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Abstract

We describe the complete set of matrices in the Harwell-Boeing sparse matrix collection,
a set of standard test matrices for sparse matrix problems. This description includes some
documentation for each matrix (or set of matrices) in the collection. We also describe how
a copy of the collection may be obtained.
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1 Introduction

This users’ guide is a description of the matrices currently in the Harwell-Boeing Sparse
Matrix Collection. It is our intention to include further problems and additional matrix
generating subprograms in the future. We will produce subsequent releases of this report
from time to time as the collection evolves.

This users’ guide describes the distribution process for the collection. An overview of the
collection is given in [1] which also provides some historical comments and guidelines for
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contributions to the collection. Here we describe the mechanism for getting a copy of the
matrices and for using the collection. The detailed contents of the collection are described
in two appendices. Appendix A describes the representation used to store the matrices.
Appendix B is a collection of descriptions for each set of matrices in the collection.

2 How to obtain the collection

The collection of sparse matrices can be obtained in two ways. The collection is available
through direct electronic file transfer, by anonymous ftp to CERFACS. Alternatively the
complete collection can be obtained on Unix tar tapes from Roger Grimes at Boeing.

The most flexible method is electronic, using anonymous ftp. The requester should use ftp
to connect to orion.cerfacs.fr (130.63.200.33). Log on using the identifier “anonymous” and
use as password your email address. The collection is in the directory pub/harwell boeing.
The matrices are grouped together according to the sets in Table 1, which correspond to
the documentation in Appendix B. The matrices are in compressed form, so a binary
command should be given to ftp before the files are fetched. FEach set of matrices is
designated by xxxx.data.Z where xxxx is the name of the set (in lower case) as given in
Table 2.

A sample ftp session is given below, with the required responses in boldface:

% ftp orion.cerfacs.fr

Connected to orion.cerfacs.fr.

220 orion FTP server (SunOS 4.1) ready.
Name (orion.cerfacs.fr:jglewis): anonymous
331 Guest login ok, send ident as password.
Password: jglewis@. ..

230 Guest login ok, access restrictions apply.
ftp> c¢d pub/harwell boeing

250 CWD command successful.

ftp> binary

200 Type set to L.

ftp> 1s

200 PORT command successful.

150 ASCII data connection for /bin/ls (130.42.28.80,2469) (0 bytes).
acoust.data.Z

airtfc.data.Z

astroph.data.Z

bespwr.data.Z

ftp> mget coun*.Z

mget counterx.data.Z? y

200 PORT command successful.

150 Binary data connection for counterx.data.Z (130. ...
226 Binary Transfer complete.

local: counterx.data.Z remote: counterx.data.Z



701 bytes received in 1.7 seconds (0.41 Kbytes/s)
ftp> quit

Distribution on tape is available for those who cannot use ftp. This service is available by
sending a high density (150 Megabyte) 1/4” cartridge tape (e.g. 3M DC 6150) to Roger
Grimes. The tape will be written as a Unix tar tape, with the matrices as individual
compressed files in a single directory.

Table 1: Sets of Matrices

acoust besstrucs  counterx  jagmesh  1sq psadmit
airtfc bcsstrucé  dwt lanpro manteuffel psmigr
astroph cannes econaus laplace nnceng saylor
bcspwr cegb econiea lapu nucl sherman
besstrucl  chemimp  facsimile lns oilgen smtape
besstruc2  chemwest  gemat lockheed  platz steam
bcsstruc3  cirphys grenoble  lshape pores watt
besstrucd

3 Matrix format

We have chosen a particular format in which to represent the sparse matrices in the
collection. The major advantage of our format is that it is general and provides a standard,
although it is sometimes not the best representation for using available sparse matrix codes
or for research purposes. The format in which each matrix is held is given in Appendix
A. In this appendix we give program fragments that indicate how the user can read the
matrices.

4 Possible future enhancements

In our pre-release that accompanied the paper [1], Roger Grimes offered the possibility of
obtaining subsets of the collection through various sources, categories, or keywords. These
are shown in Tables 2 to 4. However, there was so little demand for this service, that he
now does not offer it. Also the advent of anonymous ftp gives more control to the user
of the collection. However, we would like to hear of ways in which you feel access to the
collection might be improved.



Table 2: Sources for Matrices

Abbas - Newcastle 1 | Manteuffel - Sandia 1
Appleyard - Harwell 3 | Marro - Cannes 18
Ashkenazi-Nottingham 6 | Natl. Nuclear Corp. 4
BCS 68 | Pearson - Australia 2
Burchett - GE 3 | Platzman - Chicago 4
Cachard - Grenoble 7 | Saunders - SOL 20
Carlsson - Oslo 2 | Saylor - Illinois 3
Curtis - Harwell 16 | Sherman - Nolan 5
Donovan - CEGB 4 | Simon - BCS 7
Erisman - BCS 1 | Slater - UCSB 3
Everstine - DWTNSRD 30 | Somerville - Watt U. 2
Gentleman - Waterloo 1| Szyld - NYU 9
George - Waterloo 21 | Tylavsky - ASU 4
Grimes - BCS 4 | Westerberg - Pitt 11
IBM 1 | Whelan - Philips 1
Imperial College 5 | Will - Georgia Tech. 5
Johansson - Lund 2 | Willoughby - IBM 2
Jones - Harwell 6 | Young - BCS 4
Loden - Lockheed 4 | Zenios - Princeton 1

We also had a small collection of matrix generation programs and portable random number
generators for supplying values when only the pattern was specified in the matrix file. We
did not have a large demand for these and, in addition, the programs were not all of
sufficient quality for wide distribution. It is likely that some will be included in future
releases, but again we welcome your comment.

We already have acquired some additional problems which are not yet included in the
set. These include some unsymmetric eigenvalue systems, large unsymmetric problems,
very large symmetric problems, and some large least squares problems. We are currently
organizing and documenting these prior to their inclusion in a subsequent release. In
the meantime, if you feel that you have some interesting problems that you are happy
to provide openly to the research community, please contact one of the authors of
this document, preferably by email (to duff@cerfacs.fr, rgrimes@espresso.boeing.com, or
jglewis@atc.boeing.com). We are also interested in your experience with the current
collection and would like to hear the results of research with these matrices. Information
such as the behaviour of a particular ordering algorithm on a subset of matrices in the
collection is the kind of statistic we would like to include in our matrix documentation.
Relative performance statistics are also useful. However, we do not wish specific
information on the performance of program A on machine B with matrix C.



Table 3: Discipline for Matrices

acoustic scattering 4 | demography 3 | network flow 1
air traffic control 1 | economics 11 | numerical analysis 4
astrophysics 2 | electric power 18 | oceanography 4
biochemical 2 | electrical engineering 1 | petroleum engineering 19
chemical eng. 16 | finite elements 50 | reactor modelling 3
chemical kinetics 14 | fluid flow 6 | statistics 1
circuit physics 1 | laser optics 1 | structural engineering 95
computer simulation 7 | linear programming 16 | survey data 11
Table 4: Keywords for Matrices
buckling 5 | normal equations 2 | power network 15
eigenvalue 50 | ode 16 | reservoir simulation 19
emitter circuit 1 | optimal power flow 3 | Scotland survey 1
England survey 1 | optimization 1 | siesmic studies
Facsimile 14 | orderings 72 | statics 26
Holland survey 2 | original Harwell 36 | stiff 15
iterative methods 12 | overdetermined 5 | stiffness 38
least squares 4 | p4 3 | stress analysis 1
mass 23 | pde 1 | Sudan survey 1
Navier-Stokes 6 | plant model 11 | U. K. survey 2
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A Sparse Matrix Format

We use two compact formats in our collection, one for arbitrary matrices in standard
sparse matrix formulation and another to represent unassembled finite-element matrices in
an elemental formulation. Each matrix in the collection is held as a sequence of formatted
records that can be read conveniently into Fortran arrays. In §A.1 to §A.3, we describe
the resulting matrix representation. In §A.4, we describe the format itself and give two
example programs that read it.

A.1 Standard sparse matrix format

The standard sparse matrix format is column-oriented. That is, the matrix is represented
by a sequence of columns. Each column is held as a sparse vector, represented by a list of
the row indices of the entries in an integer array and a list of the corresponding values in
a separate numerical array. A single integer array and a single numerical array are used
to store the row indices and the values, respectively, for all of the columns. (Throughout,
we use the term “numerical” in a generic sense so that it should be read as a Fortran real,
double precision, complex, or double precision complex as appropriate). Data for each
column are stored in consecutive locations, the columns are stored in order, and there is
no space between the columns. A separate integer array holds the location of the first
entry of each column and the first free location. For symmetric and Hermitian matrices,
we store only the entries of the lower triangle (including the diagonal). For skew symmetric
matrices, we hold only the strict lower triangle.

We illustrate the storage scheme with the following example. The 5 X 5 matrix

1. -3. 0o -1. 0
0 0 -2. 0 3.
2. 0 0 0 0
0 4. 0 —4. 0
5. 0 5. 0 6.

would be stored in the arrays COLPTR (location of first entry), ROWIND (row indices),
and VALUES (numerical values) according to the following prescription:

Subscripts | 1 2 3 4 5 6 7 8 9 10 11

COLPTR |1 4 6 8 10 12

ROWIND |1 3 5 1 4 2 5 1 4 2 5
VALUES |1. 2. 5 -3. 4. -2. -5 -1. -4. 3. 6.

We can generate column 5, say, by observing that its first entry is in position
COLPTR(5) = 10 of arrays ROWIND and VALUES. This entry is in row ROWIND(10) = 2
and has value VALUES(10) = 3. Other entries in column 5 are found by scanning ROWIND
and VALUES to position COLPTR(6)-1, that is position 11. Thus, the only other entry in
column 5 is in row ROWIND(11) = 5 with value VALUES(11) = 6.



A.2 Finite-element matrices in unassembled format

Matrices arising in finite-element applications are usually assembled from numerous small
elemental matrices. Our collection includes a few sparse matrices in original unassembled
form. The storage of the unassembled matrices is analogous to the explicit form above,
which stores each matrix as a list of matrix columns. The elemental representation stores
the matrix as a list of elemental matrices. Each elemental matrix is represented by a list
of the row/column indices (variables) associated with the element and by a small dense
matrix giving the numerical values by columns (in the symmetric case only the lower
triangular part). The lists of indices are held contiguously, just as for the lists of row
indices in the standard format. The dense matrices are held contiguously in a separate
array, with each matrix held by columns. Our representation does not hold the pointers
to the beginning of the numerical values for each element, even though there is not a 1-1
correspondence between the arrays of integer and numerical values. These pointers can
be created from the index start pointers (ELTPTR) after noting that an element with v
variables has v? numerical values (v X (v 4+ 1)/2 in the symmetric case).

We illustrate the elemental storage scheme with a small example. Consider a 5 X 5
symmetric matrix

5. 0. 0. 1. 2.

0. 4. 3. 0. 6.

0. 3. 7. 8 1.

1. 0. 8 9. 0.

2. 6. 1. 0. 10.

generated from four elemental matrices,

1 4 1 5 5 j ; 65 3 4
1(2. 1.) 1(3. 2.) sl 5 1 3(2. 8.)
4\1. 7. 51\2. 8. sle 1 92 4\8 2.

where the variable indices are indicated by the integers before each row and above each
column. This matrix would be stored in the arrays ELTPTR (location of first entry),
VARIND (variable indices), and VALUES (numerical values) according to the following

prescription:

Subscripts |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ELPTR 1 3 5 8 10

VARIND |1 4 1 5 2 3 5 3 4

VALUES | 2. 1. 7. 3. 2. 8 4. 3. 6. 5 1. 2. 2. 8 2.

A.3 Right-hand sides

Where the matrices originate in the solution of linear equations and the right-hand sides
are available, the right-hand-side vectors are stored with the matrices. Usually the right-
hand-side vectors are dense, in which case they are stored contiguously (as in ordinary



Fortran array storage). Multiple right-hand sides are stored as consecutive vectors, so that
the right-hand sides are accessible as the columns of a Fortran array.

An alternative form is available in which right-hand sides are represented in the same
format as the matrix. For unassembled matrices the associated right-hand sides can be
represented by elemental contributions. Right-hand sides in elemental form are stored as
a sequence of small dense matrices, each small matrix having as many columns as the
number of right-hand sides, and with as many rows as the corresponding element in the
matrix representation. Within each elemental right-hand side, the rows correspond to the
entries in the variable index vector for that element.

The format for assembled sparse matrices is used to store sparse right-hand sides.
Applications with sparse right-hand sides are less common, but the sparsity can be used
to advantage in direct solution techniques. We only allow sparse right-hand sides for
assembled matrices, in which case we store the right-hand sides exactly as a standard
sparse matrix, with the same number of rows as the coefficient matrix and the same
number of columns as right-hand sides.

We allow the specification of a starting guess for the solution of the problem and a vector
that purports to be the exact solution. These can only be supplied as full arrays and only
when right-hand side(s) are present. Either or both of these arrays can be present. The
starting vector(s) precede the solution vector(s) if both are given and the number of such
vectors must be equal to the number of right-hand sides.

A.4 Detailed formats

Our collection is held in an 80-column, fixed-length format for portability. Each matrix
begins with a multiple line header block, which is followed by two, three, or four data
blocks. The header block contains summary information on the storage formats and space
requirements. From the header block alone, the user can determine how much space will
be required to store the matrix. Information on the size of the representation in lines is
given for ease in skipping past unwanted data.

If there are no right-hand-side vectors, the matrix has a four-line header block followed
by two or three data blocks containing, in order, the column (or element) start pointers,
the row (or variable) indices, and the numerical values. If right-hand sides are present,
there is a fifth line in the header block and a fourth data block containing the right-hand
side(s). The blocks containing the numerical values and right-hand side(s) are optional.
The right-hand side(s) can be present only when the numerical values are present. If
right-hand sides are present, then vectors for starting guesses and the solution can also
be present; if so, they appear as separate full arrays in the right-hand side block following
the right-hand side vector(s).

The first line contains the 72-character title and the 8-character identifier by which the
matrix is referenced in our documentation. The second line contains the number of lines
for each of the following data blocks as well as the total number of lines, excluding the
header block. The third line contains a three character string denoting the matrix type as
well as the number of rows, columns (or elements), entries, and, in the case of unassembled
matrices, the total number of entries in elemental matrices. The fourth line contains the



variable Fortran formats for the following data blocks. The fifth line is present only if
there are right-hand sides. It contains a one character string denoting the storage format
for the right-hand sides as well as the number of right-hand sides, and the number of row
index entries (for the assembled case). The exact format is given by the following, where
the names of the Fortran variables in the subsequent programs are given in parenthesis:

Line 1 (A72,A8)
Col. 1 - 72 Title (TITLE)
Col. 73 - 80 Key (KEY)

Line 2 (5I14)
Col. 1 - 14 Total number of lines excluding header (TOTCRD)
Col. 15 - 28 Number of lines for pointers (PTRCRD)
Col. 29 - 42 Number of lines for row (or variable) indices (INDCRD)
Col. 43 - 56 Number of lines for numerical values (VALCRD)

Col. 57 - 70 Number of lines for right-hand sides (RHSCRD)
(including starting guesses and solution vectors if present)
(zero indicates no right-hand side data is present)

Line 3 (A3, 11X, 4114)
Col. 1- 3 Matrix type (see below) (MXTYPE)
Col. 15 - 28 Number of rows (or variables) (NROW)
Col. 29 - 42 Number of columns (or elements) (NCOL)

Col. 43 - 56 Number of row (or variable) indices (NNZERO)
(equal to number of entries for assembled matrices)

Col. 57 - 70 Number of elemental matrix entries (NELTVL)
(zero in the case of assembled matrices)

10



Line 4 (2416, 2A20)
Col. 1 - 16 Format for pointers (PTRFMT)
Col. 17 - 32 Format for row (or variable) indices (INDFMT)
Col. 33 - 52 Format for numerical values of coefficient matrix (VALFMT)

Col. 53 - 72 Format for numerical values of right-hand sides (RHSFMT)

Line 5 (A3, 11X, 2I14) — Only present if there are right-hand sides present

Col. 1 Right-hand side type:
F for full storage or
M for same format as matrix

Col. 2 G if a starting vector(s) (Guess) is supplied. (RHSTYP)
Col. 3 X if an eXact solution vector(s) is supplied.
Col. 15 - 28 Number of right-hand sides (NRHS)

Col. 29 - 42 Number of row indices (NRHSIX)
(ignored in case of unassembled matrices)

The three character type field on line 3 describes the matrix type. The following table
lists the permitted values for each of the three characters. As an example of the type field,
RSA denotes that the matrix is real, symmetric, and assembled.

First Character:
R Real matrix
C Complex matrix

P Pattern only (no numerical values supplied)

Second Character:
S Symmetric
U Unsymmetric
H Hermitian
Z Skew symmetric

R Rectangular

11



Third Character:
A Assembled

E Elemental matrices (unassembled)

To formalize the logical block structure of the data, we have included two pieces of sample
FORTRAN code for reading a matrix in the format of the sparse matrix test collection.
Both codes assume the data comes from input unit LUNIT. Neither is a complete code.
Real code should include error checking to ensure that the target arrays into which the
data are read are large enough. The design allows the arrays to be read by a separate
subroutine that can avoid the use of possibly inefficient implicit DO-loops. The first sample
code is for the standard case, a sparse matrix in standard format with no right-hand sides.

12



C == = = == == =

. SAMPLE CODE FOR READING A SPARSE MATRIX IN STANDARD FORMAT

C

C == = = == == =
CHARACTER TITLE*72 , KEY*8 , MXTYPE*3 ,
1 PTRFMT*16, INDFMT*16, VALFMT*20, RHSFMT*20
INTEGER TOTCRD, PTRCRD, INDCRD, VALCRD, RHSCRD,
1 NROW , NCOL , NNZERO, NELTVL
INTEGER COLPTR (%), ROWIND (%)
REAL VALUES (%)

C ________________________

C READ IN HEADER BLOCK

C ________________________

READ ( LUNIT, 1000 ) TITLE , KEY ,

1 TOTCRD, PTRCRD, INDCRD, VALCRD, RHSCRD,
MXTYPE, NROW , NCOL , NNZERO, NELTVL,
3 PTRFMT, INDFMT, VALFMT, RHSFMT

1000 FORMAT ( A72, A8 / 5I14 / A3, 11X, 4I14 / 2A16, 2A20 )

C _________________________

C READ MATRIX STRUCTURE

C _________________________
READ ( LUNIT, PTRFMT ) ( COLPTR (I), I = 1, NCOL+1 )
READ ( LUNIT, INDFMT ) ( ROWIND (I), I = 1, NNZERO )
IF ( VALCRD .GT. O ) THEN

C ______________________

C READ MATRIX VALUES

C ______________________

READ ( LUNIT, VALFMT ) ( VALUES (I), I = 1, NNZERO )

ENDIF

13



The second sample code illustrates the full generality of the representation.

C == = = == == =
C . SAMPLE CODE FOR READING A GENERAL SPARSE MATRIX, POSSIBLY
C WITH RIGHT-HAND SIDE VECTORS
C == = = == == =
CHARACTER TITLE*72 , KEY*8 , MXTYPE*3 , RHSTYP*3,
1 PTRFMT*16, INDFMT*16, VALFMT*20, RHSFMT*20
INTEGER TOTCRD, PTRCRD, INDCRD, VALCRD, RHSCRD,
1 NROW , NCOL , NNZERO, NELTVL,
NRHS , NRHSIX, NRHSVL, NGUESS, NEXACT
INTEGER POINTR (*), ROWIND (%), RHSPTR (%), RHSIND(x*)
REAL VALUES (*) , RHSVAL (%), XEXACT (%), SGUESS (x*)
C ________________________
C READ IN HEADER BLOCK
C ________________________

READ ( LUNIT, 1000 ) TITLE , KEY s

1 TOTCRD, PTRCRD, INDCRD, VALCRD, RHSCRD,
MXTYPE, NROW , NCOL , NNZERO, NELTVL,
3 PTRFMT, INDFMT, VALFMT, RHSFMT

IF ( RHSCRD .GT. O )
1 READ ( LUNIT, 1001 ) RHSTYP, NRHS, NRHSIX

1000 FORMAT ( A72, A8 / 5I14 / A3, 11X, 4I14 / 2A16, 2A20 )
1001 FORMAT ( A3, 11X, 2I14 )

C _________________________

C READ MATRIX STRUCTURE

C _________________________
READ ( LUNIT, PTRFMT ) ( POINTR (I), I = 1, NCOL+1 )
READ ( LUNIT, INDFMT ) ( ROWIND (I), I = 1, NNZERO )
IF ( VALCRD .GT. O ) THEN

C = memmmmmmmmmmmmmmee—————

C READ MATRIX VALUES

C ______________________

14



Q

Q

QO QQ Q Q

Q

IF

ELSE

ENDI

( MXTYPE (3:3) .EQ. ‘A’ ) THEN
READ ( LUNIT, VALFMT ) ( VALUES (D), I

1, NNZERO )

READ ( LUNIT, VALFMT ) ( VALUES (I), I = 1, NELTVL )
F

( NRHS .GT. O ) THEN

IF ( RHSTYP(1:1) .EQ. ‘F’ ) THEN

NRHSVL = NROW * NRHS
READ ( LUNIT, RHSFMT ) ( RHSVAL (I), I = 1, NRHSVL )

ELSE

IF (MXTYPE(3:3) .EQ. ‘A’) THEN

SIDES

READ (LUNIT, RHSFMT) ( RHSVAL (I), I = 1, NRHSIX )

15



C ___________________________________
C READ ELEMENTAL RIGHT-HAND SIDES
C ___________________________________
NRHSVL = NNZERO * NRHS
READ (LUNIT, RHSFMT) ( RHSVAL (I), I = 1, NRHSVL )
ENDIF
END IF
IF ( RHSTYP(2:2) .EQ. ‘G’ ) THEN
[ et
C READ STARTING GUESSES
C _________________________
NGUESS = NROW * NRHS
READ (LUNIT, RHSFMT) ( SGUESS (I), I = 1, NGUESS )
END IF
IF ( RHSTYP(3:3) .EQ. ‘X’ ) THEN
C _________________________
C READ SOLUTION VECTORS
C _________________________

NEXACT = NROW * NRHS
READ (LUNIT, RHSFMT) ( XEXACT (I), I = 1, NEXACT )
END IF
END IF
END IF

The code above outlines the structure of the data. The interpretation of the row (or
variable) index arrays will require knowledge of the matrix and right-hand side types, as
read in this code.
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B Matrices in the Collection

acoust
airtfc
astroph
bcspwr
besstrucl
bcesstruc2
bcesstruc3
bcsstrucd
bcesstruch
bcsstruc6
cannes
cegb
chemimp
chemwest
cirphys
counterx
dwt
econaus
econiea
facsimile
gemat

grenoble

Acoustic SCALEETING wuvuuieiieiieiei ettt e eree e 19
Air-traffic control model ... 20
Nonlinear astrophysics problems .......ccccoieviiiieieiiiiiiiiie e e 21
Power network patterns .......cocooeviiiiiiiiie i 22
BCS structural engineering matrices (eigenvalue problems) ............... 24
BCS structural engineering matrices (linear equations) ...........ccc..... 27
BCS structural engineering matrices (eigenvalue problems) ............... 29
BCS structural engineering matrices (eigenvalue problems) ............... 31
BCS structural engineering matrices (large eigenvalue problems) ..... 33
BCS structural engineering matrices (linear equations) ...........c.c...... 35
Structures problems in aircraft design ............cooiiiiiiini 36
Structural engineering matrices (unassembled) .......cccoeoiieiiiiiiiieiinnn, 38
Chemical engineering plant models from David Bogle ..............c.c...... 39
Chemical engineering plant models from Art Westerberg .................. 40
Circuit physics MOdelling .........coieeiiiiiiiiiiiiiieee e 41
Small counter example MatTICES ....cvievrereeieeieiiiiiie e e e eeeeee e eeeeees 42
Everstine’ 8 COIeCTION ....coceoveeiiiiiiiiiciieieeieein e e e 43
Australian economic models ......cccccveeiieiiiiiiniiiiiieeeeeen 45
Economic models from Institute of Economic Analysis ......cccccceeeeeeeee. 46
Chemical kinetics problems .......ccociviiiiiiiiiiiiiiiiie e 48
GE matrices from optimal power flow problems .......ccccoeevvivieieneennnn. 50
Simulation of computer SySteIms ......cccoeeiiriiiiiiciierieriiee e 51
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jagmesh
lanpro
laplace
lapu

lns
lockheed
Ishape
Isq
manteuffel
nnceng
nucl
oilgen
platz
pores
psadmit
psmigr
saylor
sherman
smtape
steam

watt

Finite-element meshes ...
Lanczos with partial reorthogonalization ..........ccccccociiiiiiiiiiiiiiinne
Square finite-difference Laplace grids ..cccccceieiiiiiiiiiiiiiiiiiee,
Square finite-element (unassembled) Laplace grids .......cccccevceveecnnnes
Fluid flow modelling — linearized Navier-Stokes compressible flow ...
Unassembled finite-element problems from structural engineering ....
Graded L-shape patterns .......ccocoooiiiiiiiiieiriiiiier e e e
Least-squares problems in SUTVEYINE ......ccoeieiiiiiiiiiimimiieieriee e e eeeeeeeeeees
Unassembled finite-element deformation problem .........cccccoeeiereennn.
Flow network problems .........ccocoieiiiiiiiiieie e e
Nuclear reactor models ....oooiiiiiiiiiiiiiiei e
Oil reservoir simulation - generated problems .........cccccociviiiiiiieienennn.
Platzman’s oceanographic models ..........ccccciiiiiiiiiiiiii
Reservoir modelling  ...ooooiiiiiiiiiie e
Power systems admittance matrices ........ccocoeieriiiiiiiieinireiiiiiee e,
Inter-country migration ...c..coocoiieiieiiinieiiiiiiie e
Saylor’s petroleum engineering/reservoir simulation matrices ..........
Oil reservoir simulation challenge matrices .........cciiiiiiiiiiiiiinnnnee.
Original Harwell sparse matrix test collection ......cccccociviiiiiiiiiiennnnne.
Enhanced 0il TECOVETY  oeiiiiiiiiiiiiei e e e

Petroleum engineering ....cc.ciueueiiiiieiier i
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TITLE: ACOUST Acoustic Scattering

DESCRIPTION:
Source: David P. Young, Boeing Computer Services, Seattle, Washington.
Discipline: Dynamic analyses in structural engineering
Remarks: These are 4 complex symmetric matrices that arise in modelling the

acoustic scattering phenomenon. The fundamental operator is the
Helmholtz equation with varying k¥ and Dirichlet boundary conditions.
All four problems come from a grid with 29 by 29 interior points. Some
interior points are held fixed as conductors. Five and nine-point difference
formulae are used depending on the value of k£ at points in grid.

Accession: Spring 1984

MATRIX CHARACTERISTICS:

Type: Complex symmetric

Statistics:
Identifier Order Number of entries
YOUNGI1C 841 4089
YOUNG2C 841 4089
YOUNG3C 841 3988
YOUNG4C 841 4089

PERFORMANCE STATISTICS:

Standard iterative methods, even with well chosen preconditioners, perform poorly on
these problems.

REFERENCES:

None currently available (please submit some data)
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TITLE: AIRTFC Air-traffic Control Model

DESCRIPTION:
Source: Stavros Zenios, Princeton University
Discipline: Air-traffic control.
Remarks: Symmetric matrix from the Air-Traffic Control Model. This matrix is the

Hessian of the objective function. Several rows will be zero corresponding
to variables not in the basis at the time the matrix was generated. Zenios
solved a projection of the Hessian using conjugate gradient algorithms.

Accession: Autumn 1985

MATRIX CHARACTERISTICS:

Type: Symmetric matrix. Some zero rows and columns.
Statistics:
Identifier Order Number of entries
ZENIOS 2873 15032

PERFORMANCE STATISTICS:

None currently available (please submit some data)

REFERENCES:

Zenios, S.A. and Mulvey, J.M. (1986). Relaxation techniques for strictly convex network
problems. Annals of Operations Research.
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TITLE: ASTROPH Nonlinear astrophysics problems

DESCRIPTION:
Source: Mats Carlsson, Institute of Theoretical Astrophysics, University of Oslo,
Norway.
Discipline: Radiative transfer and statistical equilibrium in astrophysics.
Remarks: Was using a frontal code to solve equations. Cray Research (UK) Ltd

suggested trying the Harwell code MA32.
Accession: March 1985.

MATRIX CHARACTERISTICS:

Type: Unsymmetric but with variable band characteristics.
Statistics:
Identifier Order Number of entries
MCCA 180 2659
MCFE 765 24382

PERFORMANCE STATISTICS:

None currently available (please submit some data)

REFERENCES:

Scharmer, G.B. and Carlsson, M. (1985). A new approach to multi-level non-LTE
radiative transfer problems. J.Comp.Phys. 38

Carlsson, M. (1985). Uppsala Observatory Report 33.
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TITLE: BCSPWR Power network patterns

DESCRIPTION:

Source:

Discipline:

Remarks:

Accession:

Collected by B. Dembart and J. Lewis, Boeing Computer Services,
Seattle, WA, USA in 1981.

These ten patterns come from the sparse matrix representation of various
power networks.

Widely used as examples of network rather than grid problems.

Summer 1981.

MATRIX CHARACTERISTICS:

Type: Symmetric but not suitable for variable-band algorithms.

Statistics: Set of ten square matrices of varying orders and density. BCSPWRAO06,
07, 08 and 09 represent different models of the same network; they each
provide a viewpoint from some subregion within the network, with greater
detail nearer that viewpoint.

Identifier Description Order Number
of entries
BCSPWRO01 Standard IEEE Test System - New England 39 85
BCSPWRO02 Small Test System - WSCC 49 108
BCSPWRO03 IEEE Standard 118 Bus Test Case 118 297
BCSPWR04 Equivalenced Representation of US Network 274 943
BCSPWRO05 Equiv. Representation of Western US 443 1033
BCSPWR06 Western US Power Network - 1454 Bus 1454 3377
BCSPWRO07 Western US Power Network - 1612 Bus 1612 3718
BCSPWRO08 Western US Power Network - 1624 Bus 1624 3837
BCSPWR09 Western US Power Network - 1723 Bus 1723 4117
BCSPWR10 Eastern US Power Network - 5300 Bus 5300 13571

PERFORMANCE STATISTICS:

see references

REFERENCES:

Lewis, J.G. and Poole, W.G. (1980). Ordering algorithms applied to sparse matrices in
electrical power problems. In Erisman, Neves, and Dwarakanath (1980), 115-124.

Lewis, J.G. and Simon, H.D. (1986). The impact of hardware gather/scatter on sparse
Gaussian elimination. Report ETA TR-33, ETA Division, Boeing Computer Services,
Seattle, Washington.
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Liu, J.W.H. (1985). On the storage requirement in the out-of-core multifrontal method
for sparse factorization. Report CS-85-02, Department of Computer Science, York
University, Ontario, Canada.

Liu, JJW.H. (1985). An adaptive out-of-core Cholesky factorization scheme. Report
CS-85-05 Department of Computer Science, York University, Ontario, Canada.

Smyth, W.F. and Dunn, J. (1986). Results of tests on matrix bandwidth and profile
reduction algorithms. Report, Department of Computer Science and Systems, McMaster
University, Ontario, Canada.

23



TITLE: BCSSTRUC1 BCS Structural Engineering Matrices (eigenvalue

problems)

DESCRIPTION:

Source:
Discipline:

Remarks:

Accession:

John Lewis, Boeing Computer Services, Seattle, Washington.
Dynamic analyses in structural engineering

These matrices all represent dynamic analyses in structural engineering.
They have been extracted from various structural engineering packages
such as GT-STRUDL, MSC/NASTRAN, and BCS ATLAS. All of these
matrices come in pairs. The first matrix, K, is the stiffness matrix while
the second, M, is the mass matrix for the dynamic modelling of structures.
Structural engineering requires the computations of a few modes, usually
the lowest, of the generalized eigenvalue problem, Kz = AMz. Most of
the matrices were extracted in the years 1980 to 1982.

Some of the collected problems demonstrate the effect of standard
structural engineering techniques. BCSSTKO02 and BCSSTMO02 are the
result of applying “static condensation” to the oil rig model represented
by BCSSTK04 and BCSSTMO04. Static condensation can be applied in
cases where the mass matrix is singular to reduce the problem order while
preserving the spectrum. However, the reduced stiffness matrix is usually
dense, which is the case here. Good sparse eigenvalue codes should be
able to solve a large sparse problem much more quickly than a dense code
can solve the reduced problem of order one-half or one-third the original.
This problem is probably too small to demonstrate that effect.

Matrices BCSSTK06 and BCSSTMO6 represent the “lumped” (diagonal)
mass formulation for the same problem for which BCSSTKO07 and
BCSSTMO07 form the “consistent” mass formulation. BCSSTKI11,
BCSSTM11, BCSSTK12, and BCSSTM12 represent the lumped and
consistent mass formulation for an ore car model. In both cases, the
consistent mass formulations lead to non-diagonal mass matrices. The
eigenvalues from the two formulations of a model should be similar, but
not necessarily equal.

Matrices BCSSTKO08 and BCSSTMO08 have several clusters of eigenvalues
where a doubleton (eigenvalue with multiplicity 2) is very close to a third
eigenvalue.

Summer 1982.
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MATRIX CHARACTERISTICS:

Type: Symmetric, M matrices are positive semi-definite.
Statistics:
Identifier Description Order Number
of entries
BCSSTKO01 Small Test Problem -K 48 224
BCSSTMO01 -M 48 48
BCSSTKO02 Oil Rig - Statically Condensed -K 66 2211
BCSSTMO02 -M 66 66
BCSSTKO03 Small Test Structure -K 112 376
BCSSTMO03 -M 112 112
BCSSTK04 Oil Rig - Not Condensed -K 132 1890
BCSSTMO04 -M 132 132
BCSSTKO05 Transmission Tower -K 153 1288
BCSSTMO05 -M 153 153
BCSSTK06 Medium Test Problem - Lumped Mass -K 420 4140
BCSSTMO06 -M 420 420
BCSSTK07 Medium Test Problem - Consistent Mass -K 420 4140
BCSSTMO07 -M 420 3836
BCSSTK08 TV Studio -K 1074 7017
BCSSTMO08 -M 1074 1074
BCSSTK09 Square Plate Clamped -K 1083 9760
BCSSTMO09 -M 1083 1083
BCSSTK10 Buckling of a Hot Washer -K 1086 11578
BCSSTM10 -M 1086 11589
BCSSTK11 Ore Car - Lumped Masses -K 1473 17857
BCSSTM11 -M 1473 1473
BCSSTK12 Ore Car - Consistent Masses -K 1473 17857
BCSSTM12 -M 1473 10566
BCSSTK13 Fluid Flow Generalized Eigenvalues -K 2003 42943
BCSSTM13 -M 2003 11973

PERFORMANCE STATISTICS:

None currently available (please submit some data)

REFERENCES:

Lewis, J.G. and Grimes, R.G. (1981). Practical Lanczos algorithms for solving structural
engineering eigenvalue problems. Sparse matrices and their uses, 1.S Duff (ed.), Academic
Press, New York and London, 349-355

Lewis, J.G. and Simon, H.D. (1984). Numerical experience with the spectral
transformation Lanczos method. Report MM-TR-16, ETA Division, Boeing Computer
Services, Seattle, Washington.
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Liu, J.W.H. (1985). On the storage requirement in the out-of-core multifrontal method
for sparse factorization. Report CS-85-02, Department of Computer Science, York
University, Ontario, Canada.

Smyth, W.F. and Dunn, J. (1986). Results of tests on matrix bandwidth and profile
reduction algorithms. Report, Department of Computer Science and Systems, McMaster
University, Ontario, Canada.

26



TITLE: BCSSTRUC2 BCS structural engineering matrices (linear

equations)
DESCRIPTION:
Source: Prof Mac Will, Georgia Institute of Technology.
Discipline: Static analyses in structural engineering
Remarks: These matrices are each a statics (linear equation) problem arising from

applications of the GT-STRUDL structural engineering code. They were
collected as a set of benchmarks for out-of-core envelope factorization on
limited memory computers (for example, CDC 6600 series).

Accession: Summer 1985

MATRIX CHARACTERISTICS:

Type: Symmetric positive definite

Statistics:
Identifier Description Order Number of entries
BCSSTK14 Roof of Omni Coliseum, Atlanta 1806 32630
BCSSTK15 Module of an Offshore Platform 3948 60882
BCSSTK16 Corp. of Engineers Dam 4884 147631
BCSSTK17 Elevated Pressure Vessel 10974 219812
BCSSTK18 R.E.Ginna Nuclear Power Station 11948 80519

PERFORMANCE STATISTICS:

algorithms:
RCM = reverse Cuthill McKee (Sparspak)
AND = automatic nested dissection (Sparspak)
MMD = multiple minimum degree (Sparspak)
MA27 = minimum degree (Harwell MA27 code)

Nonzero entries in factor lower triangle
Identifier RCM ND MMD | MA27
BCSSTK15 | 1001906 594951 | 1707712 | 647274
BCSSTK16 622603 816998 | 812501 | 736294
BCSSTK17 | 3852413 | 1463496 | 1150523 | 994885
BCSSTKI18 | 5896194 | 1648466 692872 | 650777
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Nonzero entries required in-core
for out-of-core factorization
Identifier MA27 | MA27/Liu MMD MMD
multifrontal | general sparse
BCSSTK15 | 350695 345526 258540 188230
BCSSTK16 | 418895 195237 114462 105299
BCSSTK17 | 351886 306011 155504 91135
BCSSTK18 | 259600 189577 149058 190521
REFERENCES:

Lewis, J.G. and Simon, H.D. (1986). The impact of hardware gather/scatter on sparse
Gaussian elimination. Report ETA TR-33, ETA Division, Boeing Computer Services,
Seattle, Washington.

Liu, JJW.H. (1985). An adaptive out-of-core Cholesky factorization scheme. Report
CS-85-05, Department of Computer Science, York University, Ontario, Canada.
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TITLE: BCSSTRUC3 BCS structural engineering matrices (eigenvalue

problems)
DESCRIPTION:
Source: John Lewis, Boeing Computer Services, Seattle, Washington.
Discipline: Dynamic analyses in structural engineering
Remarks: These generalized symmetric eigenproblems were extracted from various

structural engineering packages such as GT-STRUDL, MSC/NASTRAN,
and BCS ATLAS. They represent interesting problems encountered after
the first set of structural engineering matrices was collected. Please
refer to BCS Structural Engineering Matrices for more detail on these
problems. These matrices were extracted in 1983 and 1984.

Problems numbered 19, 20 and 22 have very poorly conditioned stiffness
matrices. Problem 21 is a standard textbook problem with multiple
eigenvalues.

The smallest eigenvalue of BCSSTK25 has multiplicity 118.
Accession: Summer 1984 to spring 1985.

MATRIX CHARACTERISTICS:

Type: Symmetric generalized eigenproblem. M is a diagonal positive semi-
definite matrix.

Statistics:
Identifier Description Order Number
of entries
BCSSTK19 Part of a Suspension Bridge -K 817 3835
BCSSTM19 -M 817 817
BCSSTK20 Frame Within a Suspension Bridge -K 485 1810
BCSSTM20 -M 485 485
BCSSTK21 Clamped Square Plate -K 3600 15100
BCSSTM21 -M 3600 3600
BCSSTK22 Textile Loom Frame -K 138 138
BCSSTM22 -M 138 138
BCSSTK23 Part of a 3D Globally Triang. Bldg. -K 3134 24156
BCSSTM23 -M 3134 3134
BCSSTK24 Calgary Olympic Saddledome Arena -K 3562 81736
BCSSTM24 -M 3562 3562
BCSSTK25 Columbia Center (Seattle), 76 storey -K 15439 133840
BCSSTM25 skyscraper -M 15439 15439
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PERFORMANCE STATISTICS:

algorithms:
RCM = reverse Cuthill McKee (Sparspak)
AND = automatic nested dissection (Sparspak)
MMD = multiple minimum degree (Sparspak)
MA27 = minimum degree (Harwell MA27 code)
Nonzero entries in factor lower triangle
Identifier RCM ND MMD MA27
BCSSTK24 | 534579 348739 294864 | 275360
BCSSTK25 | 2621675 | 2646153 | 1566229 | 1401129
Nonzero entries required in-core
for out-of-core factorization
Identifier MA27 | MA27/Liu MMD MMD
multifrontal | general sparse
BCSSTK24 | 85035 77367 68013 74900
BCSSTK25 | 853464 269237 216705 131832
REFERENCES:

Grimes, R.G., Lewis, J.G., and Simon, H.D. (1986).
eigenvalue problems on the CRAY X-MP. Report ETA-TR-40, ETA Division, Boeing
Computer Services, Seattle, Washington.

Liu, JJW.H. (1985). An adaptive out-of-core Cholesky factorization scheme. Report
CS-85-05, Department of Computer Science, York University, Ontario, Canada.

Smyth, W.F. and Dunn, J. (1986). Results of tests on matrix bandwidth and profile
reduction algorithms. Report, Department of Computer Science and Systems, McMaster
University, Ontario, Canada.
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TITLE: BCSSTRUC4 BCS structural engineering matrices (eigenvalue

problems and linear equations)

DESCRIPTION:

Source:

Discipline:

Remarks:

Accession:

Andy Mera, Randy Cigel, and John Lewis, Boeing Computer Services,
Seattle, Washington.

Dynamic analyses in structural engineering

These matrices have all been extracted from GT-STRUDL and
MSC/NASTRAN The first two are generalized symmetric eigenproblems;
the third is a linear equation problem. Please refer to BCS Structural
Engineering Matrices for more detail on these problems. The first
problem was collected in 1984; the latter two were collected in 1986.

BCSSTK26 and BCSSTM26 are from a vibration station. It is of interest
because the number of eigenvalues needed for the seismic analysis was
quite large — the lowest 197. The large number effectively defeats sparse
eigenvalue routines that do not shift, and stands as a real benchmark for
shifted algorithms.

Summer 1984 and spring 1986.

MATRIX CHARACTERISTICS:

Type:

Statistics:

Identifier

BCSSTK26
BCSSTM26

BCSSTK27
BCSSTM27

BCSSTK28

Symmetric generalized eigenproblem. Matrix M is positive definite.
Positive definite linear equation.

Description Order  Number

of entries
seismic analysis, nuclear power station K 1992 16129
-M 1992 1922

buckling analysis, symmetric half of -K 1224 28675
an engine inlet from a modern Boeing -M 1224 28675
jetliner

solid element model, linear statics -K 4410 111717

PERFORMANCE STATISTICS:

algorithms:

RCM = reverse Cuthill McKee (Sparspak)
AND = automatic nested dissection (Sparspak)
MMD = multiple minimum degree (Sparspak)
MA27 = minimum degree (Harwell MA27 code)
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Nonzero entries in factor lower triangle
Identifier RCM ND MMD | MA27
BCSSTK28 | 967188 | 464925 | 342484 | 359932
Nonzero entries required in-core
for out-of-core factorization
Identifier MA27 | MA27/Liu MMD MMD
multifrontal | general sparse
BCSSTK28 | 101473 63519 58773 60467
REFERENCES:

None currently available (please submit some data)

32




TITLE: BCSSTRUCS5 BCS structural engineering matrices

(large eigenvalue problems)

DESCRIPTION:
Source: Boeing Computer Services.
Discipline: Structural engineering.
Remarks: These matrices were extracted from the MSC/NASTRAN or Boeing

ATLAS structural engineering programs by Randy Cigel, Roger Grimes,
John Lewis, and Ed Meyer. These are five very large problems
encountered in detailed modelling of structures. Because of their size
only the matrix patterns have been included in the collection. Given just
cause and a willingness to deal with matrices with over 300,000 entries in
the lower triangle the numerical values can be acquired from either Roger
Grimes or John Lewis. These matrices were collected in 1986. The first
problem is from a generalized symmetric eigenvalue problem; the pattern
of the associated differential stiffness matrix is a subset of the pattern of
the stiffness matrix. The next four are all linear equation problems.

Accession: Spring 1986.

MATRIX CHARACTERISTICS:

Type: Symmetric matrices, pattern only.
Statistics:
Identifier Description Order Number

of entries

BCSSTK29 Pattern for the stiffness matrix of a buckling 13992 316740
model of a Boeing 767 rear pressure bulkhead

BCSSTK30 Pattern for the stiffness matrix from a statics 28924 1036208
model of an off-shore generator platform

BCSSTK31 Pattern for the stiffness matrix from a statics 35588 608502
model of an automobile component

BCSSTK32 Pattern for the stiffness matrix from a statics 44609 1029655
model of an automobile chassis

BCSSTK33 Pattern for the stiffness matrix from a statics 8738 300321
solid element model of a pin boss (part of an
automobile steering mechanism)
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PERFORMANCE STATISTICS:

algorithms:
RCM = reverse Cuthill McKee (Sparspak)
AND = automatic nested dissection (Sparspak)
MMD = multiple minimum degree (Sparspak)
MA27 = minimum degree (Harwell MA27 code)
Nonzero entries in factor lower triangle
Identifier RCM ND MMD MA27
BCSSTK29 7374140 2548403 | 1680804 | 1849778
BCSSTK30 | 23242990 5627668 | 3814511 | 4571540
BCSSTK31 | 23641124 | 8873977 | 5272659 | 6014883
BCSSTK32 | 52170122 | 17244966 | 5201744 | 5855514
BCSSTK33 3799285 3179502 | 2538064 | 2583934
Nonzero entries required in-core
for out-of-core factorization
Identifier MA27 | MA27/Liu MMD MMD
multifrontal | general sparse
BCSSTK29 447876 334683 223251 301065
BCSSTK30 783941 442261 355918 410095
BCSSTK31 | 1447414 1447414 1021039 1278817
BCSSTK32 667385 483335 390897 658654
BCSSTK33 | 1103041 684727 879924 793601
REFERENCES:

Grimes, R.G., Lewis, J.G., and Simon, H.D. (1986). Experiences in solving large
eigenvalue problems on the CRAY X-MP. Report ETA-TR-40, ETA Division, Boeing
Computer Services, Seattle, Washington.
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TITLE: BCSSTRUCG6 BCS structural engineering matrices (linear

equations)
DESCRIPTION:
Source: Ed Meyer, Boeing Computer Services.
Discipline: Structural Engineering.
Remarks: BLCKHOLE is an artificial finite-element model consisting of a finely

gridded geodesic dome clamped to a coarsely gridded rectangular base.
Because of the difference in gridding factors, the interface nodes on the
base have very high order.

SSTMODEL is the elemental connectivity for the stiffness matrix of a
1960’s design for a supersonic transport (the Boeing 2707).

Accession: Summer 1983.

MATRIX CHARACTERISTICS:

Type: Symmetric structures matrices. SSTMODEL is indefinite.
Statistics:
Identifier Order Number of entries
(symmetric)
BLCKHOLE 2132 8502
SSTMODEL 3345 13047

PERFORMANCE STATISTICS:

For the BLCKHOLE example, the strange gridding plays havoc with orderings based
on level structures, and is nearly a worst case for the Gibbs-Poole-Stockmeyer heuristic.
Reverse Cuthill-Mckee and Gibbs-Poole-Stockmeyer are nearly a factor of two away from
obtaining the minimum bandwith of this problem. General sparse methods fair well
despite the strange gridding.

REFERENCES:

None currently available (please submit some data)
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TITLE: CANNES

Structures problems in aircraft design

DESCRIPTION:
Source: Lucien Marro, Programmation Scientifique, Aerospatiale Cannes, France.
Discipline: Finite-element structures problems in aircraft design.
Remarks: Sent to Iain Duff by Lucien Marro. He was using the test matrices as a

testbed for his ordering codes being developed for his thesis.

Accession: June 3rd 1981.

MATRIX CHARACTERISTICS:

Type: Symmetric but not in ordering suitable for variable-band algorithms.

Statistics: Set of 18 square matrices of varying order and density.

characteristics are as follows.

Identifier

CAN
CAN
CAN
CAN
CAN
CAN
CAN
CAN
CAN
CAN
CAN
CAN
CAN
CAN
CAN
CAN

24
61
62
73
96
144
161
187
229
256
268
292
445
634
715
838

CAN 1054
CAN 1072

Order

24
61
62
73
96
144
161
187
229
256
268
292
445
634
715
838
1054
1072

PERFORMANCE STATISTICS:

None currently available (please submit some data)

REFERENCES:

Number of entries

92
309
140
225
432
720
769
839

1033
1586
1675
1416
2127
3931
3690
5424
6625
6758

Their

Marro, L. (1980). Méthodes de réduction de la largeur de bande et du profil efficace des
matrices creuses. These de 3éme cycle, Université de Nice.
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Marro, L. (1986). A linear time implementation of profile reduction algorithms for sparse
matrices. STAM J.Sci.Stat.Comput. 7, 1212-1231.
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TITLE: CEGB

DESCRIPTION:
Source: A.J. Donovan, CEGB, England.
Discipline:
Remarks:
matrices.
Accession: Summer 1980.

Structural engineering matrices (unassembled)

Finite-element calculations in structural engineering

These matrices all represent static analyses in structural engineering.
They have been extracted from the CEGB structural engineering package
BERSAFE. All of these matrices are held as unassembled finite-element

MATRIX CHARACTERISTICS:

Type:

Statistics:

Identifier

CEGB2919
CEGB3024
CEGB3306

CEGB2802

Symmetric positive definite (unassembled).

Description

Three dimensional cylinder
with flange

Two-dimensional reactor core
section

Framework problem essentially

in two dimensions
Turbine blade

PERFORMANCE STATISTICS:

See reference

REFERENCES:

Number of Number of

variables

2919

3024

3306

2802

elements

128

551

791

108

Maximum
element size

60

16

12

60

Duff, I.S. and Reid, J.K. (1979). Performance evaluation of codes for sparse matrix
problems. In Performance evaluation of numerical software, L.D Fosdick (ed.), North
Holland, Amsterdam, New York, and London, 121-135.
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TITLE: CHEMIMP Chemical engineering plant models

DESCRIPTION:
Source: David Bogle, Imperial College, London.
Discipline: Chemical engineering.
Remarks: Five matrices extracted from runs of the chemical engineering package

SPEED UP. In each case, the matrix is the initial Jacobian approximation
for a sparse nonlinear equation modelling a chemical process system.

Accession: August 1982.

MATRIX CHARACTERISTICS:

Type: Unsymmetric with many zeros on the diagonal. Some of the entries
actually have the value zero. This happens when a procedure is used
in which all outputs are incorrectly assumed to be a function of all inputs.

Statistics:
Identifier Description Order Number of entries
IMPCOL A Heat exchanger network 207 572
IMPCOL B Cavett’s process 59 312
IMPCOL C Ethylene plant model 137 411
IMPCOL D Nitric acid plant model 425 1339
IMPCOL E Hydrocarbon separation problem 225 1308

PERFORMANCE STATISTICS:

These matrices can be significantly reduced by block triangularization methods.

REFERENCES:

None currently available (please submit some data)
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TITLE: CHEMWEST Chemical Engineering Plant Models

DESCRIPTION:
Source: Art Westerberg, University of Pittsburgh.
Discipline: Chemical engineering.
Remarks: Eleven matrices extracted from modelling of chemical engineering plants.
Accession: Summer 1983

MATRIX CHARACTERISTICS:

Type: Unsymmetric with many zeros on the diagonal. Several of the explicitly
held matrix entries also have the value zero.

Statistics:
Identifier Description Order Number
of entries
WESTO0156 Simple Chemical Plant Model 156 371
WEST0167 Rigorous Model of a Chemical Stage 167 507
WEST0381 Multiply Fed Column, 24 Components 381 2157
WEST0132 Rigorous Flash Unit 132 414
WEST0067 Cavett Problem with 5 Components 67 294
WEST0655 16 Stage Column Section, Some Simplified 655 2854
WEST0479 8 Stage Column Section, All Rigorous 479 1910
WEST0497 Rigorous Flash Unit with Recycling 497 1727
WEST1505 11 Stage Column Section, All Rigorous 1505 5445
WEST2021 15 Stage Column Section, All Rigorous 2021 7353
WEST0989 7 Stage Column Section, All Rigorous 989 3537

PERFORMANCE STATISTICS:

Nine of these matrices can be significantly reduced by block triangularization methods.

REFERENCES:

Erisman, A.M., Grimes, R.G., Lewis, J.G., Poole, W.G. Jr., and Simon, H.D. (1983).
Evaluation of orderings for unsymmetric sparse matrices. SIAM J.Sci.Stat. Comput. 8,
600-624.
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TITLE: CIRPHYS Circuit Physics modelling

DESCRIPTION:
Source: J P Whelan, Circuit Physics and Applications Division, Philips Research
Laboratories, Redhill, Surrey, England.
Discipline: Computer random simulation of a circuit physics model
Remarks: Was using M A28 and was concerned about the amount of fill-in. Example

in test set is of order 991 but is indicative of structure of larger matrices
(to order 3000) from the same modelling exercise.

Accession: December 1978.

MATRIX CHARACTERISTICS:

Type: Unsymmetric but with variable band characteristics.
Statistics:
Identifier Order Number of entries
JPWH 991 991 6027

PERFORMANCE STATISTICS:

Fill-in using MA28 with u=0.1 is six times original number of nonzeros.

REFERENCES:

Erisman, A.M., Grimes, R.G., Lewis, J.G., Poole, W.G. Jr., and Simon, H.D. (1987).
Evaluation of orderings for unsymmetric sparse matrices. SIAM J.Sci.Stat. Comput. T,
600-624.
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TITLE: COUNTERX Small counter example matrices

DESCRIPTION:
Source: John Lewis, Boeing Computer Services, Seattle, Washington.
Discipline: Simple counter examples to Hellerman and Rarick algorithm
Remarks: These three matrix patterns were designed by Grimes and Lewis to

demonstrate the type of breakdowns that can occur with the P* ordering.
They also demonstrate how the P°® ordering avoids the same type of
breakdowns.

Other small problems that serve to demonstrate unusual behaviour of
other algorithms are welcome.

Accession: Summer 1983.

MATRIX CHARACTERISTICS:

Type: Small unsymmetric patterns.

Statistics:
Identifier Order Number of entries
JGL009 9 50
JGLO11 11 76
RGGO10 10 76

PERFORMANCE STATISTICS:

The P* ordering reorders these matrices so that a zero is on the diagonal. JGL009 and
JGLO011 depend on fill-in during the factorization to provide a nonzero pivot when using
Gaussian Elimination without pivoting. P* reorders RGGO010 in such a way that a zero
is placed on the diagonal and no fill occurs in that position leaving a “structural” zero
for a pivot.

REFERENCES:

Erisman, A.M., Grimes, R.G., Lewis, J.G., and Poole, W.G. Jr. (1985). A structurally
stable modification of Hellerman-Rarick’s P*? algorithm for reordering unsymmetric
sparse matrices. SIAM J.Numer.Anal. 22, 369-385.
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TITLE: DWT Everstine’s Collection
DESCRIPTION:
Source: Gordon Everstine, David W. Taylor Naval Ship Research and
Development Center, Bethesda, MD, USA.
Discipline: Structural engineering
Remarks: This collection consists of thirty matrix patterns collected by Gordon
Everstine of the David W. Taylor Naval Ship Research and Development
Center, Bethesda, MD, USA. These patterns were collected from various
US military and NASA users of NASA’s structural engineering package
NASTRAN for use as a benchmark collection for variable bandwidth
reordering heuristics. They have been widely used in benchmarks; they
are also of interest because 2- and 3-D plots are given in the reference
below (Everstine 1979) for all thirty patterns.
Accession: Summer 1980.

MATRIX CHARACTERISTICS:

Type: Symmetric, patterns only.

Statistics:
Identifier Order Number of entries Description

(symmetric)

DWT 59 59 163 2D frame
DWT 66 66 193 Truss
DWT 72 72 147 Grillage
DWT 87 87 314 Tower
DWT 162 162 672 Plate with hole
DWT 193 193 1843 Knee prosthesis
DWT 198 198 795 Reinforced mast
DWT 209 209 976 Console
DWT 221 221 925 Hull-tank region
DWT 234 234 534 Tower with platform
DWT 245 245 853 Carriage
DWT 307 307 415 Power supply housing
DWT 310 310 1379 Hull with refinement
DWT 346 346 1786 Deckhouse
DWT 361 361 1657 Cylinder with cap
DWT 419 419 1991 Barge
DWT 492 492 1824 Piston shaft

43



Identifier Order Number of entries Description

(symmetric)
DWT 503 503 3265 Baseplate
DWT 512 512 2007 Submarine
DWT 592 592 2848 CVA bent
DWT 607 607 2869 Wankel rotor
DWT 758 758 3376
DWT 869 869 4075
DWT 878 878 4163 Plate with insert
DWT 918 918 4151 Beam with cutouts
DWT 992 992 8868 Mirror
DWT 1005 1005 4813 Baseplate
DWT 1007 1007 4791
DWT 1242 1242 5834 Sea chest
DWT 2680 2680 13853 Destroyer

PERFORMANCE STATISTICS:

The first two references provide statistics on several variable-band and wavefront
heuristics. The third reference gives the performance of several minimum degree
reorderings on the largest of these problems.

REFERENCES:

Armstrong, B.A. (1986). Near minimal matrix profiles and wavefronts for testing nodal
resequencing algorithms. Int.J. Numer.Meth. Engng. 21, 1785-1790.

Everstine, G.C. (1979). A comparison of three resequencing lgorithms for the reduction
of matrix profile and wavefront. Int.J. Numer.Meth.Engng. 14 , 837-853.

Lewis, J.G. (1982). Implementation of the Gibbs-Poole-Stockmeyer and Gibbs-King
algorithms. ACM Trans.Math.Softw. 8, 180-189 and 190-194.

Liu, JJW.H. (1985). Modification of the minimum degree algorithm by multiple
elimination. ACM Trans.Math.Softw. 11, 141-153.

Liu, J.W.H. (1985). On the storage requirement in the out-of-core multifrontal method
for sparse factorization. Report CS-85-02, Department of Computer Science, York
University, Ontario, Canada.

Marro, L. (1986). A linear time implementation of profile reduction algorithms for sparse
matrices. STAM J.Sci.Stat.Comput. 7, 1212-1231.

Smyth, W.F. and Dunn, J. (1986). Results of tests on matrix bandwidth and profile
reduction algorithms. Report, Department of Computer Science and Systems, McMaster
University, Ontario, Canada.
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TITLE: ECONAUS Australian Economic Models

DESCRIPTION:

Source: Ken Pearson, Department of Mathematics, La Trobe University,
Melbourne, Australia.

Discipline: Economic modelling.

Remarks: These matrices come from problems solved using the economic modelling
package GEMPACK. The principal linear equation solver used by this
package is MA28.

Accession: October 24th, 1984.

MATRIX CHARACTERISTICS:

Type: Unsymmetric.
Statistics:
Identifier Description Order Entries Right-hand sides
Number Entries
ORANI678 Economic model of Australia, 2529 90158 116 297
1968/69 data
MAHINDAS Economic model of Victoria, 1258 7682 55 162

Australia, 1880 data

PERFORMANCE STATISTICS:

None currently available (please submit some data)

REFERENCES:

Dixon, P.B., Parmenter, B.R., Sutton, J., and Vincent, D.P. (1982). ORANI: A
Multisectoral Model of the Australian Economy. North Holland, Amsterdam.

Pearson, K.R. and Rimmer, R.J. (1984). An efficient method for the solution of large
computable general equilibrium models. Sixth Biennnial Conference of the Simulation
Society of Australia, August 1984. (To appear in Journal of the International Association
for Mathematics and Computers in Simulation)

Pearson, K.R. and Rimmer, R.J. (1984). Sparse matrix methods on the VAX 11/780.
Proceedings of the 24th European DECUS Symposium, Amsterdam, September 1984,
545-552.

Siriwaranda, A.M. (1985). A multisectoral general equilibrium model of tariff protection
in the Colony of Victoria in 1880. Ph.D. Thesis, La Trobe University, Australia.

45



TITLE: ECONIEA Economic Models

DESCRIPTION:

Source:
Discipline:

Remarks:

Accession:

Daniel Szyld, Institute for Economic Analysis, New York University.
Economic modelling

The first three matrices (WM1, WM2, WM3) represent economic models
of three of the fifteen regions used in the Input-Output model of the
world economy by the Institute for Economic Analysis. The matrices
are rectangular. Different square matrices are obtained by choosing the
appropriate number of columns. Different choices will lead to different
non-zero structures. An unfortunate choice may give a singular matrix
but that will not be the case in general.

The next 6 matrices represent modelling of the economic transactions in
the United States in 1972. MBEAUSE, MBEAFLW, and MBEACXC
are the leading 496 by 496 principle minor of the matrices BEAUSE,
BEAFLW, and BEACXC, respectively.

The rows of BEAUSE represent commodities and the columns represent
industries.

The rows of BEAFLW represent industries and the columns represent
industries.

The rows of BEACXC represent commodities and the columns represent
commodities.

Summer 1982

MATRIX CHARACTERISTICS:

Type:

Statistics:

Rectangular

Identifier No. of rows No. of columns No. of entries
WM1 207 277 2909
WM2 207 260 2942
WM3 207 260 2948
BEAUSE 497 507 44551
BEAFLW 497 507 53403
BEACXC 497 506 50409
MBEAUSE 496 496 41603
MBEAFLW 496 496 49920
MBEACXC 496 496 49920
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PERFORMANCE STATISTICS:

None currently available (please submit some data)

REFERENCES:

Szyld, D.B. (1981). Using sparse matrix techniques to solve a model of the world
economy. Sparse matrices and their uses, 1.5 Duff (ed.), Academic Press, New York
and London, 357-365.

Definitions and Conventions of the 1972 Input-Output Study. Staff Paper BEA-SP-80-
034, Bureau of Economic Analysis, U.S. Dept. of Commerce, July 1980.
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TITLE: FACSIMILE

Alan Curtis, Computer Science and Systems Division, AERE Harwell.

Representative of the type of matrices which occur in spatially
homogeneous problems from straight chemical kinetics calculations and
mixed kinetics diffusion problems. Matrices generated by FACSIMILE

Three sets of matrices. Within each set there are three or four matrices
from different timesteps in the solution of stiff ordinary differential
equations in chemical kinetics. All matrices in each set have the same

Chemical kinetics problems

DESCRIPTION:
Source:
Discipline: Chemical kinetics.
Remarks:
stiff ode solver.
structure but quite different numerical values.
Accession: August 1983

MATRIX CHARACTERISTICS:

Type:

Statistics:

Identifier

PSMOG

Unsymmetric with diagonal entries larger than any in their row or column.
The pattern is very scattered with no semblance of a band or any block
structure. This means that, for the diffusion problems, the dependent
species at one point in space are not ordered consecutively.

Description

Straight chemical kinetics
problem from atmospheric pollution
studies. This is an example at the
large end of the range of spatially
homogeneous problems from straight
chemical kinetics calculations.
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Order

183

Entries

1069

Matrices
in set

FS 1831
FS 183 3
FS 183 4
FS 183 6



Identifier Description Order Entries Matrices
in set

RCHEM Mixed kinetics diffusion problem from 680 2646 FS 6801
radiation chemistry. 17 chemical FS 680 2
species and one space dimension with FS 680 3
40 mesh points. The diffusion terms
are large compared with the kinetics
terms. However, 440 columns are
identically those of the unit matrix
which possibly provides a good test
for methods which cannot exploit
such a feature properly (for example,
methods which assume symmetry).

STRAT  Mixed kinetics diffusion problem from 760 5976 FS 760 1
study of ionization in the stratosphere FS 760 2
with 38 chemical species. The FS 760 3
diffusion terms are small compared
with the kinetics terms but large
compared with 1 (particularly for the
last matrix in the set).

PERFORMANCE STATISTICS:

None currently available (please submit some data)

REFERENCES:

Erisman, A.M., Grimes, R.G., Lewis, J.G., Poole, W.G. Jr., and Simon, H.D. (1987).
Evaluation of orderings for unsymmetric sparse matrices. SIAM J.Sci.Stat. Comput. T,
600-624
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TITLE: GEMAT Optimal power flow problems

DESCRIPTION:
Source: Rob Burchett, General Electric Company, Schenectady, New York.
Discipline: Power flow modelling
Remarks: These matrices are from optimal power flow modelling. The first matrix,

GEMAT1, is the Jacobian matrix for an approximately 2400 bus system
in the Western United States. The rows represent the equality and
some nonlinear constraints of the power flow problem. The first block of
columns represents the standard angle and voltage variables of the power
flow problem. The last block of columns is very sparse and represents the
transformer taps and capacitors.

The initial basis for this problem is given by matrix GEMAT11. The basis
after 100 optimal power flow iterations is given by matrix GEMAT12.

Accession: Summer 1984.

MATRIX CHARACTERISTICS:

Type: Rectangular matrices.

Statistics:
Identifier Number of rows Number of columns Number of entries
GEMAT1 4929 10595 47369
GEMAT11 4929 4929 33185
GEMATI12 4929 4929 33111

PERFORMANCE STATISTICS:

This problem was brought to our attention by Mike Saunders. MINOS was used to
solve this problem and the original ordering (P*) in MINOS did not perform well on this
problem because the initial basis is almost symmetric.

REFERENCES:

Erisman, A.M., Grimes, R.G., Lewis, J.G., Poole, W.G. Jr., and Simon, H.D. (1987).
Evaluation of orderings for unsymmetric sparse matrices. SIAM J.Sci.Stat.Comput. 7,
600-624
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TITLE: GRENOBLE Simulation of computer systems

DESCRIPTION:
Source: Francois Cachard, University of Grenoble, France.
Discipline: Simulation studies in computer systems.
Remarks: Used as a testbed for ordering codes being developed for the thesis of

Frangois Cachard. The matrices were produced from runs of the package
QNAP written by CII-HB for simulation modelling of computer systems.

Accession: June 3rd 1981.

MATRIX CHARACTERISTICS:

Type: Unsymmetric, mostly with a variable-band flavour.
Statistics:

Identifier Order Number of entries

GRE 115 115 421

GRE 185 185 1005

GRE 216A 216 876

GRE 216B 216 876

GRE 343 343 1435

GRE 512 512 2192

GRE 1107 1107 5664

PERFORMANCE STATISTICS:

None currently available (please submit some data)

REFERENCES:

Cachard, F. (1981). Logiciel numerique associé a une modélisation de systémes
informatiques. These, Université Scientifique et Médicale de Grenoble, et 1'Institut
National Polytechnique de Grenoble.

Erisman, A.M., Grimes, R.G., Lewis, J.G., Poole, W.G. Jr., and Simon, H.D. (1987).
Evaluation of orderings for unsymmetric sparse matrices. SIAM J.Sci.Stat. Comput. T,
600-624
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TITLE: JAGMESH Graded L-shape patterns

DESCRIPTION:
Source: Alan George, University of Waterloo, Canada.
Discipline: Finite-element model problem
Remarks: These 9 matrix patterns arise from the application of triangular finite-

element discretization of the heat conduction problem on variously shaped
regions. The meshes are refined to yield patterns with approximately 1000
nodes.

These patterns were used by J. George and J. Liu to compare various
reordering methods in the development of SPARSPAK during the late
1970’s.

Accession: January 1978.

MATRIX CHARACTERISTICS:

Type: Symmetric, patterns only.

Statistics:
Identifier Description Order Number of entries
JAGMESH1 small hole square 936 3600
JAGMESH2 graded L 1009 3937
JAGMESH3 plain square 1089 4225
JAGMESH4 large hole square 1440 5472
JAGMESH5 + shaped domain 1180 4465
JAGMESH6 H shaped domain 1377 5185
JAGMESH7 3 hole problem 1138 4294
JAGMESHS8 6 hole problem 1141 4303
JAGMESH9 pinched hole problem 1349 5225

PERFORMANCE STATISTICS:

See references for performance of SPARSPAK on these problems.

REFERENCES:

George, A. and Liu, JW.H. (1981). Computer solution of large sparse positive-definite
systems. Prentice-Hall, Englewood Cliffs, New Jersey.

Lewis, J.G. (1983). Numerical experiments with SPARSPAK. SIGNUM Neuwsletter,
Association for Computing Machinery, New York 18 (3), 12-22.
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Liu, J.W.H. (1985). On the storage requirement in the out-of-core multifrontal method
for sparse factorization. Report CS-85-02, Department of Computer Science, York
University, Ontario, Canada.

Smyth, W.F. and Dunn, J. (1986). Results of tests on matrix bandwidth and profile
reduction algorithms. Report, Department of Computer Science and Systems, McMaster
University, Ontario, Canada.
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TITLE: LANPRO Lanczos with Partial Reorthogonalization

DESCRIPTION:

Source: Horst Simon, Boeing Computer Services, Seattle, Washington.

Discipline: Linear equations in structural engineering

Remarks: These are the seven positive definite matrices used as numerical examples
in reference Simon (1984) on the solution of Az = b using the Lanczos
algorithm with partial reorthogonalization. The first five are from finite-
element approximations to problems in structural engineering. The last
two are derived from finite-difference approximations to elliptic partial
differential equations.

Accession: Spring 1982.

MATRIX CHARACTERISTICS:

Type:

Statistics:
Identifier

NOS1

NOS2

NOS3

NOS4

NOS5

NOS6

NOS7

Positive definite symmetric matrices.

Description Order Number
of entries
Biharmonic operator on a beam with one end free 237 627
and one end fixed. 80 elements with 3 DOF per
node.
Same as above with 240 elements 957 2547
Biharmonic operator on a rectangular plate with 960 8402

one side fixed and the others free

Beam structure 100 347

3 story building with attached tower with each 468 2820
beam modelled as in NOS1

Poisson’s equation in an L-shaped region, mixed 675 1965
boundary conditions

Diffusion equation with varying diffusivity in a 729 2673
3D unit cube with Dirichlet boundary conditions
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PERFORMANCE STATISTICS:

The condition number of these problems range from 3.5 x 10® for NOS3 to 1.8 x 10°
for NOS7. LANPRO (Lanczos with partial reorthogonalization) was 6 times faster
than LANFRO (Lanczos with full reorthogonalization) for well-conditioned problems.
LANPRO was only 1.5 times faster than LANFRO for ill-conditioned problems. See
reference for more details.

REFERENCES:

Simon, H.D. (1984). The Lanczos algorithm with partial reorthogonalization.
Math.Comp. 42, 115-142.

Smyth, W.F. and Dunn, J. (1986). Results of tests on matrix bandwidth and profile
reduction algorithms. Report, Department of Computer Science and Systems, McMaster
University, Ontario, Canada.
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TITLE: LAPLACE Finite-difference Laplacians

DESCRIPTION:

Source:
Discipline:

Remarks:

Accession:

Roger Grimes, Boeing Computer Services, Seattle, Washington.

Partial differential equations

These two matrices was generated from a nine point discretization of
the Laplacian on the unit square with Dirichlet boundary conditions. A
matrix generation program that generates Laplacians for five and nine
point stars on other grids on the unit square can be obtained from Roger

Grimes.

Summer 1983.

MATRIX CHARACTERISTICS:

Type:

Statistics:

Symmetric positive definite matrix.

Identifier Order Number of entries
(symmetric)

GR 05 05 25 97

GR 30 30 900 4322

PERFORMANCE STATISTICS:

None currently available (please submit some data)

REFERENCES:

Smyth, W.F. and Dunn, J. (1986). Results of tests on matrix bandwidth and profile
reduction algorithms. Report, Department of Computer Science and Systems, McMaster
University, Ontario, Canada.

56



TITLE: LAPU Laplace finite-element matrices (unassembled)

DESCRIPTION:
Source: Tain Duff, Harwell Laboratory
Discipline: Model finite-element calculations
Remarks: These matrices represent unassembled matrix from the finite-element

discretization of Laplace’s equation in a square. Two different grids are
used and the matrices can be used for debugging software using elemental
input. Only the patterns are supplied.

Accession: Summer 1980.

MATRIX CHARACTERISTICS:

Type: Symmetric patterns (unassembled).
Statistics:
Identifier Description Number of Number of Maximum
variables elements  element size
LAP 25 5 by 5 grid 25 16 4
LAP 900 30 by 30 grid 900 841 4

PERFORMANCE STATISTICS:

None currently available (please submit some data)

REFERENCES:

None currently available (please submit some data)
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TITLE: LNS Fluid flow modelling
DESCRIPTION:
Source: Tan Jones, Harwell Laboratory.
Discipline: Fluid flow modelling.
Remarks: Six matrices arising in the solution of linearized Navier-Stokes equations
for compressible flow, using velocity-pressure formulation.
The first three matrices correspond to an ordering by variable type with
velocity variables (three dimensions) preceding temperature, preceding
pressure variables. Since the continuity equations that are used to define
the pressure do not contain explicit reference to the pressure the diagonal
block is zero.
The second three matrices are permutations of the first three. The
matrices have been permuted so that all variables at the same grid
point are grouped together. Omne effect of this is to reduce the variable-
bandwidth of the system.
Accession: Summer 1980.

MATRIX CHARACTERISTICS:

Type:

Statistics:

Unsymmetric matrices but with nearly symmetric pattern.

Identifier Order Number of entries
LNS 131 131 536
LNS 511 511 2796
LNS 3937 3937 25407
LNSP 131 131 536
LNSP 511 511 2796
LNSP3937 3937 25407

PERFORMANCE STATISTICS:

None currently available (please submit some data)

REFERENCES:

None currently available (please submit some data)
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TITLE: LOCKHEED Structural engineering matrices (unassembled)

DESCRIPTION:
Source: W.A. Loden, Lockheed Palo Alto Research Laboratory
Discipline: Finite-element calculations in structural engineering
Remarks: These matrices all represent static analyses in structural engineering. All

of these matrices are held as unassembled finite-element matrices.

Accession: Summer 1980.

MATRIX CHARACTERISTICS:

Type: Symmetric positive definite (unassembled).

Statistics:
Identifier Description Number of Number of Maximum

variables elements  element size

LOCK1074 “gyro” cradle assembly 1074 323 24
LOCK 700 “porch” ocean-mining 700 324 18
LOCK2232 launch umbilical tower 2232 944 12
LOCK3491 “cross-cone” vehicle structure 3491 684 24

PERFORMANCE STATISTICS:

See reference

REFERENCES:

Jensen, P. S. and Loden, W. A. (1980). Supplementary study on the sensitivity of
optimized structures. Report LMSC-D777859. Lockheed Palo Alto Research Laboratory.
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TITLE: LSHAPE Graded L-shape patterns

DESCRIPTION:
Source: Alan George, University of Waterloo, Canada.
Discipline: Finite-element model problem
Remarks: These 12 matrix patterns arise from the application of triangular finite-

element discretizations of the heat conduction problem on an L-shaped
region. The mesh is progressively refined to yield 12 related patterns.

These patterns were used by J. George and J. Liu to compare various
reordering methods in the development of SPARSPAK during the late
1970’s.

Accession: January 1978.

MATRIX CHARACTERISTICS:

Type: Symmetric, patterns only.

Statistics:
Identifier Order Number of entries
LSHP 265 265 1009
LSHP 406 406 1561
LSHP 577 577 2233
LSHP 778 778 3025
LSHP1009 1009 3937
LSHP1270 1270 4969
LSHP1561 1561 6121
LSHP1882 1882 7393
LSHP2233 2233 8785
LSHP2614 2614 10297
LSHP3025 3025 11929
LSHP3466 3466 13681

PERFORMANCE STATISTICS:

See references for performance of SPARSPAK on these problems.

REFERENCES:

George, A. and Liu, JW.H. (1981). Computer solution of large sparse positive-definite
systems. Prentice-Hall, Englewood Cliffs, New Jersey.

60



Lewis, J.G. (1983). Numerical experiments with SPARSPAK. SIGNUM Neuwsletter,
Association for Computing Machinery, New York 18 (3), 12-22.

Liu, J.W.H. (1985). On the storage requirement in the out-of-core multifrontal method
for sparse factorization. Report CS-85-02, Department of Computer Science, York
University, Ontario, Canada.

Smyth, W.F. and Dunn, J. (1986). Results of tests on matrix bandwidth and profile
reduction algorithms. Report, Department of Computer Science and Systems, McMaster
University, Ontario, Canada.
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TITLE: LSQ Least squares problems in surveying

DESCRIPTION:
Source: Michael Saunders, SOL, Stanford University.
Discipline: Surveying.
Remarks: Four matrices from the least-squares solution of problems in surveying

that were used by Michael Saunders and Chris Paige in the testing of
LSQR. The second and fourth matrix have the same pattern as the first
and third respectively but are much more ill-conditioned with respect to
conjugate gradients.

Accession: Summer 1979

MATRIX CHARACTERISTICS:

Type: Rectangular.

Statistics:

Identifier Number of rows Number of columns Number of entries

WELL1033 1033 320 4732
ILLC1033 1033 320 4732
WELL1850 1850 712 8758
ILLC1850 1850 712 8758

In each case one full right-hand side is supplied.

PERFORMANCE STATISTICS:
These matrices were used to test iterative methods.
REFERENCES:

None currently available (please submit some data)
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TITLE: MANTEUFFEL Structural engineering matrices

DESCRIPTION:
Source: T.A. Manteuffel, Sandia Laboratories, Livermore
Discipline: Finite-element calculations in structural engineering
Remarks: The matrix is a condensed version from a model of structural deformation

in three dimensions of a cylinder with varying thickness and holes. This
matrix is held as an unassembled finite-element matrix.

Accession: Summer 1980

MATRIX CHARACTERISTICS:

Type: Symmetric positive definite (unassembled).
Statistics:
Identifier Description Number of Number of Maximum
variables elements  element size
MAN5976 Deformation of cylinder in 3-D 5976 784 20

PERFORMANCE STATISTICS:

See reference

REFERENCES:

Manteuffel, T. A. (1980). An incomplete factorization technique for positive definite
linear systems. Math. Comp. 34, 473-497.
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TITLE: NNCENG Flow network problem

DESCRIPTION:

Source:

Discipline:

Remarks:

Accession:

R P Hornby, R & D Technology Department, National Nuclear
Corporation Limited, Risley, Cheshire, England.

Flow in networks.

Problem arises from solving a system of equations obtained by conserving
energy at each node of a network and equating the net pressure drop
around any closed flow loop to zero. The flow field is turbulent and
buoyancy forces are important so that the pressure drop Ap across any
branch b is

R
Ap =2 | Wy | Wp — ppgAh
Pb

where Wy is the branch flow, pp the fluid density, R the branch
resistance and h the node height. Linear systems from a Newton-Raphson
linearization of this problem.

January 1983.

MATRIX CHARACTERISTICS:

Type:

Statistics:

Symmetric pattern but unsymmetric matrix. Bands of nonzeros far from
the diagonal and in the last rows and columns.

Identifier Order Number of entries

HOR 131 434 4710

PERFORMANCE STATISTICS:

An interesting characteristic is that the solution of the linearized system by MA28 is

remarkably insensitive to changes in the threshold parameter.

REFERENCES:

None currently available (please submit some data)
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TITLE: NUCL

Nuclear reactor models

DESCRIPTION:
Source: National Nuclear Corporation
Discipline: Nuclear reactor core modelling
Remarks: These three matrices are derived from models of an advanced gas cooled

reactor core, from the National Nuclear Corp. (UK). Their particular

interest is the significant difference in factorization time between the
original matrices and their transposes.

Accession: Spring 1982.

MATRIX CHARACTERISTICS:

Type: Unsymmetric.
Statistics:
Identifier
NNC 261
NNC 666
NNC1374

Order

261
666
1374

PERFORMANCE STATISTICS:

Number of entries

1500
4044
8606

Performance statistics from a CRAY-1S, CFT 1.09, for solution of a single right-hand

side (times in CPU seconds)

MA18 MA28
Order | A AT A | AT
261 1.3 1.3 5
666 14.3 | 16.6 | 13.8 | 5.0

REFERENCES:

None currently available (please submit some data)
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TITLE: OILGEN Oil reservoir simulation - generated problems

DESCRIPTION:

Source:
Discipline:

Remarks:

Accession:

Roger Grimes, Boeing Computer Services, Seattle, Washington.
Oil reservoir simulation

Oil reservoir simulation is strongly oriented towards discretization of
reservoirs with full 3D grids. Full grids provide a regular structure that
can be exploited for reduced overhead and vector processing speeds. The
restriction of a full grid can cause a substantial increase in the number of
grid cells when finer refinement is used in the neighbourhood of coning
wells and faults. Coalescing unnecessary cells into a coarser mesh in the
areas of the reservoir away from coning wells and faults greatly reduces
the number of cells. This can reduce the number of unknowns by a factor
of 2.

Grimes developed a program to generate matrices similar to those
encountered in three dimensional oil reservoir simulation. The program
takes as input the oil reservoir described by 3D rectangular subregions
that can overlap. Each subregion has associated material parameters and
gridding specified.

A full 3D grid is generated and the associated Jacobian is computed. The
full 3D grid may subdivide some subregions more than was requested on
input. A reduced problem is generated by coalescing the extra cells caused
by this subdivision into the single cell specified by the subregions original
gridding.

Three matrices were generated by this program for the sparse matrix
collection. The first problem was a model of a oil reservoir imbedded in
a water aquifer with three coning wells. The reservoir was subdivided
into an 8x10x5 grid. The subregions around the three wells were
subdivided into 8x8x5, 4x4x5, and 4x4x5 grids respectively. The aquifer
was subdivided into a 8x7x5 grid. The resulting full grid was 21x21x5.
The matrix ORSREG 1 was the computed Jacobian. The unnecessary
cells in the reservoir and aquifer caused by the finer refinement around
the wells were coalesced to form ORSIRR 1.

Matrices for a second problem were also generated. The second problem
was identical to the first except that the aquifer was divided into a 8x7x1
grid. The full grid problem was identical. The matrix resulting from the
coalescing resulted in matrix ORSIRR 2.

Spring 1984.
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MATRIX CHARACTERISTICS:

Type: Unsymmetric.

Statistics:
Identifier Order Number of entries
ORSREG 1 2205 14133
ORSIRR 1 1030 6858
ORSIRR 2 886 5970

PERFORMANCE STATISTICS:

None currently available (please submit some data)

REFERENCES:

None currently available (please submit some data)
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TITLE: PLATZ Platzman’s oceanographic models

DESCRIPTION:

Source:
Discipline:

Remarks:

Accession:

John Lewis, Boeing Computer Services, Seattle, Washington.
Oceanic modelling

The first two matrices are well known as difficult sparse symmetric
eigenproblems. The larger matrix is a finite-difference model for the
shallow wave equations for the Atlantic and Indian Oceans. The smaller
matrix corresponds roughly to the North Atlantic Ocean. The original
matrix is derived as the (negative) square of a purely imaginary skew-
symmetric matrix. Hence, the eigenvalues occur in pairs (except for an
isolated singleton at zero). A list of all of the eigenvalues of the smaller
problem are given in the third reference. The third and fourth matrices
are the skew-symmetric matrices whose squares are the first two matrices.

Summer 1975.

MATRIX CHARACTERISTICS:

Type: Eigenvalue problem. Last two matrices are purely imaginary skew-
symmetric matrices. The first two matrices are their negative squares.
Statistics:
Identifier Description Order # of entries
(symmetric)
PLAT1919 full three ocean model 1919 17159
PLAT 362 North Atlantic submodel 362 3074
PLSK1919 skew-symmetric full model 1919 4831
PLSKZ362 skew symmetric North Atlantic submodel 362 880

PERFORMANCE STATISTICS:

See references.

The first three references describe the difficulties encountered in computing the desired
eigenvalues in the mid 1970’s. The problem is difficult because the desired natural modes
correspond to interior eigenvalues of the matrices. The original problem was to find all

eigenvalues in

(.0001, .024), corresponding to natural modes that could contribute to

global tides. The eigenvalues in (.000025, .0001) were also of interest, but were impossible
to compute at that time. Modern shift and invert eigenvalue algorithms have little

difficulty with

these problems if they are capable of handling multiple eigenvalues. The

unusual distribution of eigenvalues has, however, played havoc with some eigenvalue

codes.
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REFERENCES:

Cline, A.K., Golub, G.H., and Platzman, G.W. (1976). Calculations of normal modes of
oceans using a Lanczos method. Sparse matriz computations, J.R Bunch and D.J Rose
(eds.). Academic Press, London and New-York, 409-426.

Grimes, R.G., Lewis, J.G., and Simon, H.D. (1986). Experiences in solving large
eigenvalue problems on the CRAY X-MP, Report ETA-TR-40, ETA Division, Boeing
Computer Services, Seattle, Washington.

Lewis, J.G. (1977). Algorithms for sparse matrix eigenvalue problems. Report CS-77-
595, Department of Computer Science, Stanford University, Stanford, California.

Lewis, J.G. and Simon, H.D. (1984). Numerical experience with the spectral
transformation Lanczos method. Report MM-TR-16, ETA Division, Boeing Computer
Services, Seattle, Washington.

Platzman, G.W. (1975). Normal modes of the Atlantic and Indian oceans.
J. Phys.Oceanography 5, 201-221.

Smyth, W.F. and Dunn, J. (1986). Results of tests on matrix bandwidth and profile
reduction algorithms. Report, Department of Computer Science and Systems, McMaster
University, Ontario, Canada.
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TITLE: PORES Reservoir modelling

DESCRIPTION:
Source: John Appleyard, Harwell Laboratory.
Discipline: Reservoir modelling.
Remarks: Three matrices extracted from the PORES package for reservoir
simulation.
Accession: Summer 1980.

MATRIX CHARACTERISTICS:

Type: Unsymmetric matrices but with symmetric pattern
Statistics:
Identifier Order Number of entries
PORES 1 30 180
PORES 2 1224 9613
PORES 3 532 3474

PERFORMANCE STATISTICS:

None currently available (please submit some data)

REFERENCES:

None currently available (please submit some data)
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TITLE: PSADMIT Power systems admittance matrices

DESCRIPTION:
Source: Dan Tylavsky, Arizona State University.
Discipline: Power system networks.
Remarks: Four symmetric matrices used in the modelling of power system networks.
Accession: Summer 1985

MATRIX CHARACTERISTICS:

Type: Symmetric positive definite.
Statistics:
Identifier Order Number of entries
662 BUS 662 1568
494 BUS 494 1080
685 BUS 685 1967
1138 BUS 1138 2596

PERFORMANCE STATISTICS:

None currently available (please submit some data)

REFERENCES:

None currently available (please submit some data)
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TITLE: PSMIGR Inter-county migration

DESCRIPTION:

Source: Paul Slater, University of California at Santa Barbara.

Discipline: Demography.

Remarks: Three matrices obtained from records containing counts of persons by
sex and age who migrated across counties in the USA between 1965 and
1970. The 1970 15% sample data were used to tabulate the data. The
first matrix gives the migration flow between counties in 1965 and 1970,
so that entry (i,j) represents the migration from county jin 1965 to county
iin 1970. For the second matrix, intra-county flows have been omitted
(so that the diagonal is zero) and the matrix is in doubly-standardized
(or doubly-stochastic) form. The third matrix is for doubly-standardized
non-null diagonal flows.

Accession: November 1983.

MATRIX CHARACTERISTICS:

Type: Unsymmetric matrices. Quite dense but with a overlying block diagonal
structure.
Statistics:
Identifier Order Number of entries
PSMIGR 1 3140 543162
PSMIGR 2 3140 540022
PSMIGR 3 3140 543162

PERFORMANCE STATISTICS:

None currently available (please submit some data)

REFERENCES:

Slater, P.B. (1983). Migration regions of the United States: two county-level 1965-
70 analyses. Report, Community and Organization Research Institute, University of
California, Santa Barbara, California.
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TITLE: SAYLOR Saylor’s petroleum engineering/reservoir simulation

matrices

DESCRIPTION:

Source:
Discipline:

Remarks:

Accession:

Richard Kendall, Don Peaceman, Herb Stone, and Bill Watts, Exxon.
Oil reservoir modelling

These matrices were provided to Paul Saylor to be used as test cases for
Saylor’s work with Richardson’s iteration with dynamic parameters (see
reference).

The first matrix, SAYLRI1, is a small linear system of 238 unknowns
resulting from a 2D reservoir simulation based on field data. It is a
simple problem and is used as a baseline comparison in Saylor’s work.

The other 2 matrices, SAYLR3 and SAYLR4, result from the 3D
simulation of reservoirs such that the shale poses vertical barriers to fluid
flow and creates an almost random heterogeneity in the coefficient matrix.
There are, in addition, enormous local contrasts in the transmissibility
coefficients of the differential equation. These properties characterize
matrices that are difficult to solve.

(NOTE: The matrix SAYLR3 is almost identical to the matrix
SHERMAN1 which is one of the oil reservoir simulation challenge
matrices contributed to this collection by Andy Sherman of Nolan and
Associates. )

Summer 1984.

MATRIX CHARACTERISTICS:

Type:

Statistics:
Identifier
SAYLR1

SAYLRS3
SAYLR4

Symmetric matrices from partial differential equations.

Description Order Number of entries
(symmetric)

2D Reservoir - 14 by 17 238 1128

3D Reservoir - 10 by 10 by 10 1000 3750

3D Reservoir - 33 by 6 by 18 3564 22316

PERFORMANCE STATISTICS:

Saylor compared Richardson’s iteration with dynamic parameter estimation and the
strongly implicit procedure (SIP) on these problems. Richardson’s iteration was more
effective than SIP. In a private communication Saylor indicated that any preconditioned
conjugate gradient style method would be more effective than SIP or Richardson’s

iteration. See reference for details.
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REFERENCES:

Saylor, P.E. (1981). Richardson’s iteration with dynamic parameters and the SIP
incomplete factorization for the solution of linear systems of equations. Society of
Petroleum Engineers J., 691-708
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TITLE: SHERMAN Oil reservoir simulation challenge matrices

DESCRIPTION:

Source:
Discipline:

Remarks:

Accession:

Andy Sherman, Nolan and Associates, Houston, TX.
Oil reservoir modelling.

In the summer of 1984, Andy Sherman of Nolan and Associates, Houston,
TX, USA,issued a challenge to the petroleum industry and the numerical
analysis community for the fastest solution to a set of 5 systems of
linear equations extracted from oil reservoir modelling programs. These
are those five matrices. Each matrix arises from a three dimensional
simulation model on a NX x NY x NZ grid using a seven-point finite-
difference approximation with NC equations and unknowns per grid
block. The corresponding right-hand side vector is also supplied.

Autumn 1984.

MATRIX CHARACTERISTICS:

Type:

Statistics:

Identifier

SHERMAN1
SHERMAN2
SHERMAN3
SHERMAN4

SHERMANS

Symmetric matrices from partial differential equations.

Description Order Number of entries
(symmetric)

Black oil simulation, shale barriers 1000 3750

(NX=NY=NZ=10,NC=1)

Thermal simulation with steam injection = 1080 23094

(NX=NY=6,NZ=5,NC=5)

IMPES simulation of a black oil model 5005 20033

(NX =35 NY =11, NZ=13,NC=1)

IMPES simulation with flow barriers 1104 3786

(NX =16, NY =23, NZ=3,NC=1)

Fully implicit black oil mode 3312 20793

(NX = 16, NY = 23, NZ = 3, NC = 3 )

PERFORMANCE STATISTICS:

See reference.

REFERENCES:

Simon, H.D. (1985). Incomplete LU preconditioned conjugate-gradient-like methods in
reservoir simulation. Proceeding of the Eighth SPE Symposium on Reservoir Simulation,
Dallas, Feb.10-13, 387-396.
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TITLE: SMTAPE Original Harwell sparse matrix test collection

DESCRIPTION:

Source:
Discipline:

Remarks:

Accession:

Harwell Laboratory, England.
Variety of disciplines .. see table below.

A collection of sparse matrices was begun by Curtis and Reid at Harwell in
the early 1970’s and was later extended by Duff into the present collection.
These 36 matrices and matrix patterns come from a wide range of
disciplines. A major objective of the test collection has been to represent
important features of practical problems. Sparse matrix characteristics
(such as average density of entries per row, pattern of the entries,
symmetry, and matrix size) can differ among matrices arising from, for
example, structural analysis, circuit design, or linear programming. The
test problems, though varying widely in their characteristics, have very
distinctive patterns. For the symmetric matrices, we record only the
entries on and below the diagonal.

Summer 1978.

MATRIX CHARACTERISTICS:

Type:

Statistics:

Identifier

LUNDA
LUNDB
ERIS1176

GENT113

IBM32

CURTIS54

WILL57

WILL199

Various structures, see table.

Order Number Description

of entries

147 1298 Finite-element stiffness and mass matrices of

147 1294 generalized eigenvalue problem (T. Johansson
of Lunds Datacentral, Lund, Sweden)

1176 9864 Pattern of large electrical network (A. M.

Erisman, Boeing Computer Services, Seattle,
USA)

113 655 Pattern of a matrix arising from a statistical
application (W. M. Gentleman, Waterloo,
Canada)

32 126 Pattern of matrix advertising 1971 IBM
conference on sparse matrices

54 291 Pattern of matrix from the solution of a stiff set
of biochemical ordinary differential equations
(A. R. Curtis, Harwell, England)

57 281 Pattern of Jacobian matrix associated

with an emitter-follower-current switch circuit
(Willoughby 1971)

199 701 Pattern of a  stress-analysis  matrix
(Willoughby 1971)
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Identifier Order Number Description

of entries

ASH292 292 1250 Patterns of normal matrices associated with

ASHS85 85 304 least-squares adjustment of survey
data (V.Ashkenazi, Nottingham University,
England)

ARC130 130 1282 Jacobian matrix of a set of ordinary differential
equations associated with a laser problem (A.
R. Curtis, Harwell, England)

SHL O 663 1687 Basis matrices obtained at various stages of

SHL 200 663 1726 the application of the simplex method to

SHL 400 663 1712 two linear programming problems (M. A.

STR 0 363 2454 Saunders, Systems Optimization Laboratory,

STR 200 363 3068 Stanford University, USA)

STR 400 363 3157

STR 600 363 3279

BP 0 822 3276

BP 200 822 3802

BP 400 822 4028

BP 600 822 4172

BP 800 822 4534

BP 1000 822 4661

BP 1200 822 4726

BP 1400 822 4790

BP 1600 822 4841

ASH?219 219x 85 438 Surveys of United Kingdom and Holland (V.

ASH958 958 x 292 1916 Ashkenazi, Nottingham University, England)

ASH331 331 x 104 662

ASHG608 608 x 188 1216

ABB313 313 x 176 1557 Survey of Sudan (M. Abbas, Newcastle
University, England)

FS 541 1 541 4285 Four matrices having the same pattern

FS 541 2 but varying conditioning, which arose at

FS 541 3 different stages of FACSIMILE (a stiff ODE

FS 541 4 package) in solving an atmospheric pollution

problem involving chemical kinetics and two-

dimensional transport (A. R. Curtis, Harwell,
England)

PERFORMANCE STATISTICS:

See references.
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REFERENCES:

Duff, I.S. and Reid, J.K. (1974). A comparison of sparsity orderings for obtaining a
pivotal sequence in Gaussian elimination. J.Inst. Maths. Applics. 14, 281-291.

Duff, I.S. and Reid, J.K. (1979). Performance evaluation of codes for sparse matrix
problems. In Performance evaluation of numerical software, L.D. Fosdick (ed.), North
Holland, Amsterdam, New York, and London, 121-135.

Duff, I.S., Erisman, A.M., and Reid, J.K. (1986). Direct Methods for Sparse Matrices.
Oxford University Press.

Erisman, A.M., Grimes, R.G., Lewis, J.G., Poole, W.G. Jr., and Simon, H.D. (1987).
Evaluation of orderings for unsymmetric sparse matrices. SIAM J.Sci.Stat. Comput. T,
600-624.

Willoughby, R.A. (1971). Sparse matrix algorithms and their relation to problem classes
and computer architecture. In Large sparse sets of linear equations, J.K. Reid (ed.),
Academic Press, New York and London, 255-277.
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TITLE: STEAM Enhanced oil recovery

DESCRIPTION:
Source: Roger Grimes, Boeing Computer Services, Seattle, Washington.
Discipline: Oil recovery
Remarks: These three matrices were extracted from a program simulating enhanced

oil recovery using injected steam.

Matrix STEAMI represents a finite-difference discretization of a 4 by 4
by 5 grid with 3 variables at each grid point.

Matrix STEAM?2 represents a finite-difference discretization of a 5 by 5
by 6 grid with 4 variables at each grid point.

Matrix STEAM3 represents a finite-difference discretization of a one
dimensional grid with 20 grid points and 4 variables at each grid point.

Accession: Spring 1983

MATRIX CHARACTERISTICS:

Type: Symmetric positive definite

Statistics:
Identifier Order Number of entries
STEAM1 240 3762
STEAM?2 600 13760
STEAM3 80 928

PERFORMANCE STATISTICS:

None currently available (please submit some data)

REFERENCES:

None currently available (please submit some data)
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TITLE: WATT Petroleum engineering

DESCRIPTION:
Source: John Somerville, Department of Petroleum Engineering, Heriot-Watt
University, Edinburgh, Scotland.
Discipline: Petroleum Engineering
014

Remarks: The values of the coefficients can vary by as much as 10** and the use of

automatic scaling routines were giving singular matrices. Fill-in was also
higher than expected.

Accession: December 1983

MATRIX CHARACTERISTICS:

Type: Unsymmetric but with nearly a narrow band five diagonal structure.
Statistics:

Both matrices are essentially two versions of the same problem.

Identifier Order Number of entries
WATT 1 1856 11360
WATT 2 1865 11550

PERFORMANCE STATISTICS:

See remarks

REFERENCES:

None currently available (please submit some data)
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LNSP3937, 58 PORES 2, 70
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PSMIGR 2, 72
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