
TARGet

User’s Guide

April 22, 2016

1



1 Introduction

TARGet is a light-weight application for reconstructing non-vertical evolutionary histo-

ries from sampled genetic sequences. TARGet makes use of persistent homology [1,2],

a tool from topological data analysis, to infer information about the minimal set of

reticulate events (recombination, re-assortment, etc) that are needed to explain a se-

quence alignment, under the assumption of no convergent evolution. It exploits a

sequence partitioning strategy similar to that of ref. [3], but the topological nature of

TARGet permits inferring phylogenetic information about reticulate events, like the

participating gametes or the associated genetic scales. Specifically, TARGet computes

the first-homology barcode ensemble of the sequence alignment and attempts to recon-

struct the topological ancestral recombination graph (tARG), which is closely related

(in most cases actually identical) to minimal ARGs [4].

The advantage of working with barcodes and tARGs is that they can be computed

in polynomial time, without having to perform exhaustive explorations of the ARG

space. Hence, as opposed to standard methods of ancestral recombination graph (ARG)

reconstruction, TARGet is a fast multi-threaded algorithm that can be applied to large

datasets, consisting of hundreds of genetic sequences. It is therefore a great tool for

exploring reticulate evolution not only in virus and bacteria, but also in eukaryotes.

TARGet is distributed under the GNU General Public License (GPL v3). It is

fully written in Python 2.7, but heavily relies on Dionysus C++ library for persistent

homology computations. It runs in Windows, Mac OS and Unix systems, provided all

dependences are installed. If you use TARGet for your research, please include [4] in

your references.

Installation

To run TARGet, the following free software is required in the system:

- Python 2.7. (Python 3 is currently not supported.)

- CMake.

- Boost C++ libraries, including Boost.Python.

- NetworkX package for Python.

For optimal visualization results it is also recommended to have Graphviz tools and

PyGraphviz installed, although they are not strictly required.

2

http://www.mrzv.org/software/dionysus/
https://www.python.org/
http://www.cmake.org/
http://www.boost.org/
https://networkx.github.io/
http://www.graphviz.org/
http://pygraphviz.github.io/


Once the above dependences are installed in the system, you can unpack and build

TARGet by typing the following commands in a terminal:

tar -xvzf TARGet.tar.gz

cd TARGet

mkdir build

cd build

cmake ..

make

The Python executable is in directory TARGet. You can check that TARGet has

been correctly installed by running it on the test or on the example FASTA files that

come with the distribution:

./TARGet test.fa

or

python TARGet test.fa

Troubleshooting

These are some potential problems that can happen during the installation procedure,

and their solution:

- On Mac OSX, CMake often has issues finding the correct python path. If that

is the case, uncomment the following three lines in file CMakeLists.txt, replacing

the directories for the appropriate ones in your system,

set (PYTHON EXECUTABLE /usr/local/bin/python2.6)

set (PYTHON INCLUDE DIR /usr/local/include/python2.6)

set (PYTHON PATH /usr/local/lib/libpython2.6.dylib)

and run cmake and make again.

- Some compiler versions may raise the following error:

error: unrecognized command line option "-ftemplate-depth=256"

If that is the case, replace the following line in CMakeList.txt,

add definitions (-ftemplate-depth=256)

by,

add definitions (-ftemplate-depth-256)

and run cmake and make again.

3



- It is important to run TARGet using the same version of Python that was used

to compile TARGet and Boost libraries.

2 Running TARGet

Input file

The standard TARGet input is a FASTA file containing a DNA sequence alignment.

Alternatively, the input file can contain only segregating sites (in bi-allelic 0/1 format).

For instance:

>Sequence ID 1

11110000

>Sequence ID 2

00001100

...

Note, however, that all positions in TARGet’s output will refer in that case to segregat-

ing sites and not to genomic positions, unless they are specified through the command

line option -p (see below).

The current version of TARGet does not take into account gaps (indicated as -

characters in the input file). Sites containing gaps are automatically considered non-

segregating positions.

Command line options

TARGet can be run with default parameters by just typing:

./TARGet <input file>

or

python TARGet <input file>

where <input file> is the name of the FASTA file containing the alignment. However,

there are several command line options that may result useful:

-c #

TARGet is a multi-threaded algorithm. By default it will run in a single CPU core, but

you can specify a higher number of cores with the command line option -c #, where #

is the number of cores that TARGet can use.

4



-o <prefix>

TARGet produces four output files. By default these are named:

out.b1.txt

out.bars.txt

out.targ

out.gexf

A different prefix (instead of out) for the output files can be specified with the command

line option -o <prefix>.

-s #, -t # and -w #

As already stated, TARGet makes use of a sequence partitioning strategy similar to that

of Myers and Griffiths [3]. In most cases, considering all possible sequence partitions

is unnecessary and computationally too expensive. The number of sequence partitions

that TARGet computes can be limited by the maximum and minimum numbers of

segregating sites within each segment, and by the maximum distance (measured in

number of segregating sites) between segment extrema. The default values for these

three quantities are 2, 5 and 13, respectively. The user can specify different values

by means of the command line options -s #, -t # and -w #, respectively, where #

indicates the number of segregating sites.

In general, taking large values for -s # and -w # can increase substantially the

running time and memory requirements. We find that a useful strategy is to first run

TARGet with default parameters. Then, increase as much as possible the number of

segregating sites within segments using -s #. This will improve the sensitivity and the

genetic scale range. If the value of -s # approaches that of -w #, and running time

and memory requirements are still good, you may want to also increase the maximum

distance between segment extrema using -w #. Sometimes you may capture large scale

recombination loops, even if they could be split in smaller ones. Increasing -t # is a

good strategy in those situations.

-e

It excludes from the computation segregating sites that are compatible with all the

other sites in the sequence alignment. This speeds up the computation, but can slightly

alter the genetic scales of some of the bars in the first-homology barcode ensemble.

5



-p <file pos>

It allows to specify a file <file pos> containing a list of genomic positions for the sites

in the FASTA file <input file>. This is useful when <input file> only contains

segregating sites, but the user still wants the output produced by TARGet to refer to

actual genomic positions. Each position in <file pos> should appear in a different

line, for instance,

14

127

182

...

The number of lines in <file pos> must be equal to the number of sites in the file

<input file>.

-n

By default, when TARGet finishes computing the barcode ensemble and tARG of the

sequence alignment, it opens a graphical interface that allows exploring the results

interactively. The use of the graphical interface is described below. The user may want

to change this behavior, so that the graphical interface is not automatically opened.

This can be achieved by means of the command line option -n. Note that it is always

possible to resume previous results by using the command line option -l, described

below, without having to recompute the tARG.

-i

It enables an algorithm for further localizing the genomic location of reticulate events.

It may increase substantially the running time of TARGet when the sequence is long

and with many reticulate events. The current implementation of this algorithm is sub-

optimal, and in complex situations some of the reticulate events present in the barcode

ensemble may be missed by this algorithm.

-l

One of the three output files that TARGet produces is a binary file (by default named

out.targ) containing all the information required to open a previously computed bar-

code ensemble and tARG in the graphical interface. You may use the command line

6



option -l to open a .targ file. In this case the input file is not a FASTA file, but a

.targ file.

--t92

By default TARGet utilizes Hamming distance to determine genetic distances between

sequences. Using the command line option --t92, TARGet will use instead a T92

model [5] to estimate genetic distances. To that end, full nucleotide sequences are

expected in the input file. If only the sequence at segregating sites is specified (through

the command line option -p), and --t92 is used, TARGet will make instead use of

a K80 model [6]. If genotype information is specified in a binary form, and --t92 is

used, then TARGet will make use of a JC69 model [7].

3 Understanding the output

TARGet produces an barcode ensemble associated to the sequence alignment and at-

tempts to reconstruct the tARG. Each bar in the barcode ensemble represents a retic-

ulate event in the sample history. Bar positions and lengths are related to the genetic

scales of the gametes that took part in the reticulate event, measured in number of mu-

tations. Assuming good sampling density, reticulate events involving genetically very

different parental sequences (e.g. recombination of strains that diverged long time ago)

are represented by long bars at high genetic scales in the barcode, whereas reticulate

events involving closely related parental sequences appear as short bars at low genetic

scales.

For the sake of illustration, consider a sample of 7 sequences with the following

genotype (these can be found in the file test.fa):

0 : 1 1 1 1 0 0 0 0

1 : 0 0 0 0 1 1 0 0

2 : 0 0 0 0 1 1 0 1

3 : 1 1 1 1 1 1 1 0

4 : 1 1 1 1 0 0 1 0

5 : 0 0 0 0 0 0 0 0

6 : 1 1 1 1 1 1 0 0

Minimal histories of the sample involve 2 recombination events under the assumption

of no convergent evolution. An example of minimal history is shown in figure 1a. The

corresponding tARG, depicted in figure 1b, represents the unrooted topology of mini-

7



mal ARGs [4]. Hence, it contains the two loops present in the minimal ARG of figure

1a, and allows identifying the specific gametes that participate in each recombination

event.

The barcode ensemble of the sample is shown in figure 1c. It has two bars, cor-

responding to the two recombination events of minimal ARGs. The shortest bar is

associated to the recombination between gametes 0 and 3, which differ on a single nu-

cleotide. The longest bar is associated to the recombination between gametes 0 and 1,

which differ in 6 nucleotides. The location of recombination break points is also shown

in figure 1c.

Figure 1: a) Example of minimal ARG describing a minimal evolutionary history for

the sample of 7 sequences considered in the text. Mutation events in the i-th position

are represented as mi. Root node is marked in red and leaf nodes are marked in green.

The ARG involves two recombination events. b) tARG associated to the sample. c)

Barcode ensemble associated to the sample.

These results can be simply obtained by running

./TARGet -s 8 test.fa

Barcodes are relatively stable against sampling. For instance, in the above example we

would obtain the same barcode if we remove sequences 0, 2 and 6 from the sample.

8



Graphical interface

TARGet has a interactive graphical interface that permits exploring the results. A

snapshot of the interface is shown in figure 2. The interface consists of 5 different panels.

Panel 1 contains the barcode ensemble of the sequence alignment, depicting genetic

scales of reticulate events, as described above. Panel 2 contains the reconstructed tARG

of the sample. Panel 5 represents a set of intervals on the genetic sequence, indicating

the number of reticulate events of the tARG (the so-called first Betti number) with

break points in the interval. In addition, loci at which the Hudson-Kaplan’s four

gamete test [8] fails across consecutive segregating sites are also indicated in panel 5

(red lines). Positions in that panel refer to genomic positions, except when the input

file contains only segregating sites and the command line option -p is not specified.

When selecting a bar in panel 1, the corresponding loop is marked red in the tARG

representation of panel 2, and panel 3 list the identifiers of the genetic sequences that

participate in that reticulate event (see figure 2).

Generally, the barcode ensemble is built out of various sequence blocks [4], following

a partitioning algorithm similar to that of [3]. Hence, when selecting a bar in panel 1,

other bars belonging to the same building block are also highlighted in yellow, as well

as the corresponding cycles in panel 2. In addition, panel 4 indicates the part of the

genetic sequence that is associated to that building block.

Figure 2: Graphical interface of TARGet.

9



Output files

TARGet produces four output files, by default named out.bars.txt, out.b1.txt,

out.targ and out.gexf. We have described above the use of the binary file out.targ,

containing all the information required to resume a graphical session.

The file out.bars.txt contains a tab separated table listing all reticulate events

in the barcode ensemble. The format is:

birth death generators start end

Each row represents a single reticulate event in the tARG. The first two columns in

the table contain the genetic scales of the two bar extrema in the barcode ensemble.

The third column contains a list of the edges that make the corresponding loop in

the tARG. Each edge is given by a pair of sequences, where sequences are denoted by

integers starting from 0 in the same order as they appear in the input file. The last

two columns contain respectively the start and end positions of the genomic segment

associated to the building block containing the reticulate event [4].

The file out.b1.txt contains a tab separated table with columns:

start end b1

Each row represents an interval of the genetic sequence constraining as much as pos-

sible the location of reticulate events break points. The first and second columns of

the table contain the start and end positions of the interval, respectively. The third

column is the number of reticulate events with break points in that interval. Note that

currently the algorithm that TARGet uses to constrain the location of break points

when command line option -i is specified is sub-optimal, and in complex situations

some of the reticulate events listed in the file out.bars.txt may be missing in the file

out.b1.txt.

All positions listed in the columns start and end in files out.bars.txt and

out.b1.txt, refer to genomic positions except when the input file contains only seg-

regating sites and the command line option -p is not specified.

Finally, the file out.gexf contains the reconstructed tARG in GEXF (Graph Ex-

change XML Format), that can be opened by most network analysis programs.

10



Figure 3: First-homology barcode ensemble and reconstructed tARG of a sample of 112

Darwin’s finches, obtained with TARGet (the source FASTA file, Darwing Finches.fa,

is included in the distribution). The first-homology barcode ensemble is shown in a),

based on 140 homozygous SNPs present in a 9 megabase scaffold. In total, 13 recombi-

nation/gene flow events are captured in the barcode ensemble, having different genetic

scales. Bars are coloured according to the position of the corresponding recombination

breakpoint in the genome, as depicted in The number of recombination events detected

at each genomic interval, as well as some of the orthologous genes present at regions

where recombination events are detected, are indicated in c). The reconstructed tARG

is presented in b). Recombination loops in the reconstructed tARG are outlined using

the same code of colors. Leaf nodes that do not participate in any recombination event

are also included in the graph, using a nearest neighbour algorithm based on genetic

distance. Edge lengths are arbitrary. Figure taken from [4].

11



References

[1] Edelsbrunner, H., Letscher, D. and Zomorodian, A. (2002), Topological persistence

and simplification. Discrete and Computational Geometry 69, pp. 511-533.

[2] Zomorodian, A. and Carlsson, G. (2005), Computing persistent homology. Discrete

and Computational Geometry 33, pp. 247-274.

[3] Myers, S.R. and Griffiths, R.C. (2003), Bounds on the minimum number of re-

combination events in a sample history. Genetics 163, pp. 375-394.

[4] Camara, P.G., Levine A.J. and Rabadan R. (2015), Inference of ancestral recom-

bination graphs through topological data analysis. arXiv:1505.05815.

[5] Tamura, K. (1992), Estimation of the number of nucleotide substitutions when

there are strong transition-transversion and G+C-content biases. Molecular biol-

ogy and evolution 9, pp. 678-687.

[6] Kimura, M. (1980), A simple method for estimating evolutionary rates of base sub-

stitutions through comparative studies of nucleotide sequences. Journal of molecular

evolution, 16, pp. 111-120.

[7] Jukes, T.H., and Cantor, C.R. (1969), Evolution of protein molecules. Mammalian

protein metabolism, 3, pp. 132.

[8] Hudson, R.R. and Kaplan, N.L. (1985), Statistical Properties of the Number of

Recombination Events in the History of a Sample of DNA Sequences. Genetics

111, pp. 147-164.

12

http://arxiv.org/abs/1505.05815

	Introduction
	Running TARGet
	Understanding the output

