
Ozmoo

Ozmoo

A Z-machine interpreter for the Commodore 64 and similar computers

Release 6: 19 March 2021

Ozmoo was conceived and designed by Johan Berntsson and Fredrik Ramsberg.
Special thanks to howtophil, Retrofan, Paul van der Laan, Jason Compton,
Alessandro Morgantini, Thomas Bøvith, Eric Sherman, Paul Gardner-Stephen,
Steve Flintham and Bart van Leeuwen for testing, code contributions and bug
fixes.

1

Contents

1 Overview 4
Features . 4
Limitations . 5

2 Quickstart 6
Dependencies . 6
Customizing the make script . 7
View all commandline options for make.rb 7
The basic way to build a game . 7
Build a game which will only consist of a single file 7
Build a game with optimized preloaded virtual memory data 8

3 Targets 9
Commodore 64 . 9
Commodore 128 . 9
Commodore Plus/4 . 10
Other targets . 10

4 Build Modes 11
Drives and devices . 11
List of build modes . 11

Modes not requiring a disk drive for play: 11
Modes requiring a single 1541 drive for play: 12
Modes requiring two 1541 drives for play: 12
Modes requiring a 1571 drive for play: 12
Modes requiring a 1581 drive for play: 13
Modes requiring an SD2IEC: . 13

5 Splash Screen 14

6 Colours 15
Colour switches . 15
Cursor switches . 16
Palette . 16

2

Examples . 17

7 Fonts 18

8 Loader image 19

9 Command line history 20

3

Chapter 1

Overview

Ozmoo is a a redistributable interpreter of Z-code games - Infocom games and
games written in Inform, ZIL or Dialog. Ozmoo can be used for new interactive
fiction works on the Commodore 64 and similar computers. While the old
Infocom interpreters are still available, the license situation is not clear so it is
risky to use in new work, especially commercial. Furthermore, some of the newer
Inform-based games use features which the old Infocom interpreters on the C64
can’t handle. Ozmoo is written to provide a free alternative that doesn’t have
these risks and limitations.

Ozmoo was originally only developed for the Commodore 64, but it is structured
so that it is fairly easy to retarget Ozmoo to computers with similar architecture.
Apart from Commodore 64, Ozmoo can currently target the Commodore 128
and the Commodore Plus/4 computers. There is also a fork of Ozmoo for the
Acorn computers (BBC Micro and other variants).

Features
Ozmoo for the Commodore 64 supports:

• Z-code version 3, 4, 5 and 8. Essentially this covers all games except for
the very first (hard to find) versions of Zork I and II and the Infocom
games with graphics.

• Fitting a lot more text on screen than Infocom’s interpreters - This is done
by using all 40 columns, smart wordwrap and a MORE prompt which uses
a single character.

• Embedding a custom font. Currently two fonts are included in the distri-
bution, plus some versions for Swedish, Danish, German, Italian, Spanish
and French. And you can supply your own font.

• Custom alphabets in Z-machine version 5 and 8.

4

• Custom character mappings, allowing for games using accented characters.
Comes with predefined mappings for Swedish, Danish, German, Italian,
Spanish and French.

• Custom colour schemes.
• A fully configurable secondary colour scheme (darkmode) which the player

can toggle by pressing the F1 key.
• A configurable splash screen which is shown just before the game starts.
• Up to ten save slots on a save disk (and most games will get the full ten

slots).
• Writing a name for each saves position.
• Building a Z-code game without virtual memory. This means the whole

game must fit in RAM at once, imposing a size restriction of about 50-52
KB. A game built this way can then be played on a C64 without a diskdrive.
This far, save/restore does require a diskdrive, but there may be a version
with save/restore to tape in the future. Also, a game built in this mode
doesn’t support RESTART.

• Building a game as a d81 disk image. This means there is room for any
size of game on a single disk. A d81 disk image can be used to create a
disk for a 1581 drive or it can be used with an SD2IEC device or, of course,
an emulator. Ozmoo uses the 1581 disk format’s partitioning mechanism
to protect the game data from being overwritten, which means you can
safely use the game disk for game saves as well, thus eliminating the need
for disk swapping when saving/restoring.

• Using an REU (Ram Expansion Unit) for caching. The REU can also be
used to play a game built for a dual disk drive system with just one drive.

• Adding a loader which shows an image while the game loads.

Limitations
Ozmoo should be able to run most Z-code games, regardless of size (A Z-code
game can be up to 512 KB in size). However, there are some limitations:

• A Z-code file always starts with a section called dynamic memory. Ozmoo
on the Commodore 64 can’t handle games with more than roughly 35 KB
of dynamic memory.

• If you want to run Ozmoo on a system with a single 1541 drive (or an
emulation of one), the part of the game file that is not dynamic memory
can be no larger than 170 KB. This typically means the game file can be
about 190 KB in size.

• Some Inform 6 games and pretty much all Inform 7 games are too slow to
be much fun on a Commodore 64. In general Infocom games, PunyInform
games and modern-day ZIL games work the best. Inform 5 games and
early Inform 6 games (typically using library 6/1 or 6/2) often work well
too.

5

Chapter 2

Quickstart

The simplest option is to use Ozmoo Online, a web page where you can
build games with Ozmoo without installing anything on your computer.
It supports most of the options Ozmoo has. Ozmoo online is located at:
http://microheaven.com/ozmooonline/

The other option is to install Ozmoo on your computer. This can be done on
Windows, Linux and Mac OS X. To build a game, you run something like “ruby
make.rb game.z5” Add -s to make the game start in Vice when it has been built.

Dependencies
You need to install:

• Acme cross-assembler
• Exomizer file compression program (tested with 3.0.0, 3.0.1 and 3.0.2)
• Ruby (Tested with 2.4.2, but any 2.4 version should work fine)
• The Vice C64/C128/Plus4 emulator

Windows

Acme can be downloaded from SourceForge: https://sourceforge.net/projects/acme-
crossass/

Exomizer can be downloaded from Bitbucket. The download includes binaries
for Windows: https://bitbucket.org/magli143/exomizer/wiki/browse/downloads

Get WinVice from SourceForge: http://vice-emu.sourceforge.net/windows.html

You can get Ruby from RubyInstaller: https://rubyinstaller.org/

6

Linux

Acme is available on Debian/Ubuntu with:

> sudo apt install acme

Exomizer can be downloaded from Bitbucket and compiled:

> cd src
> make

Vice is available on Debian/Ubuntu with:

> sudo apt install vice

Note that you have to supply the ROM images (kernal, basic, chargen, dos1541)
under /usr/lib/vice to make x64 (the C64 emulator) run. See VICE instructions
for more details.

Ruby is available on Debian/Ubuntu with:

> sudo apt install ruby

Customizing the make script
Edit the file make.rb. At the top of the file, you need to specify paths to the
Acme assembler, Exomizer, the Vice C64 emulator, and the program “c1541”
which is also included in the Vice distribution. If you are using Windows, you
can ignore the section on Linux and vice versa.

View all commandline options for make.rb
At a command prompt, type “ruby make.rb”

The basic way to build a game
At a command prompt, type “ruby make.rb mygame.z5”

Build a game which will only consist of a single
file
At a command prompt, type “ruby make.rb -P mygame.z5” to build a game
which will only consist of a single file. A game created in this way does not
require a disk drive to play.

7

Build a game with optimized preloaded virtual
memory data
Use these step to build a game with optimized preloaded virtual memory data
which will make the game as fast as possible at startup:

1. At a command prompt, type “ruby make.rb -o -s mygame.z5”

2. Play the game, performing the actions you think the player is likely to
do first. Keep playing until the game halts, printing a report with lots of
numbers. (You can also end it and get the report earlier by typing xxx)

3. In Vice, select Edit -> Copy from the menu

4. Create a text file (let’s say you call it mygame_optimization.txt), paste
the complete text you just copied from Vice into the file and save it.

5. At a command prompt, type “ruby make.rb -c mygame_optimization.txt
mygame.z5”

8

Chapter 3

Targets

Ozmoo was originally written for the Commodore 64, but has been adapted for
some other computers as well. make.rb takes a -t:target argument to build for
other computers, and currently supports these platforms:

Target Comment
-t:c64 Build Ozmoo for the Commodore 64 (default)
-t:c128 Build Ozmoo for the Commodore 128
-t:plus4 Build Ozmoo for the Commodore Plus/4

Note that not all build options are supported for every platform. If an option
isn’t supported, the make.rb script will stop with an appropriate error message,
and no Ozmoo files will be produced.

Commodore 64
The Commodore 64 version is the default build target, and supports all build
options. A game can have about 35 KB of dynamic memory. Games will need
to do more disk access the more dynamic memory they have, so more than ~30
KB may not be advisable. An REU can be used for caching if present.

Commodore 128
The Commodore 128 version automatically detects if it is started from 40 or 80
columns mode, and adjusts to the screen size. When run in 80 column mode,
the CPU runs at 2 MHz, making for quite responsive games. It makes use of the
additional ram available compared to the Commodore 64 version, and allows for

9

games with up to 44 KB dynamic memory. An REU can be used for caching if
present.

The Commodore 128 version does not allow a loader image, and build mode -P
is not supported.

Commodore Plus/4
The Commodore Plus/4 version makes use of the simplified memory map com-
pared to the Commodore 64 version, allowing for games with up to 46 KB
dynamic memory. Games will need to do more disk access the more dynamic
memory they have, so more than ~30 KB may still not be advisable.

Other targets
A fork of Ozmoo targeting the Acorn computers (BBC Micro and other variants)
can be found at https://github.com/ZornsLemma/ozmoo/tree/acorn. Note that
this fork is using a different build script called make-acorn.py.

10

Chapter 4

Build Modes

Drives and devices
A game built using Ozmoo is placed on one or more disks. These disks can then
be used in different disk drives attached to the C64. The device numbers which
can be used are 8, 9, 10, 11. If the game has two story disks (meaning it was
built using mode D2 or D3), the player will need a computer with at least two
disk drives OR one disk drive and an REU to play it.

List of build modes
Notes:

• Preloading means some or all of memory is filled with suitable parts of the
story file, by loading this content from a file as the game starts. Using
preloading speeds up game start for many players since this initial loading
sequence can use any fastloader the user may have enabled. It also means
gameplay is as fast as it gets, right from the start.

• Less RAM available for virtual memory system: This means a smaller part
of C64 memory can be used for virtual memory handling, which means the
game will need to load sectors from disk more often. This will of course
slow the game down.

Modes not requiring a disk drive for play:
P: Program file

• Story file size < ~51 KB: Using full amount of RAM.

Disks used:

11

• Boot / Story disk. This contains a single file, which may be moved to any
other medium, like another disk image or a tape image.

Modes requiring a single 1541 drive for play:
S1: Single 1541 drive, one disk

• Story file size < ~150 KB: Full preloading. Full amount of RAM available
for virtual memory system.

• Story file size < ~170 KB: Less preloading the larger the story file. Full
amount of RAM available for virtual memory system.

Disks used: - Boot / Story disk

S2: Single 1541 drive, two disks

• Story file size < ~190 KB: Full preloading. Full amount of RAM available
for virtual memory system.

Disks used:

• Boot disk
• Story disk

Modes requiring two 1541 drives for play:
D2: Double 1541 drives, two disks

• Story file size < ~330 KB: Full preloading. Full amount of RAM available
for virtual memory system.

• Story file size < ~360 KB: Less preloading the larger the story file. Full
amount of RAM available for virtual memory system.

Disks used:

• Boot disk / Story disk 1
• Story disk 2

D3: Double 1541 drives, three disks

• Story file size < ~370 KB: Full preloading. Full amount of RAM available
for virtual memory system.

Disks used:

• Boot disk
• Story disk 1
• Story disk 2

Modes requiring a 1571 drive for play:
71: Single 1571 drive, one disk

12

• Story file size < ~320 KB: Full preloading. Full amount of RAM available
for virtual memory system.

• Story file size < ~340 KB: Less preloading the larger the story file. Full
amount of RAM available for virtual memory system.

Disks used:

• Boot / Story disk

Modes requiring a 1581 drive for play:
81: Single 1581 drive, one disk

Any story size: Full preloading. Full amount of RAM available for virtual
memory system.

Thanks to the partitioning available on the 1581, the story data is protected
even in the event of a validate command. Thus, the user can safely use the story
disk as a save disk as well.

Disks used:

• Boot / Story disk

Modes requiring an SD2IEC:
To be added at a later date. An SD2IEC mode could enable full 512 KB story
sizes.

13

Chapter 5

Splash Screen

By default, Ozmoo will show a splash screen just before the game starts. At
the bottom of the screen is a line of text stating the version of Ozmoo used and
instructions to use F1 to toggle darkmode. After three seconds, or when the
player presses a key, the game starts.

You can use the following commandline parameters add up to four lines of text
to the splash screen:

-ss1:"text"
-ss2:"text"
-ss3:"text"
-ss4:"text"

-sw:nnn

This sets the number of seconds that Ozmoo will pause on the splash screen.
The default is three seconds if no text has been added, and ten seconds if text
has been added. A value of 0 will remove the splashscreen completely.

Example:

ruby make.rb supermm.z5 -ss1:"Super Mario Murders" -ss2:"A coin-op mystery" \
-ss3:"by" -ss4:"John \"Popeye\" Johnsson" -sw:8

14

Chapter 6

Colours

Ozmoo lets you pick two different colour schemes for your game. We refer to
these two colour schemes as normal mode and darkmode. The idea is that you
may want lighter text on a dark background when playing at night, while dark
text on a light background has proven to be easier to read, in well-lit conditions.
Ozmoo will always start in normal mode, and the player can switch between
normal mode and darkmode using the F1 key. When switching modes, Ozmoo
will change the colour of all onscreen text which has the default foreground
colour or which has the same colour as the background colour in the mode it’s
switching to and thus would otherwise become invisible.

Colour switches
make.rb has the following switches to control colours:

-rc:(Z-code colour)=(C64 colour), ...

Replace colours: Replaces one or more colours in the Z-code palette with the
specified colours in the C64 palette.

-dc:(Default background colour):(Default foreground colour)

Default colours: This picks the Z-code colours to use as default background and
foreground colours.

-sc:(Statusline colour)

Statusline colour: This picks the Z-code colour to use as statusline colour. This
is only possible with version 3 story files (z3).

-ic:(Statusline colour)

Input colour: This picks the Z-code colour to use for player input text. This is
only possible with version 3 and 4 story files (z3 and z4).

15

-bc:(Border colour)

Border colour. This picks the Z-code colour to use as border colour. Special
values: 0 = same as background colour (default), 1 = same as foreground colour.
If the game itself changes the screen colours, as it may do in Z5+ games, values
0 and 1 mean the border changes too.

-cc:(Cursor color)

Cursor colour: This picks the Z-code colour for the cursor shown when waiting
for player input. 1 = same as foreground colour (default). If the game itself
changes the screen colours, as it may do in Z5+ games, value 1 mean the cursor
changes too.

-dmdc: (same as -dc but for darkmode)

-dmsc: (same as -sc but for darkmode)

-dmic: (same as -ic but for darkmode)

-dmbc: (same as -bc but for darkmode)

-dmcc: (same as -dc but for darkmode)

Cursor switches
The shape and the blinking of the cursor can also be customized:

-cb:(delay)

Cursor blinking frequency. delay is 1 to 99, where 1 is fastest.

-cs:(Cursor shape)

Cursor shape: either of b,u or l; where b=block (default) shape, u=underscore
shape and l=line shape.

Palette
Z-code has a palette of 8 colours, numbered 2-9:

2 = black
3 = red
4 = green
5 = yellow
6 = blue
7 = magenta
8 = cyan
9 = white

16

The Commodore 64 has 16 colours, numbered 0-15:

0 = black
1 = white
2 = red
3 = cyan
4 = purple
5 = green
6 = blue
7 = yellow
8 = orange
9 = brown
10 = pink
11 = dark grey
12 = grey
13 = light green
14 = light blue
15 = light grey

When building Ozmoo for the Plus/4, Ozmoo has a list of Plus/4 colours which
are approximately equivalent to the 16 colours of the C64. Thus, you use the
same colour numbers as for the C64 when referring to “native” (non Z-code)
colours.

The 80-column mode of the C128 has a different and rather limited palette.
Ozmoo tries to use colours which are approximately the same as the C64 colours.

Examples
Use cyan text on black background with a yellow statusbar (Please note that
specifying the colour of the statusbar only works for z3!):

make.rb -dc:2:8 -sc:5 game.z3

Change so Z-code color 7 is dark grey instead of magenta and Z-code color 8 is
light grey instead of cyan, and use these as default colors:

make.rb -rc:7=11,8=15 -dc:7:8 game.z5

Setting up the default palette (even though this isn’t useful) is equivalent to
using:

make.rb -rc:2=0,3=2,4=5,5=7,6=6,7=4,8=3,9=1 game.z5

17

Chapter 7

Fonts

When building a game with make.rb, you can choose to embed a font (character
set) with the game using the -f option. This will use up 2 KB of memory which
would otherwise have been available for game data. The font file should be
exactly 2048 bytes long and just hold the raw data for the font, without load
address or other extra information.

The font files are organized into subfolders under the “font” folder, with one
subfolder per language:

da: Danish en: English de: German es: Spanish fr: French it: Italian sv: Swedish

Included with the Ozmoo distribution are these custom fonts:

• Clairsys, by Paul van der Laan.

• Clairsys Bold, by Paul van der Laan.

• PXLfont-rf, by Retrofan.

• System, the standard C64 system font, with accented characters added by
the Ozmoo team.

You are free to use one of these fonts in a game you make and distribute,
regardless of whether you make any money off of the game. You must however
include credits for the font, stating the name of the font and the creator of the
font. We strongly suggest you include these credits both in the docs / game
distribution and somewhere within the game (Some games print “Type ABOUT
for information about the game.” or something to that effect as the game starts).

To see all the licensing details for each font, read the corresponding license file in
the “fonts” folder. The full information in the license file must also be included
with the game distribution if you embed a font with a game.

18

Chapter 8

Loader image

When building for the Commodore 64 or Plus/4, it is possible to add a loader
which shows an image while the game is loading, using -i (show image) or -if
(show image with a flicker effect in the border). The image file must be a Koala
paint multicolour image (10003 bytes in size) when building a game for the C64,
or a Multi Botticelli multicolour image (10050 bytes in size) when building a
game for the Plus/4. Border flicker is not supported for the Plus/4. Example
commands:

make.rb -if mountain.kla game.z5
make.rb -i spaceship.mb -t:plus4 game.z5

19

Chapter 9

Command line history

There is an optional command line history feature that can be activated by
-ch. If activated, it uses the wasted space between the interpreter and the virtual
memory buffers to store command lines, that can later be retrieved using the
cursor up and down keys. The maximum space allowed for the history is 256
bytes, but the stored lines are saved compactly so if only short commands like
directions, “i” and “open door” etc are used it will fit quite a lot.

Since memory is limited on old computers this feature is disabled by default. To
enable it use -ch. This will allocate a history buffer large enough to be useful. It
is also possible to manually define the minimal size of the history buffer with
-ch:n, where n is 20-255 bytes.

20

	Overview
	Features
	Limitations

	Quickstart
	Dependencies
	Customizing the make script
	View all commandline options for make.rb
	The basic way to build a game
	Build a game which will only consist of a single file
	Build a game with optimized preloaded virtual memory data

	Targets
	Commodore 64
	Commodore 128
	Commodore Plus/4
	Other targets

	Build Modes
	Drives and devices
	List of build modes
	Modes not requiring a disk drive for play:
	Modes requiring a single 1541 drive for play:
	Modes requiring two 1541 drives for play:
	Modes requiring a 1571 drive for play:
	Modes requiring a 1581 drive for play:
	Modes requiring an SD2IEC:

	Splash Screen
	Colours
	Colour switches
	Cursor switches
	Palette
	Examples

	Fonts
	Loader image
	Command line history

