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1. INTRODUCTION

QR factorization is an essential kernel in many problems in computational science.
It can be used to find solutions to sparse linear systems, sparse linear least squares
problems, eigenvalue problems, rank and null-space determination, and many other
mathematical problems in numerical linear algebra [Golub and Van Loan 2012]. Al-
though QR factorization and other sparse direct methods form the backbone of many
applications in computational science, the methods are not keeping pace with advances
in heterogeneous computing architectures, in which systems are built with multiple
general-purpose cores in the CPU, coupled with one or more General Purpose Graph-
ics Processing Units (GPGPUs) each with hundreds of simple yet fast computational
cores. The challenge for computational science is for these algorithms to adapt to this
changing landscape.

The computational workflow of sparse QR factorization [Amestoy et al. 1996; Davis
2011] is structured as a tree, where each node is the factorization of a dense submatrix
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(a frontal matrix [Duff and Reid 1983]). The edges represent an irregular data move-
ment in which the results from a child node are assembled into the frontal matrix of
the parent. Each child node can be computed independently. An assembly phase af-
ter the children are executed precedes the factorization of their parent. In this paper,
we present a GPU-efficient algorithm for multifrontal sparse QR factorization that
uses this tree structure and relies on a novel pipelined multifrontal algorithm for QR
factorization that exploits the architectural features of a GPU. It leverages dense QR
factorization at multiple levels of the tree to achieve high performance.
The main contributions of our paper are:

— A novel sparse QR factorization method that exploits the GPU by factorizing multi-
ple frontal matrices at the same time, while keeping all the data on the GPU. The
result of one frontal matrix (a contribution block) is assembled into the parent frontal
matrix on the GPU, with no data transfer to/from the CPU.

— A novel scheduler algorithm that extends the Communication-Avoiding QR factor-
ization [Demmel et al. 2012], where multiple panels of the matrix can be factorized
simultaneously, thereby increasing parallelism and reducing the number of kernel
launches in the GPU. The algorithm is flexible in the number of threads/SMs used
for concurrently executing multiple dense QRs (of potentially different sizes). At or
near the leaves of the tree, each SM works on its own frontal matrix. Further up the
tree, multiple SMs collaborate to factorize a frontal matrix.

— The scheduling algorithm and software does not assume that the entire problem will
fit in the memory of a single GPU. Rather, we move subtrees into the GPU, factorize
them, and then move the resulting contribution block (of the root of the subtree) and
the resulting factor (just R, since we discard @) out of the GPU. This data movement
between the CPU RAM and the GPU RAM is expensive, since it moves across the
relatively slow PCI bus. We double-buffer this data movement, so that we can be
moving data to/from the GPU for one subtree, while the GPU is working on another.

— For large sparse matrices, the GPU-accelerated algorithm offers up to 11x speedup
over CPU-based QR factorization methods, with a median speedup of 5x for large
matrices. It achieves up to 82 GFlops as compared to a peak of 32 GFlops for the
same algorithm on a multicore CPU (two 12-core AMD Opteron™ 6168 processors
and 64 GB of shared memory).

Section 2 presents the background of sparse QR factorization and the GPU comput-
ing model. The main components of the parallel QR factorization algorithm are given
in Section 3. In Section 4, we compare the performance of our GPU-accelerated sparse
QR to Davis’ SuiteSparseQR package on a large set of problems from the UF Sparse
Matrix Collection [Davis and Hu 2011]. SuiteSparseQR is the sparse QR factorization
in MATLAB [Davis 2011]. It uses LAPACK [Anderson et al. 1999] for panel factoriza-
tion and block Householder updates, whereas our GPU-accelerated code uses our GPU
compute kernels for this update step. Future work in this algorithm is discussed in
Section 5. An overview of related work, and a summary of this work, are presented
in Sections 6 and Sections 7. Our code is available as Collected Algorithm 9xx of the
ACM, and at suitesparse.com.

2. PRELIMINARIES

An efficient sparse QR factorization is an essential kernel in many problems in compu-
tational science. Application areas that can exploit our GPU-enabled parallel sparse
QR factorization are manifold. In our widely used and actively growing University
of Florida Sparse Matrix Collection [Davis and Hu 2011], we have problems from
structural engineering, computational fluid dynamics, model reduction, electromag-
netics, semiconductor devices, thermodynamics, materials, acoustics, computer graph-
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ics/vision, robotics/kinematics, optimization, circuit simulation, economic and financial
modeling, theoretical and quantum chemistry, chemical process simulation, mathe-
matics and statistics, power networks, social networks, text/document networks, web-
hyperlink networks, and many other discretizations, networks, and graphs. Although
only some of these domains specifically require QR factorization, most require a sparse
direct or iterative solver. We view our QR factorization method as the first of many
sparse direct methods for the GPU, since QR factorization is representative of many
other sparse direct methods with both irregular coarse-grain parallelism and regular
fine-grain parallelism.

In the next section, we briefly describe the multifrontal sparse QR factorization
method and explain why we have selected it as our target for a GPU-based method. We
then give an overview of the GPU computing landscape, which provides a framework
for understanding the challenges we addressed as we developed our algorithm.

2.1. Multifrontal Sparse QR Factorization

2.1.1. Ordering and Analysis phase. The first step in solving a sparse system of equations
Az = b or solving a least squares problem is to permute the matrix A so that the
resulting factors have fewer nonzeros than the factors of the unpermuted matrix. This
step is NP-hard, but many efficient heuristics are available [Davis et al. 2004a; 2004Db;
Davis 2006].

The second step is to analyze the matrix to set up the parallel multifrontal numerical
factorization. This step finds the elimination tree, the multifrontal assembly tree, the
nonzero pattern of the factors, and the sizes of each frontal matrix. In a multifrontal
method, the data flows only from child to parent in the tree, which makes the tree suit-
able for exploiting coarse-grain parallelism, where independent subtrees are handled
on widely separated processors. The analysis takes time that is no worse than (nearly)
proportional to the number of integers required to represent the nonzero pattern of the
factors, plus the number of nonzeros in A. This can be much less than the number of
nonzeros in the factors themselves.

The ordering and analysis steps are based on our existing multifrontal sparse QR
method (SuiteSparseQR) [Davis 2011]. The ordering and analysis phase is very irreg-
ular in its computation and is thus best suited to stay on the CPU.

Each node in the tree represents one or more nodes in the column elimination tree.
The latter tree is defined purely by the nonzero pattern of R, where the parent of node
iis j if j > i is the smallest row index for which r;; is nonzero. There is one node in
column elimination tree for each column of A.

A multifrontal assembly tree is obtained by merging nodes in the column elimination
tree. A parent j and child ; — 1 are merged if the two corresponding rows of R have
identical nonzero pattern (excluding the diagonal entry in the child). In general, this
requirement is relaxed, so that a parent and child can be merged if their patterns are
similar but not necessarily identical (this is called relaxed amalgamation [Ashcraft
and Grimes 1989]). Figures 1 and 2 gives an example of both trees, and the related A
and R matrices. In the figure, the rows of A are sorted according to the column index of
the leftmost nonzero in each row, so as to clarify the next step, which is the assembly of
rows of A into the frontal matrices. Each x is a nonzero in A. Each dot is an entry that
will become nonzero as the matrix is factorized. Each r is a nonzero in R. Each node
of the tree is a column of A or row of R, and they are grouped together when adjacent
rows of R have the same nonzero pattern.

In the assembly process, the incoming data for a frontal matrix is concatenated to-
gether to construct the frontal matrix. No flops are performed. Each row of A is assem-
bled into a single frontal matrix. If the leftmost nonzero of row i is in column j, then
row i is assembled into the frontal matrix containing node j of the elimination tree.
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1234567 89101112
1|x x X .
2|x . x x
3/ x . x x
4 x x . x
5 x x . x
6 x . x .
7 x X X . x
8 x . x
9 x X . X .
10 x X X
11 b3 b3
12 x| . . x
13 X|x x x .
14 x| x x x
15 X|xX . X
16 X . X|x . X X
17 X X . x
18 X X X X x .
19 X X|. X x
20 X .|x x
21 x| . X X
22 X|x x X X
23 X X X X X
Fig. 1. A sparse matrix A.
12345678 9101112
rr r r r
r r r r
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rir r r r
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rrrrr
rrrr
rrr
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r

Fig. 2. The factor R and its column elimination tree.

Figure 3 illustrates a leaf frontal matrix with no children in the assembly tree. It is
the first frontal matrix, and contains nodes 1 and 2 of the column elimination tree. Six
rows of A have leftmost nonzeros in columns 1 or 2. These are concatenated together
to form a 6-by-5 frontal matrix, held as a 6-by-5 dense matrix. Note that the dimen-
sions of a frontal matrix are typically much smaller than the dimensions of A itself.
The frontal matrix does include some explicit zero entries, in the first column. This is
due to the amalgamation of the two nodes into the front.

2.1.2. Factorization phase. This is where the bulk of the floating-point operations are
performed (the remainder are done in the next step, the solve phase). All of the flops
are computed within small dense frontal matrices (small relative to the dimensions
of A, to be precise; the frontal matrices can be quite large). These computations are
very regular, very compute-intensive (relative to the memory traffic requirements),
and thus well-suited to be executed on one or more GPUs. Continuing the example in
Figure 2, after the 6 rows of A are assembled into the front, we compute its QR factor-
ization, reflected in the matrix on the right side of Figure 3. Each r is a nonzero in R,
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each h is a nonzero Householder coefficient, and each c is an entry in the contribution
block.

rows of A for front 1  factorized front 1

1 216 811 1 2]6 811
1 X X|. x . rrjrrr
2 X .|x . x hrirrr
3 X X|. X x h hjc c ¢
4 X|x x hihcec
5 Xx|(x . x h|lh h c
6 x x hilh h h

Fig. 3. Assembly and factorization of a leaf.

Figure 4 illustrates what happens in the factorization of a frontal matrix that is not
a leaf in the tree. Three prior contribution blocks are concatenated and interleaved
together, along with all rows of A whose leftmost nonzero falls in columns 5, 6, or 7
(the fully-assembled columns of this front). The QR factorization of this rectangular
matrix is then computed.

child 1 assembled front 4 factorized front 4

56 7|8 91112 56 7|8 91112

16 x . x|x . x x rrrjrrrr

17 xx .|. . .x hrrirrrr

18 x x xxx . hhrirrrr

child 2 13 ¢6.¢l. . hhhicccecece

19 X X|. X x h hlhcce

20 X .|x . x h hhhecee

3 c .|q c . h hhhhe

8 ¢ ole =y hhhhhh

child 3 21 X|. . x X hih hhh

22 X|[X X X X hih h hh

9 sl . . o hih h hh

3 567 14 al. o g hih hh h

g 16 x . 4 o . g hhhh

& 17 = x ) & . .0 hhhh

S 18 x x X X X 15 GG hhh

< 19 X X|. X x h h

B 20 X . |x .xlsl CICZ h
§21 x X x
g22 XIx x x x

Fig. 4. Assembly and factorization of a front with children.

Computation across multiple CPU cores and multiple GPUs can be obtained by split-
ting the tree in a coarse-grain fashion. At the root of each subtree, a single contribution
block would need to be sent, or distributed, to the CPU/GPU cores that handle the par-
ent node of the tree. Our current method exploits only a single GPU, but to handle
very large problems, it splits the trees into subtrees that fit in the global memory of
the GPU.

2.1.3. Solve phase. Once the system is factorized, the factors typically need to be used
to solve a linear system or least-squares problem. These computations are regular in
nature, but they perform a number of flops proportional to the number of nonzeros in
the factors. The ratio of flop count per memory reference is quite low. The cuSPARSE
package from NVIDIA includes a sparse triangular solve, and thus we do not consider
this phase in the scope of this paper.
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2.2. GPU architecture

In general, a heterogeneous GPGPU system consists of one or more highly-flexible
CPU cores, and very many high-throughput computational cores on one or more GPUs.
While our algorithmic methods should extend to many different kinds of GPUs or other
related platform (such as the Intel Xeon Phi), we have restricted our current imple-
mentation of our algorithms to the NVIDIA GPGPU framework based on the CUDA
programming model.

An NVIDIA GPU consists of a set of SMs (Streaming Multiprocessors), each with a
set of cores that operate in lock-step manner. The shared memory available on each
SM can be accessed by all cores in the SM, but it is very limited (32K to 64K bytes)
and must be shared among multiple blocks of threads. Minimizing the memory traffic
between slow GPU global memory and very fast shared memory is crucial to achieve
high performance. Dense QR factorization has a very good compute-to-data-movement
ratio and can achieve high performance even under these limitations.

The GPU executes one or more kernels, which are launched by the CPU. When
launching a kernel, the programmer specifies a number of thread blocks and the num-
ber of threads per block the GPU should commit to the kernel launch. These kernel
launch parameters describe how the work is intended to be divided by the GPU among
its SMs, and GPUs have varying upper bounds on the allowed parameter values. Re-
gardless of the number of available SMs or cores per SM for a particular GPU, the
GPU’s scheduler assigns thread blocks to SMs and executes the kernel until the thread
block completes its execution. The GPU scheduler organizes threads into collections of
32, called a warp, and threads constituting a warp execute code in a Single Program
Multiple Data (SPMD) fashion within an SM [NVIDIA Corporation 2011].

Each thread on the GPU has access to a small number of registers, which cannot
be shared with any other thread (new GPUs allow for some sharing of register data
amongst the threads in a single warp, but our current algorithm does not exploit this
feature). The GPU in our experiments, an NVIDIA Tesla C2070, provides up to 31
double-precision floating-point registers for each thread.

Each SM has a small amount of shared memory that can be accessed and shared
by all threads on the SM, but which is not accessible to other SMs. There is no cache
coherency across multiple SMs. The shared memory is arranged in banks, and bank
conflicts occur if multiple threads attempt to access different entries in the same bank
at the same time. Matrices are padded to avoid bank conflicts, so that a row-major
matrix of size m-by-n is held in an m-by-(n + 1) array when in shared memory. In this
context, the m-by-n matrix is a small selected subset of one of the frontal matrices
being factorized by the GPU. We can thus ensure that n is a multiple of the bank size.
Accessing of shared memory can be done in randomly-accessed order without penalty,
so long as bank conflict is avoided.

Global memory on the GPU is large, but its bandwidth is much smaller than the
bandwidth of shared memory, and the latency is higher. Global memory can be read
by all SMs, but must be read with stride-one access for best performance (a coalesced
memory transaction).

The GPU provides hardware support for fast warp-level context switching on an
SM, and the GPU scheduler attempts to hide memory latency by overlapping global
memory transactions with computation by switching between warps. While a memory
transaction for one warp is pending, the SM executes another warp whose memory
transactions are ready.

All three layers of memory (global, shared, and register) must be explicitly managed
for best performance, with multiple memory transactions between each layer “in flight”

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2015.



Algo. 9xx: Sparse QR Factorization on the GPU 1:7

at the same time, with many warps, so that computation can proceed in one warp while
another warp is waiting for its memory transaction to complete.

The NVIDIA Tesla C2070 (Fermi) has 448 double-precision floating point cores. It
operates at up to 515 GFlops, and twice that speed in single-precision. The 448 cores
are partitioned into 14 SMs. A single SM of 32 cores has access to 64KB of shared RAM,
typically configured as 16KB of L1 cache and 48KB of addressable shared-memory
for sharing data between threads in a block. The SM has 32K registers, partitioned
amongst the threads. All 14 SMs share an L2 cache of 768KB. Sharing between SMs is
done via the 6GB of global shared memory. Up to 16 kernels can be active concurrently
on the Fermi architecture, on different SMs.

The practical maximum performance for any dense matrix multiply (DGEMM) ker-
nel is 75% of the 515 GFlop peak (or 386 GFlops) because of instruction fetch lim-
itations. NVIDIA provides a cuBLAS for dense matrix operations such as matrix-
matrix multiply (DGEMM); see https://developer.nvidia.com/gpu-accelerated-libraries.
The peak performance attained by the cuBLAS DGEMM is 362 GFlops [Tan et al.
2011]. The dense QR factorization in cuBLAS can achieve 130 GFlops in double pre-
cision. The MAGMA library can compute a dense QR factorization on multiple GPUs
with a performance of up to 254 GFlops in double precision for the largest dense ma-
trices [Dongarra et al. 2014; Song et al. 2012]. Both of these libraries obtain high
performance for the dense QR factorization of a single dense matrix, but they are not
suited to factorizing a set of inter-related dense frontal matrices of very different sizes,
which arises in the sparse case.

NVIDIA has also developed an efficient sparse-matrix-vector multiplication algo-
rithm [Bell and Garland 2008], which achieves 36 GFlops in single precision on a
GeForce GTX 280 (with a peak performance of 933 single precision GFlops). The per-
formance of sparse-matrix-vector multiplication is limited by the GPU memory band-
width, since it computes only 2 floating-point operations per nonzero in A. This per-
formance metric is relevant here, since sparse matrix multiplication is similar to the
irregular assembly step in sparse QR.

3. PARALLEL ALGORITHM

The computational workflow of QR factorization is structured as a tree, where each
node is the factorization of a dense submatrix. The edges represent an irregular data
movement in which the results from a child node are assembled into the frontal matrix
of the parent. Each child node can be computed independently. However, an assembly
phase after the children are executed precedes the factorization of their parent. Our
algorithm is flexible in the number of threads/SMs used for concurrently executing
multiple dense QRs (of potentially different sizes). At or near the leaves of the tree,
each SM in a GPU works on its own frontal matrix. Further up the tree, multiple SMs
collaborate to factorize a frontal matrix.

Although hardware instructions are provided for atomic operations and intra-SM
thread synchronization, GPU devices offer poor support for inter-SM synchronization.
Our execution model uses a master-slave paradigm where the CPU is responsible for
building a list of tasks, sending the list to the GPU, synchronizing the device, and
launching the kernel. Since a GPU has poor inter-SM synchronization, we construct
the set of tasks so that they have no dependencies between them at all. The GPU
receives the list of tasks from the CPU for each kernel launch, performing operations
described by each task. Our kernel implementation is monolithic, inspecting the task
descriptor to execute the appropriate device function. In this manner, a single kernel
launch simultaneously computes the results for tasks in many different stages of the
factorization pipeline. This software design pattern is called the iiberkernel [Tatarinov
and Kharlamov 2009].
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The factorization of the matrix may take several kernel launches to complete. We
launch each kernel asynchronously using the NVIDIA CUDA events and streams
model. While one kernel is executing within a CUDA stream, the CPU builds the list
of tasks for the next kernel launch. We use another stream to send the next list of
tasks asynchronously. The CPU is responsible for synchronizing the device prior to
launching the next kernel in order to ensure that the task data has arrived and that
the previous kernel launch has completed.

The details of the algorithm are presented in the next several subsections. Each
frontal matrix has its own bucket scheduler, described in Section 3.1. Each kernel
launch includes tasks for many frontal matrices, all in various stages of completion,
with Factorize, Apply, Pack Assemble, and S-Assemble tasks as described in Sec-
tions 3.2 and 3.3.

A high-level view of our scheduling algorithm is shown in Figure 5, which provides
a simplified diagram of how 8 frontal matrices can be factorized and assembled on the
GPU. The black circles denote Factorization and Apply tasks, in which each the dense
frontal matrices are factorized. Some frontal matrices are small enough to factorize in
a single kernel launch (nodes 1, 2, 5, 6, and 7). Others require multiple kernel launches.
Once a frontal matrix is factorized, its contribution block must be assembled into its
parent (a Pack Assemble task), along with the input sparse matrix (an S-Assemble
task). Both types of Assembly tasks are show as A circles in the figure.

etc ... (4)
---------- @ (2)

w 000 ! Q)

" /

3rd

2nd

1st kernel launch

Fig. 5. Multifrontal assembly subtree with 8 frontal matrices

Note that there is no need for a barrier between levels of the assembly tree in Fig-
ure 5. One option for factorizing these frontal matrices would be to factorize nodes 1,
3, 5, 6, and 7 first, followed by 2 and 8, and so on. We do not use this approach since it
would limit parallelism. For example, frontal matrix 3 is large enough to require many
kernel launches, and while it is being factorized, both nodes 1 and 2 can be completed.
Likewise, node 8 can start before node 3 finishes. This strategy enables us to reduce
the number of kernel launches required to factorize the entire sparse matrix.

3.1. Dense QR Scheduler (the Bucket Scheduler)

Our CPU-based dense QR scheduler is comprised of a data structure representing the
factorization state of a frontal matrix together with an algorithm for scheduling tasks
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to be performed by the GPU. We call this algorithm and its data structure the bucket
scheduler. Each frontal matrix has its own bucket scheduler.

The algorithm partitions the input matrix into 32-by-32 submatrices called tiles. The
choice of a tile size reflects the thread geometry of the GPU and the amount of shared
memory that each SM can access.

All tiles in a single row are called row tiles, so that (for example) a single row tile
in a 256-by-160 matrix consists of a submatrix of size 32-by-160. In our scheduler, we
refer to a row tile by a single integer, its row tile index. In contrast, a column tile is just
a single tile, so one row tile in a 256-by-160 matrix consists of a 32-by-160 submatrix,
containing 5 column tiles. The leftmost column tile in a row tile refers to the nonzero
column tile with the least column tile index. In a row tile, all column tiles to the left of
the leftmost column tile are all zero. Each row tile has a flag indicating whether or not
its leftmost column tile is in upper triangular form. The goal of the QR factorization
is to reduce the matrix so that the kth row tile has a leftmost column tile & in upper
triangular form.

All 32 rows in a row tile are contiguous. A set of two or more row tiles with the
same leftmost column tile can be placed in a bundle, where the row tiles in a bundle
need not be contiguous. The bundle size is chosen based on the shared memory size
of the GPU; The NVIDIA C2070 has 64KB of shared memory, which corresponds to
exactly 6 tiles. However, each tile in shared memory needs to be padded with an extra
column to elimination bank conflicts, so only 5 tiles can be held. Our block Householder
update kernel needs 3 tiles for V and T and two tiles for a workspace C, to perform
a 3-by-2 tile update on a submatrix of a single frontal matrix. Thus, the size of the
Householder bundle is 3 tiles on the C2070 GPU. For other GPUs, our algorithm would
use a different bundle size.

We place row tiles into column buckets, where row tile i« with leftmost column tile j
is placed into column bucket j. During factorization, row tiles move from their initial
positions in the column buckets to the right until each column bucket contains exactly
one row tile with its flag set to indicate that it is upper triangular. Figure 6 shows a
256-by-160 matrix and its corresponding buckets after initialization. The matrix has
two row tiles that are all zero (tiles (7,1) and (8,1)).

OO0EAE
? DDDDD Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5
» OEEEE :
« OEEEE
s EEEE  fo]2]s] |of-
s DEEEE
; OEpE
I W e

Fig. 6. A 256-by-160 matrix and its bucket scheduler.

The CPU is responsible for manipulating row tiles within bundles, filling a queue
of work for the GPU to perform, and advancing row tiles across column buckets until
exactly one row tile remains in each column bucket. Each round of factorization builds
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a set of tasks by iterating over the column buckets and symbolically manipulating
their constituent row tiles.

All row tiles in a bundle have the same leftmost column tile, prior to factorization
of the bundle. After factorization, the leftmost column tile of the topmost row tile is
placed into upper triangular form, and the leftmost column tile of the remaining row
tiles are all zeroed out. The bundle now represents a set of row tiles to which a block
Householder update must be allied, to all column tiles to the right of the leftmost
column tile of the bundle.

We iterate over the column buckets and for each column bucket, we perform the
operations described below, building a set of tasks to be executed by the GPU at each
kernel launch, illustrated in Figure 7. Each image in the figure represents the tasks
at each kernel launch and is color-coded by bundle. Gray tiles are unmodified by their
respective kernel launches. White tiles are finished.

(1) Generate bundles and build block Householder update tasks on the CPU:
Row tiles that are unassociated with a bundle become new bundles ready for fac-
torization. Figure 7b illustrates this by grouping tiles into bundles of size 3 (red),
3 (magenta), and 2 (green). Factorize tasks are created for such bundles.

(2) Launch the kernel with its current set of non-uniform tasks: Launch the
GPU kernel and perform any queued Factorize and Apply tasks. Factorize tasks
factorize the leftmost column tile in each bundle, and Apply tasks apply a block
Householder update from a prior Factorize task in the previous kernel launch.

(3) Advance the bundles on the CPU: Next we advance the bundles, leaving the
topmost row tile in upper triangular form, as shown in Figure 7c¢ for column bucket
1. These advancing bundles move to the next column bucket and represent a pend-
ing block Householder update from the previous factorization step.

We continue performing the operations described above until only one upper trian-
gular row tile appears in each column bucket.

The bucket scheduler can further exploit parallelism and decrease the number of
idle tiles (shown as gray in Figure 7), by following a block Householder update with
an immediate factorization of the same bundle. In a modification of the procedure
described above, we regard advancing bundles to be candidates for pipelining. This
pipelining approach occurs in two different scenarios.

(1) The first scenario involves adding idle tiles to preexisting bundles. A row tile may
become idle if its bundle has just been factorized and it is the only member of
its bundle following bundle advancement. The kernel launch between Figure 7b
and Figure 7c leaves tile (7,2) upper triangular and idle following bundle advance-
ment (green bundle). Instead of leaving the tile idle, a new bundle could be formed,
consisting of tiles (5,2), (6,2), and (7,2). This new bundle could be factorized im-
mediately after the block Householder update of the magenta bundle (row tiles
4, 5, and 6 in Figure 7b). We call this strategy bundle growth, and we call the
set of newly added idle row tiles the bundle’s delta. Although the bundle delta
does not participate in its host bundle’s block Householder update, it does partic-
ipate in a subsequent factorization of the host bundle. In the example discussed
above, tile (7,2) would be the new bundle’s delta. This blue bundle can then be be
pipelined with the preexisting magenta bundle, where the magenta task that ap-
plies a Householder update to tiles (4,2),(5,2) and (6,2) can immediately follow this
with the factorizations of the blue bundle, instead of waiting until the next kernel
launch. Comparing Figure 7c and Figure 8c illustrates the addition of this tile into
the blue bundle in Figure 8c. With pipelining, the blue bundle is factorized in the
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second kernel launch (Figure 7c), rather than waiting until the third kernel launch
(Figure 8d) when pipelining is not exploited.

(2) The second scenario involves bundles that do not undergo bundle growth and are
scheduled only for block Householder updates (the red bundle in Figure 7c, for
example). When such bundles perform their block Householder applies, we can
pipeline the factorization of the bundle’s leftmost column tile. Comparing Figure 7c
to Figure 8c demonstrates that a new yellow bundle has been created, represent-
ing the pipelined task of performing the red bundle’s block Householder update
followed by a fresh factorization of the tiles contained therein. We call tasks repre-
senting this pipelined approach, Apply/Factorize tasks. With pipelining, the yel-
low bundle with tiles (2,2) and (3,2) is factorized in the second kernel launch
(Figure 7c), rather than waiting until the third kernel launch (Figure 8d) when
pipelining is not exploited. Without pipelining, the bundle performs its update and
factorize on the next kernel launch, resulting in a portion of the matrix remaining
idle during the next kernel launch. For example, in Figure 7d, row tiles 2, 3, 5, 6,
and 7 are mostly gray, except for a factorization of their leftmost column tiles. By
comparison, these same row tiles are active in Figure 8d.

3.2. Computational Kernels on the GPU

In this section, we provide details of the key computational kernels required for the
simultaneous dense QR factorization of multiple frontal matrices on the GPU.

The Factorize task factorizes the leading tiles of a bundle, producing a block House-
holder update (the ¥V and T matrices) and an upper triangular factor R in the top row
tile. The Apply task uses the V and T matrices to apply the block Householder update
to the remaining column tiles, to the right in this bundle.

Our tile size is selected to be a 32-by-32 submatrix, so that the row and column
dimensions match the size of a warp (32 threads). Six tiles can fit exactly into the
48K of shared RAM available each SM, but with padding this drops to five tiles. The V'
matrix is lower trapezoidal and T is a single upper triangular tile, so three tiles are set
aside for V and T (plus one row). Three tiles are used for V, and the upper triangular
part of its topmost tile (where V' is lower triangular) holds the matrix 7". Two tiles hold
a temporary matrix C.

3.2.1. Factorize kernel. A MATLAB implementation of a Householder QR factorization
of an m-by-n matrix A is shown below.

function [A V1 T] = factorize (A)
[m n] = size (A)
T = zeros (n)
for k = 1:n
[tau, v] = house (A (k:m,k))
Vi (k) = v (1)

A (k+1:m,k) = v (2:end)

z = -tau * v’ * A (k:m,:)

A (k:m,k+1:n) = A (k:m,k+1:n) + v * z (k+1:n)
T (1:k-1,k) =T (1:k-1,1:k-1) * z (1:k-1)’

T (k,k) = tau

end

The factorize function overwrites A with the factor R and the Householder vectors
V, and simultaneously creates T' for the subsequent block Householder update. It also
returns a vector V1 that holds the diagonal of V. The A matrix for the Factorize task
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Fig. 8. Pipelined factorization in 7 kernel launches.

is a set of column tiles to be factorized by a single SM. The house function computes
the Householder vector v and coefficient 7 to annihilate the £th column of A.

A key feature illustrated by the factorize function is the merging of some of the
work for the k" Householder update with the construction of the 7 matrix. This is
the computation of the single vector z in the statement z = -tau * v’ * A (k:m,:).
By merging these two operations together into a single matrix-vector multiply, we can
keep all the threads of the SM busy. Some threads will own parts of A overwritten
with V (in columns 1 to k), and these take part in the construction of the k" column of
T. Other threads hold parts of A that must be updated by the k" Householder vector.
When this work is merged into the single statement z = -tau * v’ * A (k:m,:), both
sets of threads make useful progress in the computation, at the same time.

The Factorize task implements the factorize function, except that it operates on
a non-contiguous set of column tiles. It also stores the first tile of V' along with 7', as
described below.

The Factorize task requires a description of the bundle, the column tile, and a mem-
ory address to store 7. The GPU factorizes the leftmost column tile of the bundle into
upper triangular form (called A in this task) and overwrites it with the Householder
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vectors, V, and the upper triangular 7" matrix, which are then written back into GPU
global memory. Saving V and T is necessary because on the next GPU kernel launch,
they are involved in the block Householder application across the remaining columns
in this bundle. The lower triangular portion of the topmost tile of V' is stored together
with T. Because both V and T contain diagonal values, the resulting memory space
is a 33-by-32 tile with V offset by 1. We call this combined structure a VT tile. This
in turn leaves the first tile in the bundle upper triangular, and the other tiles in the
bundle contain V.

This description assumes a bundle of three tiles and a kernel launch with 384
threads per task, but we have other kernels for different bundle sizes.

(1) Load A from global memory. All 384 threads in the task cooperate to load the
bundle’s tiles from global memory (the A matrix of size m-by-n) into a single shared
memory array of size m-by-(n + 1), where m = 96 and n = 32. No computation
is performed while A is being loaded. After A is loaded, each thread loads into
register 8 entries of A along a single column for which it is responsible. It keeps
these entries in register for the entire factorization. We call this 8-by-1 submatrix
operated on by a single thread a bitty block.

(2) Compute o for the first column, where ¢ = > (As.,,1)? (where 2 : m denotes
2...m). This computation is the bulk of the work for finding the Householder vector,
and is composed of two reduction operations. First, the 12 threads responsible for
the first column of A compute the sum of squares using an 8-way fused multiply-
add reduction in register memory, saving the final result into shared memory.
Threads in the thread block synchronize to ensure they have all finished the first
phase before entering the second phase of the reduction. We designate the first
thread in the thread block to be the master thread. The master thread completes
the computation with a 12-way summation reduction reading from shared memory
into register memory. The master thread retains o in register during the factoriza-
tion loop.

(3) The main factorization loop iterates over the columns of A, performing the
following operations (a) through (f) in sequence.

(a) Write the k" column of A back into shared memory The threads responsi-
ble for the k'" column write their A values from register back into shared mem-
ory. The SM then synchronizes all 384 threads before proceeding, maintaining
memory consistency. Once the diagonal value is computed, the k' column be-
comes the k" Householder vector v. Additionally, values above the diagonal
are the k" column of R. In the factorize MATLAB function, this step roughly
corresponds to the step A (k+1:m,k) = v (2:end).

(b) Compute the k' diagonal. This step finalizes the construction of the k'"
Householder vector. The master thread is responsible for computing the k"
diagonal entry of R, the k'* diagonal entry of V, and 7: s = Va2 + o, vpr =
agr — s if agr <0 and —o/agk + s otherwise, and 7 = —1/svyy. If o is very small,
the square root is skipped, and vy along with 7 are set to 0. Because all threads
will need v and 7, the remaining threads synchronize with the master thread.

(c) Compute an intermediate > vector. All threads cooperate to perform a
matrix-vector multiply z = —T’UTAk;mJ;n, which is used to compute the V' and
T matrices, where v is the Householder vector, held in Ay, x.

To compute z, each thread loads the entries of the v vector it requires from
shared memory into register memory, from Ay.,, . The thread’s bitty block of
A is already in register (the 8 entries of A that the thread operates on).

The calculation is done in two parts. The first part is illustrated in Figure 9,
where each thread performs an 8-way partial dot product reduction using fused
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E

multiply-adds in register memory. The threads store the partial result in a 12-
by-32 region of shared memory. The threads synchronize to guarantee that they
have completed the operation before proceeding with the second phase of the
calculation. The second phase of the calculation involves only a single warp.
This warp performs the final 12-way summation reduction into shared memory,
completing the calculation of z.

Householder update of A in register memory, illustrated in Figure 10.
All threads responsible for columns to the right of the k' column of A par-
ticipate in updating A by summing values with the outer product Ay..,, k+1.n =
Ak:m k+1:n+VZk+1:n. Threads involved in the outer product computation already
have v in register memory, and they need only load z from shared memory once
to update their values of A. Each thread needs to load a single value of z, since
each bitty block is 8-by-1, in a single column of A.

Compute the next ¢ value. Some threads participating in updating A in reg-
ister memory may also begin to compute the next o value if they are responsible
for the (k + 1)“ column of A. These threads participate in computing o, and the
process is the same as the computation of ¢ for the first column.

Construct the k" column of T, with Ty, 1 = Th.—11.k-121:6—1", @ matrix-
vector multiply. This step is illustrated in Figure 11. Threads 1 to k — 1 are as-
signed to compute the kth column of T', where the ith thread performs the inner
product to compute ¢;;. Threads load values of 7" and z from shared memory,
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Fig. 11. Construct £** column of T, with: T (1:k-1,k) = T (1:k-1,1:k-1) * z (1:k-1)’

accumulating the result in register memory. Finally, the participating threads
each write their scalar result ¢;; from register memory into shared memory.
The master thread writes ¢, = 7.

(4) Store A, V, and T back into global memory. All 384 threads in the task coop-

erate to store the bundle’s tiles back into global memory. Since the first tile of V'
and T are held in a single VT tile in global memory, they are stored together to
maintain coalesced global memory transactions.
Once the VT tile is stored, the three tiles that hold A are stored back into global
memory in the frontal matrix being factorized. The first tile of A is the upper tri-
angular matrix R, and the remaining tiles are the second and third tiles of the
Householder vectors, V.

Following a Factorize task, the corresponding bundle’s topmost tile contains R. The
remaining leftmost column tiles contain V, which is used in the subsequent block
Householder applies. The first tile of V' (which is lower triangular) is stored together
with the upper triangular 7" matrix in a separate 33-by-32 global memory space (the
VT tile), since the top left tile in the frontal matrix now holds R. The VT tile remains
only until the next kernel launch, when the block Householder update is applied to the
column tiles to the left, in this bundle. At that point, the space is freed to hold another
VT tile, from another bundle in this frontal matrix or in another one being factorized
at the same time.

3.2.2. Apply kernel. Each Apply task involves a bundle, an originating column tile, a
column tile range, and the location of the VT tile. The GPU loads the VT tile and
iterates over the column tile range performing the block Householder update, (1) C =
VTA, (2)C=T"C,and (3) A=A —-VC.

Since the V and T matrices are used repeatedly, and since V is accessed both by
row and column order (V and V"), they are loaded from global memory by the SM and
held in shared memory until the Apply task completes. The temporary C matrix is also
held in shared memory or register. The A matrix remains only in global memory, and
is staged into a shared memory buffer and then into register, one chunk at a time. The
algorithm is as follows:

—Load V and T'. All 384 threads in the task cooperate to load the V and T matrices
from global memory into a single shared memory array of size 97-by-32. Since the
first tile of V and T are held in a single VT tile in global memory, they are loaded to-
gether to maintain coalesced global memory accesses. No computation is performed
while V and T are being loaded.

— Apply the block Householder: A = A — VI''VTA. The A matrix is 3-by-t tiles
in size in global memory, and represents a portion of the frontal matrix being fac-
torized. Since V' and T take up three tiles of shared memory, two tiles remain for
a temporary matrix (C) required to apply the block Householder update. Registers
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also limit the size of C' and the submatrix of A that can be operated on. If held in
register, each thread can operate on at most a 4-by-4 submatrix of A or C (its bitty
block). With 384 threads, this results in a submatrix of A of size 96-by-64, or 3-by-2
tiles. The same column dimension governs the size of C, which is 2-by-1 tiles in size.
Thus, the ¢ column tiles of A are updated two at a time. Henceforth, to simplify
the discussion, A refers to the 96-by-64 submatrix (3-by-2 tiles) updated in each
iteration across the ¢ column tiles. The block update is computed in three phases as
1DC=VT4,(2C=T"C and (3) A= A -V, as follows:

(1) Load A and compute C = V' A. This work is done in steps of 16 rows each (a
halftile), in a pipelined manner, where data for the next halftile is loaded from
global memory into shared, while the current halftile is being computed. This
enables the memory / computation overlap required for best performance.

The C matrix is held in register, so the 2 tiles of shared memory (for C) are used
to buffer the A matrix. This 32-by-64 matrix is split into two buffers By and B;,
each of size 16-by-64 (two halftiles).

All threads prefetch the first halftile (p = 0) into register, which is the topmost
16-by-64 submatrix of A. This starts the pipeline going. Next, C = VT A is com-
puted across six halftiles, one halftile (p) at a time:

forp=1to6
a. Write this halftile (p) of A from register into shared buffer B, o4 2-
b. syncthreads.
c. Prefetch the next halftile (p + 1) of A from global to register.
d. Compute C = VT A, where A is in buffer By, mod 2.
end for

In step (b), all threads must wait until all threads reach this step, since there
is a dependency between steps (a) and (d). However, steps (c) and (d) can occur
simultaneously since they operate on different halftiles. In step (d), each thread
computes a 4-by-2 bitty block of C, held in register for phases 1 and 2 (only the
first 256 threads do step (d); the other 128 threads remain idle and are only used
for memory transactions in this phase).

The global memory transactions for a warp are scheduled in step (c), but the
warp does not need to wait for them to be completed before computing step (d)
(they are not needed until step (d) of iteration p+1). Likewise, no synchronization
is required between step (d) of iteration p and step (a) of the next iteration p + 1.
Since steps (c) and (d) (for iteration p) can overlap with step (a) (for iteration p +
1), this algorithm keeps all parts of the SM busy at the same time: computation
(step (d)), global memory (step (c)), and shared memory (steps (a) and (d)).

(2) Compute C = TTC. All matrices are now in shared memory. Each thread oper-
ates on the same 4-by-2 bitty block of C it operated on in phase 1, above, and now
writes its bitty block into the two tiles of shared memory. These are no longer
needed for the buffer B, but now hold C instead. Only the first 256 threads take
part in this computation.

(3) Compute A = A — VC, where V and C are in shared memory but A re-
mains in global. The A matrix had already been loaded in from global memory
once, in phase 1, but it was discarded since the limited shared memory is already
exhausted by holding V', T' and the C/B buffer. Each of the 384 threads updates
a 4-by-4 bitty block of A.

The layout of the bitty blocks of A and C is an essential component to the algorithm.
Proper design of the bitty blocks avoids bank conflicts and ensures that A is accessed
with coalesced global memory accesses. Both A and C bitty blocks are spread across
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the matrices. They are not contiguous submatrices of A and C. The C matrix is 32-
by-64 and is operated on by threads 0 to 255. Using 0-based notation, the 4-by-2
bitty block for thread 7 is defined as

C(i mod 8),(|i/8]) C(i mod 8),(32+]4/8])
O[i] _ | €(8+imod8),(li/8]) C€(8+imod 8),(32+4]i/8])
C(16+3 mod 8),(|3/8]) C(16+44 mod 8),(32+[i/8])
C(24+i mod 8),(]/8]) €(24+i mod 8),(32+i/8])

where ¢ ¢ is the top left entry of C. For example, the bitty blocks of threads 0 and 1
are, respectively:

Co,0 €0,32 C1,0 C1,32
Cio = €8,0 (8,32 Cpy = €9,0 9,32
C16,0 €16,32 C17,0 €17,32
C24.0 C24,32 C25.0 C25,32

The 4-by-4 bitty block of A for thread i is defined very differently than the C bitty
block, where Aj; =

Q(|i/16]),(i mod 16)  --+  Q(|i/16]),(48+i mod 16)
Q(244-1i/16]),(i mod 16) - A(24+|i/16]),(484i mod 16)
QA(484-1i/16]),(i mod 16) -+ A(48+|i/16]),(484-i mod 16)
Q(72+]i/16]),(i mod 16) --- A(724]i/16]),(48+4i mod 16)

so that thread 0 owns ag and thread 1 owns ap;. When used in our algorithm,
these layouts of the C' and A bitty blocks ensure that all global memory accesses
are coalesced, that no memory bank conflicts occur, and that no significant register
spilling occurs in our kernels.

With a 4-by-4 bitty block for A, each thread loads in 8 values from shared memory (a
4-by-1 column vector of V and a 1-by-4 row vector of C), and then performs 32 float-
ing point operations (a rank 1 outer product update of its 4-by-4 bitty block). This
gives a flops per memory transfer ratio of 4, which is essential because the floating
point units for this particular GPU are 4 times faster than register bandwidth.

The 4-by-2 bitty block for C requires 6 loads for 16 operations, a ratio of 16/6 = 2.67.
Since this is less than 4, it is sub-optimal, but unavoidable in the context of the
entire block Householder update.

3.2.3. Apply/Factorize kernel. In an effort to reduce global memory traffic on the GPU,
the Apply/Factorize pipelined task attempts to avoid superfluous global memory loads
and stores for tiles of the matrix modified in both the Apply segment and the Factorize
segment. For example, the last step of the Apply task performs a read-modify-write op-
eration of the A matrix in global memory. However, for the Apply/Factorize task, A may
instead be read from global memory, modified, and stored into shared memory, priming
the immediate Factorize. This modification saves two global memory operations.

Because the completion of a kernel launch synchronizes the device, we regard it as
an expensive barrier synchronization. The completion of a kernel launch wipes data
from shared memory, and the execution of our dense QR kernels ceases. When the
bucket scheduler adds Apply/Factorize tasks to the GPU work list, it reduces the num-
ber of kernel launches (i.e. barriers) with the goal that reducing the number of kernel
launches increases GPU occupancy and throughput. We discuss the performance im-
pact of the Apply/Factorize pipelined tasks in Section 4.
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3.3. Sparse QR Scheduler

The CPU-based Sparse QR Scheduler represents the factorization state for each dense
front using a finite state machine, and it uses the Bucket Scheduler for the simulta-
neous factorization of each those dense fronts. In other words, we have many bucket
schedulers active at the same time. The Sparse QR Scheduler manages both assembly
and factorization kernel launches, coalescing the schedules of tasks from many assem-
bly operations and many dense QR bucket schedulers into a single kernel launch.

Fronts that are leaves in the assembly tree have no children and are activated for
factorization first, as illustrated in Figure 12. In the figure, arrows point in the direc-
tion of contribution block data flow from child to parent. Fronts with no children have
been activated and performing S-Assembly, as identified in light blue leaves. The size
of each node reflects the size of the corresponding frontal matrix.

The scheduler builds S-Assembly tasks for each front. Once values from the input
problem are in place within the dense front, the front must now wait for contribution
blocks from its children to be assembled into it. Once every child of a frontal matrix
completes, the scheduler advances that front into factorization. The Bucket Scheduler
is invoked to factorize the dense matrix. Once dense factorization of the front com-
pletes, its rows of the result, the R factor, are ready to be transferred off the GPU.
Further, its contribution block rows are ready to be assembled into its parent front.
The scheduler builds Pack Assembly tasks to perform this operation. A front is fin-
ished when its rows of R are transferred off the GPU and its contribution block rows
have been assembled into its parent.

We build tasks and execute kernels using a strategy similar to the Bucket Sched-
uler. Using CUDA events and streams, the Sparse QR Scheduler builds a list of tasks
to be completed by a kernel while the previous kernel executes on the GPU. This strat-
egy affords us additional benefits. We are able to hide the latency of memory traffic
between the GPU device and the CPU host. We perform a transfer of the R factor in
a non-blocking fashion by initiating an asynchronous memory transfer on a CUDA
stream and marking an event to record when the transfer completes. Furthermore,
the R factor may become available before factorization completes. This occurs when
the remaining factorization tasks involve only contribution block rows.

3.3.1. Assembly Kernels. In addition to the compute kernels used in the dense QR fac-
torization, sparse QR factorization employs two kernels responsible for data move-
ment:

— S-Assembly refers to scattering values from the permuted sparse input matrix, S,
into the dense frontal matrices residing on the GPU. The CPU packs all S entries for
fronts within a stage into a list of index-value tuples, and describes to the GPU where
each front can find its S entries. The value is copied within global memory to a frontal
matrix at the location referred to by the index field of the tuple. The data movement
is embarrassingly parallel since multifrontal QR factorization relies on concatena-
tion of the children contribution blocks. This is in contrast to multifrontal LU or
Cholesky factorization, where the contribution blocks of multiple children must be
summed, not concatenated.

We select a granularity with which to build S-Assembly tasks. In our implementa-
tion, each thread is responsible for moving 4 values into position. S-Assembly may
occur concurrently with children pushing their contribution blocks into the front.

— Pack Assembly refers to scattering values from a front’s contribution block into its
parent. The CPU builds and sends two maps to the GPU that describe the corre-
spondence between a front’s row and column indices to its parent’s row and column
indices. We call these two maps Rimap and Rjmap, respectively. When a front com-
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Fig. 12. Assembly tree for a sparse matrix with 68 fronts.

pletes its factorization step, the values in its contribution block are copied into its
parent front. The CPU describes to the GPU where the front’s contribution block be-
gins, where its parent resides in GPU memory, the number of values to copy, and the
location of Rimap and Rjmap. The GPU reads Rimap and Rjmap into shared memory
and uses shared memory as a cache for fast index translations. The data movement

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2015.



Algo. 9xx: Sparse QR Factorization on the GPU 1:21

is embarrassingly parallel as with S-Assembly, and we select a granularity that best
suits GPU shared memory limits per streaming multiprocessor. We select a maxi-
mum Pack Assembly tile size of 2048 entries of Rimap and Rjmap.

3.4. Staging for Large Trees

During symbolic analysis, the CPU may discover that the amount of memory required
to store the frontal matrices and assembly data on the GPU exceeds the total amount
of memory available to the device. When this occurs, we switch to a strategy where we
divide the assembly tree and perform the factorization in stages.

During symbolic analysis we compute a postordering of the fronts. We keep a list of
stages to be executed by the GPU. Each entry in the staging list is an index into the
postordered list. As we iterate over the postordering, we keep a running summation
of the memory required by each front. The memory required by each front in a stage
is the summation of the number of entries in the front, the entries of its children, and
number of entries in the original sparse input matrix that are to be assembled into
the front. As we traverse the fronts in this postordered manner, a new stage is created
when the next front would exceed the memory limitation of the GPU.

Executing a staged sparse factorization uses the CPU-based Sparse QR Scheduler
for each front in the stage. We transfer relevant values from the original input problem
and assembly mappings and allocate space on the GPU for each front participating in
the stage. We then invoke the Sparse QR Scheduler, and we flag fronts whose parents
are in subsequent stages, signaling to the Sparse QR Scheduler to bypass the Pack
Assembly phase. Such fronts are roots of the subtrees in Figure 13.

When crossing staging boundaries, the contribution block must be marshaled into
the next stage. We perform this marshaling at the end of a stage when pulling rows of
R from the GPU. In addition to the rows of R, we also pull the contribution block rows
into a temporary location in CPU memory. As we build the data for the next stage, we
send the contribution block back to the GPU. When invoking the Sparse QR Scheduler
for the next stage, we flag fronts whose only data is contribution blocks, and those
fronts begin factorization at the Pack Assembly phase, as illustrated in Figure 14. In
the figure, fronts with no children have been activated and performing either Pack
Assembly if the front was in stage 1 or S-Assembly, if it is new to this stage. Children
performing pack assembly are identified as yellow leaves, and children performing S
assembly are identified as light blue leaves.

4. EXPERIMENTAL RESULTS

Experimental results were obtained on a single shared-memory system equipped with
two 12-core AMD Opteron™ 6168 processors (1.9 GHz), 64 GB of shared memory,
and an NVIDIA Tesla C2070 with 14 SMs each with 32 cores, and 6 GB of memory.
All results are in double precision. Recall that the peak DGEMM performance of the
C2070 GPU is 362 GFlops in cuBLAS. When using all 24 cores, the CPU has a peak
DGEMM performance of 153.9 GFlops using the Intel MKL BLAS, and a theoretical
peak performance of 182.4 GFlops. QR factorization on square dense matrices can be
performed at up to 136.1 GFlops on the CPU, although this level of performance is not
reached as quickly as DGEMM (the matrix size n,/, that gives half the achieved peak
performance is about 2000 for DGEMM and about 7000 for QR).

We measured the performance of each of our compute kernels individually. Apply
tasks are able to achieve up to 183.3 GFlops, when we flood the GPU with an unlimited
number of them to keep all SMs busy. Similarly, Factorize tasks are able to achieve up
to 23.62 GFlops. When a frontal matrix is small enough that it can be factorized by a
single task, the VT tile need not be computed. In this case, the factorize tasks are able
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Wi

i

Fig. 13. Stage 1 of an assembly tree with 68 fronts.

to achieve up to 34.80 GFlops on a 72-by-64 frontal matrix. Factorize tasks suffer from
a hefty initial serial fraction computing o for the first column.

We also measured the performance of QR factorization for dense matrices, presented
in Tables I and II. In the tables, Canonical GFlops reflects the Golub and Van Loan
flop count for factoring dense matrices [Golub and Van Loan 2012], and GPU GFlops
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Fig. 14. Stage 2 of an assembly tree with 68 fronts.

Table I. QR factorization of 1x16 “short and fat” dense

matrices
Rows | Cols | Canonical GFlops | GPU GFlops
128 | 2048 88.90 89.60
256 | 4096 110.30 150.09
384 | 6144 118.97 159.17

Table II. QR factorization of 16x1 “tall and skinny” dense

matrices
Rows | Cols | Canonical GFlops | GPU GFlops
2048 128 29.42 45.47
4096 | 256 47.40 69.80
6144 384 60.31 87.03

is based on the number of flops actually performed by the GPU device. The algorithm
is able to achieve up to 31.83% of the Tesla C2070’s peak theoretical double-precision
performance.

We compared our GPU-accelerated sparse QR with Davis’ CPU-only SuiteSparseQR
on 624 problems from the UF Sparse Matrix Collection [Davis and Hu 2011]. Suite-
SparseQR uses LAPACK for panel factorization and block Householder applies while
our GPU-accelerated code uses our GPU compute kernels to accomplish the same.

In Table III, we describe a sample problem set representing a variety of domains.
Table IV shows the results for these six matrices on our CPU and our GPU, and the
relative speedup obtained on the GPU. Intensity refers to arithmetic intensity, the
number of floating point operations required to factorize the matrix divided by the
amount of memory (in bytes) required to represent the matrix. The flop count (fl.)
is the number of floating point operations needed to factorize the matrix, in billions
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Table llI. Six matrices from the UF Sparse Matrix Collection

problem type rows cols nz

circuit_2 circuit sim. 4510 4,510 21,199

Ip_cred linear prog. 73,948 8,926 | 246,614

EternitylI_ A | optimization 150,638 7,362 | 782,087

olesnik0 2D/3D 88,263 | 88,263 | 744,216

Ip_-nug20 linear prog. 72,600 | 15,240 | 304,800

ch7-8-b3 combinatorial 58,800 | 11,760 | 235,200

Table IV. Results for matrices in Table 11l
problem CPU GPU | intens. fl. | speedup
(GFlop) | (GFlop)
circuit_2 0.54 0.14 7.0 0.02 0.26
Ip_cred 1.75 12.46 203.1 7.14 7.12
Eternityll A 2.53 28.70 425.2 35.35 11.36
olesnikQ 4.13 36.94 192.3 173.33 8.95
Ip_-nug20 23.90 74.31 | 2110.2 | 3988.03 3.11
ch7-8-b3 24.12 82.36 | 1662.9 | 3458.26 3.41
Fermi GPU speedup over CPU
10 | 4
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Fig. 15. GPU-accelerated speedup over the CPU-only algorithm versus arithmetic intensity on a logarith-
mic scale.

(a canonical count, not what the GPU actually performs). The total time and GFlop
rate includes all computation (including the time taken by the CPU to construct the
schedule) and all CPU-GPU data transfers.

Figure 15 shows the speedup of our GPU-accelerated code over the SuiteSparseQR
code as a function of arithmetic intensity for all test matrices, in a logarithmic scale.
The arithmetic intensity of a problem is known prior to the numerical factorization,
since the total flop count and memory usage are metrics computed in the analysis
phase. If this ratio is low (less than 10, say, as shown by the dashed vertical line in
the figure), the GPU can be skipped and the entire work can be done on the CPU.
Problems with a high arithmetic intensity are also those taking the most time and
flops to factorize, so this strategy will only relegate small matrices to the CPU, where
their tiny factorization time is not critical.
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We already use a similar strategy in the MATLAB backslash, x=A\b, which relies
on our sparse Cholesky solver CHOLMOD (Algorithm 887) [Davis and Hager 2009;
Chen et al. 2008]. In CHOLMOD, we measure the arithmetic intensity as the ratio of
total flop count over the number of nonzeros in the factor (with between 8 to 12 bytes
per nonzero, depending on the matrix). If this metric is over 40, then CHOLMOD
automatically uses a supernodal factorization that exploits the BLAS. If the ratio is
less than 40, a non-supernodal up-looking factorization that does not use the BLAS is
almost always faster, and we automatically use that method. The up-looking solver is
the same method (but different code) as the simple sparse Cholesky solver in CSparse
[Davis 2006] and Algorithm 849 [Davis 2005]. This algorithmic choice is transparent
to the MATLAB user. The value of 40 for this metric is not directly comparable to the
flops/byte metric in Figure 15, but it corresponds to about 4 or 5 for the ratio used in
that figure, depending on the matrix.

As aresult of this strategy, the matrices in Figure 15 to the left of the dashed line can
use the CPU, and the slowdown from the GPU on these small problems can be entirely
avoided. Future tests on many different kinds of GPUs are needed to determine the
best automatic threshold to use for any given GPU.

Table V summarizes the distribution of the performance (GPU speedup over the
CPU) for four different ranges of arithmetic intensity (it excludes matrices with an
intensity below 10 flops/byte). Many problems experience significant speedup of up to
11x over the CPU-based method. We obtain a median speedup 5x for large problems,
which are those with high arithmetic intensity (100 flops/byte or higher).

Table V. GPU speedup as a function of arithmetic intensity

computational | number of speedup
intensity matrices
low high min median max
10 30 136 0.5 2.1 8.1
30 100 152 0.7 3.8 10.6
100 300 162 1.3 5.2 10.6
300 2206 64 2.3 51 114

Speedup is limited by two factors:

(1) Available parallel flops: Dense QR factorization offers O(n?®) flops for O(n?)
memory storage. As arithmetic intensity increases, the algorithm is able to exploit
more parallelism than the CPU-based method. However, for small problems such
as circuit 2 in Table III, the algorithm is unable to exploit enough parallelism. As
a result, the time to factorize for small problems is dominated by memory transfer
costs.

(2) Hardware resources on the GPU: Current GPU devices offer several cores ar-
ranged into SMs along with small amounts of fast shared memory per SM. Our al-
gorithm is designed to flood the GPU device with many parallel tasks. However, as
problem size grows with arithmetic intensity, we reach a performance asymptote as
the amount of available GPU hardware resources begins to limit the performance
of our algorithm.

We examined the impact of the pipelined factorization method described in Sec-
tion 3.1 in which a bundle may be factorized immediately following a block House-
holder update.

Pipelining both reduces the number of kernel launches required to factorize a frontal
matrix by a nearly factor of 2, and increases the amount of parallel work sent to the
GPU per kernel launch. Pipelining also ensures that nearly every tile of the matrix
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is modified at each kernel launch, and it also leads to a significantly more uniform
amount of workload per kernel launch. However, in context of the GPU used in our
experiments, the pipelined strategy requires 5% more time to factorize large problems.
We anticipate that as GPU devices continue to add more SMs, or as we move to a
multiple-GPU algorithm with many GPUs, the pipelined factorization will eventually
outperform the non-pipelined strategy.

5. FUTURE WORK

QR factorization is representative of many other sparse direct methods, with both ir-
regular coarse-grain parallelism and regular fine-grain parallelism, and these method-
ologies will be very relevant for other methods.

Further parallelism is possible by extending our staging strategy to split the fronts
for a stage across multiple GPU devices. The CPU could be used as an additional
compute device to factorize some of the fronts in parallel with the GPU. Finally, for
distributed memory systems, extending the CPU-based scheduler using MPI would
allow for multiple GPU-accelerated systems to participate in the factorization.

6. RELATED WORK

[Anderson et al. 2010], [Demmel et al. 2008; 2012], and [Dongarra et al. 2013] consider
how to exploit the orthogonal properties of QR factorization to reduce communication
costs in parallel methods for dense matrices. Our bucket scheduler is an extension of
this idea. These methods do not consider the sparse case, nor the staircase-form of our
frontal matrices. They do not consider multiple factorizations and multiple assembly
operations simultaneously active on the same GPU, as we must do in our sparse QR.

In an earlier work, [Davis and Davidson 1988] present a parallel sparse LU factor-
ization algorithm with a non-deterministic pairwise pivoting strategy (PSolve). That
method is analogous to the bucket scheduler presented here, except that in PSolve,
each tile is a single row of the matrix, the bundle size is always 2, and each thread
selects work from the buckets on their own. The bucket scheduler for our sparse QR
factorization is deterministic; the same matrix always generates the same set of kernel
launches for its factorization.

[Krawezik and Poole 2009], [Lucas et al. 2010], [Pierce et al. 2009], [Vuduc et al.
2010], and [George et al. 2011] have worked on multifrontal factorization methods for
GPUs. All five methods exploit the GPU by transferring one frontal matrix or supern-
ode at a time to the GPU and then retrieving the results. The assembly operations
are done in the CPU. [Sao et al. 2014] focuses on a distributed-memory approach with
multiple CPUs and GPUs. On a single GPU they pack multiple GEMM’s together into
a single BLAS kernel, for the outer product update with a single supernode.

The work of [Hogg et al. 2014] is most similar to the work present here. They present
a multifrontal factorization method for symmetric indefinite matrices that also allows
all frontal matrices to be factorized on the GPU. Their work differs from our sparse QR
factorization in several ways. The primary difference is that their algorithm considers
parallelism according to levels in the assembly tree, whereas our bucket scheduling
method allows for parallelism across different levels of the tree.

In our left-looking supernodal sparse Cholesky factorization, [Rennich et al. 2014],
we operate on many supernodes at the same time, by batching together all the small
supernodes in a single level of a subtree of the elimination tree. The batching method
is used at lower levels of the tree. We do not mix levels, as we do in the current work
presented here. At higher levels, we operate on a single supernode at a time, and
parallelize the update of a supernode from all its descendants.
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7. SUMMARY

In this paper, we presented a novel sparse QR factorization method tailored for use on
GPU-accelerated systems. The algorithm is able to factorize multiple frontal matrices
simultaneously, while limiting costly memory transfers between CPU and GPU.

The algorithm uses the master-slave paradigm where the CPU serves as the mas-
ter and the GPU as the slave. We extend the Communication-Avoiding QR factoriza-
tion [Demmel et al. 2012] strategy using our bucket scheduler, exploiting a large de-
gree of parallelism and reducing the overall number of GPU kernel launches required
to factorize the problem.

The algorithm uses the iliberkernel design pattern, allowing many different tasks
for many different fronts to be computed simultaneously in a single kernel launch.
Additionally, the algorithm schedules two flavors of assembly tasks that move data
between memory spaces on the GPU. These assembly tasks are responsible for trans-
ferring data from a packed input into frontal matrices prior to factorization as well as
transferring data from child fronts to parent fronts. As fronts are factorized, their rows
of R are asynchronously transferred off the GPU using CUDA events and streams.

For large sparse problems whose frontal matrices cannot simultaneously fit on the
GPU, our algorithm examines the frontal matrix assembly tree and divides the fronts
into stages of execution. The algorithm then moves data in stages to the GPU, factor-
izes the fronts within the stage, and transfers the results off the GPU. Contribution
blocks are then passed back to the GPU, ready for push assembly.

For large sparse matrices, the GPU-accelerated code offers up to 11x speedup over
CPU-based QR factorization methods, with a median speedup of over 5x, and achieves
up to 82 GFlops as compared to a peak of 32 GFlops for the same algorithm on a
multicore CPU (with 24 cores).

Our code is available at suitesparse.com and as Algorithm 9xx of the Collected Algo-
rithms of the ACM. Consult the user guide in the software bundle for details on how
to compile and use the library.
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