
 1

 CS673 Software Engineering
 Team 1 - Trackr

 Software Design Document

 Team Member Role(s) Signature Date

 Timothy Flucker

 Design /
 Implementation
 Leader

 Timothy Flucker 05/27/2022

 Jean Dorancy Team Leader Jean Dorancy 05/29/2022

 Xiaobing Hou Security Leader Xiaobing Hou 05/29/2022

 Weijie Liang QA Leader Weijie Liang 05/29/2022

 Revision history

 Version Author Date Change

 0.1 Timothy Flucker 05/27/2022 Initial content

 0.2 Jean Dorancy 05/29/2022 UI Mocks and
 React Container
 Pattern

 1.0 Timothy Flucker 05/30/2022 Minor updates,
 prepare to release
 for Iteration 1

 2

 Introduction

 Software Architecture

 Class Diagram

 UI Design (if applicable) pending convo with Professor

 Database Design (if applicable)

 Security Design

 Business Logic and/or Key Algorithms

 Design Patterns

 Any Additional Topics you would like to include.

 References

 Glossary

 ● Introduction
 This document is meant to define and provide detail for the design and implementation
 of our group project, Trackr. We are coding using the Java programming standard, and
 our previous programming experience in other classes and on the job experiences.
 The goal is to develop a web application that serves data to front-end pages and also
 has APIs accessible to read, create, and modify data. Another goal is to deploy this
 application to Heroku using a CI/CD pipeline, so that code changes can be quickly and
 efficiently integrated into the project and deployed to the end-users.

 ● Software Architecture
 The project uses Apache Maven to handle dependency management, to ensure that the
 project builds properly, and creates a deployable JAR which will function as the
 client/server for our application. The application uses the Spring Boot framework to
 create and initialize the in-memory H2 database, to configure the application based on
 our settings and to expose REST API endpoints in addition to serving web pages to our
 users. The application utilizes GitHub for version control and source code management.
 Additionally, the REST APIs were designed using Swagger and that YAML document
 has been provided as a technical artifact.
 Once new code has been deployed to the Git repository, the code is packaged into a
 container using Docker. This container is then deployed on the Heroku platform which
 allows our users to interact with the application. Below is a diagram of the client-server
 architecture which outlines the major components of our application and the technology
 that it leverages.

https://spring.io/projects/spring-boot

 3

 The project is organized using a layered architecture design with a REST transport layer
 that registers API calls from the client, a service layer which contains the application
 business logic, and a data layer that uses JPA to interact with the H2 database.

 ● Class Diagram
 The source code is currently packaged by layer as opposed to by function, however in
 Iteration 2, the code will be refactored to be packaged by function. Packaging by
 function will help increase code modularity, cohesion, and make the code easier to
 navigate as well as make the application adhere to more modern best practices. For
 Iteration 1, each package is a sub-package of the “edu.bu.metcs673.trackr” package,
 which contains the main class. The project structure can be seen the following diagram:

 4

 A brief high-level description of the sub-packages in the “src/main/java” package is
 provided below.

 ● Api - Contains objects used in the “presentation layer” of the application. This
 means they are the request bodies that the user will use for their API requests. It
 also contains a generic response object which is the return object of all APIs.

 ● Common - contains a constants file which contains all static strings that the
 application uses for success / error messages and others. Also contains a

 5

 custom exception class used specifically for our input validations.
 ● Controller - contains all classes in the transport level of the project, which are

 REST controllers. Also contains an exception controller which returns specific
 responses if certain exceptions are thrown by the application.

 ● Domain - contains all entity objects, which map directly to the database tables.
 Each class contains Lombok annotations to simplify the class in addition to many
 java persistence annotations which assist with validating API requests before
 querying the database.

 ● Repo - contains all classes in the application data layer, which are Java
 interfaces that implement JPA repositories. Utilize JPA CRUD operations, in
 addition to any custom methods or queries depending on the application
 business logic.

 ● Security - contains classes relevant to the application’s implementation of JWT
 Tokens. Includes a filter which is run before each API request to authenticate
 and authorize the user making the request.

 ● Service - contains all classes in the application’s service layer, which is a
 combination of interfaces which define methods

 The files located in the “src/main/resources” folder are used during project initialization to create
 the H2 database and import it with data. The templates folder will contain HTML, CSS, and
 JavaScript files used by the front-end of this application. These files will use the React
 framework to make modular and reusable components.

 The files in the “src/test/java” folder follow a similar structure to the package structure in
 “src/main/java” and contain test classes which perform unit tests on the codebase. Mockito is
 used to mock database calls and to prevent unwanted insertion, modification, or deletion of
 data.

 Out application utilizes a closed layered architecture with three main layers:
 ● Presentation layer - REST API controllers and the React front-end
 ● Service layer - Contains business logic and processes for validating and manipulating

 input and output data.
 ● Data layer - JPA repositories that interact with our database to save or retrieve data from

 the H2 database.

 The presentation layer was designed using OpenAPI standards with Swagger. This document,
 which is part of the source code, was then used as a reference for the Java implementation.
 These REST controllers interact and manipulate data through the use of interfaces which are
 defined and then implemented in a service layer. This layer handles validations, data
 manipulation, and other business logic for the application. It is abstracted from the presentation
 layer in order to simplify the purpose of each layer. The service layer implementations then
 interact with a Data (DAO) layer which takes advantage of JPA functionality in order to

 6

 communicate with the database, through the use of predefined queries for normal “findBy” and
 “save” operations, and some custom defined queries for more specific join queries.

 The front-end of this application acts as a component of the presentation layer where a user will
 take a certain action such as filling out a form or clicking a button to call certain functionality
 defined in the REST controllers. For Iteration 1, the front-end that has been implemented is only
 for the user registration and login capability. In Iteration 2 and 3, additional functionality will be
 added so that users can access all API functionality from the React front-end.

 The diagram below depicts the layers architecture used for our application using the
 “BankAccount” object in our application as a reference.

 ● UI Design
 When a user visits the app before they are authenticated they will see two pages. The
 unauthenticated home page and the login page. These two pages have already been
 created and will be part of the demo. After login in a user will be redirected to the
 dashboard page. This page will display bank accounts and balances and a transactions
 table. The page looks like the following.

 7

 There will be two other pages in the application: The user profile page and the all
 accounts page which will allow users to manage their bank accounts. Please see them
 below.

 8

 ● Database Design
 This application utilizes an H2 database, which is a lightweight in-memory database
 which is very useful for prototypes and small applications since it is easy to configure
 and integrate with our application’s architecture. These configurations are handled by the
 Spring framework and are accessible through the “application.properties” file in the
 “src/main/resources” folder. This type of database uses a variation of the SQL dialect
 and is a relational database. An initial dataset has been created for the application and is
 created at project runtime with the “schema.sql” and “import.sql” files located in the
 same directory as the “application.properties” file.

 The Java implementation of this project uses the JPA library to interact with the database
 in conjunction with Hibernate ORM to map Java objects to their database tables and
 records.

 An ERD diagram has been provided below to illustrate the database schema and the
 relationships between tables. It was developed using Visual Paradigm Online .

https://online.visual-paradigm.com/drive/#diagramlist:proj=0&documents

 9

 ** The relationships between the tables as of Iteration 1 is Many to One **

 ● Security Design
 In order to implement an Authentication and Authorization strategy to our REST APIs,
 bearer tokens were used, specifically JWT. Upon user registration, a JWT token is
 returned to the user which will authenticate them for future API calls. Additionally, the
 password value during registration is encoded using the BCrypt library, specifically using
 the BCryptPasswordEncoder “encode” method. This method encodes the raw password
 value with a hash and a salt value.

 When this JWT token is provided with an API request, the data in the token is decoded
 and compared against the data in the USERS table to ensure that the token is valid.
 Additionally, each token has a specific default “time-to-live” of 15 minutes. After that
 period of time, the token is invalid and the user will need to hit the “Retrieve Token” API
 endpoint to get a new valid token. This API endpoint is exposed to the world, but
 requires the user’s specific username and password credentials, set during user
 registration, in order for a new token to be created.

 The JWT token is validated before every API call through the use of a Spring filter,
 whose logic runs first before the logic of the API endpoint is run. Missing or invalid
 tokens, as well as unauthorized API calls will be caught by the filter logic and return an
 “Access Denied” error to the user.

 Additionally, since the USER record is attached to BANK_ACCOUNT and by extension
 TRANSACTION records, the JWT token also functions as a way to check if the user is

 10

 authorized to interact with the requested data. If they are not, then the user is denied
 access and no data is returned or changed.

 ● Business Logic
 As of iteration 1, there is no significant business logic or algorithms that are taking
 place, since data is being entered manually and only simple CRUD operations are
 available to users. Generally, each API request will follow this general algorithm:

 1. The request hits one of the REST API endpoints and is intercepted by the JWT
 filter.

 2. The filter checks for the JWT token in order to authenticate the user.
 3. If the user is authenticated, then the data in the request itself is validated

 a. Null checks on required fields
 b. Type checks for numeric fields
 c. Value checks for fields that are enumerations

 4. For GET requests, once data is returned, the user data from the JWT token is
 compared against the user data associated with the record. If there is a match,
 then data is returned. If there is a mismatch, then an “Access Denied” error is
 returned.

 5. For POST requests, once the data is written to the database, a response body is
 returned to the user indicating their success.

 6. For PUT and DELETE requests, an id value provided as a path variable is used
 to retrieve the data that will be changed. If this data is associated with the user
 making the API call, then that record is modified and a response is returned to
 the user indicating their success.

 ● Design Patterns
 The Trackr application uses an MVC design pattern with the Spring framework in order
 to initialize the application, expose the REST API endpoints and interact with the
 database. Under the hood, the application takes advantage of many of Springs
 annotations to autowire the service layer which creates singleton instances of important
 classes such as the “TrackrUserService”, “TrackrUserServiceImpl”, and the
 “TrackrRepository”.

 The application also uses a Factory creation design pattern to handle REST API
 response objects that are returned to the user. Since the only outcome of such a request
 is either success or failure, the “GenericApiResponse” class has two methods which
 return these responses, but can be customized using the “message” and “object”
 method parameters. This allows for the application to return specific messages to the
 user such as a variety of error messages or conversely, a newly modified object for the
 user to review.

 11

 React Container Pattern for the Frontend
 This is simply about separating React components that are responsible for
 "presentation" from the logic for fetching data, processing and working with the backend.
 The pattern is implemented as follows.

 ● Single Responsibility Principle : Build components that are focused on one
 thing. For example, the LoginForm is just that and nothing else. Keep in mind
 this also enables components re-usability.

 ● Service Class for API : The service class simply abstract away how to work with
 the backend API.

 ● Container Component : This renders the component which does "presentation"
 and also calls methods from the service class. For example HomeContainer
 which renders Home and uses TrackrUserService .

 ● Presentation : Simply showing the data and inputs to the user as desired.

 ● References
 ● Mint UI is used as inspiration

 https://mint.intuit.com/

 ● Understanding the Container Component Pattern with React Hooks

 https://blog.openreplay.com/understanding-the-container-component-patte
 rn-with-react-hooks

 ● Glossary
 Acronyms and abbreviations:

 ● IDE - Integrated Development Environment
 ● YAML - YAML ain’t Markup Language
 ● DB - Database
 ● API - Application Programming Interface
 ● REST - Representational State Transfer
 ● CRUD - Create, Read, Update, Delete
 ● CI - Continuous Integration
 ● CD - Continuous Deployment (Delivery)
 ● JPA - Java Persistence API
 ● ORM - Object Relational Mapping
 ● SQL - Structured Query Language

https://mint.intuit.com/
https://blog.openreplay.com/understanding-the-container-component-pattern-with-react-hooks
https://blog.openreplay.com/understanding-the-container-component-pattern-with-react-hooks

