
 1

 CS673 Software Engineering
 Team 1 - trackr

 Project Proposal and Planning

 Team Member Role(s) Signature Date

 Timothy Flucker

 Design /
 Implementation
 Leader

 Timothy Flucker 05/10/2022

 Jean Dorancy Team Leader Jean Dorancy 05/11/2022

 Xiaobing Hou Security Leader Xiaobing Hou 05/11/2022

 Weijie Liang QA Leader Weijie Liang 05/13/2022

 Revision history

 Version Author Date Change

 0.1 Timothy Flucker 05/12/2022 Adding content
 for assigned
 sections (1, 2, 3,
 6b)

 0.2 Jean Dorancy 05/13/2022 Code Review
 Process

 0.3 Xiaobing Hou 05/13/2022 Configuration
 Management
 Plan

 0.4 Weijie Liang 05/13/2022 Quality
 Assurance Plan

 2

 0.5 Jean Dorancy 05/14/2022 Management
 Plan and other
 edits

 0.6 Weijie Liang 05/14/2022 Add details in
 Quality
 Assurance Plan

 0.7 Jean Dorancy 05/15/2022 Risk
 Management

 0.8 Jean Dorancy 05/16/2022 Minor Edits

 Overview

 Related Work

 Proposed High level Requirements

 Management Plan
 Objectives and Priorities
 Risk Management (need to be updated constantly)
 Timeline (need to be updated at the end of each iteration)

 Configuration Management Plan
 Tools
 Deployment Plan if applicable

 Quality Assurance Plan
 Metrics
 Code Review Process
 Testing
 Defect Management

 References

 Glossary

 1. Overview

 This project is directly inspired from financial services such as Mint and TrueBill, namely
 software that tracks transactions against a bank account. The purpose of this project is to

 3

 have an informal way for users to enter information related to a bank account and
 transactions against it to understand their spending behavior and the amount of money
 deposited and withdrawn from their account.

 A user will create an account for themselves which will provide them with credentials used
 for authorization and authentication for the other APIs. Once an account is created, the user
 will be able to enter in bank account information and then start to enter transaction
 information against that account. Once this information is entered into the system the user
 will be able to understand their spending behavior relative to that account.
 This project will be developed using Java 1.8 with the Spring Boot Framework, and
 developed using an IDE such as IntelliJ. Version control of the project will be handled by Git
 and the class organization GitHub account. An embedded H2 database will be used to
 contain an initial data set for the application as well as store any information entered by the
 user after they run the application, however this may be modified to use a PostgreSQL
 database later in development. The application will be deployed using the Heroku platform.

 2. Related Work
 This application is based on applications such as Mint and Trubill that are used to help users
 view and understand how they spend their money. These applications are built by large
 financial institutions which provide users with many resources and features to help
 understand their spending habits, however it also floods them with ads for new bank
 accounts and credit cards which can be detrimental.

 Our application is a much simpler approach to tracking spending behavior and only allows
 users to input data and view their transactions relative to their bank accounts.

 3. Proposed High level Requirements
 For the following features listed below, point values are used to indicate the relative
 complexity of each feature . Lower values indicate a feature that is easier to implement
 and larger point values indicate a complex story that will generally require more time and
 effort to fully implement. The scale for these point values is from 1 - 8 using a Fibonacci
 sequence (1, 2, 3, 5, 8) which is used in some Agile-Scrum projects.

 ● Functional Requirements
 ○ Essential features

 ■ User Management
 ● Title: Create User API

 ○ Description: As a customer, I want to be able to create a user
 account for the application, so that I can have my data
 associated with my account.

 ○ Priority: 0 - Critical
 ○ Points: 3

 4

 ○ Estimate: 2 - 4 hours
 ■ Bank Account Management

 ● Title: Create New Bank Account API
 ○ Description: As a user, I want to create a bank account record

 so that I can track deposits and withdrawal transactions
 against it.

 ○ Priority: 0 - Critical
 ○ Points: 3
 ○ Estimate: 2 - 4 hours

 ● Title: Modify Bank Account API
 ○ Description: As a user, I want to modify a bank account record

 so that I can update its relevant information to be current.
 ○ Priority: 1 - High
 ○ Points: 3
 ○ Estimate: 2 - 4 hours

 ● Title: Deactivate Bank Account API
 ○ Description: As a user I want to be able to deactivate a bank

 account record so that I no longer see that data.
 ○ Priority: 2 - Medium
 ○ Points: 3
 ○ Estimate: 2 - 3 hours

 ● Title: View All of my Bank Account
 ○ Description: As a user, I want to be able to view all of my bank

 accounts, so that I can interact with all of the data I have
 entered.

 ○ Priority: 1 - High
 ○ Points: 3
 ○ Estimate: 2 - 3 hours

 ● Title: View Specific Bank Account By ID
 ○ Description: As a user, I want to be able to view a specific

 bank account using a unique identifier, so that I view its data
 and take any necessary action against it.

 ○ Priority: 1 - High
 ○ Points: 3
 ○ Estimate: 2 - 3 hours

 ■ Transaction Management
 ● Title: Create New Transaction API

 ○ Description: As a user, I want to create a transaction record
 linked to a bank account so that my bank account information
 is up to date.

 ○ Priority: 0 - Critical
 ○ Points: 3
 ○ Estimate: 2 - 4 hours

 5

 ● Title: Modify Transaction API
 ○ Description: As a user, I want to modify a transaction record so

 that I can update its relevant information to be current.
 ○ Priority: 1 - High
 ○ Points: 3
 ○ Estimate: 2 - 4 hours

 ● Title: Void a Transaction API
 ○ Description: As a user I want to be able to void a transaction

 record so that I can reverse the transaction and update my
 bank account.

 ○ Priority: 2 - Medium
 ○ Points: 3
 ○ Estimate: 2 - 3 hours

 ● Title: View All of my Transactions
 ○ Description: As a user, I want to be able to view all of my

 transactions against a bank account, so that I can see all of
 the activity of that bank account.

 ○ Priority: 1 - High
 ○ Points: 3
 ○ Estimate: 2 - 3 hours

 ● Title: View Specific Transaction By ID
 ○ Description: As a user, I want to be able to view a specific

 transaction using a unique identifier, so that I view its data and
 take any necessary action against it.

 ○ Priority: 1 - High
 ○ Points: 3
 ○ Estimate: 2 - 3 hours

 ○ Desirable Features
 ■ User Management

 ● Title: User Password Reset
 ○ Description: As a user, I want to be able to reset the password

 of my account so that, if I forget my password I do not lose
 access to my account.

 ○ Priority: 1 - High
 ○ Points: 3
 ○ Estimate: 4 - 8 hours

 ○ Optional Features
 ■ Web GUI

 ● Title: Create User Login page
 ○ Description: As a user, I want to have a web interface to log

 into the application so that I do not have to use the APIs.
 ○ Priority: 3 - Low
 ○ Points: 5

 6

 ○ Estimate: 5 - 10 hours
 ● Title: Create Home page

 ○ Description: As a user, I want to have a homepage that shows
 all of my relevant information so that I can interact with my
 data more easily.

 ○ Priority: 3 - Low
 ○ Points: 5
 ○ Estimate: 20 - 30 hours

 ● Title: Add information Information pages
 ○ Description: As a user I want to have a page where I can add

 information such as my bank account, or transaction
 information so that new information can be added quickly and
 easily.

 ○ Priority: 3 - Low
 ○ Points: 8
 ○ Estimate: 20 - 30 hours

 ● Title: Edit Information pages
 ○ Description: As a user I want to have a page where I can edit

 information such as my user, bank account, or transaction
 information so that I can keep my data up-to-date.

 ○ Priority: 3 - Low
 ○ Points: 8
 ○ Estimate: 20 - 30 hours

 ● Title: Configure Session Management for web pages
 ○ Description: As a developer, I want to enable session

 management for all web pages so that the application is
 secured.

 ○ Priority: 0 - Critical
 ○ Points: 5
 ○ Estimage: 10 - 20 hours

 ● Nonfunctional Requirements
 ○ Title: Create a Swagger document for the APIs

 ■ Description: As a developer, I want a swagger document which shows how
 my APIs are designed, so that I have a relevant technical project artifact.

 ■ Priority: 0 - Critical
 ■ Points: 1
 ■ Estimate: 5 - 10 hours

 ○ Title: Authenticate API requests
 ■ Description: As a user I want all of my API requests to be authenticated using

 a basic authentication strategy so that my data is protected from random and
 unsolicited access.

 ■ Priority: 0 - Critical
 ■ Points: 5

 7

 ■ Estimate: 5 - 10 hours
 ○ Title: Authorize API requests

 ■ Description: As a user I want only API requests I send or from a system
 admin to be authorized to access my data so that only I and a system admin
 can view my data.

 ■ Priority: 0 - Critical
 ■ Points: 5
 ■ Estimate: 5 - 10 hours

 4. Management Plan

 a. Objectives and Priorities
 ● Every student actively contributes and practices Scrum rituals.
 ● Opportunities for everyone to learn.
 ● Focus on best practices to maintain high quality.
 ● Bottom up unit-testing approach for all feature implementation.
 ● Complete all essential features without compromising software quality.
 ● Complete some desirable features.

 b. Process Model
 We are planning to use the Scrum framework as the process for developing this
 project. Based on student availability we are looking to implement all the scrum
 events.

 ● Sprint : We will have sprints of iteration length given the class short duration.
 ● Daily Scrum : Implemented virtually where each team member posts updates

 everyday between 7pm - 7:15pm.
 ○ What did you do yesterday?
 ○ What will you do today?
 ○ What blockers stand in your way?

 ● Sprint Retro and Planning : Briefly talk about the last iteration, estimate and
 decide on the goals for the sprint.

 8

 We only had two meetings for iteration 0. We are using PivotalTracker to manage our
 requirements. Everyone is expected to create user stories in the backlog which are
 discussed in the Sprint Planning.

 c. Communication Plan
 We are using Zoom for live classrooms hence it makes a natural choice for
 synchronous meetings. We have a Discord channel for instant messaging. In the
 team text channel we have two dedicated threads: A Daily Scrum thread where
 folks post updates every day between 7pm - 7:15pm. A Pull Requests thread that is
 used to post PR to be reviewed by the team. If we run into roadblocks, we post in the
 channel for help and if we can’t find a solution then we reach out to the facilitator and
 lastly email the professor according to school policy.

 d. Risk Management (need to be updated constantly)
 The main risks we have identified for the project after filling the risk management
 sheet and ways to address them are as follows.

 Risk Title Priority Plan

 Constant requirements
 change

 8 - Favor generic solutions
 that are adaptable

 - Embrace change and build
 the product using
 appropriate design patterns

 - Emphasize communication
 with stakeholders to ensure
 requirements are well
 understood

 9

 Unclear requirements 12 - Sprint review meeting with
 stakeholders

 - Constant communication
 with stakeholders

 - Stakeholders to review all
 requirements and answer
 questions.

 Lack of motivation or
 responsibility

 15 - Opportunities for everyone
 to learn

 - Everyone to work on things
 they are interested in

 - Practice the Scrum rituals
 which keeps the team
 engaged

 Scope creep 16 - Meeting with stakeholders
 about increase of scope
 which might impact project
 schedule

 - Dropping some of essential
 features

 - Alternative technical
 solutions

 Risk Management Sheet Link: here

 e. Timeline
 Sheet with detail estimates for each iteration: here

 Iter Functional
 Requirements(Esse
 ntial/Desirable/Optio
 n)

 Tasks (Cross requirements tasks) Estimated
 /real
 person
 hours

 Links

 1 - User Management

 - Bank Account
 Management

 - Architecture and design
 - Test plan
 - Spring Boot tutorial
 - Create a Spring Boot project
 - Deployment pipelines
 - DB schema for user
 - Implement create user

 50

https://docs.google.com/spreadsheets/d/1jFvkR4eh5ohzktcNFNBNgFiwXpyw_ubK5kT1M_MQFww/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1GsA70l2X2UWomNO3XhsyC1rRLldAsMTAX8FXn6ZPuBA/edit#gid=0

 10

 - DB schema for bank account
 - Implement create new bank account
 - Implement modify bank account
 - Implement deactivate bank account
 - Implement view all my bank account
 - Implement view account by ID

 2 - Transaction
 Management

 - Architecture and design
 - Test plan
 - Create pipeline to automatically run
 project tests on PR request
 - DB schema for transaction
 - Implement create new transaction
 - Implement modify transaction
 - Implement void a transaction
 - Implement view all of my transactions
 - Implement view transaction By ID

 35

 3 - User Management

 - Create a Swagger
 document for the
 APIs

 - Web GUI

 - Architecture and design
 - Test plan
 - Update user DB schema if needed
 - Implement user authentication and
 session management
 - Implement password reset
 - Implement authorization
 - Setup project with React and Wepack
 - Implement home page
 - Implement user login page
 - Implement create user page
 - Implement create and modify bank
 account page
 - Implement view bank account page
 - Implement view all my bank accounts
 page
 - Implement create and modify
 transaction page
 - Implement view transaction page
 - Implement view all my transactions
 page
 - Implement password reset page

 165

 5. Configuration Management Plan

 a. Tools

 11

 Dev Tools

 ● Java (1.8, Download here)
 ● Swagger (api design, online editor here)
 ● Lombok (java dependency, website to download and install here)
 ● Maven (java build tool / dependency management, download here)

 Version Control Tools

 ● Git (Download here)
 ● GitHub (Sign up here and our project here)

 IDE Tools

 ● IntelliJ (Download here)

 Project Management Tools

 ● PivotalTracker (Our project here)
 ● Google Drive (Our project here)

 Test Tools

 ● Postman (Sign up here)
 ● JUnit5 (documentation and how to use here)

 Meeting and Dissemination Tools

 ● Zoom
 ● Discord

 b. Code Commit Guideline and Git Branching Strategy
 There are two protected branches: main and development . They both require
 approval by another team member before any changes are merged. The main
 branch is where we perform the releases and deployment to production. The
 development branch is used to stabilize changes and integrate multiple personal
 feature branches. Everyone will create a feature branch from the development to
 work on and create a PR which targets development later. When merging to main or
 development branches we squash commits so we can have a single commit with a
 description of the work done. This is particularly useful if we need to revert so we can
 just revert a commit.

https://www.oracle.com/java/technologies/javase/javase8-archive-downloads.html
https://editor.swagger.io/
https://projectlombok.org/
https://maven.apache.org/
https://git-scm.com/downloads
https://github.com/
https://github.com/BUMETCS673/group-project-team1
https://www.jetbrains.com/idea/
https://www.pivotaltracker.com/n/projects/2568542
https://drive.google.com/drive/u/2/folders/1JpACaOZM_moX0XjHvM-ZTk4cLzWL5D7W
https://www.postman.com/
https://junit.org/junit5/docs/current/user-guide/

 12

 Following the Git workflow as explained above a PR will need to be created and
 formatted with the following sections.

 ● Summary : Section about what the change and link any design or document.
 ● Testing : This section describes how the change was tested.

 I. Manual : Add information about manual tests that were performed.
 II. Automated : Add information about automated tests that were added.

 c. Deployment Plan

 Platform
 ● Heroku (Deploy with Git)

 Necessary preparation
 ● Install Git
 ● Install Heroku CLI
 ● Create a Heroku Remote

 ○ Command for New App: heroku create -a example-app
 ○ Command for existing App: heroku git:remote -a example-app

 Multiple Environments
 ● Create and link Development Environment

 ○ heroku create --remote staging //Step1
 ○ git push staging master //Step2
 ○ heroku ps --remote staging //Step3

 ● Create and link Production Environment
 ○ heroku create --remote production //Step1
 ○ git push production master //Step2
 ○ heroku ps --remote production //Step3

 6. Quality Assurance Plan

 a. Metrics

https://devcenter.heroku.com/articles/git#prerequisites-install-git-and-the-heroku-cli
https://devcenter.heroku.com/articles/heroku-cli#install-the-heroku-cli

 13

 Metric Name Description

 Number of
 features

 Number of features that were implemented; shows the
 complexity of the project.

 Number of
 Defects

 Number of defects reported in the project; shows the
 reliability and completion of the project.

 Total Man Hour The total time spent on or preparing for the project. This
 will allow us to track the total amount of effort spent in
 support of the project.

 Test Passing
 Rate

 Number of tests passed. This metric will be measured
 during each iteration, and the types of tests include unit
 tests and manual tests.

 User Story
 Counts

 Number of user stories created in Pivot Tracker. The
 number of completed user stories will be tracked in every
 iteration.

 b. Coding Standard
 Our team will be adhering to the Google Java coding standard found here . We will
 actively achieve this by configuring our IDE to implement the formatting of this coding
 standard (link).

 c. Code Review Process
 The team will work collaboratively on all the documents and review them in GSuite
 before they are exported and committed to the Git repository. GSuite comments will
 be used to open issues in the documents then comments will be marked done after
 issues have been resolved. When it comes to code, reviews will be done in GitHub
 via Pull Requests (PR) and one approval will be required before the changes are
 merged. If there are conflicts they will need to be resolved before any changes are
 merged to the main or development branch. Everyone on the team will be
 encouraged to review all changes to the repository and comments to open issues
 or ask clarifying questions. The reviewer will check the code and use the following
 review checklist.

 1. Manageability
 2. Architecture
 3. Maintainability
 4. Correctness
 5. Invalid input/states
 6. Usability
 7. Reusability
 8. Object-Oriented Analysis and Design (OOAD) Principles

https://google.github.io/styleguide/javaguide.html
https://medium.com/swlh/configuring-google-style-guide-for-java-for-intellij-c727af4ef248

 14

 After the PR is ready for review it should be posted in the group Pull Requests
 Thread in the group chat in Discord. It’s everyone's responsibility to monitor the
 thread for review requests and promptly review the changes. The Git repository has
 the GitHub PR template committed so when a new PR is created it starts all the
 sections to be filled and the review checklist listed for the reviewer.

 d. Testing
 1. Unit testing: Unit testing will be conducted by the developer responsible for

 writing the code for each core method before submitting a pull request. The
 test methods and results can be recorded in the test report.

 2. Manual testing: QA Leader performs manual testing of the core functionality
 after each iteration. The test methods and results can be recorded in the test
 report.

 e. Defect Management
 1) Defect Type:

 ● High Priority Defect:
 ○ Defects that halt the whole program from running, should be fixed as

 soon as possible.
 ● Median Priority Defect:

 ○ Defects that impact some of the functions in the program, should be
 fixed before iteration.

 ● Low Priority Defect
 ○ Defects that are hard to notice and do very little impact to the

 program, can be fixed anytime.
 2) Defects Tracking:
 The QA Leader will use Pivot Tracker to track fixed and unfixed defects and the fix
 rate at the end of each iteration.
 3) Defect Resolution Process
 i. Any team member who finds a defect will create a ticket in Pivot Tracker and
 assign it to the developer responsible for the feature with the following information.

 ● Severity level markers (High, Median, Low Priority)
 ● Description and screenshots of the defect
 ● Expected results

 ii. Developers fix the defect and create a pull request with an "error" tag. The
 developer can have the teammate who found the defect specifically review this pull
 request and approve it.

 7. References
 The Ultimate Code Review Checklist
 https://www.codegrip.tech/productivity/the-ultimate-code-review-checklist/?utm_source=web
 site&utm_medium=blog&utm_campaign=best-practices-for-code-review-process

https://www.codegrip.tech/productivity/the-ultimate-code-review-checklist/?utm_source=website&utm_medium=blog&utm_campaign=best-practices-for-code-review-process
https://www.codegrip.tech/productivity/the-ultimate-code-review-checklist/?utm_source=website&utm_medium=blog&utm_campaign=best-practices-for-code-review-process

 15

 Java Coding Standard
 https://google.github.io/styleguide/javaguide.html

 Atlassian Git Workflow
 https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

 Generate Project Name and Logo
 https://namelix.com/

 Agile Scrum Process
 https://powerslides.com/powerpoint-business/project-management-templates/agile-scrum-pr
 ocess/

 8. Glossary
 ● PR: Pull Request
 ● IDE: Integrated Development Environment
 ● CI: Continuous Integration
 ● CD: Continuous Development
 ● API: Application Programming Interface
 ● DB: Database

https://google.github.io/styleguide/javaguide.html
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://namelix.com/
https://powerslides.com/powerpoint-business/project-management-templates/agile-scrum-process/
https://powerslides.com/powerpoint-business/project-management-templates/agile-scrum-process/

