Tiny Lisp Interpreter

Brent Seidel
Phoenix, AZ

March 16, 2021

ii

This document is (©)2021 Brent Seidel. All rights reserved.

Note that this is a draft version and not the final version for publication.

Contents

1 Introduction 1
1.1 What is This? o e 1
1.2 Why is This? o e e 1

1.2.1 Why Lisp? o e 1
1.2.2 Why Ada? e 2

2 The Language 3
2.1 User Interface o 3
2.2 Optimization 3
2.3 Syntax e 3

2.3.1 Special Characters 3
2.3.2 Reserved Words 4
2.3.3 Examples 4
2.4 Symbols and Variables L o 4
2.5 Operations 5
2.5.1 Normal Forms vs Special Forms 5
2.5.2 Arithmetic Operations 6
2.5.3 Boolean Operations 6
2.5.4 Character Operations v v v it 6
2.5.5 Comparison Operations i 7
2.5.6 Control Flow e 7
2.5.7 Debugging. 7
2.5.8 Functions e e 7
2.5.9 Input/Output L 8
2.5.10 List Operations e 8
2.5.11 Memory Access o L 9
2.5.12 Predicates e 9
2.5.13 String Related Operations 10
2.5.14 Symbol Related Operations 11
2.5.15 Variables 11
2.5.16 Error Handling 12
2.5.17 Other e 12
2.6 Data Types e e 12
2.6.1 Inmteger. Lo 12

iii

iv CONTENTS
2.6.2 Characters L 12
2.6.3 String e 13
2.6.4 Boolean L 13
2.6.5 List e e 13
2.6.6 Error 13

3 Operation Reference 14

3.1 Template L 14
3.1.1 Inputs . . .o 14
3.1.2 Output 14
3.1.3 Example. oL 14
3.1.4 Description L e 14
3.1.5 Common Lisp Compatibility 14

3.2 e 14
3.2.1 Inputs 15
3.22 Output 15
3.23 Example. Lo 15
3.2.4 Description L 15
3.2.5 Common Lisp Compatibility 15

3.3 - 15
3.3.1 Inputs 15
3.3.2 Outputo 15
3.3.3 Example. 15
3.3.4 Description L L 15
3.3.5 Common Lisp Compatibility 15

0 16
341 Inputs oL e 16
3.4.2 Output 16
343 Example. Lo 16
3.4.4 Description L 16
3.4.5 Common Lisp Compatibility 16

7 16
3.5.1 Inputs e 16
3.5.2 Output 16
3.5.3 Example. 16
3.5.4 Description L e 16
3.5.5 Common Lisp Compatibility, 17

3.6 = e 17
3.6.1 Inputs L 17
3.6.2 Output e 17
3.6.3 Example. 17
3.6.4 Description L 17
3.6.5 Common Lisp Compatibility 17

R T 17
3.7.1 Inputs e 17
3.7.2 Output 17

CONTENTS

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

v
3.7.3 Exampleo 18
3.7.4 Description L e e e 18
3.7.5 Common Lisp Compatibility 18
DS 18
3.8.1 Inputs e 18
3.8.2 Output 18
3.83 Example. 18
3.8.4 Description L 18
3.8.5 Common Lisp Compatibility 18
S 18
3.91 Inputs 18
3.9.2 Output 19
3.93 Example. 19
3.94 Description L 19
3.9.5 Common Lisp Compatibility 19
and . ..o e e 19
3.10.1 Inputs L 19
3.10.2 Output 19
3.10.3 Example oL 19
3.10.4 Description 19
3.10.5 Common Lisp Compatibility, 19
AITAYD « « o v v v e e e e e e e e e e e e e e e 20
3111 Inputs . . . oL e 20
3.11.2 Output o 20
3.11.3 Example Lo 20
3.11.4 Description Lo 20
3.11.5 Common Lisp Compatibility 20
atomp e 20
3121 Inputs e e 20
3.12.2 Output 20
3.12.3 Example oL 20
3.12.4 Description L 20
3.12.5 Common Lisp Compatibility 21
bit-vector-p L 21
3.13.1 Inputs 21
3.13.2 Output 21
3.13.3 Example Lo 21
3.13.4 Description L e 21
3.13.5 Common Lisp Compatibility 21
CAT © v v e e e e e e e e e e e 21
3.14.1 Inputs oL e 21
3.14.2 Output 21
3.14.3 Example oL 22
3.14.4 Descriptiono e 22
3.14.5 Common Lisp Compatibility 22
cdr ..o 22

vi

3.16

3.17

3.18

3.19

3.20

3.21

3.22

CONTENTS
3.15.1 Inputs e 22
3.15.2 Output 22
3.15.3 Exampleo 22
3.15.4 Description Lo 22
3.15.5 Common Lisp Compatibility 22
char . . . L e 22
3.16.1 Inputs oL e e 23
3.16.2 Output 23
3.16.3 Example oL L 23
3.16.4 Description 23
3.16.5 Common Lisp Compatibility, 23
char-code L 23
3.17.1 Inputs . . . Lo 23
3.17.2 Output L 23
3.17.3 Example oL 23
3.17.4 Description oL Lo e 23
3.17.5 Common Lisp Compatibility 23
char-downcase L L 24
3181 Inputso e e 24
3.18.2 Output 24
3.18.3 Example oL L 24
3.18.4 Description 24
3.18.5 Common Lisp Compatibility 24
char-upcase e e e 24
3.19.1 Inputs o e 24
3.19.2 Outputo 24
3.19.3 Example oL 24
3.19.4 Description L 24
3.19.5 Common Lisp Compatibility 25
characterp L 25
3.20.1 Inputs oL 25
3.20.2 Output 25
3.20.3 Example oL e 25
3.20.4 Description Lo e 25
3.20.5 Common Lisp Compatibility 25
code-char 25
3.21.1 Inputs e 25
3.21.2 Output o 25
3.21.3 Example oL 26
3.21.4 Description e 26
3.21.5 Common Lisp Compatibility, 26
COETCE . . v v v e e e e e e e e e e e e e e e e e e 26
3.22.1 Inputs L e 26
3.22.2 Output 26
3.22.3 Example oL e 26

3.22.4 Description Lo e 26

CONTENTS vii

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.22.5 Common Lisp Compatibility 26
compiled-function-po 27
3.23.1 Inputs 27
3.23.2 Outputo 27
3.23.3 Example oL 27
3.23.4 Description e 27
3.23.5 Common Lisp Compatibility 27
COMPIEXD . . . L e 27
3.24.1 Inputs oL 27
3.24.2 Output 27
3.24.3 Example oL 27
3.24.4 Description Lo e 27
3.24.5 Common Lisp Compatibility 28
concatenate e 28
3.25.1 Inputs e 28
3.25.2 Output 28
3.25.3 Example oL 28
3.25.4 Description e 28
3.25.5 Common Lisp Compatibility, 28
COMS & v v v e e e e e e e e e e e e e e e e e 28
3.26.1 Inputs e 28
3.26.2 Output 28
3.26.3 Example oL 29
3.26.4 Descriptiono e e 29
3.26.5 Common Lisp Compatibility 29
[0 T o 29
3.27.1 Inputs e 29
3.27.2 Outputo e 29
3.27.3 Example oL 29
3.27.4 Description L e 29
3.27.5 Common Lisp Compatibility, 29
defun. 30
3.28.1 Inputs L. e 30
3.28.2 Output 30
3.283 Example oL 30
3.28.4 Descriptiono 30
3.28.5 Common Lisp Compatibility 30
dotimes L e 30
3.29.1 Inputs L e e 30
3.29.2 Output e 30
3.29.3 Example oL 30
3.29.4 Description L 31
3.29.5 Common Lisp Compatibility, 31
dowhile 31
3.30.1 Inputs oL 31

3.30.2 Output 31

viii

CONTENTS

3.30.3 Example Lo 31
3.30.4 Description Lo e e 31
3.30.5 Common Lisp Compatibility 31

331 dump ..o 32
3.31.1 Inputs e 32
3.31.2 Output o 32
3.31.3 Example oL 32
3.31.4 Description 32
3.31.5 Common Lisp Compatibility 32

3.32 EITOTD « « v v v v e e e e e e 32
3.32.1 Inputs . . . L 32
3.32.2 Output 32
3.32.3 Exampleo oL 32
3.32.4 Descriptiono 32
3.32.5 Common Lisp Compatibility 33

333 exit. . .. e 33
3.33.1 Inputs e 33
3.33.2 Output 33
3.33.3 Exampleo Lo 33
3.33.4 Description L e 33
3.33.5 Common Lisp Compatibility 33

3.34 floatp 33
3.34.1 Inputso e 33
3.34.2 Output 33
3.34.3 Example Lo e 34
3.34.4 Descriptiono 34
3.34.5 Common Lisp Compatibility 34

3.35 fresh-line L 34
3.35.1 Inputs e 34
3.35.2 Outputo e 34
3.35.3 Example oL 34
3.35.4 Description L 34
3.35.5 Common Lisp Compatibility, 34

3.36 functionp L 34
3.36.1 Inputs L. e 34
3.36.2 Output 35
3.36.3 Exampleo 35
3.36.4 Description L 35
3.36.5 Common Lisp Compatibility 35
337 if e 35
3.37.1 Inputs L e 35
3.37.2 Output 35
3.37.3 Exampleo Lo 35
3.37.4 Descriptiono 35
3.37.5 Common Lisp Compatibility 36

3.38 integerp 36

CONTENTS ix

3.39

3.40

3.41

3.42

3.43

3.44

3.45

3.38.1 Inputs e 36
3.38.2 Output 36
3.38.3 Exampleo 36
3.38.4 Description oL 36
3.38.5 Common Lisp Compatibility 36
lambda L e 36
3.39.1 Inputs e e 36
3.39.2 Output 36
3.39.3 Example oL 37
3.39.4 Descriptiono 37
3.39.5 Common Lisp Compatibility 37
length e 37
3.40.1 Inputs 37
3.40.2 Outputo 37
3.40.3 Example oL 37
3.40.4 Description Lo e 37
3.40.5 Common Lisp Compatibility 37
let . o e 37
3411 Inputs oL e e 38
3.41.2 Output 38
3.41.3 Example oL 38
3.41.4 Descriptiono 38
3.41.5 Common Lisp Compatibility 38
List . . o e 38
3.42.1 Inputs 38
3.42.2 Output 38
3.42.3 Exampleo 38
3.42.4 Description oL Lo e 39
3.42.5 Common Lisp Compatibility 39
Listp . . o o e 39
3.43.1 Inputs oL e 39
3.43.2 Output 39
3.43.3 Example oL e 39
3.43.4 Description e 39
3.43.5 Common Lisp Compatibility 39
IMSE o o o e e e e e e e e e e e e e e e e e 39
3.44.1 Inputs 39
3.44.2 Output 39
3.44.3 Example oL 40
3.44.4 Description 40
3.44.5 Common Lisp Compatibility 40
NOL . . o o e e e e 40
3.45.1 Inputs oL 40
3.45.2 Output 40
3.45.3 Exampleo 40

3.45.4 Description Lo e e 40

3.46

3.47

3.48

3.49

3.50

3.51

3.52

3.53

CONTENTS

3.45.5 Common Lisp Compatibility 40
null . . L 40
3.46.1 Inputso e 41
3.46.2 Outputo 41
3.46.3 Example 41
3.46.4 Description Lo 41
3.46.5 Common Lisp Compatibility 41
NUMDETD o o e e e e e e e e 41
3471 Inputs oL e 41
3.47.2 Output 41
3473 Exampleo 41
3.47.4 Description Lo e e 41
3.47.5 Common Lisp Compatibility 42
OF v vt e e e e e e e 42
348.1 Inputs L e 42
3.48.2 Outputo 42
3.48.3 Example oL 42
3.48.4 Description L e 42
3.48.5 Common Lisp Compatibility, 42
packagep e 42
3.49.1 Inputs Lo e 42
3.49.2 Output 42
3.49.3 Example oL Lo 43
3.49.4 Description Lo e e 43
3.49.5 Common Lisp Compatibility 43
parse-integer L oL e e e 43
3.50.1 Inputs L 43
3.50.2 Outputo 43
3.50.3 Example oL 43
3.50.4 Description L e 43
3.50.5 Common Lisp Compatibility, 43
peek8 oL 44
3511 Inputs . . . Lo 44
3.51.2 Output L 44
3.51.3 Example oL oL 44
3.51.4 Description e 44
3.51.5 Common Lisp Compatibility 44
peeklBo 44
3.02.1 Inputs 44
3.52.2 Output 44
3.52.3 Example oL 44
3.52.4 Description L 45
3.52.5 Common Lisp Compatibility 45
peek32 . .o 45
3.53.1 Inputs . . . L 45

3.53.2 Output 45

CONTENTS xi

3.54

3.55

3.56

3.57

3.58

3.59

3.60

3.61

3.53.3 Exampleo 45
3.53.4 Description Lo e e 45
3.53.5 Common Lisp Compatibility 45
POKe8 . e 45
3.04.1 Inputs e 46
3.54.2 Outputo 46
3.54.3 Example oL 46
3.54.4 Description L 46
3.54.5 Common Lisp Compatibility 46
PokelB e 46
3.55.1 Inputs oL e e 46
3.55.2 Output 46
3.55.3 Example oL 46
3.55.4 Descriptiono 46
3.55.5 Common Lisp Compatibility 47
POKke32 . . L e 47
3.56.1 Inputs oL 47
3.56.2 Output 47
3.56.3 Example 47
3.56.4 Description 47
3.56.5 Common Lisp Compatibility 47
Print . . . Lo e 47
3.57.1 Inputs . . . Lo 47
3.57.2 Output 47
3.57.3 Exampleo 48
3.57.4 Description 48
3.57.5 Common Lisp Compatibility 48
PTOZIL . v v v v e e e e e e e e 48
3.08.1 Inputs e 48
3.58.2 Outputo e 48
3.58.3 Example oL 48
3.58.4 Description L e 48
3.58.5 Common Lisp Compatibility 48
QUOTE . . o o o e e e 49
3.509.1 Inputs L 49
3.59.2 Output 49
3.59.3 Exampleo 49
3.59.4 Description L 49
3.59.5 Common Lisp Compatibility 49
rationalp L L e 49
3.60.1 Inputs e 49
3.60.2 Output 49
3.60.3 Example L 49
3.60.4 Description e 49
3.60.5 Common Lisp Compatibility 50

read-line e e e e e e e 50

xii

3.62

3.63

3.64

3.65

3.66

3.67

3.68

CONTENTS
3.61.1 Inputs 50
3.61.2 Output L 50
3.61.3 Example e 50
3.61.4 Description L 50
3.61.5 Common Lisp Compatibility 50
realp . .o 50
3.62.1 Inputs 50
3.62.2 Output e 50
3.62.3 Exampleo 51
3.62.4 Description 51
3.62.5 Common Lisp Compatibility, 51
TEbUIDL L o o e e e e 51
3.63.1 Inputs 51
3.63.2 Output L 51
3.63.3 Example 51
3.63.4 Description Lo e 51
3.63.5 Common Lisp Compatibility 51
SEEA . 52
3.64.1 Inputs oL e e 52
3.64.2 Output 52
3.64.3 Example L 52
3.64.4 Description L e 52
3.64.5 Common Lisp Compatibility 52
simple-bit-vector-p 52
3.65.1 Inputs 52
3.65.2 Output 52
3.65.3 Example 52
3.65.4 Description L 52
3.65.5 Common Lisp Compatibility 53
simple-string-p L L 53
3.66.1 Inputs 53
3.66.2 Output 53
3.66.3 Example L 53
3.66.4 Description 53
3.66.5 Common Lisp Compatibility 53
simple-vector-p oL 53
3.67.1 Inputs oL e 53
3.67.2 Output 53
3.67.3 Example 54
3.67.4 Description e 54
3.67.5 Common Lisp Compatibility 54
sleep . . 54
3.68.1 Inputs 54
3.68.2 Output e 54
3.68.3 Example L 54

3.68.4 Description e e 54

CONTENTS xiii

3.68.5 Common Lisp Compatibility 54
3.69 string-downcase e e e e 54
3.69.1 Inputs e 54
3.69.2 Output 55
3.69.3 Exampleo 95
3.69.4 Description L 95
3.69.5 Common Lisp Compatibility 55
3.70 string-upcase e 95
3.70.1 Inputs L. e 95
3.70.2 Outputo 55
3.70.3 Example oL 95
3.70.4 Description L 95
3.70.5 Common Lisp Compatibility 55
.71 stringp o e 95
3711 Inputs . . . L oL e 56
3.71.2 Output o 56
3.71.3 Example oL e 56
3.71.4 Description L 56
3.71.5 Common Lisp Compatibility, 56
3.72 subseqo e 56
3.72.1 Inputs oL e 56
3.72.2 Output 56
3.72.3 Example oL e 56
3.72.4 Description Lo e 56
3.72.5 Common Lisp Compatibility 56
3.73 symbolp L 57
3.73.1 Inputs L e 57
3.73.2 Output 57
3.73.3 Example oL 57
3.73.4 Description 57
3.73.5 Common Lisp Compatibility 57
3.74 berpri ... oL e e 57
3.74.1 Inputs 57
3.74.2 Output 57
3.74.3 Example oL 57
3.74.4 Description Lo e e e 57
3.74.5 Common Lisp Compatibility 58
3.75 VECtOTD .« o o o e e 58
3.75.1 Inputs e e 58
3.75.2 Output 58
3.75.3 Example oL 58
3.75.4 Description Lo e e 58

3.75.5 Common Lisp Compatibility 58

xiv CONTENTS
4 Internals 59
4.1 Operation L e 59
4.1.1 Read o e 59
4.1.2 Parse e e 59
4.1.3 Evaluate. L 59
4.1.4 Print . . . oL e 59

4.2 Package Organization e 60
421 BBS.1isp 60

4.3 Data Structures 61
4.3.1 Elements e 61

4.3.2 CONS . . . oo 63
4.3.3 Symbolso 63
4.3.4 Values 64
4.3.5 Stringso e 65
4.3.6 Functions e 65
4.3.7 The Stack 65
4.3.8 Global Data e 66
4.3.9 Memory Management Lo 66

4.4 Utility Functions o e 67
441 BBS.1isp 67
442 BBS.lisp.evaluate 68
4.4.3 BBS.lisp.utilities 68

4.5 Embedding 68
4.5.1 Adding Custom Operations, 69

4.6 Opportunities for Optimizing 70
4.6.1 Memory Management L Lo 70
4.6.2 Constant eXpressionso i e e 70

4.6.3 The Symbol Table 70

Chapter 1

Introduction

This document provides a definition of a Tiny-Lisp interpreter written in Ada. Without such a
definition, it is difficult to determine if the language is actually doing what it should be doing. This
makes debugging more complicated.

1.1 What is This?

This is a Tiny-Lisp interpreter written in Ada. It is designed to proved a language that can
be embedded into other programs, including running on embedded systems without an operating
system. As a result, effort has been made to remove dependencies on Ada packages that may not
be available. A primary example is Ada.Text_I0. Another feature that may be missing is dynamic
memory allocation.

1.2 Why is This?

As a young lad, I learned to program on 8-bit computers with minimal BASIC interpreters and 4-
16K of RAM. With these simple systems, one had a hope of being able to understand the complete
system at a fairly low level. Now, one can buy small computers like the Arduino Due with 32-bit
processors, 96K of RAM, and 512K of flash memory (I'm ignoring systems like the Raspberry PI
as they are full up Linux computer and thus are more complicated). This seemed like a reasonable
platform for recreating the early experience.

1.2.1 Why Lisp?

Why not? My first thought was to use some flavor of Tiny BASIC which would have more in common
with those early systems. I then realized that Lisp is much easier to parse. Being somewhat lazy
and interested in various computer languages, I decided that some form of a “Tiny-Lisp” would be
a good idea.

Tiny-Lisp can be thought of as a small subset of Common Lisp, with some extensions of use
to embedded systems. Most of the more complex features of Common Lisp are not and probably

1

2 CHAPTER 1. INTRODUCTION

never will be available in this Tiny-Lisp. However, one should be able to write code in Tiny-Lisp
and have it actually run on a Common Lisp system.

1.2.2 Why Ada?

Again, why not? I have developed an interest in Ada, especially for programming embedded
systems. It has features, such as strong typing, which can help to catch errors early, thus saving
time debugging. I would not claim to be the world’s greatest programmer, so I need all the help
that I can get.

Chapter 2

The Language

As a “Tiny-Lisp”, some (many) of the features of Common Lisp are not available. Some of the lacks
may be temporary while others will be permanent, and some may be added by the host program.

2.1 User Interface

The interpreter reads text from an input device, parses it, and and executes it. The function used
to read the input must match the signature for Ada.Text_I0.Get_Line() and this will probably be
used if that is available. On an embedded system without Ada.Text_I0, the user must provide a
suitable function.

Comments

w.

A comment starts with a semicolon character, “;”, and extends to the end of the line. Any text in
a comment is ignore by the interpreter.

Continuation

If a list isn’t closed (number of open parentheses matches the number of close parentheses) by the
end of the line, the interpreter will ask for more text. This will continue until the list is closed.

2.2 Optimization

None. Some could possibly be added, but right now the focus has been on getting things to work
correctly.

2.3 Syntax

2.3.1 Special Characters

There are only a few characters with special significance. Parenthesis, “(” and “)”, are used for
delimiting lists. Quotation marks, “”” are used for delimiting strings. The apostrophe “’” is used

3

4 CHAPTER 2. THE LANGUAGE

[IR}]

for quoting symbols or lists. The semicolon, “;”, indicates a comment. The pound sign (octothorp)
“#” is used to indicate certain special processing. Spaces are used to separate elements in a list.
That’s about it. However, it’s probably best to avoid most symbol characters since some more
special characters may be added. A good rule of thumb would be to avoid any special characters
that are used by Common Lisp.

The language is case insensitive thus, CAR, car, cAr, etc all are considered identical by the
language.

2.3.2 Reserved Words

There are almost none. T and NIL refer to the boolean true and false values, and you can’t define a
symbol that it already used for a builtin or special operation. However, even the builtin and special
operations are not, strictly speaking, reserved words. Their names are strings that are added to
the symbol table during program initialization. They can easily be changed (say to translate into
a different language) and the interpreter recompiled.

2.3.3 Examples

The basic syntax for languages in the Lisp family is very simple. Everything is a list of elements,
where each element may also be a list. Elements are separated by spaces and the list is contained
in parentheses. Here is a simple list:

(+1 2 3)

The first element in the list is the symbol “4”. The following elements are “17, “2”, and “3”. The
“+” symbol is the addition operation and adds the following integers together. Thus, the example
would return the integer “6”.

A more complicated example:

(+ (x 2 3) (x 4 5))

This is equivalent to 2 * 3 + 4 x 5. Breaking this down, the first element of the outside list is “4”.
The second element is the list (* 2 3) and the third element is the list (* 4 5). Since “*” is the
symbol for the multiplication operation, this returns a value of 26.

A final example:

(print ”Hello_.World!”)

This list consists of only two elements. The first is the symbol print. The second is the string
“Hello World!”. With strings, everything from the starting quotation mark to the next quotation
mark is part of the string. This means that you can’t have a string that contains a quotation mark
(at some point, a work-around may be available).

2.4 Symbols and Variables

Elements that are not numbers, strings, or lists are symbols or variables. In determining what the
element represents, the search order is:

1. Boolean literals are checked first.

2.5. OPERATIONS)

2. Builtin or Special symbols are checked next.

3. Variables in the most recent stack frame.

4. Variables in older stack frames.

5. Variable symbols are checked last. These can be considered to be global variables.

All symbols share the same namespace. This makes this Tiny-Lisp a LISP-1 (for those who are
interested in such things). It is possible that this will change at some point.

Another thing to be aware of is that if a function is defined within a function definition or local
block, the inner definition may reference locals or parameters in the outer blocks. In Common Lisp,
this creates a closure where the variables remain accessible. This does not work in Tiny-Lisp and
may cause an error when the function is called. It is best to define functions are the top level for
now. For example, consider the following:

(let ((a 10)) (defun test (b) (print "Sum.is.” (+ a b)) (terpri))
(test 5))

(test 6)

(let ((a 20)) (test 7))

(let ((b 30)) (test 8))

The first call (test 5) produces “Sum is 15”. The second (test 6) and fourth (test 8) calls
produce an error. The third call (test 7) produces “Sum is 27”.

2.5 Operations

A limited number of operations are defined. Note that this list will probably be expanded.

2.5.1 Normal Forms vs Special Forms

A number of normal forms are defined. The main difference between normal forms and special
forms is that all active arguments for a normal form are evaluated. Thus:

(* (+ 1 2) (+ 3 4))
j' Versus

(if > 12) (+12) (+ 3 4))

“*” s a normal operation and both (+ 1 2) and (+ 3 4) are evaluated before “*” is evaluated.

If is a special form so first (> 1 2) is evaluated, then depending on whether the result is T or NIL,
either (+ 1 2) or (+ 3 4) is evaluated. For a simple example like this, it doesn’t really matter,
but if the operations have other effects, such as:

(if (> 1 2) (print ”Greater”) (print ”"Not.greater”))

will only print “Not greater”.

6 CHAPTER 2. THE LANGUAGE

2.5.2 Arithmetic Operations

Four arithmetic operations are defined for operation on integers. The operations are addition,
subtraction, multiplication, and division. For example:

(+ 123 4)
(— 123 4)
(x 1.2 3 4)
() 123 4)

These operations work on a list of one or more parameters, with the operation inserted between
the parameters. Thus (+ 1 2 3 4) computes as 1 + 2 + 3 + 4. The return value for each of these
operations is an integer value.

Note that division by zero is not checked. If this occurs, an Ada exception will be thrown. In
some cases, this might be useful.

2.5.3 Boolean Operations

Three basic boolean operations are provided. These work on either boolean or integer variables.

(not NIL)
(and 1 5 7)
(or 1 2 4)

The not operation operates on a single parameter. If the parameter is boolean, the return value
is the inverse of the parameter (VIL — T, T — NIL). If the parameter is integer, the individual
bits of the integer are inverted and the resulting value returned.

The and and or operations operate on either booleans or integers as long as they are not mixed.
These perform the logical and and or operations. Both of these operations short circuit. As soon
as the result is T or -1 or or or NIL or 0 for and, processing additional parameters will not change
the result so evaluation of parameters stops and the result is returned.

2.5.4 Character Operations

The normal comparison operations work on characters. There are also some operations defined to
operate on characters.

(char—downcase #\A)
(char—code #\B)
(char—upcase #\c)
(code—char 65)

The char-code and code-char operations convert between characters and their integer codes.
Given an integer in the range 0-255, code-char returns the corresponding character value. Given
a character value, the function char-code returns the corresponding integer (usually the ASCII
code.

The char-downcase and char-upcase operations convert characters between upper and lower
case. Non-alphabetic characters are not changed.

2.5. OPERATIONS 7

2.5.5 Comparison Operations

Four comparison operations are defined for integers, strings, and booleans Note that this is different
from Common Lisp which has separate operations defined for different types. The operations are
equals, not equals, greater than, and less than. Equality and not equality is also defined for quoted
symbols. For example:

(=1 2)
(/=1 2)
(< 1 2)
(>12)

These operations work on two parameters of the same type. The return value of each of these
operations is a boolean.

2.5.6 Control Flow
A couple of control flow special forms are available. More will probably be added.

(if (> 1 2) (print "True”) (print "False”))
(dowhile (> 1 2) (print ”"Forever”) (terpri))
(dotimes (n 5 10) (print ”This_.is_printed_5_times”) (terpri))

The if form has two or three parameters. The first parameter is a condition. If the condition
evaluates to T, then the second parameter is evaluated. If the condition evaluates to NIL, then the
third parameter, if present, is evaluated.

The dowhile form has two parameters. The first is a condition. The second is a list of operations
to be evaluated. The second parameter is evaluated as long as the condition evaluates to T.

The dotimes form also has two parameters. The first is a list with two or three elements. The
first element is the name of the local variable used as a loop counter. The second element is a
positive integer giving the number of times to loop. The third is a value to return at the end of
the loop. If the return value is not provided, NIL is returned. The second parameter is a list of
operations to be evaluated.

2.5.7 Debugging

Some additional operations are provided for debugging purposes. These control the display of some
debugging information.

(dump)
(msg T)
(msg NIL)

The dump operation prints the contents of the cons, symbol, and string tables. The msg operation
turn the display of debugging information on and off. These are helpful when trying to debug the
interpreter and should not be necessary during normal operation.

2.5.8 Functions

8 CHAPTER 2. THE LANGUAGE

(defun fib (n)
(if (< n 2)
1
(+ (fib (= n 2)) (fib (= n 1)))))
(lambda (a b) (+ a b))

the defun form is used to create a user defined function. The first parameter is a symbol for the
function name. The second parameter is a list of the parameters for the function. If the function
has no parameters, the empty list “()” is used. Following this is a list of statements for the function.
The function returns the value from the last statement to return a value.

The lambda form returns a user defined function. This function can be assigned to a variable
or passed as a parameter to another function.

2.5.9 Input/Output

As this Lisp may run on systems without filesystems, only a few operations are provided for input
and output. These are:

(print ”Strings.” 1 2 N)
(fresh—1line)

(read—line)

(terpri)

The print form prints the list of objects to the standard output. No newline is added to the
end. It returns NIL_ELEM.

The fresh-line prints a newline to the standard output if the output is not already at the
start of a line. It returns NIL_ELEM.

The read-1line reads a line of text from the standard input, terminated by a newline. It returns
the text as a string without the newline.

The terpri prints a newline to the standard output. It returns NIL_ELEM.

2.5.10 List Operations

Basic list operations are provided.

(car (1 2 3 4))

(cdr (1 2 3 4))

(cons 1 (cons 2 ()))

(quote (+ 1 2) 3 4 (x 56 7 8))
(list (+ 1 2) 34 (x 56 7 8))

Each of car and cdr take one parameter that should be a list. Car returns the first item in the
list. This item may be a single element or it may be a list. Cdr returns the remainder of the list.

The cons operation creates a cons cell and sets the car field to the first parameter and the
cdr to the second parameter. This exposes a subtle difference between Tiny-Lisp and Common
Lisp. In Tiny-Lisp, NIL is a constant of boolean type, while in Common Lisp, it also represents
an empty list. Thus (cons 1 NIL) produce slightly different results, (1 . NIL) for Tiny-Lisp or
(1) for Common Lisp. If you wish to produce the Common Lisp results, where the car points to
a value and the cdr is an empty pointer, you can use (cons 1 ()) or (cons 1). The former is
preferred as it is compatible with Common Lisp.

2.5. OPERATIONS 9

The 1ist operation returns its parameters as a list after evaluating each of them. This is similar
to quote except that quote does not evaluate the parameters. Thus (quote (+ 1 2) 3 4 (* 5
6 7 8)) returns ((+ 1 2) 34 (*x 56 7 8)), while (1ist (+ 1 2) 3 4 (x 5 6 7 8)) returns
(3 3 4 1680).

The quote operation returns its parameters as a list without evaluating any of them. In many
cases this is not needed since if the first item in a list is not a symbol representing an operation
or user defined function, the list simply evaluates to itself. At some point, this may change to be
more compatible with Common Lisp.

2.5.11 Memory Access

Here be dragons! Use at your own risk. These operations are intended for use on embedded systems
to access memory mapped peripheral devices. Access to a memory map is essential so that you
know which locations to access.

(peek8 #x400E0940)
(peekl16 #x400E0940)
(peek32 #x400E0940)
(poke8 #x100 5)
(pokel6 #x110 10)
(poke32 #x1000 32)

The peek operations read 8, 16, or 32 bits from the specified memory location. Depending
on the hardware, there may be memory alignment requirements, or certain operations will only
work on some addresses. For example, the bytes of the Chip ID (CHIPID_CIDR) register on the
SAM3XS8E works using peek8, but hangs when using peek16 or peek32. The returned value is the
contents of memory at the specified location.

The poke operations write a 8, 16, or 32 bit value to the specified memory location. This is
even more dangerous that the peek operations. You have been warned! The return value is the
value written to the memory location.

2.5.12 Predicates

A wide variety of predicates are provided. These mostly match the ones in Common Lisp. Note that
some of these will always return NIL due to missing features. There may also be some differences
in corner cases due to implementation differences between Common Lisp and Tiny-Lisp.

:

;5 The following will always return NIL as the data types or features

; are not implemented.

(arrayp (1 3 5))
(bit—vector—p (1 2 3))
(complexp +)

(floatp 3)

(vectorp (1 2 3)
(rationalp ”Hello”)
(realp 4)

10 CHAPTER 2. THE LANGUAGE

(simple—vector—p print)
(simple—bit—vector—p #x0FOFOFOF)
(packagep "package”)

(vectorp (1 2 3)

; The following will return NIL or T depending on the parameter.

(atomp 1)
(characterp #\A)
(compiled—function—p print)
(consp (1 2 3))
(errorp (+ 1 7A”))
(functionp functionp)
(integerp 3)
(listp (2 4 6))

(numberp 4)

(null ()
(simple—string—p ” Hello”)
(stringp ”Hello”)
(symbolp car)

Some corner cases to watch out for are:

1. Tiny-Lisp does not treat () and NIL exactly the same so nullp may not always do what it
does in Common Lisp.

2. Tiny-Lisp does not have arrays or vectors. Strings are managed as linked lists in a separate
allocation pool. Thus stringp and simple-string-p are treated the same and return T for
any string and NIL for anything else.

3. Some of these operations evaluate the parameter to get a value to check and some do not.
It’s best not to get too creative with them.

2.5.13 String Related Operations

These operations are related to strings, but may have wider scope.

(length ”Hello,_this.is.a.test”)

(length (list 1 2 3 4 5))

(char ”This_is_a_test_string” 5)
(parse—integer 7427)

(string—downcase "HELLO”)

(string—upcase ”hello”)

(subseq ”This.is._a_test_of_a_subsequence” 5 10)

The length operation works on all types. For strings, it returns the number of characters in the
string. For lists, it returns the number of elements in a list. For integers, characters, and booleans,
it returns 1. For an empty list, it returns 0.

2.5. OPERATIONS 11

The char operation returns a specific character in a string, where the first character is character
number 0.

The parse-integer operation parses the passed string as an integer. Positive and negative
decimal integers are supported. Parsing ends when a non-decimal character is encountered.

The string-downcase and string-upcase operations make a copy of the passed string and
convert it to all upper or all lower case. The original string is unchanged.

The subseq operation returns a substring of the original string. The first parameter is the
string. The second parameter is the starting character (0 based). The third parameter is optional.
If present, it is the index (not length of the substring) of the first character not part of the substring,.
If absent, the substring extends to the end of the original string.

2.5.14 Symbol Related Operations

Some operations use a quoted symbol to indicate what type of operation should be performed or
what type of date should be returned. These thus require a bit more description than some of the
other operations.

(coerce t ’integer)
(concatenate ’string ”First._string ,.” ”second._string ,.”
"and.finally _the_third._string.”)

The coerce operation is used to convert data of one type to another. The current supported
conversions are:

e Boolean — Integer
e Boolean — String

e Character — String
e Integer — Boolean

Converting a type to itself is supported, but probably isn’t very useful. Also of note is that
coercing a string to a string returns a string object that points to the original string data structure,
not a copy.

The concatenate operation works on both strings and lists. It constructs a new list or string
that is the concatenation of the parameters. Note that in the case of a list, elements that are lists
or strings are not copied. Only the references are copied.

2.5.15 Variables

Both global and local variables are supported.

(setq variable 1)

(let (varl (var2 2) (var3))
(print ”varl.is.” varl 7._.var2.is.’
(terpri))

» var2 "var3d.is.” var3d)

The setq form sets a value for a symbol or stack variable. If a symbol and an active stack
variable have the same name, the stack variable will be used. The first parameter is the symbol

12 CHAPTER 2. THE LANGUAGE

and the second parameter is the value. If the symbol does not yet exist, it is created. Symbols that
already exist as builtin or special can’t be used for values. The second parameter is evaluated to
return the value.

The let form creates local variables on the stack and an environment for other statements that
use them. Variables can have an optional initial value. If no initial value is provided, the variable
is set to NIL. The value returned from the let form is the value of the last statement executed.

2.5.16 Error Handling

In cases where the interpreter detects an error, the current operation returns an element of type
E_ERROR. Currently, the only thing that can be done with this is to check if it is present using
errorp. It is expected that this will eventually be expanded to include error codes that can help
identify what sort of error occurred.

2.5.17 Other
There are a few operations that do things that can’t be easily categorized.

(exit)
(sleep 1000)

The exit operation just exits the interpreter. It should mainly be used from the command line.
It may cause problems in some cases if used in a function.

The sleep operation suspends program execution for the specified number of milliseconds. This
is different from Common Lisp, where the parameter is a float in units of seconds. Since Tiny-Lisp
is integer only, this doesn’t work well, thus the difference.

2.6 Data Types

A limited selection of data types is provided. Think of the old Applesoft Integer BASIC.

2.6.1 Integer

This is a 32 bit signed integer. Integer literals can be given as either signed decimal integers, with
a minus sign, “-”, indicating negative numbers. This is just as one would expect, however don’t
use a plus sign, “+”, to indicate positive numbers. Integers can also be expressed as unsigned
hexadecimal numbers by preceding the number by “#x”.

2.6.2 Characters

Character literals are introduced by preceding the literal by “#\”. The following character is the
character used, with some exceptions. The end of a line is always the end of a line, so this cannot be
used to create a character containing a newline. If the first character is alphabetic and is followed
by further alphabetic characters, it is interpreted as a character name. The defined character names
are:

e Space

2.6. DATA TYPES 13

Newline

e Tab
e Page

Rubout

Linefeed

e Return
e Backspace

Thus, the correct way to create a character containing a newline is “#\newline”. Note that the
character names are case insensitive.

2.6.3 String

Strings are stored in linked lists of 8-bit characters/bytes. Each node in the list can hold 16
(adjustable by a parameter) bytes. Unicode is not currently supported.

2.6.4 Boolean

The Boolean values NIL and T correspond to True and False. An empty list “()” is also interpreted
as NIL.

2.6.5 List

The list is the basic complex data type. A list element has two slots (historically called car and
cdr). Typically the car slot contains a data value and the ecdr slot contains a pointer to the next
list element. The end of a list is indicated by a NIL value in the cdr slot.

2.6.6 Error

There is currently only one possible error value. This is used to signal that some sort of error has
occurred. It is expected that this will eventually be expanded to include a code to help identify
what sort of error occurred.

Chapter 3

Operation Reference

This is an alphabetical list of all the operations.

3.1 Template

This is the template for each operation.

3.1.1 Inputs

The inputs are listed here.

3.1.2 Output
Any output is listed here.

3.1.3 Example

An example of the operation is listed here.

3.1.4 Description

This describes the operation. In many cases, it will be fairly simple.

3.1.5 Common Lisp Compatibility

This subsection discusses compatibility with Common Lisp. Usually, this will be a subset of Com-
mon Lisp. In some cases, it may be a superset. For example the comparison operators work on
more types than Common Lisp supports.

3.2 +

Addition

14

3.3. - 15

3.2.1 Inputs

Any number of integers.

3.2.2 Output

An integer representing the sum of the inputs.

3.2.3 Example

(+ 12 3)

Returns the value 6.

3.2.4 Description

This operation adds a series of integers. Note that there is a possibility for integer overflow.

3.2.5 Common Lisp Compatibility

This is a subset of Common Lisp in that it only works on integers.

3.3 -

Subtraction

3.3.1 Inputs

Any number of integers.

3.3.2 Output

An integer representing the difference of the inputs. Note that there is a possibility for integer
overflow.

3.3.3 Example

(- 12 3)

Returns the value -4.

3.3.4 Description

This operation subtracts a series of integers. This is done by starting with the first value, then
subtracting the second value (if any). The next value is subtracted from the result.

3.3.5 Common Lisp Compatibility

This is a subset of Common Lisp in that it only works on integers.

16 CHAPTER 3. OPERATION REFERENCE

3.4 *

Multiplication

3.4.1 Inputs

Any number of integers.

3.4.2 Output

An integer representing the product of the inputs. Note that there is a possibility for integer
overflow.

3.4.3 Example

(+ 1 2 3)

Returns the value 6.

3.4.4 Description

This operation multiplies a series of integers.

3.4.5 Common Lisp Compatibility

This is a subset of Common Lisp in that it only works on integers.

3.5 /
Division

3.5.1 Inputs

Any number of integers.

3.5.2 Output

An integer representing the quotient of the inputs. Division by zero is not checked and will cause
an exception.

3.5.3 Example
(/ 1.23)

Returns the value 0.

3.5.4 Description

This operation divides a series of integers. This is done by starting with the first value, then
dividing by the second value (if any). The result is then divided by the next value, and so on.

3.6. = 17

3.5.5 Common Lisp Compatibility

This is a subset of Common Lisp in that it only works on integers.

3.6 =

Equals

3.6.1 Inputs

Compares two values of the same type.

3.6.2 Output

T if the values are equal, otherwise NIL.

3.6.3 Example

(=1 2)

Returns the value NIL.
3.6.4 Description

This operation compares two values of the same type for equality.

3.6.5 Common Lisp Compatibility

This operation works on integers, booleans, strings, and quoted symbols.

3.7 /=

Not-equals

3.7.1 Inputs

Compares two values of the same type.

3.7.2 Output

T if the values are not equal, otherwise NIL.

18 CHAPTER 3. OPERATION REFERENCE

3.7.3 Example

(=1 2)

Returns the value NIL.
3.7.4 Description

This operation compares two values of the same type for not equality.

3.7.5 Common Lisp Compatibility

This operation works on integers, booleans, strings, and quoted symbols.

3.8 <
Less Than
3.8.1 Inputs

Compares two values of the same type.

3.8.2 Output

T if the first value is less than the second value, otherwise NIL.

3.8.3 Example

(<1 2)

Returns the value T.

3.8.4 Description

This operation compares two values of the same type for less than.

3.8.5 Common Lisp Compatibility

This operation works on integers, booleans, and strings.
3.9 >
Greater Than

3.9.1 Inputs

Compares two values of the same type.

3.10. AND 19

3.9.2 Output

T if the first value is greater than the second value, otherwise NIL.

3.9.3 Example

(> 1 2)

Returns the value NIL.
3.9.4 Description

This operation compares two values of the same type for greater than.

3.9.5 Common Lisp Compatibility

This operation works on integers, booleans, and strings.

3.10 and

Logical or bitwise and.

3.10.1 Inputs

Performs the logical or bitwise and on values of the same type.

3.10.2 Output

If the input parameters are boolean then the output is boolean. If the input parameters are
integer, the output is integer.

3.10.3 Example

(and 1 3 4)

Returns the value 1.

3.10.4 Description

If the two parameters are boolean, the result is the logical and of the parameters. If the two param-
eters are integer, then the result is the bitwise and of the parameters. Processing of parameters
stop when the result is either NIL of boolean values, or 0 (zero) for integer values.

3.10.5 Common Lisp Compatibility

This operation performs a bitwise and for integers. This is probably more useful for embedded
systems.

20

3.11 arrayp

Is parameter an array?

3.11.1 Inputs

A single value. Any additional values are ignored..

3.11.2 Output
NIL.

3.11.3 Example

(arrayp 1 2 3)

Returns the value NIL.
3.11.4 Description

CHAPTER 3. OPERATION REFERENCE

Since arrays are not a supported datatype, this always returns NIL.

3.11.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They

are just silently ignored.

3.12 atomp

Is parameter an atom?

3.12.1 Inputs

A single value. Any additional values are ignored..

3.12.2 OQOutput

T or NIL

3.12.3 Example

(atomp 1 2 3)

Returns the value T.

3.12.4 Description

Returns T if the first value is an atom. Returns NIL otherwise. Since the only non-atom datatype
supported is a list, this really just checks if the value is a list.

3.13. BIT-VECTOR-P 21

3.12.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

3.13 bit-vector-p

Is parameter a bit vector?

3.13.1 Inputs

A single value. Any additional values are ignored.

3.13.2 Output

NIL.

3.13.3 Example

(bit—vector—p 1 2 3)

Returns the value NIL.
3.13.4 Description

Since bit vectors are not a supported datatype, this always returns NIL.

3.13.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

3.14 car

Returns the first element of a list

3.14.1 Inputs

If the first value is a list, return the first value of that. Otherwise return the first value.

3.14.2 Output

The first value of a list.

22 CHAPTER 3. OPERATION REFERENCE

3.14.3 Example

(car 1 2 3)

Returns the value 1.

3.14.4 Description

Returns the first value of a list. If the first value passed is a list, then return the first value of that.
Otherwise the list of parameters is treated as a list and the first value is returned.

3.14.5 Common Lisp Compatibility

If multiple parameters are passed, the first one is returned. Compatible with Common Lisp if only
one parameter is passed.

3.15 cdr

Returns all but the first element of a list

3.15.1 Inputs

If the first value is a list, return all but the first value of that. Otherwise return all but the first
value.

3.15.2 OQOutput
All but he first value of a list.

3.15.3 Example

(cdr 1 2 3)

Returns the value (2 3).
3.15.4 Description

Returns all but the first value of a list. If the first value passed is a list, then return all but the
first value of that. Otherwise the list of parameters is treated as a list and all but the first value is
returned.

3.15.5 Common Lisp Compatibility

If multiple parameters are passed, all but the first one is returned. Compatible with Common Lisp
if only one parameter is passed.

3.16 char

Returns a specified character in a string.

3.17. CHAR-CODE 23

3.16.1 Inputs

A string and an integer.

3.16.2 Output

A character.

3.16.3 Example

(char "This_is_a.string” 5)

b2

Returns the character “i

3.16.4 Description

Returns the specified character in a string where the first character is number 0.

3.16.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

3.17 char-code

Returns the integer ASCII value of a character.

3.17.1 Inputs

A character.

3.17.2 Output

A character.

3.17.3 Example

(char—code #\A)

Returns the integer 65.
3.17.4 Description

This returns the integer ASCII (you might be able to find some odd systems where this is not true)
code for the provided character. Unicode is not currently supported.

3.17.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

24 CHAPTER 3.

3.18 char-downcase

Converts a character to lower case.

3.18.1 Inputs

A character.

3.18.2 Output
A character.
3.18.3 Example

(char—downcase #\A)

Returns the character “a”.

3.18.4 Description

OPERATION REFERENCE

If the character passed is uppercase, convert it to lowercase and return it. Otherwise return the

character unchanged.

3.18.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They

are just silently ignored.

3.19 char-upcase

Converts a character to upper case.

3.19.1 Inputs

A character.

3.19.2 Output

A character.

3.19.3 Example

(char—upcase #\a)

Returns the character “A”.

3.19.4 Description

If the character passed is lowercase, convert it to uppercase and return it. Otherwise return the

character unchanged.

3.20. CHARACTERP 25

3.19.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

3.20 characterp

Is parameter a character?

3.20.1 Inputs

A single value. Any additional values are ignored.

3.20.2 OQOutput

A boolean value

3.20.3 Example

(characterp 1)

Returns the value NIL.
3.20.4 Description

Returns T if the first value is a character. Otherwise it returns NIL. Note that a string containing
a single character is not the same as a character.

3.20.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

3.21 code-char

Converts an integer to a character where the integer is the ASCII representation of the character.
The integer is limited to the range 0-255.

3.21.1 Inputs

A single integer. Any other parameters are ignored.

3.21.2 Output

The character represented by the ASCII code input.

26 CHAPTER 3. OPERATION REFERENCE

3.21.3 Example

(code—char 65)

Returns the character ‘A’.

3.21.4 Description
This can be used to generate any 8 bit ASCII character.

3.21.5 Common Lisp Compatibility

Common Lisp allows a larger range than 0-255 since Unicode is supported.

3.22 coerce

Converts a value of one type to another type

3.22.1 Inputs

Two values. The first value is the item to be converted. The second value is a quoted symbol
representing the result type.

3.22.2 Output
A value of the desired type.

3.22.3 Example

(coerce NIL ‘integer)

Returns the integer value 0.

3.22.4 Description

The result is a representation of the first value in the desired type.

3.22.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.
Only the following coercions are supported:

e character — string
e boolean — string
e boolean — integer (NIL — 0, T — 1).

e integer — boolean (0 — NIL, # 0 — T)

3.23. COMPILED-FUNCTION-P

3.23 compiled-function-p

Is parameter a compiled function?

3.23.1 Inputs

A single value. Any additional values are ignored.

3.23.2 Output

A boolean value

3.23.3 Example

(compiled—function—p print)

Returns the value T.

3.23.4 Description

27

Returns T if the first value is a compiled function. Otherwise it returns NIL. Tiny-Lisp() considers

the builtin intrinsic functions to be compiled. User defined functions are not compiled..

3.23.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They

are just silently ignored.

3.24 complexp

Is parameter a complex number?

3.24.1 Inputs

A single value. Any additional values are ignored.

3.24.2 Output
NIL.

3.24.3 Example

(complexp 1 2 3)

Returns the value NIL.
3.24.4 Description

Since complex numbers are not a supported datatype, this always returns NIL.

28 CHAPTER 3. OPERATION REFERENCE

3.24.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

3.25 concatenate

Concatenates strings or lists.

3.25.1 Inputs

A quoted symbol (either LIST or STRING) followed by either lists or strings.

3.25.2 Output

A list or string consisting of the concatenation of the lists or strings

3.25.3 Example

(concatenate ’string ”One.” "Two”)

Returns the string “One Two”.

3.25.4 Description

Concatenates either string or lists. The first parameter is a symbol that specifies what to concate-
nate. The following parameters must be of the appropriate type.

3.25.5 Common Lisp Compatibility

This is probably a subset of the Common Lisp function. Normal cases will operate the same, but
error handling is different.

3.26 cons

Combines elements into a list.

3.26.1 Inputs

One or two values

3.26.2 Output

A list consisting of the provided inputs.

3.27. CONSP 29

3.26.3 Example

(cons 1 2)

Returns the list (1. 2).
3.26.4 Description

The cons operation creates a cons cell and sets the car field to the first parameter and the cdr
to the second parameter..

3.26.5 Common Lisp Compatibility

There is a subtle difference between Tiny-Lisp and Common Lisp. In Tiny-Lisp, NIL is a constant
of boolean type, while in Common Lisp, it also represents an empty list. Thus (cons 1 NIL)
produce slightly different results, (1 . NIL) for Tiny-Lisp or (1) for Common Lisp. If you wish
to produce the Common Lisp results, where the car points to a value and the cdr is an empty
pointer, you can use (cons 1 ()) or (cons 1). The former is preferred as it is compatible with
Common Lisp.

3.27 consp

Is parameter a cons?

3.27.1 Inputs

A single value. Any additional values are ignored.

3.27.2 Output

A boolean.

3.27.3 Example

(consp (1 2 3))

Returns the value T.

3.27.4 Description

If the supplied parameter is a cons (a list), return T, otherwise return NIL.

3.27.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

30 CHAPTER 3. OPERATION REFERENCE

3.28 defun

Defines a function.

3.28.1 Inputs

Three or more values. The first is a symbol that becomes the function’s name. The second is a list
of parameters for the function. The remaining values are the code for the function

3.28.2 Output
NIL.

3.28.3 Example

(defun hello (name) (print ”Hello.” name))

Returns the value NIL.
3.28.4 Description

This creates a user defined function.

3.28.5 Common Lisp Compatibility

This is more or less a subset of Common Lisp, except that there are probably many corner cases
where things don’t quite match..

3.29 dotimes

Repeats a series of statements a specific number of times.

3.29.1 Inputs

Two or more values. The first value is a list containing a local variable and the numb, the remaining
values are the statements to be executed the specified number of times.

3.29.2 Output
A constant NIL.

3.29.3 Example

(setq sum 0)

(dotimes (x 10)
(print ”The_sum._is .’
(terpri)

(setq sum (4 sum x)))

’ sum)

3.30. DOWHILE 31

Returns the constant NIL.
3.29.4 Description

On each pass through the loop, the local variable is set to the next value in the range 0 to the loop
limit. The supplied statements are evaluated. It is not recommended to change the value of the
local variable in the body of the loop.

3.29.5 Common Lisp Compatibility

The result-form, declarations, and tags are not supported.

3.30 dowhile

Repeats a series of statements while a condition is T.

3.30.1 Inputs

Two or more values. The first value is evaluated as the condition, the remaining values are the
statements to be executed while the condition is true.

3.30.2 Output

A value.

3.30.3 Example

(dowhile (> (— max min) 1)
(setq mid (/ (+ min max) 2))
(if (> mid (/ n mid))

(setq max mid)
(setq min mid))
(+ 0 min))

Returns the value of the last statement in the loop, min

3.30.4 Description

The condition is evaluated on each pass through the loop. If the condition evaluates to T, the rest
of the statements are executed. If the condition evaluates to NIL, the loop is exited. Thus, if the
first time the condition is evaluated it returns NIL, the statements in the loop are never executed.

3.30.5 Common Lisp Compatibility

This doesn’t appear to exist in Common Lisp. It is similar to the Common Lisp do loop, except
that the condition comes first.

32 CHAPTER 3. OPERATION REFERENCE

3.31 dump

Prints out some internal tables.

3.31.1 Inputs

None.

3.31.2 Output

A value.

3.31.3 Example

(dump)

Returns the constant NIL.
3.31.4 Description

This is intended for debugging purposes. It prints the contents of the cons, symbol, and string
tables.

3.31.5 Common Lisp Compatibility

This operation does not exist in Common Lisp.

3.32 errorp

Is parameter a error?

3.32.1 Inputs

A single value. Any additional values are ignored.

3.32.2 Output

A boolean.

3.32.3 Example

(error (1 2 3))

Returns the value NIL.
3.32.4 Description

If the parameter represents an error condition, return T, otherwise return NIL. This offers Tiny-Lisp
programs a rudimentary way to check for errors.

3.33. EXIT 33

3.32.5 Common Lisp Compatibility

This operation does not exist in Common Lisp. Common Lisp provides more comprehensive error
handling, signaling, and trapping.

3.33 exit

Exits the Tiny-Lisp interpreter.

3.33.1 Inputs

None.

3.33.2 Output

A value.

3.33.3 Example

(exit)

No value can be returned as the interpreter exits..

3.33.4 Description

This is a way to exit the Tiny-Lisp iterpreter.

3.33.5 Common Lisp Compatibility

This operation does not exist in Common Lisp, but some implementations (i.e. SBCL) do have it.

3.34 floatp

Is parameter a floating point number?

3.34.1 Inputs

A single value. Any additional values are ignored.

3.34.2 Output

NIL.

34 CHAPTER 3. OPERATION REFERENCE

3.34.3 Example

(floatp 1 2 3)

Returns the value NIL.
3.34.4 Description

Since floating point numbers are not a supported datatype, this always returns NIL.

3.34.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

3.35 fresh-line
Prints a newline if not already at the start of a line.

3.35.1 Inputs

None, any values are ignored.

3.35.2 Output
NIL.

3.35.3 Example

(fresh—1line)

Returns the value NIL.
3.35.4 Description

Checks if the internal first character flag is set. If not, prints a newline, otherwise does nothing.

3.35.5 Common Lisp Compatibility

There is no optional output-stream parameter as Tiny-Lisp only has one output stream. It also
always returns NIL.

3.36 functionp

Is parameter a function?

3.36.1 Inputs

A single value. Any additional values are ignored.

3.37. IF 35

3.36.2 Output

NIL.

3.36.3 Example

(functionp 1 2 3)

Returns the value NIL.
3.36.4 Description

Returns T if the value is a builtin function, a user defined function, or a lambda function.

3.36.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

3.37 if

Conditionally executes a statement.

3.37.1 Inputs

Two or three parameters. The first is a condition. If the condition evaluates to T, the second pa-
rameter is evaluated. If the condition evaluates to NIL, the third parameter, if present, is evaluated.

3.37.2 Output

Returns the value of the parameter evaluated.

3.37.3 Example

(if (> 1 2)
(print ” Greater”)
(print ”Not_greater”))

Prints the string ”Not greater”.
3.37.4 Description

Evaluates the condition and then depending on the condition, evaluates one of the other parameters.
If the third parameter is omitted, this is approximately equivalent to an IF-THEN statement in other
languages. If the third parameter is present, this is similar to an IF-THEN-ELSE statement. The
value of the evaluated parameter is returned. If no parameter is evaluated (only two parameters
passed and the condition evaluates to NIL), then NIL is returned.

36 CHAPTER 3. OPERATION REFERENCE

3.37.5 Common Lisp Compatibility

This seems to be mostly compatible with Common Lisp.

3.38 integerp

Is the parameter an integer?

3.38.1 Inputs

A single value. Any additional values are ignored.

3.38.2 Output

The value T if the parameter is an integer, otherwise NIL.

3.38.3 Example

(integerp 1 2 3)

Returns the value T.

3.38.4 Description

This is used to check if a parameter is of integer type or not. Currently the only number type
supported is integer so this is equivalent to numberp in Tiny-Lisp.

3.38.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

3.39 lambda

Creates a variable record that can be assigned to a variable or passed as a parameter to a function.

3.39.1 Inputs

The first parameter is a list of the parameters for the function. The remaining parameters are the
operation for the function.

3.39.2 Output

A variable record pointing to the created function.

3.40. LENGTH 37

3.39.3 Example

)

(setq hello (lambda (name) (print ”Hello.” name)))

Sets the symbol (or variable depending on context) hello to point to the created function.

3.39.4 Description

Creates a function that can be assigned to a variable or passed as a parameter. Note that (setq
var (lambda ...)) is slightly different from (defun var ...). The first creates a variable record
and assigns it to var while the second directly sets var to point to the function. This difference
may be removed in future versions.

3.39.5 Common Lisp Compatibility

This is mostly a subset of Common Lisp.

3.40 length

Returns the length of an object.

3.40.1 Inputs

The first parameter is a list of the object to measure.

3.40.2 Output

An integer.

3.40.3 Example

(length ”"Hello”)

Returns the value 5.

3.40.4 Description

Returns the length of an object. For strings this is the number of characters in a string. For
lists this is the number of items in a list not descending into sublists. All other datatypes return
a value of 1.

3.40.5 Common Lisp Compatibility

This is mostly compatible with Common Lisp, except that errors are not thrown if the parameter
is not a sequence.

3.41 let

Creates local variables.

38 CHAPTER 3. OPERATION REFERENCE

3.41.1 Inputs

A list of variable names and optional initial values followed by statements to be executed with the
local variables.

3.41.2 Output

Returns the value of the last statement evaluated.

3.41.3 Example

(defun fibi (n)
(let (temp (nl 0) (n2 1))
(dotimes (iter n)
(setq temp (+ nl n2))
(setq nl n2)
(setq n2 temp))
n2))

Defines a function to evaluate Fibonacci numbers using iteration. The variables temp, nl, and n2
are local variables with n1 being initialized to the value 0 and n2 initialized to the value 1.

3.41.4 Description

Creates a stack frame containing variables that are local to the statements in the block. Outside
of the block the variables do not exist.

3.41.5 Common Lisp Compatibility

Closures are not supported.

3.42 list

Creates a list

3.42.1 Inputs

Any number of parameters.

3.42.2 Output
A list.

3.42.3 Example

(list 1 2 3)

3.43. LISTP 39

Returns the list (1 2 3)
3.42.4 Description

Creates a list of the passed parameters.

3.42.5 Common Lisp Compatibility

Unlike Common Lisp, the 1ist operation is optional in Tiny-Lisp.

3.43 listp
Is the parameter a list?

3.43.1 Inputs

A single value. Any additional values are ignored.

3.43.2 Output

The value T if the parameter is a list, otherwise NIL.

3.43.3 Example

(listp 1 2 3)

Returns the value NIL.
3.43.4 Description

This is used to check if a parameter is a list or not.

3.43.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

3.44 msg

Turns display of debugging messages on or off.

3.44.1 Inputs

A single boolean value. Any additional values are ignored.

3.44.2 Output

The value NIL.

40 CHAPTER 3. OPERATION REFERENCE

3.44.3 Example

(msg T)

Returns the value NIL.
3.44.4 Description

This is intended for use in debugging the interpreter to turn the display of some debugging messages
on or off.

3.44.5 Common Lisp Compatibility

This operation does not exist in Common Lisp.

3.45 not

Logical or bitwise not.

3.45.1 Inputs

A single value of boolean or integer.

3.45.2 Output

A value of boolean or integer.

3.45.3 Example

(not T)

Returns the value NIL.
3.45.4 Description

If the parameter is boolean, perform a logical not operation. If the parameter is integer, perform
a bitwise not operation.

3.45.5 Common Lisp Compatibility

This operation performs a bitwise not for integers. This is probably more useful for embedded
systems.

3.46 null

Is the parameter null?

3.47. NUMBERP 41

3.46.1 Inputs

A single value. Any additional values are ignored.

3.46.2 Output

The value T if the parameter is null, otherwise NIL.

3.46.3 Example

(null 1 2 3)

Returns the value NIL.
3.46.4 Description

This is used to check if a parameter is null or not. The empty list is considered to be null while an
explicit NIL is not.

3.46.5 Common Lisp Compatibility

In Tiny-Lisp only the empty list () is treated as null, while Common Lisp also treats NIL as null.
This may be changed in Tiny-Lisp to make it more compatible.

3.47 numberp

Is the parameter a number?

3.47.1 Inputs

A single value. Any additional values are ignored.

3.47.2 Output

The value T if the parameter is a number, otherwise NIL.

3.47.3 Example

(numberp 1 2 3)

Returns the value T.

3.47.4 Description

This is used to check if a parameter is of number type or not. Currently the only number type
supported is integer so this is equivalent to integerp in Tiny-Lisp.

42 CHAPTER 3. OPERATION REFERENCE

3.47.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

3.48 or

Logical or bitwise or.

3.48.1 Inputs

Performs the logical or bitwise and on values of the same type.

3.48.2 Output

If the input parameters are boolean then the output is boolean. If the input parameters are
integer, the output is integer.

3.48.3 Example

(or 1 3 4)

Returns the value 7.

3.48.4 Description

If the two parameters are boolean, the result is the logical and of the parameters. If the two param-
eters are integer, then the result is the bitwise and of the parameters. Processing of parameters
stop when the result is either NIL of boolean values, or 0 (zero) for integer values.

3.48.5 Common Lisp Compatibility

This operation performs a bitwise or for integers. This is probably more useful for embedded
systems.

3.49 packagep

Is parameter a package?

3.49.1 Inputs

A single value. Any additional values are ignored.

3.49.2 Output

NIL.

3.50. PARSE-INTEGER 43

3.49.3 Example

(packagep 1 2 3)

Returns the value NIL.
3.49.4 Description

Since packages are not a supported datatype, this always returns NIL.

3.49.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

3.50 parse-integer

Parses a string containing an integer as text to an integer value.

3.50.1 Inputs

A string containing an integer.

3.50.2 OQOutput

An integer representing the value in the string.

3.50.3 Example

(parse—integer 710247)

Returns the integer 1024.
3.50.4 Description

This is used to get an integer value from a string containing the digits of an integer. To simplify the
coding, only the first fragment of the string is examined for digits. Parameters not of string cause
an error to be returned. Strings starting with non-integer values return 0. Parsing is terminated
when a non digit character is encountered (thus the string “123abc” is parsed to the integer
123).

3.50.5 Common Lisp Compatibility

The Tiny-Lisp version is a subset of the Common Lisp version. None of the Common Lisp optional
parameters are allowed. It operates similarly to having :junk-allowed set to T. Leading spaces
are not allowed. A leading plus sign ("+¢) is not allowed. Ounly a single value is returned.

44 CHAPTER 3. OPERATION REFERENCE

3.51 peek8

Reads an 8 bit byte from the specified address in memory.

3.51.1 Inputs

An integer representing the address to read from.

3.51.2 Output

An 8 bit integer representing the value at that address.

3.51.3 Example

(peek 1)

Returns the value at address 1. The actual value is system dependent.

3.51.4 Description

This is used to read memory locations. It is intended to be used with memory mapped devices to
allow drivers to be developed using Tiny-Lisp. This should be used with caution as the results are
strongly system dependent. No protection is provided by Tiny-Lisp to prevent attempting to read
from protected or non-existent addresses.

3.51.5 Common Lisp Compatibility

This operation does not exist in Common Lisp.

3.52 peekl6

Reads a 16 bit word from the specified address in memory.

3.52.1 Inputs

An integer representing the address to read from.

3.52.2 Output

A 16 bit integer representing the value at that address.

3.52.3 Example

(peek 1)

3.63. PEEK32 45

Returns the value at address 1. The actual value is system dependent.

3.52.4 Description

This is used to read memory locations. It is intended to be used with memory mapped devices to
allow drivers to be developed using Tiny-Lisp. This should be used with caution as the results are
strongly system dependent. No protection is provided by Tiny-Lisp to prevent attempting to read
from protected or non-existent addresses. Some systems may also throw exceptions for misaligned
access to some or all of the addresses.

3.52.5 Common Lisp Compatibility

This operation does not exist in Common Lisp.

3.53 peek32

Reads a 32 bit word from the specified address in memory.

3.53.1 Inputs

An integer representing the address to read from.

3.53.2 Output

A 32 bit integer representing the value at that address.

3.53.3 Example

(peek 1)

Returns the value at address 1. The actual value is system dependent.

3.53.4 Description

This is used to read memory locations. It is intended to be used with memory mapped devices to
allow drivers to be developed using Tiny-Lisp. This should be used with caution as the results are
strongly system dependent. No protection is provided by Tiny-Lisp to prevent attempting to read
from protected or non-existent addresses. Some systems may also throw exceptions for misaligned
access to some or all of the addresses.

3.53.5 Common Lisp Compatibility

This operation does not exist in Common Lisp.

3.54 pokeS8

Writes an 8 bit byte to the specified address in memory.

46 CHAPTER 3. OPERATION REFERENCE

3.54.1 Inputs

Two integers representing the address to write to and the value to write, respectively.

3.54.2 Output

The integer value written.

3.54.3 Example

(poke 1 2)

Returns the value 2. There may be other effects due to the memory being changed.

3.54.4 Description

This is used to write to memory locations. It is intended to be used with memory mapped devices to
allow drivers to be developed using Tiny-Lisp. This should be used with caution as the results are
strongly system dependent. No protection is provided by Tiny-Lisp to prevent attempting to write
to protected or non-existent addresses. Some systems may also throw exceptions for misaligned
access to some or all of the addresses.

3.54.5 Common Lisp Compatibility

This operation does not exist in Common Lisp.

3.55 pokel6

Writes a 16 bit word to the specified address in memory.

3.55.1 Inputs

Two integers representing the address to write to and the value to write, respectively.

3.55.2 Output

The integer value written.

3.55.3 Example

(poke 4 2)

Returns the value 2. There may be other effects due to the memory being changed.

3.55.4 Description

This is used to write to memory locations. It is intended to be used with memory mapped devices to
allow drivers to be developed using Tiny-Lisp. This should be used with caution as the results are
strongly system dependent. No protection is provided by Tiny-Lisp to prevent attempting to write

3.56. POKE32 47

to protected or non-existent addresses. Some systems may also throw exceptions for misaligned
access to some or all of the addresses.

3.55.5 Common Lisp Compatibility

This operation does not exist in Common Lisp.

3.56 poke32

Writes a 32 bit word to the specified address in memory.

3.56.1 Inputs

Two integers representing the address to write to and the value to write, respectively.

3.56.2 Output

The integer value written.

3.56.3 Example

(poke 4 2)

Returns the value 2. There may be other effects due to the memory being changed.

3.56.4 Description

This is used to write to memory locations. It is intended to be used with memory mapped devices to
allow drivers to be developed using Tiny-Lisp. This should be used with caution as the results are
strongly system dependent. No protection is provided by Tiny-Lisp to prevent attempting to write
to protected or non-existent addresses. Some systems may also throw exceptions for misaligned
access to some or all of the addresses.

3.56.5 Common Lisp Compatibility

This operation does not exist in Common Lisp.

3.57 print

Prints objects.

3.57.1 Inputs

Any number of parameters.

3.57.2 QOutput
NIL.

48 CHAPTER 3. OPERATION REFERENCE

3.57.3 Example

(print ”Hello_world!”)

Returns the value NIL. “Hello world!” is sent to the output stream.

3.57.4 Description

This loops through the provided parameters and prints each one with no newline or space between
and no trailing newline. Note that if a newline is contained in one of the items printed, the internal
flag first_char_flag is not set. This may cause fresh-1line to output an unneeded newline.
3.57.5 Common Lisp Compatibility

The output is not preceded by a newline and followed by a space. The optional output-stream
parameter is not available as there is only one output stream. Multiple parameters are permitted.
And, there is no implicit binding of parameters to values.

3.58 progn

Collects operations into a block.

3.58.1 Inputs

List of statements to be evaluated.

3.58.2 Output

The result of the last statement evaluated.

3.58.3 Example

(progn (print ”Hello_.world!”)
(terpri)
(+ 1 3))

Prints the string “Hello world!” and returns the value 4.

3.58.4 Description

This is used when multiple operations are needed in a place where only a single operation is
permitted. An example is the if operation.

3.58.5 Common Lisp Compatibility

This is basically compatible with Common Lisp.

3.59. QUOTE 49

3.59 quote

Returns a list created from the supplied parameters.

3.59.1 Inputs

Any number of parameters.

3.59.2 Output

A list generated from the input parameters.

3.59.3 Example

(quote 1 2 3 4)

Returns the list (1 2 3 4).
3.59.4 Description

Returns a list generated from the passed parameters. Internally, this returns the index of the cons
cell for the first parameter and the rest of the parameter list follows along in the linked list. The
parameters are not evaluated. In many cases, this may not be needed in Tiny-Lisp as lists that do
not start with a function parameter are simply returned as-is.

3.59.5 Common Lisp Compatibility

Mostly compatible with Common Lisp, except that multiple parameters are permitted.

3.60 rationalp
Is parameter a rational number?

3.60.1 Inputs

A single value. Any additional values are ignored.

3.60.2 Output
NIL.

3.60.3 Example

(rationalp 1 2 3)

Returns the value NIL.
3.60.4 Description

Since rational numbers are not a supported datatype, this always returns NIL.

50 CHAPTER 3. OPERATION REFERENCE

3.60.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

3.61 read-line

Reads a line of text from the input stream.

3.61.1 Inputs

None.

3.61.2 Output

A string read from the input stream.

3.61.3 Example

(read—line)

Returns the text read from the input.

3.61.4 Description

Reads input into a string and returns the string. The newline that ends the string is not included
in the string.

3.61.5 Common Lisp Compatibility

None of the Common Lisp optional parameters are supported.

3.62 realp

Is parameter a real number?

3.62.1 Inputs

A single value. Any additional values are ignored.

3.62.2 QOutput

NIL.

3.63. RETURN 51

3.62.3 Example

(realp 1 2 3)

Returns the value NIL.
3.62.4 Description

Since real numbers are not a supported datatype, this always returns NIL.

3.62.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

3.63 return

Exits a block and returns a value

3.63.1 Inputs

An optional value to be returned. If none is specified, NIL is assumed.

3.63.2 Output
The specified value.

3.63.3 Example

(progn (print ”Hello_.world!”)
(terpri)
(
(

return 5)
+ 1 3))

Prints the string “Hello world!” and returns the value 5. The (+ 1 3) operation is not evaluated.

3.63.4 Description

This is used to provide an early exit from a block. A common use would be to exit a loop if a
certain condition is met. Internally, a block is defined as any operation that calls the execute_block
function. It may be possible in the future to do an equivalent of the return-from operation to exit
multiple nested blocks, but Tiny-Lisp doesn’t support named blocks so any implementation would
likely not be compatible with Common Lisp.

3.63.5 Common Lisp Compatibility

This is basically compatible with Common Lisp.

52 CHAPTER 3. OPERATION REFERENCE

3.64 setq

Assigns a value to a variable.

3.64.1 Inputs

Two parameters. The first is the variable to be set. If this is not a stack variable, it will be
interpreted as a symbol. The second is the value to assign to the variable. It is evaluated.

3.64.2 Output
NIL

3.64.3 Example

(setq counter (+ 1 counter))

Returns the value NIL and increments the variable counter.

3.64.4 Description

This provides a way to assign values to symbols or stack variables. The previous value of the
variable is lost. Note that symbols representing builtin or special functions cannot be assigned.

3.64.5 Common Lisp Compatibility

Only one variable can be set at a time. It returns NIL, not the value set.

3.65 simple-bit-vector-p
Is parameter a simple bit vector?

3.65.1 Inputs

A single value. Any additional values are ignored.

3.65.2 Output
NIL.

3.65.3 Example

(simple—bit—vector—p 1 2 3)

Returns the value NIL.
3.65.4 Description

Since bit vectors (simple or otherwise) are not a supported datatype, this always returns NIL.

3.66. SIMPLE-STRING-P 53

3.65.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

3.66 simple-string-p

Is the parameter a simple string?

3.66.1 Inputs

A single value. Any additional values are ignored.

3.66.2 Output

The value T if the parameter is a string, otherwise NIL.

3.66.3 Example

(simple—string—p 1 2 3)

Returns the value NIL.
3.66.4 Description

This is used to check if a parameter is a simple string or not. All strings in Tiny-Lisp are considered
to be simple strings.

3.66.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

3.67 simple-vector-p

Is parameter a simple vector?

3.67.1 Inputs

A single value. Any additional values are ignored.

3.67.2 Output

NIL.

o4 CHAPTER 3. OPERATION REFERENCE

3.67.3 Example

(simple—vector—p 1 2 3)

Returns the value NIL.
3.67.4 Description

Since vectors (simple or otherwise) are not a supported datatype, this always returns NIL.

3.67.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

3.68 sleep

Suspend execution for the specified number of milliseconds.

3.68.1 Inputs

A single integer value. Any additional values are ignored.

3.68.2 Output
NIL.

3.68.3 Example

(sleep 100)

Returns the value NIL after waiting 100 mS.
3.68.4 Description

Suspends execution for the specified number of milliseconds. Since Tiny-Lisp only supports integers,
this difference from Common Lisp was done in order to allow finer resolutions in delay.

3.68.5 Common Lisp Compatibility

The delay value is in milliseconds, not seconds.

3.69 string-downcase

Converts a string to lowercase ASCII.

3.69.1 Inputs

A single string value. Any additional values are ignored.

3.70. STRING-UPCASE %)

3.69.2 Output

A string.

3.69.3 Example

(string—downcase ” Hello .World!”)

Returns the string “hello world!”.

3.69.4 Description

Creates a copy of the input string converting any uppercase characters to lowercase.

3.69.5 Common Lisp Compatibility

The optional start and end parameters are not supported. Only ASCII characters are supported
and only the characters ‘A’ through ‘Z’ are converted.

3.70 string-upcase

Converts a string to uppercase ASCII.

3.70.1 Inputs

A single string value. Any additional values are ignored.

3.70.2 Output

A string.

3.70.3 Example

(string—upcase ” Hello_World!”)

Returns the string “HELLO WORLD!”.
3.70.4 Description

Creates a copy of the input string converting any lowercase characters to uppercase.

3.70.5 Common Lisp Compatibility

The optional start and end parameters are not supported. Only ASCII characters are supported
and only the characters ‘a’ through ‘z’ are converted.

3.71 stringp

Is the parameter a string?

56 CHAPTER 3.

3.71.1 Inputs

A single value. Any additional values are ignored.

3.71.2 Output
The value T if the parameter is a string, otherwise NIL.
3.71.3 Example

(stringp 1 2 3)

Returns the value NIL.
3.71.4 Description

This is used to check if a parameter is a string or not..

3.71.5 Common Lisp Compatibility

OPERATION REFERENCE

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They

are just silently ignored.

3.72 subseq

Return a subsequence of the input.

3.72.1 Inputs

A single string followed by one or two integers representing the starting and (optional) ending

positions.

3.72.2 Output
A string containing a sequence copied from the input.
3.72.3 Example

(subseq ”Hello_world!” 3 7)

Returns the string “lo w”..

3.72.4 Description

Copies the selected text from the input string and returns it.

3.72.5 Common Lisp Compatibility

In Tiny-Lisp, subseq only works on strings. At some point, it may be extended to also work on

lists.

3.73. SYMBOLP 57

3.73 symbolp

Is the parameter a symbol?

3.73.1 Inputs

A single value. Any additional values are ignored.

3.73.2 Output

The value T if the parameter is a symbol, otherwise NIL.

3.73.3 Example

(symbolp 1 2 3)

Returns the value NIL.
3.73.4 Description

This is used to check if a parameter is a symbol or not.

3.73.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

3.74 terpri

Prints a newline.

3.74.1 Inputs

None

3.74.2 Output

A newline.

3.74.3 Example

(terpri)

Returns the value NIL.
3.74.4 Description

Prints a newline to the output stream.

o8 CHAPTER 3. OPERATION REFERENCE

3.74.5 Common Lisp Compatibility

Tiny-Lisp() has only one output stream so the optional output stream designator is ignored.

3.75 vectorp

Is parameter a vector?

3.75.1 Inputs

A single value. Any additional values are ignored.

3.75.2 Output
NIL.

3.75.3 Example

(vectorp 1 2 3)

Returns the value NIL.
3.75.4 Description

Since vectors are not a supported datatype, this always returns NIL.

3.75.5 Common Lisp Compatibility

This is compatible with Common Lisp, except that no error is thrown with extra parameters. They
are just silently ignored.

Chapter 4

Internals

As the interpreter is under active development, this section is subject to change with-
out notice.

4.1 Operation

Processing consists of four phases.

4.1.1 Read

Text is read from the input stream and passed to the parser.

4.1.2 Parse

The parse phase examines the text and converts it into the internal representation of a list. If
the list is not complete (parentheses are unbalanced), more text is requested until the list can be
completed. Parsing of sub-lists is done by recursively calling the parser.

4.1.3 Evaluate

The list from the parse phase is evaluated. If the first in the list is not a symbol that represents
a function, the list is simply returned as is. Otherwise the function is evaluated and the returned
value is passed to the print phase. Evaluation of sub-lists is done recursively. Note that, depending
on the function, not all sub-lists are evaluated.

4.1.4 Print

The value returned from the evaluation is printed. Once this is done, the read phase is reentered
and more text requested.

59

60 CHAPTER 4. INTERNALS

4.2 Package Organization

In order to help modularize and organize the code, it has been divided into several packages. The
root package for Tiny-Lisp is BBS.1lisp. The BBS package is basically a bucket for my projects to
help prevent name collisions with any other packages.

4.2.1 BBS.lisp

This package is the root package for Tiny-Lisp. It contains most of the data structures and the
public interface for the interpreter. In addition, a number of common utility function are defined
here so that they can be used in all the child packages.

bbs.lisp.evaluate

This package contains child packages for evaluating the Tiny-Lisp operations as well as common
functions used by its children. To keep it a reasonable size, the following child packages have been
broken out:

e BBS.lisp.evaluate.bool - Contains operations relating to boolean values.

e BBS.lisp.evaluate.char - Contains operations relating to character values.
e BBS.lisp.evaluate.cond - Contains Tiny-Lisp conditional operations.

e BBS.lisp.evaluate.func - Contains operations related to defining functions.
e BBS.lisp.evaluate.io - Contains Tiny-Lisp input/output operations.

e BBS.lisp.evaluate.list - Contains operations relating to 1ist values.

e BBS.lisp.evaluate.loops - Contains Tiny-Lisp loop operations.

e BBS.lisp.evaluate.math - Contains Tiny-Lisp math operations.

e BBS.lisp.evaluate.mem - Contains Tiny-Lisp memory access operations.

e BBS.lisp.evaluate.misc - Contains operations that don’t fit into any other catagory.
e BBS.lisp.evaluate.pred - Contains predicate (test) operations.

e BBS.lisp.evaluate.str - Contains operations relating to string values.

e BBS.lisp.evaluate.symb - Contains operations relating to symbols.

e BBS.lisp.evaluate.vars - Contains operations relating to variables.

BBS.lisp.memory

This package contains the memory manager. This is mainly allocating items and incrementing and
decrementing the reference count.

4.3. DATA STRUCTURES 61

BBS.lisp.parser

This package contains the parser.

BBS.lisp.stack

This package contains the stack and functions for accessing the stack.

BBS.lisp.strings

This package contains some utility functions for strings.

BBS.lisp.utilities

This package contains some general utility functions.

4.3 Data Structures

Most of the data structures are defined in the BBS.1lisp package, except for the stack, which is
defined in BBS.lisp.stack.

The main arrays have size limits and data types defined for accessing them. These may change
if the bbs.lisp package gets turned into a generic package. Should that happen The four constants
will be the generic parameters. This will make adjusting the size of the structures a little easier
when embedding.

max_cons : constant Integer := 300;
max_symb : constant Integer := 200;
max._string : constant Integer := 500;
max_stack : constant Integer := 100;
type cons_index is range —1 .. max_cons;
type symb_index is range —1 .. max_symb;
type string_index is range —1 .. max_string;
type stack_index is range —1 .. max_stack;
The arrays are defined from .. ._indez’First + 1 to..._indexz’Last. Thevalue ... _index’First

is used to represent an invalid or null index. The following constants are defined for this:

NIL_.CONS : constant cons_index := cons_index 'First;
NIL.STR : comnstant string_index := string_index 'First;
NIL.SYM : constant symb_index := symb_index’First;

4.3.1 Elements
The basic data type is the element. It is defined as follows:

type ptr_type is (E.CONS, EERROR, E.NIL, ESTACK, ESYMBOL,
ETEMPSYM, EVALUE);
type element_type(kind : ptr_type := E_NIL) is

62 CHAPTER 4. INTERNALS

record
case kind is
when E_CONS =>

ps : cons_index;
when E_ERROR =>
null ;
when E_NIL =>
null;
when ETEMPSYM =>
tempsym : string_index;
when ESYMBOL =>
sym : symb_index;
when ESTACK =>
st_name : string_index;
st_offset : stack_index;
when EVALUE =>
v : value;
end case;

end record;

The different types of elements are:

E_CONS Contains an index into the array of cons cells as described in section 4.3.2. This may
eventually go away.

E_ERROR This indicates that some operation has encountered an error of some sort.
E_NIL This represents an empty element.

E_TEMPSYM This contains an index into the string table for representing a temporary symbol
name. This is used during parsing to represent an item where the type has not yet been
determined. It should never appear once parsing is complete.

E_STACK This represents a stack variable. It contains an index into the string table for the
variable’s name and a stack frame offset.

E_SYMBOL This contains an index into the symbol table thus representing a symbol as described
in section 4.3.3.

E_VALUE This represents a value as described in section 4.3.4. It can contain any of the defined
data types. Note that for V_.STRING or V_LIST data types, the value actually contains an
index into the string or cons array.

There is a bit of ambiguity right now about lists. Since recursively defined records aren’t possible,
elements of type E_.STACK can’t contain an element_type. So in order for them to be able to have
lists, the value type also contains a list pointer. This means that right now, an element_type can
point to a list either directly by having a kind of E_CONS, or by having a kind that contains a value
with a kind of V_LIST. This really should be fixed at some point. On the other hand, one could
make the distinction that the kind E_CONS represents a list that can be evaluated, while a value
of kind V_LIST is just data.

4.3. DATA STRUCTURES

4.3.2 Cons

Cons elements are used to make lists. A cons cell is defined as

type cons is

record
ref : Natural;
car : element_type;
cdr : element_type;

end record;

4.3.3 Symbols

Symbols are defined as:

type symbol_type is (SYSPECIAL, — A special form that needs
— support during parsing

SY BUILTIN, — A normal builtin function
SY LAMBDA, — A user defined function
SY_VARIABLE, — A wvalue, not a function
SYEMPTY); — No contents

type execute_function is access function(e : element_type)

return element_type;
type special_function is access function(e : element_type;
p : phase)

return element_type;
type symbol(kind : symbol_type := SYEMPTY) is

record
ref : Natural;
str : string_index;

case kind is
when SY_SPECIAL =>
s : special_function;
when SY_BUILTIN =>
f : execute_function;
when SY LAMBDA =>
ps : cons_index;
when SY_VARIABLE =>
pv : element_type;
when SY EMPTY =>
null ;
end case;
end record;

SY_BUILTIN vs SY_SPECIAL

63

Some functions need to be able to access some of their parameters during parsing so that the rest
of the parameters can be properly parsed. Usually, but not always, this involves building a stack

64 CHAPTER 4. INTERNALS

frame with the parameters so that they will be properly identified during further processing. These
functions are passed an extra parameter p for phase. The possible values are:

type phase is (PH.QUERY, PHPARSE BEGIN, PHPARSEEND, PHEXECUTE);
The phases are:

PH_QUERY Initial call to the function to query the function when it wants to be called again.
The function returns an integer value indicating the parameter after which it should be called.

PH_PARSE_BEGIN This is the call after the desired parameter has been parsed. The function
can then examine this parameter and make any needed changes.

PH_PARSE_END This is the call at the end of parsing for the function. Usually this just clears
the stack frame. It could also be used for things like preprocessing the parameter list.

PH_EXECUTE This is the call for execution where the function performs its normal operation.

4.3.4 Values

The value type represent a (surprise) value. It can be either an atomic type such as integer or
boolean, or a more complex type such as a list or a string.

type value_type is (VINTEGER, V_STRING, V.CHARACTER, V_BOOLEAN,
V_LIST, VLAMBDA, V.SYMBOL, V.QSYMBOL, V.NONE);
type int32 is range —(2x%31) .. 2xx31 — 1
with Size => 32;
type value(kind : value_type := VINTEGER) is
record
case kind is
when V_INTEGER =>
i @ int32;
when V.CHARACTER =>
¢ : Character;
when V_STRING =>
s : string_index;
when V. BOOLEAN =>
b : Boolean;
when V_LIST =>
1 : cons_index;
when VIAMBDA =>
lam : cons_index;
when V.SYMBOL =>
sym : symb_index;
when V.QSYMBOL =>

gqsym : symb_index;
when V.NONE =>

null;
end case;

end record;

4.3. DATA STRUCTURES 65

The data types available are:

V_INTEGER is the basic integer numeric type. It is defined as a 32 bit signed integer. Basic
math operations can be performed on it and integers can be compared.

V_STRING is the string type. These are unbounded strings. The value structure contains an
index into the string fragment array. Details of strings are described in section 4.3.5.

V_CHARACTER will represent a character data type when implemented. It is currently not
implemented.

V_BOOLEAN is a boolean data type that can represent false or true. Comparison operations
return boolean values and certain functions expect boolean values.

V_LIST is a list data type. It is approximately equal to an element type of E_.CONS (see section
4.3.2). The value structure contains an index into the cons cell array.

V_LAMBDA is a list data type that is used to represent a user defined function. It is approxi-
mately equivalent to the symbol type of SY_LAMBDA, except that it can be assigned to stack
variables.

V_QSYMBOL is a quoted symbol.

V_SYMBOL is a symbol. This is currently not used and may be deleted.

4.3.5 Strings

Strings are stored as a set of string fragments in a linked list. Thus, the length of a string is limited
only by the number of fragments available. Strings are defined as:

fragment_len : constant Integer := 16;
type fragment is
record
ref : Natural;
next : Integer range —1 .. Integer(string_index 'Last);
len : Integer range 0..fragment_len;

str : String (1..fragment_len);
end record;

4.3.6 Functions

A function is a list that contains two elements. The first element is a list of the function parameters.
The second element is a list of the function’s statements.

4.3.7 The Stack

A stack is defined for storing function parameters and local variables. The function parameters are
used only for user defined functions. Builtin and Special functions are handled within the Ada code
directly from the cons cells of the function parameter list. Stack entries are defined as follow:

66 CHAPTER 4. INTERNALS

type stack_entry_type is (STEEMPTY, STFRAME, ST.VALUE);

type stack_entry(kind : stack_entry_type := STEMPTY) is
record

case kind is
when ST EMPTY =>
null ;
when ST FRAME =>
number: Natural;
next : stack_index;
when ST VALUE =>
st_.name : string_index;
st_value : value;
end case;
end record;

Each stack entry can be empty, a stack frame boundary, or a variable. Stack variables have a name
and a value.

4.3.8 Global Data

The various data arrays are defined as follows.
The actual arrays are (in bbs.lisp):

— Since this interpreter is designed to be used on embedded computers

with no operating system and possibly no dynamic memory allocation ,
The statically allocated data structures are defined here.

cons_table : array (cons_index’First + 1

symb_table : array (symb_index’First + 1

string_table : array (string_index ’'First + 1
of fragment;

cons_index 'Last) of couns;
symb_index ’Last) of symbol;
string_index ’Last)

And in the stack package (bbs.lisp.stack):

— The stack array

stack : array (stack_-index ’First + 1 stack_index 'Last) of
stack_entry := (others => (kind => STEMPTY));

Note that all the arrays have a lower bound of ... ’first+1. This allows an index value equal to
... first to be used to indicate a null entry.

4.3.9 Memory Management

Memory management is done by reference counting. When the number of references goes to zero,
the item is deallocated. Items in the cons table and the strings table are reference counted.

4.4. UTILITY FUNCTIONS 67

4.4 Utility Functions

There are a number of functions that are available for use when embedding and extending Tiny-Lisp.
These are primarily only in a few packages and they may be moved to improve organization.

4.4.1 BBS.lisp

The functions available here are primarily concerned with the overall operation of the interpreter.
The first procedure to call is:

procedure init(p-put_line : t_put_line; p_put : t_put_line;
p-new_line : t_newline; p_get_line : t_get_line);

This routine is used to establish pointers to the I/O functions used and to define the symbols for
builtin and special functions. After this symbols for custom functions can be added. The following
procedure is used for that:

procedure add_builtin(n : String; f : execute_function);
To pass control to the Tiny-Lisp read-execute-print-loop, the following procedure is used:
procedure repl;

If more control is needed, the read-execute-print-loop can be broken out using the following functions
and procedure:

function read return Element_Type;

function eval(e : element_type) return element_type;
procedure print(e : element_type; d : Boolean; nl : Boolean);
function exit_lisp return Boolean;

These would be used in a loop as follows:

procedure repl is
e : element_type;
r : element_type;
begin
exit_flag := False;
break_flag := false;
while True loop
BBS. lisp .stack.reset;

e := read;
if e.kind /= EERROR then
r := eval(e);
if not first_char_flag then
new_line;
end if;
print (r, True, True);
end if;
exit when exit_lisp;
end loop;

end;

3

68 CHAPTER 4. INTERNALS

For writing custom functions, the following functions may be useful:

procedure error(f : String; m : String);
procedure msg(f : String; m : String);
procedure print(e : element_type; d : Boolean; nl : Boolean);

These support printing error and informational messages as well as printing Tiny-Lisp elements.
There are other useful functions in some other packages as well.

4.4.2 BBS.lisp.evaluate

This package contains functions useful in the evaluation of Tiny-Lisp operations. The most useful,
when adding custom operations, is:

function first_value(s : in out cons_index) return element_type;

It extracts the first element from the list pointed to by s and updates s to point to the next element
in the list. If the first element is a variable, the value of the variable is returned. If the first element
is a Tiny-Lisp operation, it is evaluated and the result of the evaluation is returned.

4.4.3 BBS.lisp.utilities
4.5 Embedding

This section covers how too embed the list interpreter in another program. Here is a minimal host
program:

with Ada.Text_I10;
with bbs.lisp;
with new_line;

— This is a simple shell routine to call the embedded lisp
— interpreter.

procedure Lisp is
begin
Ada.Text IO .Put_Line(” Tiny._lisp._.interpreter _written_in_Ada.”);
bbs.lisp.init (Ada.Text_ IO .Put_Line’ Access, Ada.Text_I0.Put’Access,
new_line.New_Line ’ Access, Ada.Text_I0.Get_Line’ Access);
bbs.lisp .repl;
end Lisp;

With new_1line defined as:

— The text_io wersion of newline contains an optional parameter
— indicating the number of lines to skip. The type of this parameter
— is defined in Ada.Text_ IO. This makes it awkward to define a
— function prototype that can be used both when Ada. Text_ IO is
— available and when it isn’t. This is a crude hack to define

4.5. EMBEDDING 69

— locally a new_line that has no parameters and uses the
— Ada.Text_ IO new_line with the default value.

package new_line is
procedure new_line;
end new_line;

with Ada.Text_10;
package body new_line is

procedure new_line is

begin
Ada.Text_IO.New_Line;

end;

)

end new_line;

It’s fairly simple. Initialize the interpreter and call it. The only wrinkle is the need to define
new_line. The Ada version has an optional parameter of a type defined in Ada.Text_I0. This
is a problem when trying to eliminate dependencies on Ada.Text_I0. A more complex example
of embedding is found in the https://github.com/BrentSeidel/Ada-Arduino-Due repository.
This repository contains code that runs on an Arduino Due and includes the definition of several
Tiny-Lisp operations to access attached hardware.

4.5.1 Adding Custom Operations

The Ada functions that implement the Tiny-Lisp operations are defined using one of the two
following prototypes:

— Type for access to function that implement lisp operations.
type execute_function is access procedure(e : out element_type;
s : cons_index);

— Type for access to functions that implement lisp special

— operations

type special_function is access procedure(e : out element_type;
s : cons_index; p : phase);

In most cases, an execute_function is the type to use and special_function is defined in the
private section to discourage use. To install the operation, add something like the following line
after the main Tiny-Lisp initialization function is called.

BBS. lisp.add_builtin (”due—flash” , due_flash *Access);

The first parameter to add_builtin is a string giving the Tiny-Lisp operation name. The second
parameter is an access to the Ada function to call.

70 CHAPTER 4. INTERNALS

In the function that you write, the parameter s is an index pointing to the start of the parameter
list. Thus a Tiny-Lisp expression like:

(some—function 1 2 3)
is translated into a linked list approximately like:

symbol. builtin (” some—function”)—>
value.integer(1l)—>
value . integer(2)—>
value.integer(3)—>
NIL_CONS

The first element is turned into the Ada function call with (s) pointing to the second element
(value.integer(1)). The Ada function can then traverse the list and extract the Tiny-Lisp parame-
ters.

4.6 Opportunities for Optimizing

No big effort has gone into optimizing the interpreter. Should the need arise, there are a few places
where things could be optimized.

4.6.1 Memory Management

If allocation becomes a bottleneck, the free items could be linked together in a list. That way a
new item could be picked off the head of the list instead of searching through all the items. This
would also require the list to be created at initialization.

4.6.2 Constant expressions

During parsing, it may be possible to recognize some constant expressions are replace them by their
result. For example:

(+123) —>6

4.6.3 The Symbol Table

An obvious target for optimization would be to sort the symbol table. Then a binary search could be
done to locate symbols. The reason that this is not done is that searching for symbols is only done
during parsing. The parser locates the symbol in the table and replaces it by its index. During
execution, the symbol index is used to directly access the symbol without doing a search. This
means that once a symbol is defined, it must never change its location in the table.

