
Cap9 Specification

Jacob Payne Jake O’Shannessy Alexey Troitskiy

June 12, 2019

Abstract

We describe a secure and extensible operating system for smart con-
tracts. Using a capability-based exokernel protocol, we can facilitate secure
isolation, perform upgrades in a secure and robust manner, and prevent
privilege escalation at any point in the development process. The protocol
is intended to serve as an open standard and building block upon which
more advanced and tailored security models can be built.

1

Contents

1 Definitions 4

1.1 Kernel Instance . 4

2 Kernel Storage 4

3 Procedures 4

3.1 Procedure Key . 4

3.2 Procedure Index . 5

3.3 Procedure List . 5

3.4 Procedure Heap . 6

4 System Calls and Capabilities 7

4.1 Executing a System Call . 8

4.2 Return and Error Codes . 8

4.3 Capability Subsets . 9

4.4 Procedure Call System Call . 9

4.4.1 System Call Format . 9

4.4.2 Capability Format . 10

4.4.3 Capability Subsets . 10

4.4.4 Error Codes . 11

4.5 Register Procedure System Call 11

4.5.1 System Call Format . 11

4.5.2 Capability Format . 12

4.5.3 Capability Subsets . 13

4.5.4 Function . 13

4.5.5 Error Codes . 14

4.6 Delete Procedure System Call . 14

4.6.1 System Call Format . 14

4.6.2 Capability Format . 15

4.6.3 Capability Subsets . 15

4.7 Set Entry Procedure System Call 15

4.7.1 Error Codes . 15

4.7.2 System Call Format . 16

2

4.7.3 Capability Format . 16

4.7.4 Capability Subsets . 16

4.7.5 Function . 16

4.7.6 Error Codes . 17

4.8 Write System Call . 17

4.8.1 System Call Format . 17

4.8.2 Capability Format . 17

4.8.3 Capability Subsets . 18

4.8.4 Error Codes . 18

4.9 Log System Call . 18

4.9.1 System Call Format . 18

4.9.2 Capability Format . 19

4.9.3 Capability Subsets . 19

4.9.4 Error Codes . 20

4.10 External Call System Call . 20

4.10.1 System Call Format . 20

4.10.2 Capability Format . 20

4.10.3 Capability Subsets . 21

5 Procedure Bytecode Validation 22

5.1 Whitelist . 22

5.2 Execution Guard . 23

5.3 System Call . 24

6 Initialization 24

3

1 Definitions

1.1 Kernel Instance

A kernel instance is an Ethereum contract which using the Cap9 kernel. It is
this contract that holds the storage data etc. of the system.

2 Kernel Storage

This is a critical feature. All data stored by the kernel is stored in a region of
storage called kernel storage. No other data can be stored in kernel storage.

This kernel storage is defined as all storage locations within a certain storage
range. All values in kernel storage share the same storage key prefix. This prefix
is currently 0xff ff ff ff, and so currently includes all values in the interval
[0xffffffff00 · · · 00, 0xffffffffff · · · ff].

Table 1: Overview of kernel storage layout.
0x 00 - 03 04 05 - 1f 1e - 20 Description

0x ff ff ff ff 00 Proc Key · · · Procedure Heap

0x ff ff ff ff 01 00 · · · 00 00 00 00 # of Procedures

0x ff ff ff ff 01 Key Index 00 00 00 Procedure List

0x ff ff ff ff 02 00 · · · 00 00 00 00 Kernel Address

0x ff ff ff ff 03 00 · · · 00 00 00 00 Current Procedure

0x ff ff ff ff 04 00 · · · 00 00 00 00 Entry Procedure

3 Procedures

Data about procedure is store in 2 locations: the procedure table, and the
procedure heap. The procedure table is simply a managed, enumerable, and
iterable list of procedure keys (procedure key being something that identifies
a particular procedure). The data associated with a procedure, such as its
Ethereum address and its capabilities are stored on the procedure heap. Given
a procedure key, the data associated with a procedure can be located using that
key.

3.1 Procedure Key

Each procedure is defined by a procedure key. This key is a sequence of 24 8-bit
bytes. This is treated as a sequence of 192 bits in all cases.

4

The kernel itself treats the procedure keys as an opaque 192-bit value, however,
the capability system and some functions apply prefixes to these key value.
For example: capabilities that rely on procedure key values will often use a
prefix value to define a range of keys. This allows one to defined a hierarchy
of procedures, much like a directory structrue. See those capabilities for more
detail.

3.2 Procedure Index

Each procedure key included in the kernel is given an index, which identifies the
procedure in the procedure list. It is 1-based, that is the first value is 1, and the
value 0 is a null value.

As shown below, the maximum number of procedures is 224 − 1 = 16, 777, 215,
therefore the maxium value of the procedure index is 16, 777, 215, therefore the
procedure index lies in the range [1, 1677215].

For this reason the procedure index is specified as 24 bytes.

3.3 Procedure List

The procedure list is simply an array of storage values. The first value is the
length of this list, and the subsequent values are the procedure keys of the list.

When a procedure is added to the kernel:

1. The procedure data is added to the procedure heap (see Section 3.4).

2. The procedure key is appended to the end of the array.

3. If the length value is equal to the maximum procedure index value, abort.

4. The length value (the first value) is incremented by one.

5. The procedure index value (in procedure metadata) is set to the new length
value.

When a procedure is deleted from the kernel:

1. If the procedure key is the same as the Entry Procedure Key, abort and
throw an error.

2. If the procedure key does not exist in the list (i.e. when looking on the
procedure heap no procedure index is associated with it), abort and throw
an error.

3. The length value is decremented by one.

4. If the procedure being deleted is not the last in the list (i.e. it’s procedure
index does not equal the length of the procedure list), the last in the list is
copied to overwrite the key being deleted. This also accounts for the case
of an empty list.

5

It is important to note that none of these steps consider deletion (zeroing) of
data. This is optional for efficiency and can be performed any time after the
length value has been decremented.

The procedure table is stored under the prefix 0xff ff ff ff 01. The maxi-
mum number of keys held under this configuration is 224 − 1 = 16, 777, 215 (1 is
subtracted to account for the length value occupying a single space). This is one
less than the total number of procedures that can be held by the kernel (which
is 224 = 16, 777, 216).

0xff ff ff ff 01 + 24 more bytes + 3 zero bytes

Table 2: Procedure table.
Storage Location Description

0xff ff ff ff 01 length/number of procedures

0xff ff ff ff 01 + keyIndex procedure key/name: 24 bytes
...

0xff ff ff ff 01 + n procedure key/name for procedure n

3.4 Procedure Heap

Procedure data is stored using the key 0xff ff ff ff 00. This is combined
with the procedure key to produce the following:

0xff ff ff ff 00 + 24 bytes procedure key + 3 bytes data offset

This leaves 3 bytes at the end of the storage location key. If the first of these bytes
is 0x00, the storage key refers to various metadata of the procedure, including
the location of its contract. If the first byte is any other value, then the storage
key corresponds to the list of capabilities of that type. For example, the type
of the write procedure is 7, so if the first of the last 3 bytes is 0x07, then that
storage key refers to a capability of the write type.

The second value is the index into the capability list. If the second value is 0x00,
this indicates the number of capabilities in this list. Therefore the capabilities
start at 0x01. For example, if the third last and second last values are 0x0703,
this refers to the third write capability (capability at index 0x02) held by this
procedure. This implicitly limits the number of capabilities per type to 255 (256
minus 1 for the length value).

The very last value is an offset into the capability data. The meaning of this is
different for each capability as they each have different formats. The format of
each capability is specified in Section 4.

6

Procedure Key (24 bytes)Kernel-Storage (4 bytes)

0x00: ff ff ff ff 00

Table Location Key (1 byte) Data Offset (3 bytes)

The following table outlines what data is found at each of the different locations
specified by the Data Offset.

Table 3: Procedure data.
Data Offset Description

0x 00 00 00 Address: 20 bytes, aligned right in the 32 bytes

0x 00 00 01 Procedure Index: 24 bytes, aligned right in the 32 bytes

0x ty 00 00 The number of capabilities of type 0xty.

0x ty in of Capability of type 0xty, with index 0xin− 1, and offset
0xof into that capability.

4 System Calls and Capabilities

All system calls are transactions to the kernel. The transaction data is defined
as follows:

Table 4: System call structure.
Byte Offset Description

0x00 1 byte, system call value

0x01 1 bytes, the capability index, [0-254]

0x02 The system call data as defined by each system call
...

If the transaction data is longer that specified by the system call format, the
additional data is simply ignored. TODO: We should consider throwing an
error on this.

System call numbers match capability numbers.

7

Table 5: System call and capability numbers.
Type Value Description

0x0 Null capability / noop

0x3 Call Procedure

0x4 Register Procedure

0x5 Delete Procedure

0x6 Set Entry Procedure

0x7 Write

0x8 Log

0x9 Gas Send

4.1 Executing a System Call

The running code will issue a transaction to the kernel by perfoming a DELE-
GATECALL to the kernel with the transactions message data as both above and
in the definitons of each capability. The system call will be processed as follows:

1. The kernel will receive the transaction as defined by the EVM.

2. The kernel will read the first byte of the transaction data as an unsigned
8-bit integer. This value is s.

3. If s is not one of the values listed in Table 5 then the kernel will revert the
current transaction (i.e. the DELEGATECALL) and return the error code
SYSCALL_NOEXIST (error codes are defined in Section 4.2).

4. If s is 0, it will do nothing and return successfully.

5. Otherwise the control will be passed to the code in the kernel corresponding
to the s. For example if s = 0x4, then the code for executing a Register
Procedure syscall will be called.

6. This code will execute and return whatever value it deems appropriate.

4.2 Return and Error Codes

This section defines return and error codes for interacting with the kernel. These
values are returned by system calls only in the event of a failure of the kernel, in
which case the DELEGATECALL will have been reverted. As a result, these
error codes are provided only when the kernel reverts, if the DELEGATECALL
returns normally, whatever is returned is determined by the procedure being
called. That is, the DELEGATECALL should leave a 0 on the stack.
The error code is always 8-bits, and may followed by additional data.
Therefore:

8

• If 1 is left on the stack after the DELEGATECALL of a system call, then
the system call succeeded, and whatever data was returned was returned
by system call.

• If 0 is left on the stack after the DELEGATECALL of a system call, then
the system call failed, and whatever data was returned is defined in the
table below.

Table 6: Return and error codes.
Type Value Additional Data Description

SYSCALL_BADCAP 0x33 None Capability insuffi-
cient.

SYSCALL_NOGAS 0x44 None Procedure execu-
tion ran out of
gas.

SYSCALL_REVERT 0x55 Returned data from
procedure

The called proce-
dure reverted.

SYSCALL_FAIL 0x66 System call specific
error data

The system call
failed for reasons
specific to the
system call.

SYSCALL_NOEXIST 0xaa None The syscall integer
values is not a valid
syscall as defined in
Table 5.

4.3 Capability Subsets

Capability B is a subset1 of Capability A, if everything that can be done using
Capability B can be done using Capabilty A. The following rules apply:

• A is always a subset of itself. A ⊆ A

• Transitivity: A ⊆ B ∧B ⊆ C =⇒ A ⊆ C

As the nature of each capability is different, the way subsets are defined is
different for each one. The following sections will define how subsets are defined
for each capability.

4.4 Procedure Call System Call

4.4.1 System Call Format

Type Value: 3
1A subset, not a strict or proper subset.

9

Data: Note that here the offset is from after system call type.
Note that here we could pack the data much more densely, but we don’t in order
to err on the side of simplicity and stick as close as we can to 32-byte values.

Table 7: Call procedure system call format.
Byte Offset Description

0x00 Procedure key, 24 bytes aligned right in 32

0x20 Payload for the procedure
...

4.4.2 Capability Format

The capability format for the Call Procedure system call defines the a range of
procedure keys what the capability allows one to call. This is defined as a base
procedure key b and a prefix s. Given this capability, a procedure may call any
procedure where the first s bits of the key of that procedure key are the same as
the first s bits of procedure key b.
The values of this capability are packed into a single 32-byte value.

Table 8: Call procedure capability format.
Key Offset Byte Offset Description

0x00 0x00 The prefix, which is in the interval [0,24].

0x00 0x01 - 0x07 Unused and undefined.

0x00 0x08 - 0x1f The 24 bytes of the base procedure key.

End

Procedure Key (24 bytes)Prefix Size (1 byte)

0x00:

4.4.3 Capability Subsets

As defined in Section 4.3, each capability has subsets and supersets. For the
call capability a subset is capability which possesses the ability to call no more
procedures than the original.
The prefix size of a capability C is given as Cs and the base procedure key Cb.
Given a call procedure capability A and a proposed subset B:

• If the prefix size of B is equal to or greater than A (that is: Bs ≥ As), and

• If the first As bits of Bb is equal to the first As bits of Ab.

10

4.4.4 Error Codes

If the Call Procedure system call fails for any reason other than those general
system call failure conditions, the system call will return SYSCALL_FAIL (as
definted in Section 4.2) followed by one of the following codes.

Table 9: Return and error codes.
Type Value Additional Data Description

CALL_NOPROC 33 None The procedure key specified
does not exist.

Non-
NormativeFor example, if the Call Procedure system call was executed with a procedure

key that does not exist then the DELEGATECALL will leave a 0 on the stack
and return two bytes (0x6633).

4.5 Register Procedure System Call

4.5.1 System Call Format

Type Value: 4

Data: min(96 bytes) max(96 bytes)

Table 10: Register procedure system call structure.
Byte Offset Description

0x00 Procedure key; 24 bytes, aligned right in 32 bytes

0x20 Procedure address; 20 bytes, aligned right in 32 bytes

0x40 Capabilities; A series of capabilities. Each capability is in the
format specified in Table 11. The length of this list is not
provided.

...

End

11

Table 11: Capability data as sent in the Register Procedure system call.
Byte Offset Description

0x00 CapSize: 1 bytes, aligned right in the 32 bytes. The
number of 32-byte values associated with this capa-
bility.

0x20 CapType: 1 byte, aligned right in the 32 bytes. The
type of this capability.

0x40 CapIndex: 1 byte, aligned right in the 32 bytes. The
index into the C-List of this type for the current
procedure from which to derive a subset.

0x60 key value #1: 32 bytes

0x80 key value #2: 32 bytes

0x40 +n× 0x20 key value #n: 32 bytes

(CapSize− 1)× 0x20 final key value

NB: CapSize is the number of 32-byte values for this capability, including the
CapSize, CapType, and CapIndex values. Therefore by adding CapSize× 32 to
the current byte offset will give you the offset of the CapSize value of the next
capability.

For each of these capabilities, CapSize is either 3, or the length of a capability
of this type plus 3. If the CapSize is 3, then there is no data used to determine
the correct subset, and the kernel will therefore create an exact copy of the
capability to be included in the newly registered procedure.

4.5.2 Capability Format

The capability format for the Register Procedure system call defines the a range
of procedure keys what the capability allows one to call. This is defined as a
base procedure key b and a prefix s. Given this capability, a procedure may call
any procedure where the first s bits of the key of that procedure key are the
same as the first s bits of procedure key b.

NB: Register procedure also relies on all of the other capabilities possessed by a
procedure to determine what capabilities the new procedure will have.

12

Table 12: Register procedure capability format.
Key Offset Byte Offset Description

0x00 0x00 The prefix, which is in the interval [0,24].

0x00 0x01 - 0x07 Unused and undefined.

0x00 0x08 - 0x1f The 24 bytes of the base procedure key.

End

Procedure Key (24 bytes)Prefix Size (1 byte)

0x00:

4.5.3 Capability Subsets

As defined in Section 4.3, each capability has subsets and supersets. For the
register procedure capability a subset is capability which possesses the ability to
register no more procedures than the original.

The prefix size of a capability C is given as Cs and the base procedure key Cb.
Given a register procedure capability A and a proposed subset B:

• If the prefix size of B is equal to or greater than A (that is: Bs ≥ As), and

• If the first Bs bits of Bb is equal to the first As bits of Ab.

4.5.4 Function

This registers a new procedure which already exists as a contract at a certain
address, giving it a name an a list of capabilities. It does a number of things:

• Validate the code at the given address to show that it complies with the
requirements of procedure code as described in Section 5.

• Add the procedure name to the procedure list.

• Store the specified capabilities with the procedure, but only if each of
the capabilities is found to be a subset of one of the capabilities of the
procedure performing this system call.

There are two highly critical functions here upon which the safety of the kernel
relies. The first is the validation of the procedure bytecode, which is covered
in Section 5, but it is also necessary to ensure that the capabilities that are
being asked to be given to the new procedure can be provided by the current
procedure. In order to satisfy this constraint it must be shown that for every
requested procedure, there exists a capability in the capability list of the current
procedure. It is currently not able to “combine” capabilities. That is, if the

13

procedure has a capability of Write(0x80,5) and Write(0x85,5) it cannot provide
a capability Write(0x80,10) even though it theoretically still able to perform the
same writes.

The algorithm is as follows:

1. For each of the capabilities in the list of requested capabilities, search
though the list of the current procedures capabilities until a superset of
the requested capability is found.

2. If for any of the requested capabilities a superset is not found, abort the
entire process.

3. If for all of the requested capabilities a superset is found, register the
capability.

4.5.5 Error Codes

If the Register Procedure system call fails for any reason other than those
general system call failure conditions, the system call will return SYSCALL_FAIL
(as definted in Section 4.2) followed by one of the following codes.

Table 13: Return and error codes.
Type Value Additional Data Description

REG_TOOMANYCAPS 77 None Too many caps were
provided.

Non-
NormativeFor example, if the Register Procedure system call was executed but provides

too many capabilities then the DELEGATECALL will leave a 0 on the stack
and return two bytes (0x6677).

4.6 Delete Procedure System Call

4.6.1 System Call Format

Type Value: 5

Data: min(64 bytes) max(64 bytes)

Table 14: Delete procedure system call.
Byte Offset Description

0x00 Procedure key; 24 bytes aligned right in 32 bytes

End

14

4.6.2 Capability Format

The capability format for the Delete Procedure system call defines the a range
of procedure keys what the capability allows one to delete. This is defined as
a base procedure key b and a prefix s. Given this capability, a procedure may
delete any procedure where the first s bits of the key of that procedure key are
the same as the first s bits of procedure key b.

Table 15: Delete procedure capability format.
Key Offset Byte Offset Description

0x00 0x00 The prefix, which is in the interval [0,24].

0x00 0x01 - 0x07 Unsed and undefined.

0x00 0x08 - 0x1f The 24 bytes of the base procedure key.

End

Procedure Key (24 bytes)Prefix Size (1 byte)

0x00:

4.6.3 Capability Subsets

As defined in Section 4.3, each capability has subsets and supersets. For the
delete procedure capability a subset is capability which possesses the ability to
delete no more procedures than the original.
The prefix size of a capability C is given as Cs and the base procedure key Cb.
Given a delete procedure capability A and a proposed subset B:

• If the prefix size of B is equal to or greater than A (that is: Bs ≥ As), and

• If the first Bs bits of Bb is equal to the first As bits of Ab.

4.7 Set Entry Procedure System Call

The value of the Entry Procedure is 24-byte procedure key which identified which
procedure should be first called upon receiving a transaction. This is currently
store at the storage location:
0x00 00 00 00 04 00 · · · 00 00 00 00

4.7.1 Error Codes

If the Delete Procedure system call fails for any reason other than those general
system call failure conditions, the system call will return SYSCALL_FAIL (as
definted in Section 4.2) followed by one of the following codes.

15

Table 16: Return and error codes.
Type Value Additional Data Description

DEL_NOPROC 33 None The procedure key specified
does not exit.

Non-
NormativeFor example, if the Delete Procedure system call was executed with a procedure

key that does not exist then the DELEGATECALL will leave a 0 on the stack
and return two bytes (0x6633).

4.7.2 System Call Format

Type Value: 6

Data: min(64 bytes) max(64 bytes)

Table 17: Set entry procedure system call format.
Byte Offset Description

0x00 Procedure key; 24 bytes aligned right in 32 bytes

End

4.7.3 Capability Format

If this capability is present, the procedure is permitted to set the entry procedure,
and if it is not present, the procedure is not permitted to set the entry procedure.
Therefore this capability has no data associated with it and no format.

4.7.4 Capability Subsets

As defined in Section 4.3, each capability has subsets and supersets. As the
Set Entry Procedure capability is a trivial value, there is only one value for Set
Entry Procedure capabilities and they are all equal.

Given a Set Entry Procedure capability A and any other Set Entry Procedure
capability B, not only is B ⊆ A but also B = A.

4.7.5 Function

The only possible state change is the "entryProcedure" value. No other state
changes should occur.

16

4.7.6 Error Codes

If the Set Entry Procedure system call fails for any reason other than those
general system call failure conditions, the system call will return SYSCALL_FAIL
(as definted in Section 4.2) followed by one of the following codes.

Table 18: Return and error codes.
Type Value Additional Data Description

SETENT_NOPROC 33 None The procedure key speci-
fied does not exit.

Non-
NormativeFor example, if the Set Entry Procedure system call was executed with a

procedure key that does not exist then the DELEGATECALL will leave a 0 on
the stack and return two bytes (0x6633).

4.8 Write System Call

This system call will write a single 32-byte value under a single 32-byte key in
the storage of the kernel instance.

4.8.1 System Call Format

Type Value: 7

Data:

Table 19: System call structure.
Byte Offset Description

0x00 Write address; 32 bytes

0x20 Write values; 32 bytes

End

4.8.2 Capability Format

The write capability includes 2 values: the first is the base address where we
can write to storage. The second is the number of additional addresses we can
write to. For example, if the first value is 0x8000, and the second value is 0, we
can write only to location 0x8000. If the second value was 5, we could write to
0x8000, 0x8000+1, 0x8000+2, 0x8000+3, 0x8000+4, and 0x8000+5.

17

Table 20: Write capability format.
Key Offset Value Description

0x00 a The base storage address

0x01 n The number of additional keys we can write to

End

4.8.3 Capability Subsets

As defined in Section 4.3, each capability has subsets and supersets.

Given a Write capability A and a proposed subset B, where Ca is the base
address of capability C and Cn is the number of additional keys writable with
capability C, B ⊆ A ⇐⇒ (Ba ≥ Aa) ∧ (Ba + Bn ≤ Aa + An).

Or more verbosely, B is only a subset of A if and only if:

• The lowest writable address (which is the base address) of B is greater
than or equal to the lowest writable address of A, and

• The highest writable address (which is base address plus the number of
additional keys) of B is less than or equal to the highest writable address
of A.

4.8.4 Error Codes

There are no specific error conditions for SSTORE, therefore only general system
call errors are applicable.

4.9 Log System Call

4.9.1 System Call Format

Type Value: 8

Data: min(96 bytes) max(224 bytes)

18

Table 21: System call structure.
Byte Offset Description

0x00 Number of topics (nTopics); 32 bytes

... Potentially topic value #1; 32 bytes

... Potentially topic value #2; 32 bytes

... Potentially topic value #3; 32 bytes

... Potentially topic value #4; 32 bytes

0x40+(nTopics × 0x20) Log value any length
...

End

4.9.2 Capability Format

The Write capability includes between 0 and 4 values. Each value forces the
use of a particular value. For example: if the capability has 1 value, then that
means that the first topic in the log call must equal that. If it has 2 values then
the first log topic must be the first of those values and the second topic must be
the second of those values and so on. If there are no topics listed then there are
no restrictions on what can be logged.

This capability is 5 values. If the number of enforced topics is less than 4, then
the unused values are undefined.

Table 22: Log capability format.
Key Offset Value Description

0x00 [0x00, 0x4] Number of enforced topics; 32 bytes

0x01 t1 Potentially an enforced value for the first topic

0x02 t2 Potentially an enforced value for the second topic

0x03 t3 Potentially an enforced value for the third topic

0x04 t4 Potentially an enforced value for the fourth topic

End

4.9.3 Capability Subsets

As defined in Section 4.3, each capability has subsets and supersets.

Given a Log capability A and a proposed subset B, B ⊆ A if and only if for
each log topic of A the topic is either undefined or equal to that of B.

19

If Cti
, where i is 1, 2, 3, or 4, is the log topic i of capability C, and Cn is the

number of defined topics:

∀i ∈ {1, 2, . . . , An} .Bti
= Ati

4.9.4 Error Codes

There are no specific error conditions for LOG, therefore only general system
call errors are applicable.

4.10 External Call System Call

This system call uses the CALL functionality to call and/or send Ether to another
address.

4.10.1 System Call Format

Type Value: 9

Data:

Table 23: System call structure.
Byte Offset Description

0x00 Account address; 20-bytes aligned right in 32 bytes

0x20 Value amount; 32 bytes

0x40 Payload for the contract
...

End

4.10.2 Capability Format

There are three distinct values in the External Call capability:

• The CallAny Flag: If this flag is true (the bit is set to 1) then any
Ethereum address can be called. If this flag is false (the bit is set to 0)
then only the address specified by EthAddress can be called.

• The SendValue Flag: If this flag is true (the bit is set to 1) then any
quantity of Ether/Value can be sent as part of the call. If this flag is false
(the bit is set to 0) then no Ether/Value can be sent, and the system call
will only succeed if the value parameter is set to zero.

20

• EthAddress: If CallAny is true, this value is undefined, otherwise it is
the single address that this capability permits to be called.

These three values are contained in a single storage key, formatted as per the
table and diagram below. The CallAny flag is the first bit of the storage value,
the SendValue flag is the second bit of the storage value, and the EthAddress is
the last 20 bytes of the storage value.

Table 24: External call capability format.
Key Offset Byte Offset Bit Offset Description

0x00 0x00 0x0 CallAny Flag: If 1, any address
can be called, else only specified
EthAddress.

0x00 0x00 0x1 SendValue Flag: If 1, Ether can be
sent, else not.

0x00 0x01 - 0x0b - Unused and undefined.

0x00 0x0c - 0x1f - EthAddress: The 20 bytes of the
Eth address.

End

C
a
ll

A
n
y
 F

la
g

S
e
n
d
 E

th
e
r

Fl
a
g

Reserved

Optional Eth Address (20 bytes)Options Bitmask (1 byte)

0x00:

4.10.3 Capability Subsets

As defined in Section 4.3, each capability has subsets and supersets.

For a capability C:

• Cc is the CallAny flag.

• Cs is the SendValue flag.

• Ca is the optional EthAddress.

Given an External Call capability A and any other External Call capability B,
B is a sunset of A iff:

21

• If Bc is true, then Ac must be true.

• If Bc is false, then Ac must be true or Ba must equal Aa.

• If Bs is true, then As must be true.

If these conditions hold then B is a subset of A. That is: B ⊆ A ⇐⇒
(Bc =⇒ Ac) ∧ ((¬Bc =⇒ Ac) ∨ (Ba = Aa)) ∧ (Ba =⇒ As).

5 Procedure Bytecode Validation

In order to be added to the procedure list of a kernel, the bytecode of a contract
must be validated by the kernel and must conform to a strict set of requirements.
These requirements are as follows:

• All the opcodes must be on the whitelist as defined in Section 5.1, unless
part of a system call.

• The first opcodes of the contract must form a valid execution guard as
defined in Section 5.2.

5.1 Whitelist

Generally the whitelist consists of all of the non-state-changing opcodes (RE-
VERT being a notable exception). This must be implemented as a whitelist and
not a blacklist, as this should continue to work in the case that new state-changing
opcodes are added to the VM.

The table below contains the ranges of opcodes that are allowed.

22

Table 25: Opcode whitelist.
Range (Inclusive) Description

0x00 - 0x0b Stop and Arithmetic

0x10 - 0x1a Comparison & Bitwise Logic Operations

0x20 SHA3

0x30 - 0x3e Environmental Information

0x40 - 0x45 Block Information

0x50 - 0x53 Stack, Memory, Storage and Flow Operation - Part 1

0x54 SLOAD

0x56 - 0x5b Stack, Memory, Storage and Flow Operation - Part 2

0x80 - 0x8f Duplication Operations

0x90 - 0x9f Exchange Operations

0xf3 Return

0x60 - 0x7f Push

0xfa STATICCALL

0xfd REVERT

0xfe INVALID

5.2 Execution Guard

An execution guard must start at position 0x00 in the bytecode. The purpose
of the exeuction guard is to ensure that the procedure is being called by a
kernel. The risk is that somebody might perform a CALL to a bare procedure
contract. The procedure contract will then DELEGATECALL back to whoever
called it, giving them the power to execute a SELFDESTRUCT instruction. In
order to prevent this, we want to make sure that the procedure is only being
called via CALLCODE, DELEGATECALL, or STATICCALL. On simple way
to check this is to check that a kernel address is stored in storage. This means
the contract is being called either by a kernel, or something pretending to be a
kernel. Because this value is undefined in the procedures own storage, we will
abort if it is undefined.

It is defined as follows:

23

Listing 1: Sequence of steps which constitutes an execution guard.
0x00: PUSH 0 xffffffff0200 ...00 // Push kernel addr. location
0x21: SLOAD // Load value to the stack
0x22: PUSH 0x2a // Load value to the stack
0x24: JUMPI // Jump if kernel address non -zero
0x25: PUSH1 0x00 // Revert data size
0x27: PUSH1 0x00 // Revert data location
0x29: REVERT // Revert because we are not a kernel
0x2a: JUMPDEST // Destination to jump over

5.3 System Call

A system call is in the form:

Listing 2: Sequence of steps to perform a system call.
CALLER // Get Caller
GAS // Put all the available gas on the stack
DELEGATECALL // Delegate Call to Caller

6 Initialization

In order to initialize a Cap9 kernel instance, we need to provide the user an
initialization routine. The user must provide an entry procedure to act as
the initial interface as well as the root capabilities available to the system.
Initialization is done as follows:

• For the entry procedure, either an already existing procedure is chosen or
deployed within the network, including the id.

• A list of capabilities is chosen that will be minted for the entry procedure.

• On deployment of the cap9 kernel code, the address of the entry procedure
and the capability list are given as inputs 26, however the parent capability
index in each field are ignored.

• Following this the entry procedure id is set as the entry procedure.

24

Table 26: Initialization input structure.
Byte Offset Description

0x00 Procedure key; 24 bytes, aligned right in 32 bytes

0x20 Procedure address; 20 bytes, aligned right in 32 bytes

0x40 Capabilities; A series of capabilities. Each capability is in the
format specified in Table 11. The length of this list is not
provided.

...

End

25

	Definitions
	Kernel Instance

	Kernel Storage
	Procedures
	Procedure Key
	Procedure Index
	Procedure List
	Procedure Heap

	System Calls and Capabilities
	Executing a System Call
	Return and Error Codes
	Capability Subsets
	Procedure Call System Call
	System Call Format
	Capability Format
	Capability Subsets
	Error Codes

	Register Procedure System Call
	System Call Format
	Capability Format
	Capability Subsets
	Function
	Error Codes

	Delete Procedure System Call
	System Call Format
	Capability Format
	Capability Subsets

	Set Entry Procedure System Call
	Error Codes
	System Call Format
	Capability Format
	Capability Subsets
	Function
	Error Codes

	Write System Call
	System Call Format
	Capability Format
	Capability Subsets
	Error Codes

	Log System Call
	System Call Format
	Capability Format
	Capability Subsets
	Error Codes

	External Call System Call
	System Call Format
	Capability Format
	Capability Subsets

	Procedure Bytecode Validation
	Whitelist
	Execution Guard
	System Call

	Initialization

