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1 Modular Forms

1.1 Definition (Modular/Cusp Forms) Sk(N) transform with a factor of (cτ+d)k under Γ0(N)
where c ≡ 0 modulo N . They must vanish at ∞. Mk(N) don’t have to vanish at ∞. In terms of
q = e2πiτ Sk gives a q expansion holomorphic on the disc vanishing at the origin. Mk(N) doesn’t
have to vanish at the origin.

Acting on Mk(N = 1). That is Γ0(1) = SL(2,Z) without N condition on c entry and k gives
the weight.

For r ≥ 1 and (n,m) = 1

Tnm = TnTm = TmTn

Tpr+1 = TprTp − pk−1Tpr−1

Tp2 = TpTp − pk−1

Tp3 = (TpTp − pk−1)Tp − pk−1Tp
= T 3

p − pk−1Tp − pk−1Tp
Tp4 = (T 3

p − 2pk−1Tp)Tp − pk−1(T 2
p − pk−1)

= T 4
p − 3pk−1T 2

p + (pk−1)2

1.2 Corollary For a general Tn one can factor n and then use these identities to reduce to a
polynomial in the Tp for only primes p.

Proof

n = pa11 p
a2
2 · · ·

Tn = Tpa11
· · ·

= (T
p
a1−1
1

Tp − pk−1Tpa1−2
1

) · · ·

f ≡
∞∑
m=0

cmq
m

Tpf =
∞∑
µ=0

cpµq
µ +

∞∑
ν=0

cνq
pν
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If f ∈ Sk(1), then rescale so starts with 1 ∗ q.
Now looking for Hecke eigenforms. If we know Tp is acting by a scalar λp, then we know that

Tpr are acting by scalars as well

Tp2f = (λ2p − pk−1)f

1.3 Theorem (Eichler-Selberg) Formula for trace of Tn on Sk(1).

1.4 Corollary If we know all the traces for Tpn up to d− 1 where d is dimension of the Sk(1) we
can find characteristic polynomial for Tp.

Proof The first term of Tpr is T rp so knowledge of traces of Tpr can be backsubstituted to recover
traces of T rp then use formula for characteristic polynomial in terms of traces of powers. This is what
CharPolyHelper does in the Mathematica file. It takes the list of trTpr and outputs the list of trT rp .
CharPolyHelper2 is supposed to transfer that information back into the characteristic polynomial
using formula of trAr in terms of symmetric functions of eigenvalues back to the characteristic
polynomial which has those eigenvalues as roots. �

2 Point Counts

2.1 Definition (Zeta Function)

Z(C, u) = e
∑∞

m=0
Nm
m
um

where Nm is the point count over qm.

2.2 Theorem (Weil)

Z(C, u) =
P (u)

(1− u)(1− qu)

where P is a polynomial that can be written as

P (u) =

2g∏
i=1

(1− ωiu)

= 1 +
∑

ek(−u)k

2.3 Corollary If you are given Nm for m = 1 · · · 2g, then can recover the ek symmetric functions
of the ωi. This is SolveForEks in the Mathematica notebook.

Once you have that, you can plug that back in and recover the count over qm for even higher m
without solving that much harder equation. This is GiveMthPointCount.

If the ωi are provided, the point counts over all qm for 1 · · ·mmax are given through SolveForNms.
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2.4 Theorem (Hasse-Weil Bound)

| Nm − (qm + 1) | ≤ 2g
√
qm

So we may write Nm = qm + 1 + εm where | εm |≤ 2g
√
qm. This way instead of providing the

Nm data, one can provide the smaller εm data instead.

2.5 Definition (Zmot,Kapranov)

Zmot,Kapranov(X,u) =
∑

un[SymnX]

where [SymnX] is the motive of SymnX. In particular, can give the points from the motive.
Call that map µ.

µZmot,Kapranov(X,u) = Z(X,u)

2.6 Corollary This means we can recover the point counts of SymnC from the point counts Nm

that were given. This is done in symmetricPowerCounts1. In particular, you can get the point
count for SymgC. That is given by the function jacobianSize1.

3 Crypto

3.1 Definition (Discrete Logarithm) Let C be a finite cyclic group with generator g0. f C → N
an injective set map.

For a ∈ f(C) ⊂ N, solve for

logg0(a) = min {n | n← N, f(gn0 ) = a}

3.2 Definition (Abelian Variety) A connected projective algebraic group over the base field k.
The group law on the points becomes abelian group.

3.3 Definition (Dual abelian variety) For A, there is a dual A∨. This has the universal prop-
erty for parameterizing families of degree 0 line bundles.

3.4 Corollary (Weil Pairing) Take the n torsion in both A and A∨. They are Cartier duals. If
A is an elliptic curve, this is Weil pairing.

3.5 Remark Embedding arbitrary abelian variety into a Jacobian. After allowing yourself an
infinite field like F̄p.

https://mathoverflow.net/questions/304314/is-every-abelian-variety-a-subvariety-of-a-jacobian

There is the map Mg → Ag from the moduli space of genus g curves to the moduli space
of abelian varieties of dimension g. It takes curves of genus g to their Jacobians. The Schottky
problem asks to characterize this image. ♦
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So pick a point in this abelian variety and see the cyclic group it generates. The fact that the
structure maps were all algebraic makes the operations you need to do over and over again efficient.

In particular if the curve is an elliptic curve, really should think of that group law as happening
on Jacobian of an elliptic curve, but with the coincidence that that is elliptic curve again. However,
this tells you how it generates for higher genus.

3.6 Definition (CM Type) An abelian variety is of CM type when End(A)⊗Q contains a com-
mutative subring of dimension 2d over Q. For d = 1, this means that End(A) is an order in an
imaginary quadratic field.

3.1 Elliptic Curves

3.7 Definition (Weirstrauss form)

y2 = x3 + ax+ b

Points are stored as (x, y, isInfinity) triples. If isInfinity = True the x, y don’t matter.

3.8 Definition (Legendre form)

y2 = x(x− 1)(x− j)

Points are stored as (x, y, isInfinity) triples. If isInfinity = True the x, y don’t matter.

3.9 Lemma (Conversion) Suppose we have a solution in Weirstrauss form with certain a, b.

x3 + ax+ b = (x− x1)(x− x2)(x− x3)
x̃ = x− x1

x3 + ax+ b → x̃(x̃+ x1 − x2)(x̃+ x1 − x3)

X =
1

(x2 − x1)
x̃

x3 + ax+ b → (x2 − x1)3X(X − 1)(X +
x1 − x3
x2 − x1

)

Y = (x2 − x1)3/2y

Y 2 = X(X − 1)(X +
x1 − x3
x2 − x1

)

So have the corresponding elliptic curve in Legendre form and the new expression for the same
point as X,Y .

http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html

3.10 Definition (Jacobi embedding)

3.11 Lemma (Addition in Weirstrauss) Given via the function .. in the ipynb

3.12 Lemma (Addition in Legendre) Given via the function .. in the ipynb
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4 Sophie Germain

For the SophieGermain.ipynb

5 Continued Fractions

Given an x and maxDepth, RationalFracToModular in ContinuedFraction.nb turns x into a con-
tinued fraction and then gives the associated element in Y ∈ SL(2,Z). Y acting on the point at ∞
with the usual fractional linear transformation action returns x.

The graph is of one of the entries of Y as a function of x ∈ (0, 1).
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