Convolution Architecture For Feature Extraction

Created by Yangqing Jia
In development by BVLC

http://caffe.berkeleyvision.org
http://bvlc.eecs.berkeley.edu

So what is Caffe?

Convolution Architecture For Feature Extraction

C++/CUDA framework for deep learning and vision
o library of layers that compose into models

o fast stochastic gradient descent (SGD) solver
o tools, demos, and recipes

Seamless switch between CPU and GPU

o Caffe::set_ mode(Caffe::CPU);

Train Models Experiment/Prototype

All with essentially the same code!

Inference at Scale

So what is Caffe?

Convolution Architecture For Feature Extraction

Model schemas

o Define the model and solving strategy
and let Caffe take care of the rest
Adapt already learned models
to new problems in one step

State-of-the-art solving in 14 lines.

train_net: "imagenet_train.prototxt"
test_net: "imagenet_val.prototxt"
test_iter: 1000

test_interval: 1000

base_1lr: 0.01

lr_policy: "step"

gamma: 0.1

stepsize: 100000

display: 20

max_iter: 450000

momentum: 0.9

weight_decay: 0.0005

snapshot: 10000

snapshot prefix: "caffe imagenet train"

Models are schema, not code.

name: "CaffeNet"
input: "data"
input_dim: 10

input_dim:

8

input_dim: 227

input_dim:
convolution 1: 96 filters

layers {
layer {
name:

type:

vy

"convl"
1] convll

num_output: 96
kernelsize: 11
stride: 4
weight_filler {
type: "gaussian"

std:

}

0.01

bias_filler {
type: "constant"
value: 0.

}

blobs_
blobs_

ir: 1.
lr: 2.

weight_decay: 1.
weight_decay: 0.

}
bottom:

"data"

top: "conv1l"

So what is Caffe?

Convolution Architecture For Feature Extraction

Research & Engineering R-CNN: Regions with CNN features

o Key part of our publication code T

o State-of-the-art models ‘_&g =

o Blazing fast, and it has unit tests! LInput 2. Extractregion 3.Computc 4. Classify

image proposals (~2k) CNN features regions

R-CNN, Girshick CVPR14.

uda number of devices:
Setting to use device 0
Current device id: @
] Running 10 tests from 2 test cases.
| Global test environment set-up.
~w===-----7 5 tests from InnerProductLayerTest/@, where TypeParam = float
RUN 1 InnerProductLayerTest/0.TestSetUp
JK] InnerProductLayerTest/@.TestSetUp (493 ms)
RUN 1 InnerProductLayerTest/0.TestCPU
K 7 InnerProductLayerTest/@.TestCPU (103 ms)
RUN 1 InnerProductLayerTest/0.TestGPU
K 7] InnerProductLayerTest/0.TestGPU (@ ms)
RUN 1 InnerProductLayerTest/0.TestCPUGradient
0K] InnerProductLayerTest/0.TestCPUGradient (1492 ms)
RUN | InnerProductLayerTest/0.TestGPUGradient
OK] InnerProductLayerTest/@.TestGPUGradient (217 ms)
1 5 tests from InnerProductLayerTest/@ (2305 ms total)

rTrmsTrTrmmaTrmmamrmemeeeresesereseserseserere e

So what is Caffe?

Convolution Architecture For Feature Extraction
® An active research and development community

527 commits = Y Star 232 §y Fork 113

February 12 2014 - March 12 2014 Period: 1 month ~

Overview

L I 4
46 Active Pull Requests 62 Active Issues

1123 23 © 37 © 25

Merged Pull Requests Proposed Pull Requests Closed Issues New Issues

23 authors have pushed 511 commits o all branches,
excluding merges. On master, 137 files have changed and
there have been 7,376 additions and 1,436,167 deletions.

-1 4K ¥ FER-l PR CHEO] ¢

Caffe and cuda-convnet

Caffe cuda-convnet

° C++/CUDA deep learning and vision ° C++/CUDA deep learning and vision
o library of layers o library of layers
o fast, general-purpose for o highly-optimized for given case:
ILSVRC, PASCAL, your data image, kernel, and batch size.

An active research and development Static codebase, no community
community: public on GitHub contributions: last update Jul 17, 2012

Seamless GPU/CPU switch GPU only

Model schemas Model schemas

o Define the model o Define the model

o Configure solver o Write and run solver command
o Finetuning o No finetuning

Wrappers for Python and MATLAB No wrappers: monolithic

Why not live caffeine-free?

It's all about speed.

cuda-convnet and DeCAF are awesome

o but cuda-convnet is inflexible

o and DeCAF is too slow

Caffe is fast

o with CPU: 2x speedup over DeCAF

o with GPU: 10x speedup (under C++)
Forward pass of a single image takes 2.5ms
o Caffe reference ImageNet model with ~60 million parameters
o (when in batch mode)

o (~20ms in CPU mode)

A Caffe Net

4)
[Input Blob]—> Ca'ﬂ:e N et >{0utput Blob]

(&)

Blob: all your data, derivatives, and parameters.

e example input blob (256 images, RGB, height, width)
o ImageNet training batches: 256 x 3 x 227 x 227

e example convolutional parameter blob
o 128 filters with 96 input channels:128 x 96 x 3 x 3

* The layer is the fundamental unit of computation.
 Caffe nets are composed of layers as defined in model schema.

_

Input Blob

256 X 3 x 227 x 227

J

caffe::ConvolutionLayer \

ksize: 11
stride: 4
num_output: 96

4 N\)
Weight Blob Bias Blob

96 x3x11 x 11 9% x1x1x1
\ 7 N J/

_

Output Blob

256 x 96 x 227 x 227

J

A Layer defines...

Forward: given input, computes the output. —»

Backward: given the gradient w.r.t. the output, compute the gradient w.r.t.
the input and its internal parameters. —p»>

Setup: how to initialize the layer.

/caffe::ConvqutionLayer \
ksize: 11

stride: 4
Input Blob ' Output Blob

256 x 3 x 227 x 227 256 x 96 x 227 x 227

Weight Blob ,
96 x 3 x 11 x Bias Blob

11 96x1x1x1L

Definition of a Net

Model schema are defined as Protocol Buffers:

message NetParameter {
optional string name = 1;
repeated LayerConnection layers = 2;
repeated string input = 3;
repeated int32 input_dim = 4;
}

schema definition at /src/caffe/proto/caffe.proto
Protocol Buffer documentation:
https://developers.google.com/protocol-buffers/
docs/overview

name: “linear_regressor”
input: “data”
input_dim: 1
input_dim: 3
input_dim: 28
input_dim: 28
layers {
layer {
name: “ip”
type: “innerproduct”
num_output: 10
}
bottom: “data”
top: “prediction”

https://developers.google.com/protocol-buffers/docs/overview

Definition of a Net

name: "mnist-small"
data layer for input
layers {
layer {
name: "mnist"
type: "data"
source: "data/mnist-train-leveldb"
batchsize: 64
scale: 0.00390625
}
top: "data"
top: "label”
}
linear classifier by inner product
layers {
layer {
name: "ip"
type: "innerproduct”
num_output: 10
weight_filler {
type: "xavier"
}
}

bottom: "data"
top: Ili pll
}

softmax loss for training
takes classifier output and labels
layers {
layer {
name: "prob"
type: "softmax_loss'
}
bottom: "ip"
bottom: "label"

}

ob (softmax loss)

How about ImageNet?

° It's another network definition... only this time a state-of-the-art model
® See caffe/models/imagenet.prototxt

Finetuning

Once you have a model-like caffe_reference imagenet_model-
you can solve many problems.

Where training from scratch can fail for lack of sufficient data,
finetuning can succeed.

Rename the layers you need to change...
...and continue training.
No coding needed.

layer { layer {
name: “fc8” name: “fc8-t”
type: “innerproduct” type: “innerproduct”
num_output: 1000 num_output: 397

A Few Practical Questions

What's the shortest path to features?

o Swap deep features into your pipeline without tears via the
Caffe Reference ImageNet model.
Any layer can be extracted.
Prototype with Python and MATLAB wrappers.

Do | have to train from scratch for every problem?

o Not at all! Finetune learned models to new data and tasks.

o Define a new model and solver.

o Call .ffinetune_net new_solver old_model # then get a cup of coffee

What do | do with my own loss, special operation, or data format?
o Well, this is trickier but doable.

o Code the layers needed.

o Define the model and carry on.

Questions!

Check out caffe.berkeleyvision.org,
the Github repository hitps://github.com/BVLC/caffe,
and our issue tracker hitps://github.com/BVLC/caffe/issues (but search before posting).

Try our examples and tutorials!

http://caffe.berkeleyvision.org
https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/issues

