
Trackr - Iteration 3
Presentation / Demo

BU MET CS 673 (Summer 1 2022)

Group 1
● Jean Dorancy
● Timothy Flucker
● Xiaobing Hou
● Weijie Liang

Outline

● Role Assignments
● Project Overview
● Requirement Analysis
● Project Architecture
● Implementation
● Testing
● Security
● Deployment
● Project Management
● Demo

Role Assignments

Team Member Name Role(s)

Jean Dorancy Team Leader

Timothy Flucker Design / Implementation Leader + Requirements Leader

Xiaobing Hou Security Leader + Configuration Leader

Weijie Liang QA Leader

High Level Project Overview

● Description: Trackr is a an application that is meant to be an alternative to
financial tracking applications such as Mint and Truebill.

● Goal: A way for users to view transactions against their bank accounts so that
they can understand their overall financial well-being and spending behavior.

● Implementation:
○ Spring Boot Application for REST APIs
○ React and React-bootstrap for the frontend
○ Deployed on Heroku as Docker container
○ Postman for manual and JUnit for automated testing

Requirements Analysis
During Iteration 0, an initial set of requirements was determined and recorded in the SPPP. These requirements were broken down into
two major categories with the following sub-categories:

● Functional Requirements
○ Essential - User Management APIs, Bank Account Management APIs, Transaction Management APIs, Web GUI
○ Desirable - Web GUI Password Change
○ Optional - N/A

● Non-Functional Requirements - Swagger Document, JWT Token + Filter, CSRF protection

The stories were then organized into the following epics based on their related resource:

● User Management
● Bank Account Management
● Transaction Management

At the beginning of Iteration 1, stories were scoped for each iteration and assigned. At the beginning of each iteration, the stories were
re-examined and re-assigned based on team needs/limitations.

● As project evolved, stories were added to Pivotal Tracker to track new development / configuration.

Project Functionality
● User Management

○ Register
○ Login and Logout
○ View User Profile
○ Update User Profile
○ Change Password

● Bank Account
○ Create New Bank Account
○ Update Bank Account
○ Invalidate Bank Account
○ Find All User’s Bank Accounts
○ Find User Bank Account By ID

● Transaction Management
○ Create New Transaction
○ Modify Transaction
○ Invalidate Transaction
○ Find All User’s Transactions
○ Find Transaction By ID

● User Dashboard
○ Bank Accounts Preview
○ List of all Transactions

■ Across all accounts
■ Ordered by Date DESC

Project Architecture

Implementation: Project Structure

Backend

Implementation: Frontend

React Container Pattern.

● Single Responsibility Principle: Components that are focused on one thing.

● Service Class for API: Abstract away the backend API.

● Container Component: Data fetching and renders presentation components.

● Presentation: Simply showing the data and inputs to the user as desired.

Implementation: Backend

APIs with layered architecture with distinct classes for each resource:

● Controller: Exposes REST API endpoint.

● Service: Interface which defines methods for a service.

● ServiceImpl: Implementation of a service interface.

● Repository: JPA repository which interacts with the Database.

● Entity Class: Java representation of database table with validation.

● Data Transfer Object (DTO): Presentation object for API request/response.

Testing Overview

Automated Unit Testing
● Backend
● Frontend

Manual Integration Testing
● Create User Account
● Login and Logout
● Create, Edit, and Delete Bank Account
● Create, Edit, and Delete Transaction
● Edit User Profile, Change Password

Automated Unit Testing
Backend
JUnit and Mockito
● 163 Test Cases
● 12 Test Classes

Frontend
Jest and React Testing Library
● 52 Test Cases
● 10 Test Suites

Backend Unit Testing Coverage Report

Frontend Unit Testing Coverage Report

Manual Integration Testing
In order to do the Manual Test on the Project and record the test results, we used a
spreadsheet to record each test case. So far, all 5 high level defect has been solved.

Security
● CIA (Confidentiality Integrity Availability) security model
● DAC (Discretionary Access Control) access-control method
● JWT (Json Web Token)

○ JWT token is validated first
○ TTL (time-to-live) of 15 minutes

● BCrypt Library (encode password)
● Integrated GitHub Workflows

○ Java Tests
○ JavaScript Tests
○ CodeQL Scans (security vulnerability)

Deployment

● Commit Locally
● Push to GitHub
● Open PR

○ Checks
■ Java Tests
■ JS Tests
■ JS Code Sniff
■ Code Analysis with CodeQL

● Java
● JS

○ Feedback
○ Approval

● Deploy branch test with Heroku (manual)
● Merge (to main and development branches trigger auto deploy)
● App is deployed as a Docker container to Heroku

Project Management

● Risk Management

● Quality Management

● Last Iteration Development Completed

● Iteration Evolution

● Challenges and Lessons Learned
18

Risk Management

Risk Title Priority Plan

Scope creep 16 Explore alternative solutions.

Lack of motivation or
responsibility

15 Everyone to work on things they are interested in and
practice Scrum rituals.

Unclear requirements 12 Constant communication with stakeholders.

Constant requirements change 8 Favor generic solutions that are adaptable and
embrace change

We identified a total 15 risks to the project below the ones with the highest priority.

Quality Management

● Code Reviews and Approval for PRs
● Deployment to Development

○ Before every merge
○ Automatically enforced by repository configuration

● GitHub Actions Checks
○ Java Tests
○ JavaScript Tests
○ JavaScript Code Style
○ Static Code Analysis with GitHub CodeQL (Java and JavaScript)

● Unit Testing
● Manual Integration Testing

○ Every developer as part of development workflow
○ QA Leader test at end of the iteration and generates test report

Last Iteration Development Completed

● Change Password
● List of all Transactions DESC
● Unit Tests for UI Forms

○ Sign Up
○ Login
○ Profile
○ Bank Account
○ Transaction

Frontend
● All Transactions For User API
● Unique Validation for Email
● Alphanumeric Validation

○ First Name
○ Last Name

● Refactor of Bank Account
Entity to include list of
Transactions.

Backend Configuration and Security

● CSRF Protection
● Code Analysis with CodeQL

○ Vulnerability scanning

○ Both Java and JavaScript

○ Run as pipelines on PRs
● JavaScript Tests Pipeline

○ Run all JavaScript tests
○ Only triggers on JavaScript

change

Iteration Evolution

22 Story Points

● Learning
● User API
● Bank Account API
● Home and registration Page
● Login Page
● Transaction API
● Deployment to Heroku with

Docker

Iteration 1

44 Story Points

● Backend Refactoring
● Dashboard Page
● All Accounts Page
● Profile Page
● Logout
● Completed Bank Account API
● Java tests pipeline

Iteration 2 Iteration 3
29 Story Points

● APIs Refactor to be RESTful
● Change Password
● List of all Transactions DESC
● UI Forms Unit tests
● JS Unit Tests Pipeline
● Code Analysis Pipeline

** Story Points are based on a Fibonacci sequence (Ex. 1,2,3,5,8) **

Challenges and Lessons Learned

Challenges

● Everyone on the team is more backend focus
● Learning enough React quickly to be productive
● Learning about frontend testing
● Student work unusable
● Task reassignments during Iteration 2
● A big time commitment

Lessons Learned

● Always plan ahead and check progress
● Avoid sharing a Git branch with other developers
● Always makes sure everyone knows what they are working on

Demo Content

● Home Page
○ Home
○ Register

● Login
● Dashboard Page

○ Create transaction
○ Edit transaction
○ Delete transaction

● Accounts Page
○ Create account
○ Edit account
○ Delete account

● Profile Page
○ Edit user information
○ Change password

● Logout

Thank You!

