
ReactPhysics3D library
User Manual

Version: 0.4.0

Daniel Chappuis

http://code.google.com/p/reactphysics3d/
October 6, 2013

Contents
1 Introduction 4

2 Features 4

3 License 4

4 Building the library 4
4.1 CMake using the command line (Linux and Mac OS X) 5
4.2 CMake using the graphical interface (Linux, Mac OS X and Windows) 5
4.3 CMake Variables . 6

5 Using ReactPhysics3D in your application 6

6 The Physics World 7
6.1 Creating the Physics World . 7
6.2 Customizing the Physics World . 8

6.2.1 Solver parameters . 8
6.2.2 Sleeping . 8

6.3 Updating the Physics World . 9
6.4 Destroying the Physics World . 9

7 Rigid Bodies 9
7.1 Creating a Rigid Body . 10
7.2 Customizing a Rigid Body . 11

7.2.1 Static Rigid Body . 11
7.2.2 Gravity . 11
7.2.3 Material of a Rigid Body . 11
7.2.4 Velocity Damping . 12
7.2.5 Sleeping . 12
7.2.6 Applying Force or Torque to a Rigid Body 12

7.3 Updating a Rigid Body . 13
7.4 Destroying a Rigid Body . 14

8 Collision Shapes 14
8.1 Box Shape . 15
8.2 Sphere Shape . 15
8.3 Cone Shape . 16
8.4 Cylinder Shape . 17
8.5 Capsule Shape . 18
8.6 Convex Mesh Shape . 18
8.7 Inertia Tensor of a Collision Shape 20

9 Joints 20
9.1 Ball and Socket Joint . 20
9.2 Hinge Joint . 21

9.2.1 Limits . 22

2

9.2.2 Motor . 23
9.3 Slider Joint . 24

9.3.1 Limits . 24
9.3.2 Motor . 25

9.4 Fixed Joint . 26
9.5 Collision between the bodies of a Joint 27
9.6 Destroying a Joint . 27

10 Examples 27
10.1 Cubes . 28
10.2 Collision Shapes . 28
10.3 Joints . 28

11 Receiving Feedback 28
11.1 Contacts . 28

12 Profiler 29

13 API Documentation 29

14 Bugs 29

3

1 Introduction
ReactPhysics3D is an open source C++ physics engine library that can be used in
3D simulations and games. The library is released under the ZLib license.

2 Features
The ReactPhysics3D library has the following features :

• Rigid body dynamics

• Discrete collision detection

• Collision shapes (Sphere, Box, Cone, Cylinder, Capsule, Convex Mesh)

• Broadphase collision detection (Sweep and Prune using AABBs)

• Narrowphase collision detection (GJK/EPA)

• Collision response and friction (Sequential Impulses Solver)

• Joints (Ball and Socket, Hinge, Slider, Fixed)

• Sleeping technique for inactive bodies

• Integrated Profiler

• Multi-platform (Windows, Linux, Mac OS X)

• Documentation (User manual and Doxygen API)

• Examples

• Unit tests

3 License
The ReactPhysics3D library is released under the open-source ZLib license. For
more information, read the "LICENSE" file.

4 Building the library
You should use the CMake software to generate the makefiles or the project files
for your IDE. CMake can be downloaded at http://www.cmake.org or using you
package-management program (apt, yum, . . .) on Linux. Then, you will be able to
compile the library to create the static library file. In order to use ReactPhysics3D
in your application, you can link your program with this static library. If you have
never used cmake before, you should read the page http://www.cmake.org/cmake/

4

help/runningcmake.html as it contains many useful information.

Note that by default, the library is built in debugging mode. In this mode, a
lot of debugging information is compiled together with the code. This might cause
the application to run much slower that it should be in release mode. Therefore,
you should not forget to build the library in release mode when releasing your final
application.

4.1 CMake using the command line (Linux and Mac OS X)

Now, we will see how to build the ReactPhysics3D library using the CMake tool on
the command line. First, create a folder into which you want to build the library.
Then go into that folder and run the ccmake command :

ccmake <path_to_library_source>

where <path_to_library_source> must be replaced by the path the path to the
reactphysics3d-0.4.0/ folder. It is the folder that contains the CMakeLists.txt
file. Running this command will launch the CMake command line interface. Hit
the ’c’ key to configure the project. There, you can also change some predefined
variables (see section 4.3 for more details) and then, hit the ’c’ key again. Once you
have set all the values as you like, you can hit the ’g’ key to generate the makefiles
in the build directory that you have created before and exit.

Now that you have generated the makefiles with the CMake software, you can
compile the code to build the static library in the /lib folder with the following
command in your build directory :

make

4.2 CMake using the graphical interface (Linux, Mac OS X
and Windows)

Here, we will see how to build the ReactPhysics3D library using the CMake graph-
ical interface. First, run the cmake-gui program. The program will ask you for the
source folder which is the reactphysics3d-0.4.0/ folder of the library. You will
also have to select a folder where you want to build the library and the examples.
Select any empty folder that is on your system. Then, you can click on Configure.
CMake will ask you to choose an IDE that is on your system. For instance, you can
select Visual Studio, Qt Creator, XCode, ... Then you can change the compilation
options. See section 4.3 to see what are the possible options. Once this is done, you
can click on Configure again and finally on Generate.

Now, if you go into the folder you have chosen to build the library, you should
be able to open the project file that corresponds to your IDE and compile the library.

5

If your want to run the examples within the Microsoft Visual Studio IDE, you
need to make sure that in the Debugging section of the Configuration Properties of
the example projects, the Working Directory is set to $(OutDir). Otherwise, you
might have problems to run the examples.

4.3 CMake Variables

You can find bellow the different CMake variables that you can set before generating
the makefiles.

CMAKE_BUILD_TYPE If this variable is set to Debug, the library will be
compiled in debugging mode. This mode should be used during development
stage to know where things might crash. In debugging mode, the library might
run a bit slow due to all the debugging information that are used. However,
if this variable is set to Release, no debugging information is stored and
therefore, it will run much faster. This mode must be used when you compile
for the final release of you application.

COMPILE_EXAMPLES If this variable is ON, the examples of the reactphysics3d
library will be compiled. Note that you will need to have the Freeglut library
installed on your system if you use Windows or Linux and you will need to
have the Glut library on Mac OS X if you want to run those examples.

COMPILE_TESTS If this variable is ON, the unit tests of the reactphysics3d
library will be compiled. You will then be able to launch the tests to make
sure that they are running fine on your system.

PROFILING_ENABLED If this variable is ON, the integrated profiler will col-
lect data while the application is running and the profiling report will be
displayed in the console at the end of the application (in the destructor of the
DynamicsWorld class). This might be useful to see what part of the react-
physics3d library takes time during its execution. This variable must be set
to OFF when you compile for the final release of your application.

DOUBLE_PRECISION_ENABLED If this variable is ON, the reactphysics3d
library will be compile with double floating point precision. Otherwise, the
library will be compile with single precision.

5 Using ReactPhysics3D in your application
In order to use the library in your own application, first build the static library of
ReactPhysics3d as described above to get the static library file in the lib/ folder.
Then, in your code, you have to include the ReactPhysics3D header file with the line :

// Include the ReactPhysics3D header file
#include "reactphysics3d.h"

6

Note that the reactphysics3d.h header file can be found in the src/ folder of
the library. Do not forget to add the src/ folder in your include directories in order
that the reactphysics3d.h file is accessible in your code.

Do not forget to also link your application with the ReactPhysics3D static library.

Then, you should be able to compile your application using the ReactPhysics3D
library.

All the classes of the library are available in the reactphysics3d namespace or
its shorter alias rp3d. Therefore, you need to include this namespace into your code
with the following declaration :

// Use the ReactPhysics3D namespace
using namespace reactphysics3d;

You should also take a look at the examples and the API documentation to get
a better idea of how to use the ReactPhysics3D library.

6 The Physics World
The physics world will contain the bodies and joints that you create. You will
then be able run the simulation across time by updating the world. The class
DynamicsWorld represents the physics world in the ReactPhysics3D library.

6.1 Creating the Physics World

The first thing you have to do when you want to simulate the dynamics of rigid
bodies in time with the ReactPhysics3D library is to create an instance of the
DynamicsWorld. You need to specify two parameters when constructing the world.
The first one is the gravity acceleration vector (in m/s2) in the world and the second
one is the simulation time step (in seconds). Note that gravity is activated by de-
fault when you create the world. The time step is the fixed amount of time that will
be simulated each time a simulation step will be perform when updating the world.
For real-time application, a time step of 1

60
seconds (60 Hz) is usually used. Using

a smaller time step makes the simulation more precise but also more expensive to
compute.

Here is how to create the world :

// Gravity vector
rp3d:: Vector3 gravity (0.0, -9.81, 0.0);

// Time step (in seconds)
rp3d:: decimal timeStep = 1.0 / 60.0;

7

// Create the dynamics world
rp3d:: DynamicsWorld world(gravity , timeStep);

6.2 Customizing the Physics World

6.2.1 Solver parameters

ReactPhysics3D uses an iterative solver to solve the contacts and joints. For con-
tacts, there is a unique velocity solver and for joints there are a velocity and a
position solver. By default, the number of iterations of the velocity solver is 10 and
the number of iterations for the position solver is 5. It is possible to change the
number of iterations for both solvers.

To do this, you need to use the following two methods :

// Change the number of iterations of the velocity solver
world.setNbIterationsVelocitySolver (15);

// Change the number of iterations of the position solver
world.setNbIterationsPositionSolver (8);

Increasing the number of iterations of the solvers will make the simulation more
precise but also more expensive to compute. Therefore, you need to change those
values only if needed.

6.2.2 Sleeping

The purpose of the sleeping technique is to deactivate resting bodies so that they are
not simulated anymore. This is used to save computation time because simulating
many bodies is costly. A sleeping body (or group of sleeping bodies) is awaken as
soon as another body collides with it or a joint in which it is involed is enabled.
The sleeping technique is enabled by default. You can disable it using the following
method :

// Disable the sleeping technique
world.enableSleeping(false);

Note that it is not recommended to disable the sleeping technique because the
simulation will become slower. It is also possible to deactivate the sleeping technique
on a per body basis. See section 7.2.5 for more information.

A body is put to sleep when its linear and angular velocity stay under
a given velocity threshold for a certain amount of time (one second by de-
fault). It is possible to change the two linear and angular velocity thresh-
olds using the two methods DynamicsWorld::setSleepLinearVelocity() and
Dynamics::setSleepAngularVelocity(). Note that the velocities must be speci-
fied in meters per second. You can also change the amount of time (in seconds) the

8

velocity of a body needs to stay under the threshold to be considered sleeping. To
do this, use the DynamicsWorld::setTimeBeforeSleep() method.

6.3 Updating the Physics World

The first thing you have to do to simulate the dynamics of your world is to start
the simulation using the following method :

// Start the simulation
world.start();

Then, each time you have to compute the next frame to render in your applica-
tion, you need to update the state of the world. To do that, you simply need to call
this method :

// Update the world by taking a simulation step
world.update ();

When the DynamicsWorld::update() method is called, collision detection is
performed and the position and orientation of the bodies are updated accordingly.
After updating the world, you will be able to get the updated position and orien-
tation of the bodies to render them in the next frame. Make sure that you call the
DynamicsWorld::start() method before calling the DynamicsWorld::update()
method.

You can also use the DynamicsWorld::stop() method to stop the simulation.
You will then be able to start it again and to continue updating it.

Note that you can get the elapsed time (in seconds) from the beginning of the
physics simulation using the DynamicsWorld::getPhysicsTime() method. This
can be useful to create some animations.

6.4 Destroying the Physics World

Do not forget to destroy the DynamicsWorld instance at the end of your program in
order to release the allocated memory. If the object has been created statically, it
will automatically be destroy at the end of the scope in which it has been created.
If the object has been created dynamically (using the new operator), you need to
destroy it with the delete operator.

7 Rigid Bodies
Once the physics world has been created, you can create rigid bodies into the world.
A rigid body will represent an object you want to simulate in the physics world. A
rigid body has a mass, a collision shape, a position and an orientation. The physics

9

world will compute collision between the bodies and will update their position and
orientation accordingly at each time step. You can also create joints between the
bodies in the world. In ReactPhysics3D, the class RigidBody is used to describe a
rigid body.

7.1 Creating a Rigid Body

In order to create a rigid body, you need to specify its transform, its mass, its inertia
tensor and a collision shape. The transform describes the initial position and orien-
tation of the body in the world. You need to create an instance of the Transform
with a vector describing the initial position and a quaternion for the initial orienta-
tion of the body.

In order that your rigid body can collide with other bodies in the world, you need
to specify a collision shape. Take a look at section 8 to learn about the different
collision shapes and how to create them.

To create a rigid body, you also need to give the mass of the body (in kilograms)
and its inertia tensor. The inertia tensor is a 3×3 matrix decribing how the mass is
distributed inside the rigid body which will be used to calculate the rotation of the
body. The inertia tensor can be calculated from the collision shape that you have
created for the body. You can find more information about this in section 8.7.

You need to call the DynamicsWorld::createRigidBody() method to create a
rigid body in the world previously created. This method will return a pointer to the
instance of the RigidBody class that has been created internally. You will then be
able to use that pointer to get or set values of the body.

You can see in the following code how to create a rigid body with a box collision
shape :

// Create the collision shape of the rigid body
const rp3d:: BoxShape collisionShape(rp3d:: Vector3 (1.0, 1.0,

1.0));

// Compute the inertia tensor of the body
rp3d:: Matrix3x3 inertiaTensor;
collisionShape.computeLocalInertiaTensor(inertiaTensor ,

mass);

// Initial position and orientation of the rigid body
rp3d:: Vector3 initPosition (0.0, 3.0, 0.0);
rp3d:: Quaternion initOrientation = rp3d:: Quaternion ::

identity ();
rp3d:: Transform transform(initPosition , initOrientation);

// Create a rigid body in the world
rp3d:: RigidBody* body;

10

body = dynamicsWorld.createRigidBody(transform , mass ,
inertiaTensor , collisionShape);

7.2 Customizing a Rigid Body

Once a rigid body has been created, you can change some of its properties.

7.2.1 Static Rigid Body

By default, the bodies you create in the world are not static. If the rigid
body is static and is not supposed to move, you need to specify it using the
RigidBody::enableMotion() method as follows :

// Specify that the body cannot move
rigidBody ->enableMotion(false);

7.2.2 Gravity

By default, all the rigid bodies with react to the gravity force of the world. If you
do not want the gravity to be applied to a given body, you can disable it using the
RigidBody::enableGravity() method as in the following example :

// Disable gravity for this body
rigidBody ->enableGravity(false);

7.2.3 Material of a Rigid Body

The material of a rigid body is used to describe its different physical properties.
The class Material represents the material of a body. Each body that you create
will have a default material. You can get the material of the rigid body using the
RigidBody::getMaterial() method. Then, you will be able to change some prop-
erties.

For instance, you can change the bounciness of the rigid body. The bounciness
is a value between 0 and 1. The value 1 is used for a very bouncy object and the
value 0 means that the body will not be bouncy at all. To change the bounciness
of the material, you can use the Material::setBounciness() method.

You are also able to change the friction coefficient of the body. This value
needs to be between 0 and 1. If the value is 0, no friction will be applied when
the body is in contact with another body. However, if the value is 1, the friction
force will be high. You can change the friction coefficient of the material with the
Material::setFrictionCoefficient() method.

Here is how to get the material of a rigid body and how to modify some of its
properties :

11

// Get the current material of the body
rp3d:: Material& material = rigidBody ->getMaterial ();

// Change the bounciness of the body
material.setBounciness(rp3d:: decimal (0.4));

// Change the friction coefficient of the body
material.setFrictionCoefficient(rp3d:: decimal (0.2));

7.2.4 Velocity Damping

Damping is the effect of reducing the velocity of the rigid body during the sim-
ulation. By default, no damping is applied. However, you can choose to damp
the linear or/and the angular velocity of a rigid body. For instance, without
angular damping a pendulum will never come to rest. You need to use the
RigidBody::setLinearDamping() and RigidBody::setAngularDamping() meth-
ods to change the damping values. The damping value has to be positive and a
value of zero means no damping at all.

7.2.5 Sleeping

As described in section 6.2.2, the sleeping technique is used to disable the simulation
of the resting bodies. By default the bodies are allowed to sleep when they come to
rest. However, if you do not want a given body to be put to sleep, you can use the
Body::setIsAllowedToSleep() method as in the next example :

// This rigid body cannot sleep
rigidBody ->setIsAllowedToSleep(false);

7.2.6 Applying Force or Torque to a Rigid Body

During the simulation, you can apply a force or a torque to a given rigid body.
First, you can apply a force to the center of mass of the rigid body using the
RigidBody::applyForceToCenter() method. You need to specifiy the force vector
(in Newton) as a parameter. If the force is applied to the center of mass, no torque
will be created and only the linear motion of the body will be affected.

// Force vector (in Newton)
rp3d:: Vector3 force (2.0, 0.0, 0.0);

// Apply a force to the center of the body
rigidBody ->applyForceToCenter(force);

You can also apply a force to any given point (in world-space) using the
RigidBody::applyForce() method. You need to specify the force vector (in
Newton) and the point (in world-space) where to apply the given force. Note that
if the point is not the center of mass of the body, applying a force will generate

12

some torque and therefore, the angular motion of the body will be affected as well.

// Force vector (in Newton)
rp3d:: Vector3 force (2.0, 0.0, 0.0);

// Point where the force is applied
rp3d:: Vector3 point (4.0, 5.0, 6.0);

// Apply a force to the body
rigidBody ->applyForce(force , point);

It is also possible to apply a torque to a given body using the
RigidBody::applyTorque() method. You simply need to specify the torque
vector (in Newton · meter) as in the following example :

// Torque vector
rp3d:: Vector3 torque (0.0, 3.0, 0.0);

// Apply a torque to the body
rigidBody ->applyTorque(torque);

Note that when you call the previous methods, the specified force/torque will
be added to the total force/torque applied to the rigid body and that at the end of
each call to the DynamicsWorld::update(), the total force/torque of all the rigid
bodies will be reset to zero. Therefore, you might need to call the previous methods
during several frames if you want the force/torque to be applied during a certain
amount of time.

7.3 Updating a Rigid Body

When you call the DynamicsWorld::update() method, the collision between the
bodies are computed and the joints are evaluated. Then, the bodies position and
orientation are updated accordingly. After calling this method, you can get the
updated position and orientation of each body to render it. To do that, you sim-
ply need to use the RigidBody::getInterpolatedTransform() method to get the
interpolated transform. This transform represents the current local-to-world-space
transformation.

Here is how to get the interpolated transform of a rigid body :

// Here , body is a RigidBody* pointer previously created

// Get the interpolated transform of the rigid body
rp3d:: Transform transform = body ->getInterpolatedTransform

();

13

If you need the array with the corresponding 4× 4 OpenGL transformation ma-
trix, you can use the Transform::getOpenGLMatrix() method as in the following
code :

// Get the OpenGL matrix array of the transform
float matrix [16];
transform.getOpenGLMatrix(matrix);

7.4 Destroying a Rigid Body

It is really simple to destroy a rigid body. You simply need to use the
DynamicsWorld::destroyRigidBody() method. You need to use the pointer
to the body you want to destroy as argument. Note that after calling that method,
the pointer will not be valid anymore and therefore, you should not use it. Note
that you must destroy all the rigid bodies at the end of the simulation before you
destroy the world. When you destroy a rigid body that was part of a joint, that
joint will be automatically destroyed as well.

Here is how to destroy a rigid body :

// Here , world is an instance of the DynamicsWorld class
// and body is a RigidBody* pointer

// Destroy the rigid body
world.destroyRigidBody(body);

8 Collision Shapes
When you create a rigid body, you need to specify a collision shape. This shape
will be used to test collision between the body and its environment. This section
describes all the collision shapes available in the ReactPhysics3D library and how
to use them.

Every collision shapes use a collision margin which is a small distance around
the shape that is used internally in the collision detection. Some collision shapes
have their collision margin integrated into the shape that you define and therefore
you do not have to worry about it. However, for some collision shapes, the collision
margin is added around the shape that you define and therefore, you might have to
compensate for this small margin with the way you render the object.

Once you have created a collision shape object, you need to used it when you cre-
ate a rigid body in the physics world using the DynamicsWorld::createRigidBody()
method. Note that during the rigid body creation, the collision shape object that
you gave as a parameter will be copied internally. Therefore, you can destroy the
collision shape object right after the rigid body creation.

14

8.1 Box Shape

The class BoxShape class describes a box collision shape centered at the origin
of the body local space. The box is aligned with the local x, y and z axis. In order
to create a box shape, you only need to specify the three half extents dimensions of
the box in the three X, Y and Z directions.

For instance, if you want to create a box shape with dimensions of 4 meters, 6
meters and 10 meters along the X, Y and Z axis respectively, you need to use the
following code :

// Half extents of the box in the x, y and z directions
const rp3d:: Vector3 halfExtents (2.0, 3.0, 5.0);

// Create the box shape
const rp3d:: BoxShape boxShape(halfExtents);

The BoxShape has a collision margin that is added to the box dimension you
define. Therefore, the actual box shape will be a little bit larger that the one you
define. It is recommended that you use the default margin. In case, you really need
to change the collision margin of your box shape (if the dimension of your box is small
compared to the default collision margin for instance), you can pass the length of the
new collision margin (in meters) as a second parameter of the BoxShape constructor.

For instance, if you want to use a collision margin of 1 centimeter for your box
shape, you can do it like this :

// Create the box shape with a custom collision margin
const rp3d:: BoxShape boxShape(halfExtents , 0.01);

8.2 Sphere Shape

The SphereShape class describes a sphere collision shape centered at the origin of
the body local space. You only need to specify the radius of the sphere to create it.

15

For instance, if you want to create a sphere shape with a radius of 2 meters, you
need to use the following code :

// Create the sphere shape with a radius of 2m
const rp3d:: SphereShape sphereShape (2.0);

The collision margin of the SphereShape is integrated into the sphere you define.
Therefore, you do not need to worry about it and you cannot change it.

8.3 Cone Shape

The ConeShape class describes a cone collision shape centered at the origin of
the body local-space. The cone is aligned along the Y axis. In order to create a
cone shape, you need to give the radius of the base of the cone and the height of
the cone (along the Y axis).

For instance, if you want to create a cone shape with a radius of 1 meter and
the height of 3 meters, you need to use the following code :

// Create the cone shape
const rp3d:: ConeShape coneShape (1.0, 3.0);

The ConeShape has a collision margin that is added to the cone dimension that
you define. Therefore, the actual cone shape will be a little bit larger that the

16

one you define. It is recommended that you use the default margin. In case, you
really need to change the collision margin of your cone shape (if the dimension of
your cone is small compared to the default collision margin for instance), you can
pass the length of the new collision margin (in meters) as a third parameter of the
ConeShape constructor.

For instance, if you want to use a collision margin of 1 centimeter for your cone
shape, you can do it like this :

// Create the cone shape with a custom collision margin
const rp3d:: ConeShape coneShape (1.0, 3.0, 0.01);

8.4 Cylinder Shape

The CylinderShape class describes a cylinder collision shape centered at the
origin of the body local-space. The cylinder is aligned along the Y axis. In order to
create a cylinder shape, you need to specify the radius of the base and the height of
the cylinder (along the Y axis).

For instance, if you want to create a cylinder shape with a radius of 1 meter and
the height of 3 meters, you need to use the following code :

// Create the cylinder shape
const rp3d:: Cylinder cylinderShape (1.0, 3.0);

The CylinderShape has a collision margin that is added to the cylinder dimen-
sion that you define. Therefore, the actual cylinder shape will be a little bit larger
that the one you define. It is recommended that you use the default margin. In
case, you really need to change the collision margin of your cylinder shape (if the
dimension of your cylinder is small compared to the default collision margin for
instance), you can pass the length of the new collision margin (in meters) as a third
parameter of the CylinderShape constructor.

17

For instance, if you want to use a collision margin of 1 centimeter for your cylin-
der shape, you can do it like this :

// Create the cylinder shape with a custom collision margin
const rp3d:: CylinderShape cylinderShape (1.0, 3.0, 0.01);

8.5 Capsule Shape

The CapsuleShape class describes a capsule collision shape around the Y axis
and centered at the origin of the body local space. It is the convex hull of two
spheres. It can also be seen as an elongated sphere. In order to create it, you only
need to specify the radius of the two spheres and the height of the capsule (distance
between the centers of the two spheres).

For instance, if you want to create a capsule shape with a radius of 1 meter and
the height of 2 meters, you need to use the following code :

// Create the capsule shape
const rp3d:: CapsuleShape capsuleShape (1.0, 2.0);

As for the SphereShape, the collision margin of the CapsuleShape is integrated
into the capsule you define. Therefore, you do not need to worry about it and you
cannot change it.

8.6 Convex Mesh Shape

The class ConvexMeshShape can be used to describe the shape of a convex mesh.
In order to create a convex mesh shape, you need to supply the array with the
coordinates of the vertices of the mesh. The array is supposed to start with the three
X, Y and Z coordinates of the first vertex, then the X, Y and Z coordinates of the
second vertex and so on. The first parameter of the ConvexMeshShape constructor
is a pointer to the array of the vertices coordinates, the second parameter is the
number of vertices in the array and the third parameter is the size (in bytes) of the
data needed for a single vertex in the array (data used by all the three coordinates
of a single vertex).

18

// Construct a convex mesh shape
rp3d:: ConvexMeshShape shape(verticesArray , nbVertices , 3 *

sizeof(float));

You need to make sure that the mesh you provide is indeed convex and also that
the origin of its local-space is inside the mesh.

The collision detection test with a convex mesh shape runs in O(n) where n is the
number of vertices in the mesh. Collision detection can become expensive if there are
too many vertices in the mesh. It is possible to speed up the collision detection by
providing information about the edges of the convex mesh. If you provide edges in-
formation about the convex mesh, the collision detection will run in almost constant
time at the cost of a little extra memory to store the edges information. In order to
provide the edges information, you need to call the ConvexMeshShape::addEdge()
method for each edge of the mesh. The first parameter is the index of the first
vertex of the edge and the second parameter is the index of the second vertex. Do
not worry about calling this method multiple times for the same edge, the edge
information will be added only once.

For instance, the following code adds the edges information into a convex mesh
shape :

// Add the edges information of the mesh into the shape
for (unsigned int i=0; i<mesh.getNbFaces (); i++) {

// Get the three vertex IDs of the vertices of the face
unsigned int v1 = getVertexIndexInFace(i, 0);
unsigned int v2 = getVertexIndexInFace(i, 1);
unsigned int v3 = getVertexIndexInFace(i, 2);

// Add the three edges into the collision shape
convexShape.addEdge(v1, v2);
convexShape.addEdge(v1, v3);
convexShape.addEdge(v2, v3);

}

19

Do not forget to enable the fast collision detection by asking the collision shape
to use the edges information you have just provided. To do this, you need to call
the ConvexMeshShape::setIsEdgesInformation() method as in the following ex-
ample :

// Enable the fast collision detection
// using the edges information
collisionShape.setIsEdgesInformationUsed(true);

8.7 Inertia Tensor of a Collision Shape

When you create a rigid body, you need to specify its inertia tensor. The inertia
tensor is a 3× 3 matrix describing how the mass is distributed inside the rigid body
which will be used to calculate the rotation of the body. The inertia tensor depends
on the mass and the shape of the body.

You can use the collision shape of a rigid body to compute its inertia tensor. To
do that, you need to use the CollisionShape::computeLocalInertiaTensor()
method of your collision shape. This method takes two parameters. The first one is
the inertia tensor matrix that has to be computed and the second one is the mass
of the rigid body (in kilograms). For instance, if you want to compute the inertia
tensor matrix of a capsule shape with a mass of 3 kilograms, here is what the code
looks like :

// Compute the inertia tensor of a rigid body
rp3d:: Matrix3x3 inertiaTensor;
capsuleShape.computeLocalInertiaTensor(inertiaTensor , 3.0);

9 Joints
Joints are used to constraint the motion of the rigid bodies between each other. A
single joint represents a constraint between two rigid bodies. When the motion of
the first body of the joint is known, the relative motion of the second body has at
most six degrees of freedom (three for the translation and three for the rotation).
The different joints can reduce the number of degrees of freedom between two rigid
bodies.

Some joints have limits to control the range of motion and some joints have mo-
tors to automatically move the bodies of the joint at a given speed.

9.1 Ball and Socket Joint

The BallAndSocketJoint class describes a ball and socket joint between two bod-
ies. In a ball and socket joint, the two bodies cannot translate with respect to each

20

other. However, they can rotate freely around a common anchor point. This joint
has three degrees of freedom and can be used to simulate a chain of bodies for in-
stance.

In order to create a ball and socket joint, you first need to create an instance
of the BallAndSocketJointInfo class with the necessary information. You need to
provide the pointers to the two rigid bodies and also the coordinates of the anchor
point (in world-space). At the joint creation, the world-space anchor point will be
converted into the local-space of the two rigid bodies and then, the joint will make
sure that the two local-space anchor points match in world-space. Therefore, the
two bodies need to be in a correct position at the joint creation.

Here is the code to create the BallAndSocketJointInfo object :

// Anchor point in world -space
const rp3d:: Vector3 anchorPoint (2.0, 4.0, 0.0);

// Create the joint info object
rp3d:: BallAndSocketJointInfo jointInfo(body1 , body2 ,

anchorPoint);

Now, it is time to create the actual joint in the dynamics world using the
DynamicsWorld::createJoint() method. Note that this method will also return
a pointer to the BallAndSocketJoint object that has been created internally. You
will then be able to use that pointer to change properties of the joint and also to
destroy it at the end.

Here is how to create the joint in the world :

// Create the joint in the dynamics world
rp3d:: BallAndSocketJoint* joint;
joint = dynamic_cast <rp3d:: BallAndSocketJoint *>(world.

createJoint(jointInfo));

9.2 Hinge Joint

The class HingeJoint describes a hinge joint (or revolute joint) between two rigid
bodies. The hinge joint only allows rotation around an anchor point and around a
single axis (the hinge axis). This joint can be used to simulate doors or pendulums
for instance.

In order to create a hinge joint, you first need to create a HingeJointInfo ob-
ject with the necessary information. You need to provide the pointers to the two
rigid bodies, the coordinates of the anchor point (in world-space) and also the hinge
rotation axis (in world-space). The two bodies need to be in a correct position when

21

the joint is created.

Here is the code to create the HingeJointInfo object :

// Anchor point in world -space
const rp3d:: Vector3 anchorPoint (2.0, 4.0, 0.0);

// Hinge rotation axis in world -space
const rp3d:: Vector3 axis (0.0, 0.0, 1.0);

// Create the joint info object
rp3d:: HingeJointInfo jointInfo(body1 , body2 , anchorPoint ,

axis);

Now, it is time to create the actual joint in the dynamics world using the
DynamicsWorld::createJoint() method. Note that this method will also return
a pointer to the HingeJoint object that has been created internally. You will then
be able to use that pointer to change properties of the joint and also to destroy it
at the end.

Here is how to create the joint in the world :

// Create the hinge joint in the dynamics world
rp3d:: HingeJoint* joint;
joint = dynamic_cast <rp3d:: HingeJoint *>(world.createJoint(

jointInfo));

9.2.1 Limits

With the hinge joint, you can constraint the motion range using limits. The limits
of the hinge joint are the minimum and maximum angle of rotation allowed with
respect to the initial angle between the bodies when the joint is created. The limits
are disabled by default. If you want to use the limits, you first need to enable them
by setting the isLimitEnabled variable of the HingeJointInfo object to true be-
fore you create the joint. You also have to specify the minimum and maximum limit
angles (in radians) using the minAngleLimit and maxAngleLimit variables of the
joint info object. Note that the minimum limit angle must be in the range [−2π; 0]
and the maximum limit angle must be in the range [0; 2π].

For instance, here is the way to use the limits for a hinge joint when the joint is
created :

// Create the joint info object
rp3d:: HingeJointInfo jointInfo(body1 , body2 , anchorPoint ,

axis);

// Enable the limits of the joint
jointInfo.isLimitEnabled = true;

22

// Minimum limit angle
jointInfo.minAngleLimit = -PI / 2.0;

// Maximum limit angle
jointInfo.maxAngleLimit = PI / 2.0;

// Create the hinge joint in the dynamics world
rp3d:: HingeJoint* joint;
joint = dynamic_cast <rp3d:: HingeJoint *>(world.createJoint(

jointInfo));

It is also possible to use the HingeJoint::enableLimit(),
HingeJoint::setMinAngleLimit() and HingeJoint::setMaxAngleLimit()
methods to specify the limits of the joint after its creation. See the API
documentation for more information.

9.2.2 Motor

A motor is also available for the hinge joint. It can be used to rotate the bodies
around the hinge axis at a given angular speed and such that the torque applied
to rotate the bodies does not exceed a maximum allowed torque. The motor is
disabled by default. If you want to use it, you first have to activate it using the
isMotorEnabled boolean variable of the HingeJointInfo object before you create
the joint. Then, you need to specify the angular motor speed (in radians/seconds)
using the motorSpeed variable and also the maximum allowed torque (in Newton ·
meters) with the maxMotorTorque variable.

For instance, here is how to enable the motor of the hinge joint when the joint
is created :

// Create the joint info object
rp3d:: HingeJointInfo jointInfo(body1 , body2 , anchorPoint ,

axis);

// Enable the motor of the joint
jointInfo.isMotorEnabled = true;

// Motor angular speed
jointInfo.motorSpeed = PI / 4.0;

// Maximum allowed torque
jointInfo.maxMotorTorque = 10.0;

// Create the hinge joint in the dynamics world
rp3d:: HingeJoint* joint;
joint = dynamic_cast <rp3d:: HingeJoint *>(world.createJoint(

jointInfo));

It is also possible to use the HingeJoint::enableMotor(),

23

HingeJoint::setMotorSpeed() and HingeJoint::setMaxMotorTorque() meth-
ods to enable the motor of the joint after its creation. See the API documentation
for more information.

9.3 Slider Joint

The class SliderJoint describes a slider joint (or prismatic joint) that only allows
relative translation along a single direction. It has a single degree of freedom and
allows no relative rotation. In order to create a slider joint, you first need to specify
the anchor point (in world-space) and the slider axis direction (in world-space). The
constructor of the SliderJointInfo object needs two pointers to the bodies of the
joint, the anchor point and the axis direction. Note that the two bodies have to be
in a correct initial position when the joint is created.

You can see in the following code how to specify the information to create a
slider joint :

// Anchor point in world -space
const rp3d:: Vector3 anchorPoint = rp3d:: decimal (0.5) * (

body2Position + body1Position);

// Slider axis in world -space
const rp3d:: Vector3 axis = (body2Position - body1Position);

// Create the joint info object
rp3d:: SliderJointInfo jointInfo(body1 , body2 , anchorPoint ,

axis);

Now, it is possible to create the actual joint in the dynamics world using the
DynamicsWorld::createJoint() method. Note that this method will also return a
pointer to the SliderJoint object that has been created internally. You will then
be able to use that pointer to change properties of the joint and also to destroy it
at the end.

Here is how to create the joint in the world :

// Create the slider joint in the dynamics world
rp3d:: SliderJoint* joint;
joint = dynamic_cast <rp3d:: SliderJoint *>(world.createJoint(

jointInfo));

9.3.1 Limits

It is also possible to control the range of the slider joint motion using limits. The
limits are disabled by default. In order to use the limits when the joint is cre-
ated, you first need to activate them using the isLimitEnabled variable of the
SliderJointInfo class. Then, you need to specify the minimum and maximum

24

translation limits (in meters) using the minTranslationLimit and maxTranslation-
Limit variables. Note that the initial position of the two bodies when the joint is
created corresponds to a translation of zero. Therefore, the minimum limit must be
smaller or equal to zero and the maximum limit must be larger or equal to zero.

You can see in the following example how to set the limits when the slider joint
is created :

// Create the joint info object
rp3d:: SliderJointInfo jointInfo(body1 , body2 , anchorPoint ,

axis);

// Enable the limits of the joint
jointInfo.isLimitEnabled = true;

// Minimum translation limit
jointInfo.minTranslationLimit = -1.7;

// Maximum translation limit
jointInfo.maxTranslationLimit = 1.7;

// Create the hinge joint in the dynamics world
rp3d:: SliderJoint* joint;
joint = dynamic_cast <rp3d:: SliderJoint *>(world.createJoint(

jointInfo));

You can also use the SliderJoint::enableLimit(), SliderJoint::-
setMinTranslationLimit() and SliderJoint::setMaxTranslationLimit()
methods to enable the limits of the joint after its creation. See the API
documentation for more information.

9.3.2 Motor

The slider joint also has a motor. You can use it to translate the bodies along the
slider axis at a given linear speed and such that the force applied to move the bodies
does not exceed a maximum allowed force. The motor is disabled by default. If
you want to use it when the joint is created, you first have to activate it using the
isMotorEnabled boolean variable of the SliderJointInfo object before you create
the joint. Then, you need to specify the linear motor speed (in meters/seconds)
using the motorSpeed variable and also the maximum allowed force (in Newtons)
with the maxMotorForce variable.

For instance, here is how to enable the motor of the slider joint when the joint
is created :

// Create the joint info object
rp3d:: SliderJointInfo jointInfo(body1 , body2 , anchorPoint ,

axis);

25

// Enable the motor of the joint
jointInfo.isMotorEnabled = true;

// Motor linear speed
jointInfo.motorSpeed = 2.0;

// Maximum allowed force
jointInfo.maxMotorForce = 10.0;

// Create the slider joint in the dynamics world
rp3d:: SliderJoint* joint;
joint = dynamic_cast <rp3d:: SliderJoint *>(world.createJoint(

jointInfo));

It is also possible to use the SliderJoint::enableMotor(),
SliderJoint::setMotorSpeed() and SliderJoint::setMaxMotorForce() meth-
ods to enable the motor of the joint after its creation. See the API documentation
for more information.

9.4 Fixed Joint

The class FixedJoint describes a fixed joint between two bodies. In a fixed joint,
there is no degree of freedom, the bodies are not allowed to translate or rotate with
respect to each other. In order to create a fixed joint, you simply need to specify an
anchor point (in world-space) to create the FixedJointInfo object.

For instance, here is how to create the joint info object for a fixed joint :

// Anchor point in world -space
rp3d:: Vector3 anchorPoint (2.0, 3.0, 4.0);

// Create the joint info object
rp3d:: FixedJointInfo jointInfo1(body1 , body2 , anchorPoint);

Now, it is possible to create the actual joint in the dynamics world using the
DynamicsWorld::createJoint() method. Note that this method will also return
a pointer to the FixedJoint object that has been created internally. You will then
be able to use that pointer to change properties of the joint and also to destroy it
at the end.

Here is how to create the joint in the world :

// Create the fixed joint in the dynamics world
rp3d:: FixedJoint* joint;
joint = dynamic_cast <rp3d:: FixedJoint *>(world.createJoint(

jointInfo));

26

9.5 Collision between the bodies of a Joint

By default the two bodies involved in a joint are able to collide with each other.
However, it is possible to disable the collision between the two bodies that are part
of the joint. To do it, you simply need to set the variable isCollisionEnabled of
the joint info object to false when you create the joint.

For instance, when you create a HingeJointInfo object in order to construct a
hinge joint, you can disable the collision between the two bodies of the joint as in
the following example :

// Create the joint info object
rp3d:: HingeJointInfo jointInfo(body1 , body2 , anchorPoint ,

axis);

// Disable the collision between the bodies
jointInfo.isCollisionEnabled = false;

// Create the joint in the dynamics world
rp3d:: HingeJoint* joint;
joint = dynamic_cast <rp3d:: HingeJoint *>(world.createJoint(

jointInfo));

9.6 Destroying a Joint

In order to destroy a joint, you simply need to call the
DynamicsWorld::destroyJoint() method using the pointer to a previously
created joint object as argument as shown in the following code :

// rp3d:: BallAndSocketJoint* joint is a previously
// created joint

// Destroy the joint
world.destroyJoint(joint);

It is important that you destroy all the joints that you have created at the end
of the simulation. Also note that destroying a rigid body that is involved in a joint
will automatically destroy that joint.

10 Examples
You can find some demos in the examples/ folder of the reactphysics3d library.
Follow the instructions described in section 4 to compile the examples. Note that
the FREEGLUT library is required on Linux and Windows and the GLUT library
is required on Mac OS X to run those examples. Studying the examples is a good
way to understand how to use the reactphysics3d library.

27

10.1 Cubes

In this example, you will see how to create a floor and some cubes using the Box
Shape for collision detection. Because of gravity, the cubes will fall down on the
floor. After falling down, the cubes will come to rest and start sleeping (become
inactive). In this demo, the cubes are green when they are active and become red
as they get inactive (sleeping).

10.2 Collision Shapes

In this example, you will see how to create a floor (using the Box Shape) and
some other bodies using the different collision shapes available in the reactphysics3d
library like Cylinders, Capsules, Spheres, Convex Meshes and Cones. Those bodies
will fall down to the floor.

10.3 Joints

In this example, you will learn how to create different joints (Ball and Socket, Hinge,
Slider, Fixed) into the dynamics world. You can also see how to set the motor or
limits of the joints.

11 Receiving Feedback
Sometimes, you want to receive notifications from the physics engine when a given
event happened. The EventListener class can be used for that purpose. In order
to use it, you need to create a new class that inherits from the EventListener class
and overrides some methods that will be called by the ReactPhysics3D library when
some events occur. You also need to register your class in the physics world using
the DynamicsWorld::setEventListener() as in the following code :

// Here , YourEventListener is a class that inherits
// from the EventListener class of reactphysics3d
YourEventListener listener;

// Register your event listener class
world.setEventListener (& listener);

11.1 Contacts

If you want to be notified when two bodies that were separated before become in
contact, you need to override the EventListener::beginContact()method in your
event listener class. Then, this method will be called when the two separated bodies
becomes in contact.

If you receive a notification when a new contact between two bodies is found, you
need to override the EventListener::newContact() method in your event listener
class. Then, this method will be called when a new contact is found.

28

12 Profiler
If you build the library with the PROFILING_ENABLED variable enabled (see section
4.3), a real-time profiler will collect information while the application is running.
Then, at the end of your application, when the destructor of the DynamicsWorld
class is called, information about the running time of the library will be displayed in
the standard output. This can be useful to know where time is spent in the different
parts of the ReactPhysics3D library in case your application is too slow.

13 API Documentation
Some documentation about the API of the code has been generated using Doxygen.
You will be able to find this documentation in the library archive in the folder
/documentation/API/html/. You just need to open the index.html file with your
favorite web browser.

14 Bugs
If you find some bugs, do not hesitate to report them on the issue tracker of the
ReactPhysics3D website at :

http://code.google.com/p/reactphysics3d/issues/list

Thanks a lot for reporting the bugs that you find. It will help us to correct and
improve the library.

29

