, which is the implementation of JSR
311 (JAX-RS). It is strongly recommended to take a look at Jersey’s Getting Started
Tutorial before reading this section. This section will not explain how Jersey works
and what JAX-RS/RESTful web services are.

An application that defines resources mapped to the root (“/”) isn’t by default
required to have an META-INF/atmosphere.xml file. The Atmosphere Framework
will auto-detect the Jersey runtime and start it automatically, and will register the
resources defined to the “/” context-root (see atmosphere.xml explanation in
chapter 2). You can also specify the context-root by adding the following init-param
for the AtmosphereServlet|Filter:

<init-param>org.atmosphere.core.servlet-mapping</init-param>
<init-value>some value</init-value>

You can also define the following atmosphere.xml file to enable atmosphere-jersey:

<atmosphere-handlers>
<atmosphere-handler context-root="/dispatch"
class-name="org.atmosphere.handler.ReflectorServletProcessor">
<property name="servletClass"
value="com.sun.jersey.spi.container.servlet.ServletContainer"/>
</atmosphere-handler>
</atmosphere-handlers>

As explained in more details in the Chapter 2, the ReflectorServletProcessor is used
to manage the lifecycle of the Jersey’s ServletContainer. The Atmosphere runtime
will load that Servlet, and will extends Jersey internal with a set of annotations that
will allow the creation of Asynchronous RESTful application. The operations we are
the ability to suspend, resume, schedule and broadcast event.

Atmosphere Framework - White Paper 9

@Suspend

The @Suspend annotation allow suspending the processing of the response. You can
annotate any Resource’s method with the @Suspend annotation, which is defined
as:

public Q@interface Suspend {
int () default -1;

enum SCOPE { REQUEST, APPLICATION, VM }

SCOPE () default SCOPE.APPLICATION;
boolean () default true;
public boolean () default false;

public Class<? extends AtmosphereResourceEventListener>]]
() default {};

The period represent the time in second a response will stay suspended without
any events occurring, or without resuming the response.

The scope concept is explained in more details later in this chapter: can a
Broadcaster be used for broadcasting events to its associated request, to all
suspended response within the application or to all suspended responses available
on the VM. Note that the Broadcaster will be created after the annotated method
gets executed.

The outputComments is used to tells the framework to not output any comments
when the response gets suspended. By default, Atmosphere always output some
comments to make browsers based on WebKit (Chrome, Safari) works properly
when a response is suspended.

The resumeOnBroadcast tells Atmosphere to resume the response as soon as a
Broadcast operations occurs. You usually set it to true if your planning to use the
long polling Comet technique.

The listeners() is a set of class that implements that
AtmosphereResourceEventListener, which can be used to monitor Atmosphere
events like disconnect, resume and broadcast. The API is defined as:

void (AtmosphereResourceEvent event);
void (AtmosphereResourceEvent event);
void (AtmosphereResourceEvent event);

Atmosphere Framework - White Paper 10

The onResume will be invoked when the response is resuming, either because the
period time out or the @Resume annotation was been executed. The onDisconnect
will be invoked when the remote client close the connection. Note that not all Web
Server support client disconnection detection. Refer to Annex A for more
information. The onBroadcast will be invoked every time a broadcast operations
occurs.

Usually you use that annotation by doing:

@Resume

The @Resume annotation is the equivalence of AtmosphereResource.resume. You can
annotate any resource’s method with the @Resume annotation, which is defined as:

public Q@interface Resume {

int () default 1; // long polling
}

The count represent the number of Broadcast event that need to happens before the
suspended response gets resumed. Usually you use that annotation by doing:

@Broadcast

Once of the key concept of the Atmosphere Framework is called Broadcaster. A
Broadcaster can be used to broadcast (or push back) asynchronous events to the set
or subset of suspended responses. A Broadcaster can be used when events are ready
to be written back to the browser. A Broadcaster can contain zero or more
BroadcastFilter, which can be used to transform the events before they get written
back to the browser. For example, any malicious characters can be filtered before
they get written back. A Broadcaster can contain zero or one Serializer. A Serializer
allows an application to decide how the event will be serialized and written back to
the browser. When no Serializer is defined, the HttpServletResponse’s output
stream will be used and the event written as it is. Hence, firing a broadcast will
produce the following chain of invocation:

broadcast RroadcastFilter(s)

Atmosphere Framework - White Paper 11

The API looks like:

public interface {

public Future<Object> broadcast(Object o0);

public Future<Object> delayBroadcast(Object o0);

public Future<Object> delayBroadcast(Object o, long delay, TimeUnit t);
public Future<?> scheduleFixedBroadcast(Object o, long period, TimeUnit t);
public Future<Object> broadcast(Object o, AtmosphereResource event);

public Future<Object> broadcast(Object o, Set<AtmosphereResource> subset);

Internally, a Broadcaster uses an ExecutorService to execute the above chain of
invocation. That means a call to Broadcaster.broadcast(..) will not block unless you
use the returned Future API, and will use a set of dedicated threads to execute the
broadcast. By default, an ExecutorServices will be created and the number of
threads will be based on the OS’ core/processor (usually 1 or 2). You can also
configure your own ExecutorServices using a BroadcasterConfig.

A Broadcaster can also be used to broadcast delayed events, e.g. an application can
decide to delay an events until another events happens or after a delay. This is
particularly useful when you need to aggregate events and write them all in once.

A Broadcaster can also be used to broadcast periodic events. It can be configured
using an ScheduledExecutorService to produce periodic events. As with the
ExecutorService, the number of OS’ core/processor will be used to determine the
default number of threads. You <can also configure your own
SchedulerExecutorService via the BroadcastConfig.

One final word on Broadcaster: by default, a Broadcaster will broadcast using all
AtmosphereResourceEvent on which the response has been suspended, e.g.
AtmosphereResource.suspend() has been invoked. This behavior is configurable and
you can configure it by invoking the Broadcaster.setScope():

* REQUEST: broadcast events only to the AtmosphereResourceEvent
associated with the current request.

* APPLICATION: broadcast events to all AtmosphereResourceEvent created for
the current web application

* VM: broadcast events to all AtmosphereResourceEvent created inside the
current virtual machine.

The default 1is APPLICATION. Broadcaster are retrieved using an
AtmosphereResource.getBroadcaster() or can also be looked up from any Java
objects using BroadcasterLookup.

Atmosphere Framework - White Paper 12

An application can define its own implementation and tell the framework to use it
by declaring it inside atmosphere.xml:

<atmosphere-handlers>
<atmosphere-handler..
broadcaster="org.atmosphere.samples.twitter.TwitterBroadcaster"/>

The @Broadcast annotation is the equivalence of
AtmosphereResource.getBroadcaster’s. You can annotate any resource’s method
with the @Broadcast annotation, which is defined as:

public Q@interface Broadcast {

public Class<? extends BroadcastFilter>[] ()
default {};

public boolean () default false;

public int () default -1;
}

The value field defines which BroadcastFilter needs to be added to the Broadcaster
associated with the current suspended response. The resumeOnBroadcast means
that the response will be resumed as soon as an event is broadcasted. The delay can
be used to delay the execution of the events, which is the same as doing
Broadcaster.delay(...).

Usually you use that annotation by doing:

You can also broadcast any type of object by using a Broadcastable. A Broadcastable
will tell the framework to broadcast event using the Broadcaster and the Object a
Broadcastable represents:

@POST

@Consumes (MediaType.APPLICATION FORM URLENCODED)
@Produces ("text/html")

@Broadcast

public Broadcastable onPush()

}
Note that you can broadcast any type returned by the @Produced annotation:

@POST
@Path("{counter}")
@ ({"application/xml", "application/json"})

public MyEvent resume() {
return new MyEvent("POST");

}

Atmosphere Framework - White Paper 13

Injectable Objects
You can also inject at runtime Broadcaster, AtmosphereResourceEvent and
BroadcasterLookup instance by using the Jersey’s @Context annotation:

See the PubSub sample for an easy to understand sample.

Writing a simple Chat application using Atmosphere Jersey

Let’s re-write the Chat application we described using atmosphere-runtime. The
complete source of the following sample can be downloaded from
atmosphere.dev.java.net. First, let’s generate the project using Maven.

$ mvn archetype:create -DgroupId=org.atmosphere.samples -
DartifactId=chat -DarchetypeArtifactId=maven-archetype-webapp

Which will create the following structure:

./chat

./chat/pom.xml

./chat/src

./chat/src/main
./chat/src/main/resources
./chat/src/main/webapp
./chat/src/main/webapp/index. jsp
./chat/src/main/webapp/WEB-INF
./chat/src/main/webapp/WEB-INF/web.xml

Next let’s edit our pom.xml and defines the atmosphere-core and it’s dependencies

<dependency>
<groupld>org.atmosphere</groupId>
<artifactId>atmosphere-core</artifactId>
<version>${atmosphere-version}</version>
</dependency>

As for any Atmosphere application, you define the AtmosphereServlet inside the
web.xml:

<servlet>
<description>AtmosphereServlet</description>
<servlet-name>AtmosphereServlet</servlet-name>
<servlet-class>org.atmosphere.cpr.AtmosphereServlet</servlet-class>
<!-- Uncomment if you want to use Servlet 3.0 Async Support
<async-supported>true</async-supported>
——>

</servlet>

<servlet-mapping>
<servlet-name>AtmosphereServlet</servlet-name>
<url-pattern>/resource/*</url-pattern>

</servlet-mapping>

Next we can either define the atmosphere.xml:

<atmosphere-handlers>
<atmosphere-handler context-root="/resources"

Atmosphere Framework - White Paper 14

class-name="org.atmosphere.handler.ReflectorServletProcessor">
<property name="servletClass"
value="com.sun.jersey.spi.container.servlet.ServletContainer"/>
</atmosphere-handler>
</atmosphere-handlers>

Or add the org.atmosphere.core.servlet-mapping init-param under the
AtmosphereServlet defined above

<init-param>
<param-name>org.atmosphere.core.servlet-mapping</param-name>
<param-value>/resources</param-value>

</init-param>

Now let’s use the annotation defined in the previous section:

@
@GET
@Produces ("text/html;charset=IS0-8859-1")
public String suspend() {
return “";

}

@Consumes ("application/x-www-form-urlencoded")

@POST

@Produces ("text/html;charset=IS0-8859-1")

public String publishMessage(MultivaluedMap<String, String> form) {
String action = form.getFirst("action");
String name = form.getFirst("name");

if ("login".equals(action)) {

return ("System Message" + "
} else if ("post".equals(action)) {

return name + " " + form.getFirst("message");
} else {

throw new WebApplicationException(422);

+ name + has joined.");

}

@POST

@Path("/ping")

public String pingSuspendedClients(){
return "Atmosphere ping";

}

The way it works is as soon the suspend method will be invoked, its returns value
will be written back (here empty) to the client and the response suspended. When
the publishMessage will be invoked, its returned value will be broadcasted, e.g. all
suspended responses will be invoked and the value written as it is to the client.

We also added support for “ping”, which is enabled by the @Schedule annotation of
the pingSuspendedClients. The complete code can be browsed from here.

Atmosphere Framework - White Paper 15

Chapter 2: Atmosphere Runtime (Comet Portable Runtime)

The concepts

The Atmosphere runtime is the foundation of the Framework. All others modules
build on top of it. The main component is called an AtmosphereHandler and it is
defined as:

public interface <F,G> {
public void onRequest (AtmosphereResource<F,G> event)
throws IOException;

public void onStateChange(AtmosphereResourceEvent<F,G> event)
throws IOException;

}

The onRequest is invoked every time a request uri match the context-root of the
AtmosphereHandler defined within the definition of the AtmosphereHandler in
atmosphere.xml:

<atmosphere-handlers>

<atmosphere-handler context-root="/twitter" class-
name="org.atmosphere.samples.twitter.TwitterAtmosphereHandler"/>
</atmosphere-handlers>

AtmosphereResource

The main object to interact with when the onRequest is executed is an
AtmosphereResource. An AtmosphereResource can be used to manipulate the
current request and response and used to suspend or resume a response, and also
broadcast events.

public interface <E,F> {
public void resume();
public void suspend();
public void suspend(long timeout);
public E getRequest();
public F getResponse();
public AtmosphereConfig getAtmosphereConfig();
public Broadcaster getBroadcaster();
public void setBroadcaster(Broadcaster broadcaster);
public void setSerializer(Serializer s);
public void write(OutputStream os, Object o) throws IOException;

public Serializer getSerializer();

Atmosphere Framework - White Paper 16

AtmosphereResourceEvent
An AtmosphereResourceEvent contains the state of the response, e.g. has the
response been suspended, resumed, etc. API looks like:

public interface <E,F> {
public void resume();

public boolean isResumedOnTimeout();
public boolean isCancelled();

public boolean isSuspended();

public boolean isResuming();

public Object getMessage();

public void write(OutputStream os, Object o) throws IOException;

The AtmosphereHandler’s onStateChange is invoked when:

* Aneventis broadcasted using a Broadcaster (more on the topic below)

* Aneventis about to resume based on a timeout

* A browser closes the remote connection. Not all Web Server supports that
mechanism. See Annex A for more info.

Ready to use AtmosphereHandler

An Atmosphere application can consist of one or more AtmosphereHandler. The
Framework contains two implementations of that interface. The first is called
AbstractReflectorAtmosphereHandler and contains a default implementation for the
onMessage method. The onMessage in that case reflect the broadcasted event, e.g. it
writes the broadcasted event without any modification. If a Serializer has been
configured, the Serializer will be used for writing the event. If none, the
HttpServletResponse writer (or output stream) will be used.

The second implementation is RefectorServletProcessor and can be used to execute
Servlet from an AtmosphereHandler. A ReflectorServletProcessor will forward the
request to the Servlet.service() method of a Servlet and also make available the
associated AtmosphereResourceEvent to the Servlet. That way any existing Servlet
can use the Atmosphere Framework by retrieving the AtmosphereResourceEvent
from the HttpServletRequest.getAttribute using:

as a key:
HttpServletRequest.getAttribute(“).

This AtmosphereHandler is helpful when you need to run another framework on top
of Atmosphere. If you are planning to use the framework from an existing
application, take a look at Chapter 3 for the recommended way. You define the
ReflectorServletProcessor in atmosphere.xml and it’s associated Servlet by doing:

Atmosphere Framework - White Paper 17

<atmosphere-handlers>
<atmosphere-handler context-root="/dispatch"
class-name="org.atmosphere.handler.ReflectorServletProcessor"
<property name="servletClass"
value="com.sun. jersey.spi.container.servlet.ServletContainer" />
</atmosphere-handler>
</atmosphere-handlers>

You need to define a property called servletClass and set your Servlet’s fully
qualified class name.

Atmosphere Framework - White Paper 18

Writing a simple Chat application using Atmosphere runtime
The complete source of the following sample can be downloaded from
atmosphere.dev.java.net. First, let’s generate the project using Maven.

$ mvn archetype:create -DgroupId=org.atmosphere.samples -
DartifactId=chat -DarchetypeArtifactId=maven-archetype-webapp

Which will create the following structure:

./chat

./chat/pom.xml

./chat/src

./chat/src/main
./chat/src/main/resources
./chat/src/main/webapp
./chat/src/main/webapp/index. jsp
./chat/src/main/webapp/WEB-INF
./chat/src/main/webapp/WEB-INF/web.xml

Next let’s edit our pom.xml and defines the atmosphere-runtime and it’s
dependencies

<dependency>
<groupIld>org.atmosphere</groupId>
<artifactId>atmospher-runtime</artifactId>
<version>${atmosphere-version}</version>
</dependency>

We are now ready to write our first AtmosphereHandler, which is the central piece
of any Atmosphere runtime application. Let's just implement this interface:

public void
(AtmosphereResource<HttpServletRequest,HttpServletResponse>
event) throws IOException {

HttpServletRequest req = event.getRequest();
HttpServletResponse res = event.getResponse();

if (req.getMethod().equalsIgnoreCase("GET")) {
event. ()

Broadcaster bc = event.getBroadcaster();
bc.getBroadcasterConfig().addFilter(new XSSHtmlFilter());

Future<Object> f = bc.broadcast (
event. () .getWebServerName ()
+ "**has suspended a connection from "
+ reqg.getRemoteAddr());

try {
// Wait for the push to occurs.
// This block the current Thread
£. ()i

} catch (Throwable t) {

}

bc. (req.getRemoteAddr ()

Atmosphere Framework - White Paper

+ "**is connected", 30, TimeUnit.SECONDS);
bc. ("Underlying Response now suspended");

The central piece is the AtmosphereResource, from which we can retrieve the
request and response object. Next we do some setup and then once we are ready we
just need to invoke the AtmosphereResourceEvent.suspend, which will
automatically tell Atmosphere runtime to not commit the response. Not committing
the response means we can re-use it later for writing. In the current sample, we will
use the suspended response when someone enter join or enter sentence inside the
chat room. Now let's assume when a user logs in or enter sentences, the browser set
a POST (posting some data). So when a user logs in:

} else if (reqg.getMethod().equalsIgnoreCase("POST")) {
res.setCharacterEncoding("UTF-8");
String action = req.getParameterValues("action")[0];
String name = req.getParameterValues('"name")[0];

if ("login".equals(action)) {
(WELCOME_MSG
+ event.getAtmosphereConfig().getWebServerName/()

+ "**" 4+ name + " has joined.");

res.getWriter().write("success");
res.getWriter().flush();

Since Broadcaster's role is to publish data to the suspended responses, as soon as
we broadcast data, all suspended responses will be given a chance to write the
content of the broadcast when the AtmosphereHandler.onStateChange gets invoked.
Above we just broadcast the name and also which Web Server we are running on
Here let's assume we just reflect (write) what we receive, so we just implements
inside the onStateChange:

public void onStateChange(
AtmosphereResourceEvent<HttpServletRequest,
HttpServletResponse> event) throws IOException {

HttpServletRequest req = event.getResource().getRequest();
HttpServletResponse res = event.getResource().getResponse();

String msg = (String)event.getMessage();
if

event.getResource() .getBroadcaster().broadcast(
req.getSession().getAttribute("name").toString() +
has left");
} else if () {
String script =
"<script>window.parent.app.listen();\n</script>";

res.getWriter().write(script);
res.getWriter().flush();

} else {
res.getWriter().write(msqg);

Atmosphere Framework - White Paper 20

res.getWriter().flush();
}

return event;

In the above code we make just check if the event has been cancelled (because the
browser closed the connection) or resumed, and if not we just write the broadcasted
message.

Now let's assume we want to have a more fine grain way to map our
AtmosphereHandler to the request. To achieve that, create a file called
atmosphere.xml under src/main/webapp/META-INF/ and define the mapping you
want:

<atmosphere-handlers>
<atmosphere-handler context-root="/chat" class-
name="org.atmosphere.samples.chat.ChatAtmosphereHandler">
<property name="name" value="Chat"/>
</atmosphere-handler>
</atmosphere-handlers>

Now let's explore the client side. First, let's write a very simple index.html file:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8" />
<title>Atmosphere Chat</title>
<link rel="stylesheet" href="stylesheets/default.css"
type="text/css" />
<script type="text/javascript"
src="javascripts/prototype.js"></script>
<script type="text/javascript"
src="javascripts/behaviour.js"></script>
<script type="text/javascript"
src="javascripts/moo.fx.js"></script>
<script type="text/javascript"
src="javascripts/moo.fx.pack.js"></script>
<script type="text/javascript"
src="javascripts/application.js"></script>
</head>
<body>
<div id="container">
<div id="container-inner">
<div id="header">
<hl>Atmosphere Chat</hl>
</div>
<div id="main">
<div id="display">
</div>
<div id="form">

Atmosphere Framework - White Paper 21

<div id="system-message">Please input your
name:</div>
<div id="login-form">
<input id="login-name" type="text" />

<input id="login-button" type="button"
value="Login" />
</div>
<div id="message-form" style="display: none;">
<div>
<textarea id="message" name="message"
rows="2" cols="40"></textarea>

<input id="post-button" type="button"
value="Post Message" />

</div>
</div>
</div>
</div>
</div>
</div>
<iframe id="comet-frame" style="display: none;"></iframe>
</body>
</html>

Simple form that will send back to the server the login's name and the chat message
entered. To update on the fly the interface as soon as our
ChatAtmosphereHandler.onStateChange write/send us data, let's use prototype and
behavior javascript. Below we are assuming you are either familiar with those
frameworks or have basic understanding how they work. This will be defined under
application.js. As soon as the user enter its login name, let's do

post: function() {

var message = $F('message');
if(!message > 0) {
return;

}
$('message').disabled = true;
$('post-button').disabled = true;

var query =
'action=post’' +
'&name=' + encodeURI($F('login-name')) +
'&message=' + encodeURI (message);
new Ajax.Request(app.url, {
postBody: query,
onComplete: function() {
$('message').disabled = false;

$('post-button').disabled = false;
$('message').focus();
$('message’').value = '';

}
)
Y

When the user write new chat message, let's push

Atmosphere Framework - White Paper 22

post: function() {

var message = $F('message');
if(!message > 0) {
return;

}
$('message').disabled = true;
$('post-button').disabled = true;

var query =
'action=post' +
'&name=' + encodeURI($F('login-name')) +
'&message=' + encodeURI (message);
new Ajax.Request(app.url, {
postBody: query,
onComplete: function() {
$('message').disabled = false;

$('post-button').disabled = false;
$('message').focus();
$('message’').value = '';

}
)
}

Now when we get response, we just update the page using

update: function(data) {
var p = document.createElement('p');
p.innerHTML = data.name + ':
' + data.message;

$('display').appendChild(p);

new Fx.Scroll('display').down();
}

The way the index.html and application.js interact is simply defined by:

var rules = {
'#login-name': function(elem) {
Event.observe(elem, 'keydown', function(e) {
if(e.keyCode == 13) {
$('login-button').focus();

}
})i
by
'#login-button': function(elem) {
elem.onclick = app.login;
by
'#message': function(elem) {
Event.observe(elem, 'keydown', function(e) {
if(e.shiftKey && e.keyCode == 13) {
$('post-button').focus();
}
})i
¥

'#post-button': function(elem) {
elem.onclick = app.post;

Atmosphere Framework - White Paper

23

}
}i
Behaviour.addLoadEvent (app.initialize);
Behaviour.register(rules);

Finally, just deploy your war file into any Web Server and see the final result.

Atmosphere Framework - White Paper 24

Chapter 3: Atmosphere Meteor

The Concepts

The Atmosphere Meteor module allows any existing Servlet based application
(Wicket, JSP, JSF, etc.) to easily add asynchronous support. You enable Atmosphere
Meteor by adding the MeteorServlet inside your web.xml:

<servlet>
<description>MeteorServlet</description>
<servlet-name> MeteorServlet </servlet-name>
<servlet-class>org.atmosphere.runtime.MeteorServlet</servlet-class>
<init-param>
<param-name>org.atmosphere.servlet</param-name>
<param-value>..</param-value>
</init-param>
<load-on-startup>0</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name> MeteorServlet </servlet-name>
<url-pattern>/*</url-pattern>
</servlet-mapping>

The MeteorServlet can be configured using two or more init-param:

. : The MeteorServlet will invoke the Servlet and allow
them to suspend, resume and broadcast event.
. : The MeteorServlet will invoke those Filters and allow

them to suspend, resume and broadcast event.

Unlike atmosphere-runtime and atmosphere-core module, this module doesn’t
require any atmosphere.xml configuration file.

Now from any Filters and Servlet, all you need to do is to interact with the Meteor
API:

public final static Meteor (
HttpServletRequest r, List< > |,Serializer s)
public Meteor (longl)
public Meteor 0
public Meteor (Object o)
public void (AtmosphereResourceEventListener €)

All you need to do is to get an instance of a Meteor by invoking the build method,
and passing an instance of the request you eventually want to suspend its associated
response. You can optionally pass your set of BroadcastFilter as well as a
Serializer.

Atmosphere Framework - White Paper 25

Writing a simple Chat application using Atmosphere Meteor

Let’s re-write the Chat application we described using atmosphere-runtime. The
complete source of the following sample can be downloaded from
atmosphere.dev.java.net. First, let’s generate the project using Maven.

$ mvn archetype:create -DgroupId=org.atmosphere.samples -
DartifactId=chat -DarchetypeArtifactId=maven-archetype-webapp

Which will create the following structure:

./chat

./chat/pom.xml

./chat/src

./chat/src/main
./chat/src/main/resources
./chat/src/main/webapp
./chat/src/main/webapp/index. jsp
./chat/src/main/webapp/WEB-INF
./chat/src/main/webapp/WEB-INF/web.xml

Next, let’s define our MeteorServlet as well as our Servlet inside the web.xml:

<description>Atmosphere Chat</description>
<display-name>Atmosphere Chat</display-name>
<servlet>
<description>MeteorServlet</description>
<servlet-name>MeteorServlet</servlet-name>
<servlet-class>org.atmosphere.runtime.MeteorServlet</servlet-class>
<init-param>
<param-name>org.atmosphere.servlet</param-name>
<param-value>org.atmosphere.samples.chat.MeteorChat</param-value>
</init-param>
<load-on-startup>0</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>MeteorServlet</servlet-name>
<url-pattern>/Meteor</url-pattern>
</servlet-mapping>

Now we just need to write a simple Servlet like the following:

public class MeteorChat extends HttpServlet {

/**
* List of {@link BroadcastFilter}
*/
private final List<BroadcastFilter> list;

public MeteorChat() {

list = new LinkedList< >();
list.add(new ());
list.add(new ());
}
@override
public void doGet (HttpServletRequest req, HttpServletResponse res) throws
IOException{
Meteor m = Meteor. (req, list, null);

reqg.getSession().setAttribute("meteor", m);

m. (-1);

Atmosphere Framework - White Paper 26

m. (req.getServerName ()
+ "__has suspended a connection from " + req.getRemoteAddr());

}

@override
public void doPost(HttpServletRequest req, HttpServletResponse res) throws
IOException {
Meteor m = (Meteor)reqg.getSession().getAttribute("meteor");
res.setCharacterEncoding("UTF-8");
String action = req.getParameterValues("action")[0];
String name = reqg.getParameterValues("'name")[0];

if ("login".equals(action)) {
reqg.getSession().setAttribute("name", name);
m. ("System Message from " + req.getServerName() + "_ "

+ name + " has joined.");

res.getWriter().write("success");
res.getWriter().£flush();

} else if ("post".equals(action)) {
String message = req.getParameterValues('"message")[0];
m. (name + "__ " + message);
res.getWriter().write("success");
res.getWriter().flush();

} else {
res.setStatus(422);

res.getWriter().write("success");
res.getWriter().flush();

}

As you can see, using a Meteor is simple and should be used from any existing
Servlet. Once you have a Meteor, you can suspend, resume and broadcast events like
you can do with Atmosphere runtime or core module. The client side for the
example above is the same as described in Chapter 1 with atmosphere-runtime.

Atmosphere Framework - White Paper 27

Chapter 4: Atmosphere Plug In

Atmosphere Grizzly Plug In

Use Project Grizzly Web Framework to embed Atmosphere

This plug in allow you to programmatically add Atmosphere support to the Project
Grizzly’s Web Server embed API. You can learn more about Project Grizzly and its
Web Framework by going to their home page. The Atmosphere implementation is
called AtmosphereAdapter and can be used with Grizzly WebServer by doing:

GrizzlyWebServer ws = new GrizzlyWebServer();

AtmosphereAdapter a new AtmosphereAdapter();

ws.addGrizzlyAdapter(a);
ws.start();
You can also enable atmosphere-core by doing:

GrizzlyWebServer ws = new GrizzlyWebServer();

AtmosphereAdapter a = new AtmosphereAdapter();

ws.addGrizzlyAdapter(a);

ws.start();

Deploying your AtmosphereAdapter using GlassFish
You can also deploy an AtmosphereAdapter inside GlassFish v3 Nucleus distribution
without the needs to bundles your application inside a war file and without the need
of web.xml. All you need to do is to create a META-INF /grizzly-glassfish.xml and
register your AtmosphereAdapter:
<adapters>
<adapter context-root="/atmosphere" class-

name="org.atmosphere.grizzly.AtmosphereAdapter" />
</adapters>

Then you can deploy your jar into GlassFish v3 using the admin tool or simply doing

java —jar glassfish.jar yourAtmosphereApplication.jar

Atmosphere Framework - White Paper 28

Atmosphere Cluster Plug In
Any Atmosphere application can be deployed inside a cluster using the Atmosphere
Cluster Plug In. The framework currently supports the following cluster framework:

e Shoal
e JGroups
e JMS

Clustering support in Atmosphere is supported using BroadcastFilter. Hence, to add
support for clustering, all you need to do add the BroadcastFilter to your
Broadcaster:

Broadcaster bc = event.getBroadcaster();
bc.addBroadcastFilter (new ()):

Any Broadcast operations will be broadcasted to all your Atmosphere applications
deployed inside your cluster. If you use atmosphere-core, all you need to do is to
annotate your method with the @Cluster annotation:

@Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.runtime)
@Documented
public Qinterface {
String name() default "Atmosphere";

Class<? extends
org.atmosphere.runtime.ClusterBroadcastFilter>[] value()default
{org.atmosphere.runtime.ClusterBroadcastFilter.class};

You use the annotation by doing:

@Broadcast

@Consumes ("application/x-www-form-urlencoded")

@POST

@Produces("text/html")

@Cluster (name="chat,value=ShoalFilter |JgroupsFilter |JMSFilter"”)
public String publishMessage(MultivaluedMap form) {

Atmosphere Framework - White Paper 29

Chapter 5: Atmosphere Spade Server
The Atmosphere Space Server is an end-to-end stack that aggregate technology like:

Grizzly’s Servlet Container

* Jersey

Atmosphere runtime, Jersey and Meteor
Atmosphere Plug-in

The server is bundled inside a single jar and can be used using the command line:

java —jar atmosphere-spade-server.jar ..

Usage: org.atmosphere.spade.AtmosphereSpadeLauncher [options]

Runs Atmosphere on the specified port.
Default: 8080
The AtmosphereServlet folder or jar or war
location.
Default:
The resources package name
Default:
The path AtmosphereServlet will serve
resources
Default:
- Show this help message.

The server can also be embedded into any application using the
AtmosphereSpadeServer API:

public static AtmosphereSpadeServer (String u)

public static AtmosphereSpadeServer
(String u, String resourcesPackage)

public AtmosphereSpadeServer
(String mapping,AtmosphereHandler h

public void (String resourcePackage)
public AtmosphereSpadeServer () throws IOException
public AtmosphereSpadeServer () throws IOException

You can build AtmosphereSpadeServer by just doing:

AtmosphereSpadeServer.build(“http://localhost:8080").start();

You can configure the AtmosphereSpadeServer to deploy your AtmosphereHandler:

AtmosphereSpadeServer.addAtmosphereHandler
(“/chat”,;new ChatAtmoshereHandler);

Atmosphere Framework - White Paper 30

AtmosphereSpadeServer can also be used with atmosphere-core by either passing
the package name of your resource:

AtmosphereSpadeServer.build(“http://localhost”,”org.atmosphere”);

Atmosphere Framework - White Paper 31

Chapter 6: Support for the Bayeux Protocol

The Bayeux Protocol is a pub/sub protocol developed by the Cometd.org. If you are
not familiar with the Bayeux protocol, I recommend you read the specification
before reading that chapter.

By default, the Cometd.org implementation uses a blocking thread approach when
suspending responses, except when deployed on Jetty. The reason is the main
developer of Cometd.org is also the lead of Jetty. The Atmosphere Bayeux Plug In
fixes that issue by running on top of atmosphere-runtime, which always uses native
Comet Implementation before blocking a thread to suspend the response. Blocking a
thread per request may cause serious performance issue when too may threads
need to be created. Atmosphere Bayeux Plug In the rescue!

To deploy your Bayeux application using Atmosphere, you first need to define the
following atmosphere.xml

<atmosphere-handlers>
<atmosphere-handler context-root="/cometd" class-
name=" ">
<property name="servletClass"
value=" />
</atmosphere-handler>
</atmosphere-handlers>

Here you just tell the ReflectorServletProcessor to use the
AtmosphereBayeuxServlet, which is an extension to the normal Cometd.org Servlet
implementation. Next is to define in web.xml the AtmosphereServlet the same way
you would have normally defined the Cometd.org’s ContinuationCometdServlet:

<servlet>
<servlet-name>cometd</servlet-name>
<servlet-class>org.atmosphere.cpr.AtmosphereServlet</servlet-class>
<init-param>
<param-name>filters</param-name>
<param-value>/WEB-INF/filters.json</param-value>
</init-param>

<load-on-startup>1</load-on-startup>
</servlet>

You can download from atmosphere.dev.java.net the Cometd.org samples.

Atmosphere Framework - White Paper 32

Annex A - Web Server differences

All the Web Servers aren’t supporting the same functionality when their native

Comet API is used. Below is a table explaining who support what.

Jetty | Tomcat | GlassFish | WebLogic | JBossWeb
Optional atmosphere.xml X X X X
Optional web.xml init-param X X X X
com.sun.jersey.config.property.packages
Auto-detect client remote disconnection X () X X

(client disconnect)

(*) You must configure the CometConnectionManagerValve Valve

The Servlet 3.0 CometSupport SPI supports all the above, and the Blocking 1/0
CometSupport SPI supports all except the client disconnect.

Atmosphere Framework - White Paper 33

