
User Guide for SuiteSparse:GraphBLAS

Timothy A. Davis
davis@tamu.edu, Texas A&M University.

http://suitesparse.com

https://people.engr.tamu.edu/davis

https://twitter.com/DocSparse

VERSION 7.3.2, Nov 12, 2022

Abstract

SuiteSparse:GraphBLAS is a full implementation of the Graph-
BLAS standard, which defines a set of sparse matrix operations on
an extended algebra of semirings using an almost unlimited variety
of operators and types. When applied to sparse adjacency matrices,
these algebraic operations are equivalent to computations on graphs.
GraphBLAS provides a powerful and expressive framework for creat-
ing high-performance graph algorithms based on the elegant mathe-
matics of sparse matrix operations on a semiring.

When compared with MATLAB R2021a, some methods in Graph-
BLAS are up to a million times faster than MATLAB, even when using
the same syntax. Typical speedups are in the range 2x to 30x. The
statement C(M)=A when using MATLAB sparse matrices takes O(e2)
time where e is the number of entries in C. GraphBLAS can perform
the same computation with the exact same syntax, but in O(e log e)
time (or O(e) in some cases), and in practice that means GraphBLAS
can compute C(M)=A for a large problem in under a second, while
MATLAB takes about 4 to 5 days.

SuiteSparse:GraphBLAS is under the Apache-2.0 license.

1

http://suitesparse.com
https://people.engr.tamu.edu/davis
https://twitter.com/DocSparse

Contents

1 Introduction 11

2 Basic Concepts 12
2.1 Graphs and sparse matrices . 12
2.2 Overview of GraphBLAS methods and operations 14
2.3 The accumulator and the mask . 17
2.4 Typecasting . 21
2.5 Notation and list of GraphBLAS operations 22

3 Interfaces to MATLAB, Octave, Python, Julia, Java 24
3.1 MATLAB/Octave Interface . 24
3.2 Python Interface . 25
3.3 Julia Interface . 25
3.4 Java Interface . 25

4 Performance of MATLAB versus GraphBLAS 26

5 GraphBLAS Context and Sequence 28
5.1 GrB Index: the GraphBLAS integer 30
5.2 GrB init: initialize GraphBLAS . 30
5.3 GrB getVersion: determine the C API Version 32
5.4 GxB init: initialize with alternate malloc 33
5.5 GrB Info: status code returned by GraphBLAS 34
5.6 GrB error: get more details on the last error 35
5.7 GrB finalize: finish GraphBLAS . 37

6 GraphBLAS Objects and their Methods 38
6.1 The GraphBLAS type: GrB Type 39

6.1.1 GrB Type new: create a user-defined type 40
6.1.2 GxB Type new: create a user-defined type (with name and

definition) . 41
6.1.3 GrB Type wait: wait for a type 42
6.1.4 GxB Type size: return the size of a type 42
6.1.5 GxB Type name: return the name of a type 43
6.1.6 GxB Type from name: return the type from its name 44
6.1.7 GrB Type free: free a user-defined type 45

6.2 GraphBLAS unary operators: GrB UnaryOp, z = f(x) 46
6.2.1 GrB UnaryOp new: create a user-defined unary operator . . 50

2

6.2.2 GxB UnaryOp new: create a named user-defined unary oper-
ator . 51

6.2.3 GrB UnaryOp wait: wait for a unary operator 51
6.2.4 GxB UnaryOp ztype name: return the name of the type of z 52
6.2.5 GxB UnaryOp xtype name: return the name of the type of x 52
6.2.6 GrB UnaryOp free: free a user-defined unary operator 52

6.3 GraphBLAS binary operators: GrB BinaryOp, z = f(x, y) 53
6.3.1 GrB BinaryOp new: create a user-defined binary operator . . 58
6.3.2 GxB BinaryOp new: create a named user-defined binary op-

erator . 59
6.3.3 GrB BinaryOp wait: wait for a binary operator 60
6.3.4 GxB BinaryOp ztype name: return the name of the type of z 60
6.3.5 GxB BinaryOp xtype name: return the name of the type of x 60
6.3.6 GxB BinaryOp ytype name: return the name of the type of y 60
6.3.7 GrB BinaryOp free: free a user-defined binary operator . . . 61
6.3.8 ANY and PAIR (ONEB) operators 61

6.4 GraphBLAS IndexUnaryOp operators: GrB IndexUnaryOp 63
6.4.1 GrB IndexUnaryOp new: create a user-defined index-unary

operator . 65
6.4.2 GxB IndexUnaryOp new: create a named user-defined index-

unary operator . 65
6.4.3 GrB IndexUnaryOp wait: wait for an index-unary operator . 66
6.4.4 GxB IndexUnaryOp ztype name: return the name of the type

of z . 66
6.4.5 GxB IndexUnaryOp xtype name: return the name of the type

of x . 66
6.4.6 GxB IndexUnaryOp ytype name: return the name of the type

of scalar y . 67
6.4.7 GrB IndexUnaryOp free: free a user-defined index-unary op-

erator . 67
6.5 GraphBLAS monoids: GrB Monoid 68

6.5.1 GrB Monoid new: create a monoid 71
6.5.2 GrB Monoid wait: wait for a monoid 71
6.5.3 GxB Monoid terminal new: create a monoid with terminal . 72
6.5.4 GxB Monoid operator: return the monoid operator 73
6.5.5 GxB Monoid identity: return the monoid identity 73
6.5.6 GxB Monoid terminal: return the monoid terminal value . . 74
6.5.7 GrB Monoid free: free a monoid 74

6.6 GraphBLAS semirings: GrB Semiring 75
6.6.1 GrB Semiring new: create a semiring 75

3

6.6.2 GrB Semiring wait: wait for a semiring 78
6.6.3 GxB Semiring add: return the additive monoid of a semiring 78
6.6.4 GxB Semiring multiply: return multiply operator of a semiring 78
6.6.5 GrB Semiring free: free a semiring 78

6.7 GraphBLAS scalars: GrB Scalar . 80
6.7.1 GrB Scalar new: create a scalar 80
6.7.2 GrB Scalar wait: wait for a scalar 80
6.7.3 GrB Scalar dup: copy a scalar 81
6.7.4 GrB Scalar clear: clear a scalar of its entry 81
6.7.5 GrB Scalar nvals: return the number of entries in a scalar . 82
6.7.6 GxB Scalar type name: return name of the type of a scalar . 82
6.7.7 GrB Scalar setElement: set the single entry of a scalar . . . 82
6.7.8 GrB Scalar extractElement: get the single entry from a scalar 83
6.7.9 GxB Scalar memoryUsage: memory used by a scalar 83
6.7.10 GrB Scalar free: free a scalar 83

6.8 GraphBLAS vectors: GrB Vector 84
6.8.1 GrB Vector new: create a vector 85
6.8.2 GrB Vector wait: wait for a vector 85
6.8.3 GrB Vector dup: copy a vector 86
6.8.4 GrB Vector clear: clear a vector of all entries 86
6.8.5 GrB Vector size: return the size of a vector 87
6.8.6 GrB Vector nvals: return the number of entries in a vector . 87
6.8.7 GxB Vector type name: return name of the type of a vector 87
6.8.8 GrB Vector build: build a vector from a set of tuples 88
6.8.9 GxB Vector build Scalar: build a vector from a set of tuples 88
6.8.10 GrB Vector setElement: add an entry to a vector 90
6.8.11 GrB Vector extractElement: get an entry from a vector . . . 90
6.8.12 GxB Vector isStoredElement: check if entry present in vector 90
6.8.13 GrB Vector removeElement: remove an entry from a vector . 91
6.8.14 GrB Vector extractTuples: get all entries from a vector . . . 91
6.8.15 GrB Vector resize: resize a vector 91
6.8.16 GxB Vector diag: extract a diagonal from a matrix 92
6.8.17 GxB Vector iso: query iso status of a vector 92
6.8.18 GxB Vector memoryUsage: memory used by a vector 93
6.8.19 GrB Vector free: free a vector 93

6.9 GraphBLAS matrices: GrB Matrix 94
6.9.1 GrB Matrix new: create a matrix 95
6.9.2 GrB Matrix wait: wait for a matrix 96
6.9.3 GrB Matrix dup: copy a matrix 97
6.9.4 GrB Matrix clear: clear a matrix of all entries 97

4

6.9.5 GrB Matrix nrows: return the number of rows of a matrix . 98
6.9.6 GrB Matrix ncols: return the number of columns of a matrix 98
6.9.7 GrB Matrix nvals: return the number of entries in a matrix . 98
6.9.8 GxB Matrix type name: return name of the type of a matrix 99
6.9.9 GrB Matrix build: build a matrix from a set of tuples 99
6.9.10 GxB Matrix build Scalar: build a matrix from a set of tuples 101
6.9.11 GrB Matrix setElement: add an entry to a matrix 102
6.9.12 GrB Matrix extractElement: get an entry from a matrix . . . 104
6.9.13 GxB Matrix isStoredElement: check if entry present in matrix 105
6.9.14 GrB Matrix removeElement: remove an entry from a matrix 105
6.9.15 GrB Matrix extractTuples: get all entries from a matrix . . . 105
6.9.16 GrB Matrix resize: resize a matrix 106
6.9.17 GxB Matrix reshape: reshape a matrix 107
6.9.18 GxB Matrix reshapeDup: reshape a matrix 108
6.9.19 GxB Matrix concat: concatenate matrices 108
6.9.20 GxB Matrix split: split a matrix 109
6.9.21 GrB Matrix diag: construct a diagonal matrix 109
6.9.22 GxB Matrix diag: build a diagonal matrix 110
6.9.23 GxB Matrix iso: query iso status of a matrix 110
6.9.24 GxB Matrix memoryUsage: memory used by a matrix 111
6.9.25 GrB Matrix free: free a matrix 111

6.10 Serialize/deserialize methods . 112
6.10.1 GxB Vector serialize: serialize a vector 113
6.10.2 GxB Vector deserialize: deserialize a vector 114
6.10.3 GrB Matrix serializeSize: return size of serialized matrix . . 114
6.10.4 GrB Matrix serialize: serialize a matrix 115
6.10.5 GxB Matrix serialize: serialize a matrix 115
6.10.6 GrB Matrix deserialize: deserialize a matrix 116
6.10.7 GxB Matrix deserialize: deserialize a matrix 116
6.10.8 GxB deserialize type name: name of the type of a blob . . . 117

6.11 GraphBLAS pack/unpack: using move semantics 118
6.11.1 GxB Vector pack CSC pack a vector in CSC form 121
6.11.2 GxB Vector unpack CSC: unpack a vector in CSC form . . . 122
6.11.3 GxB Vector pack Bitmap pack a vector in bitmap form . . . 123
6.11.4 GxB Vector unpack Bitmap: unpack a vector in bitmap form 124
6.11.5 GxB Vector pack Full pack a vector in full form 125
6.11.6 GxB Vector unpack Full: unpack a vector in full form 125
6.11.7 GxB Matrix pack CSR: pack a CSR matrix 126
6.11.8 GxB Matrix unpack CSR: unpack a CSR matrix 129
6.11.9 GxB Matrix pack CSC: pack a CSC matrix 130

5

6.11.10GxB Matrix unpack CSC: unpack a CSC matrix 132
6.11.11GxB Matrix pack HyperCSR: pack a HyperCSR matrix . . . 133
6.11.12GxB Matrix unpack HyperCSR: unpack a HyperCSR matrix 135
6.11.13GxB Matrix pack HyperCSC: pack a HyperCSC matrix . . . 136
6.11.14GxB Matrix unpack HyperCSC: unpack a HyperCSC matrix 137
6.11.15GxB unpack HyperHash: unpack the hypersparse hash . . . 138
6.11.16GxB pack HyperHash: pack the hypersparse hash 139
6.11.17GxB Matrix pack BitmapR: pack a BitmapR matrix 140
6.11.18GxB Matrix unpack BitmapR: unpack a BitmapR matrix . . 142
6.11.19GxB Matrix pack BitmapC: pack a BitmapC matrix 143
6.11.20GxB Matrix unpack BitmapC: unpack a BitmapC matrix . . 143
6.11.21GxB Matrix pack FullR: pack a FullR matrix 144
6.11.22GxB Matrix unpack FullR: unpack a FullR matrix 144
6.11.23GxB Matrix pack FullC: pack a FullC matrix 145
6.11.24GxB Matrix unpack FullC: unpack a FullC matrix 145

6.12 GraphBLAS import/export: using copy semantics 146
6.12.1 GrB Matrix import: import a matrix 147
6.12.2 GrB Matrix export: export a matrix 148
6.12.3 GrB Matrix exportSize: determine size of export 149
6.12.4 GrB Matrix exportHint: determine best export format 149

6.13 Sorting methods . 150
6.13.1 GxB Vector sort: sort a vector 150
6.13.2 GxB Matrix sort: sort the rows/columns of a matrix 150

6.14 GraphBLAS descriptors: GrB Descriptor 152
6.14.1 GrB Descriptor new: create a new descriptor 157
6.14.2 GrB Descriptor wait: wait for a descriptor 157
6.14.3 GrB Descriptor set: set a parameter in a descriptor 158
6.14.4 GxB Desc set: set a parameter in a descriptor 159
6.14.5 GxB Desc get: get a parameter from a descriptor 159
6.14.6 GrB Descriptor free: free a descriptor 159
6.14.7 GrB DESC *: built-in descriptors 160

6.15 GrB free: free any GraphBLAS object 161

7 The mask, accumulator, and replace option 162

8 SuiteSparse:GraphBLAS Options 165
8.1 OpenMP parallelism . 168
8.2 Storing a matrix by row or by column 170
8.3 Hypersparse matrices . 171
8.4 Bitmap matrices . 173

6

8.5 Parameter types . 174
8.6 GxB BURBLE, GxB PRINTF, GxB FLUSH: diagnostics 177
8.7 Other global options . 178
8.8 GxB Global Option set: set a global option 178
8.9 GxB Matrix Option set: set a matrix option 179
8.10 GxB Desc set: set a GrB Descriptor value 180
8.11 GxB Global Option get: retrieve a global option 181
8.12 GxB Matrix Option get: retrieve a matrix option 183
8.13 GxB Desc get: retrieve a GrB Descriptor value 184
8.14 Summary of usage of GxB set and GxB get 184

9 SuiteSparse:GraphBLAS Colon and Index Notation 187

10 GraphBLAS Operations 192
10.1 GrB mxm: matrix-matrix multiply 193
10.2 GrB vxm: vector-matrix multiply 195
10.3 GrB mxv: matrix-vector multiply 196
10.4 GrB eWiseMult: element-wise operations, set intersection 197

10.4.1 GrB Vector eWiseMult: element-wise vector multiply 198
10.4.2 GrB Matrix eWiseMult: element-wise matrix multiply 199

10.5 GrB eWiseAdd: element-wise operations, set union 200
10.5.1 GrB Vector eWiseAdd: element-wise vector addition 201
10.5.2 GrB Matrix eWiseAdd: element-wise matrix addition 202

10.6 GxB eWiseUnion: element-wise operations, set union 203
10.6.1 GxB Vector eWiseUnion: element-wise vector addition . . . 204
10.6.2 GxB Matrix eWiseUnion: element-wise matrix addition . . . 205

10.7 GrB extract: submatrix extraction 206
10.7.1 GrB Vector extract: extract subvector from vector 206
10.7.2 GrB Matrix extract: extract submatrix from matrix 207
10.7.3 GrB Col extract: extract column vector from matrix 208

10.8 GxB subassign: submatrix assignment 209
10.8.1 GxB Vector subassign: assign to a subvector 209
10.8.2 GxB Matrix subassign: assign to a submatrix 210
10.8.3 GxB Col subassign: assign to a sub-column of a matrix . . . 212
10.8.4 GxB Row subassign: assign to a sub-row of a matrix 212
10.8.5 GxB Vector subassign <type>: assign a scalar to a subvector 213
10.8.6 GxB Matrix subassign <type>: assign a scalar to a submatrix 214

10.9 GrB assign: submatrix assignment 215
10.9.1 GrB Vector assign: assign to a subvector 215
10.9.2 GrB Matrix assign: assign to a submatrix 216

7

10.9.3 GrB Col assign: assign to a sub-column of a matrix 217
10.9.4 GrB Row assign: assign to a sub-row of a matrix 218
10.9.5 GrB Vector assign <type>: assign a scalar to a subvector . . 219
10.9.6 GrB Matrix assign <type>: assign a scalar to a submatrix . 219

10.10Duplicate indices in GrB assign and GxB subassign 221
10.11Comparing GrB assign and GxB subassign 224

10.11.1Example . 229
10.11.2Performance of GxB subassign, GrB assign and GrB * setElement230

10.12GrB apply: apply a unary, binary, or index-unary operator 233
10.12.1GrB Vector apply: apply a unary operator to a vector 234
10.12.2GrB Matrix apply: apply a unary operator to a matrix . . . 235
10.12.3GrB Vector apply BinaryOp1st: apply a binary operator to a

vector; 1st scalar binding 236
10.12.4GrB Vector apply BinaryOp2nd: apply a binary operator to a

vector; 2nd scalar binding 236
10.12.5GrB Vector apply IndexOp: apply an index-unary operator to

a vector . 237
10.12.6GrB Matrix apply BinaryOp1st: apply a binary operator to a

matrix; 1st scalar binding 237
10.12.7GrB Matrix apply BinaryOp2nd: apply a binary operator to

a matrix; 2nd scalar binding 238
10.12.8GrB Matrix apply IndexOp: apply an index-unary operator

to a matrix . 238
10.13GrB select: select entries based on an index-unary operator 239

10.13.1GrB Vector select: select entries from a vector 239
10.13.2GrB Matrix select: apply a select operator to a matrix . . . 240

10.14GrB reduce: reduce to a vector or scalar 242
10.14.1GrB Matrix reduce Monoid reduce a matrix to a vector . . . 242
10.14.2GrB Vector reduce <type>: reduce a vector to a scalar . . . 243
10.14.3GrB Matrix reduce <type>: reduce a matrix to a scalar . . . 245

10.15GrB transpose: transpose a matrix 246
10.16GrB kronecker: Kronecker product 247

11 Printing GraphBLAS objects 248
11.1 GxB fprint: Print a GraphBLAS object to a file 250
11.2 GxB print: Print a GraphBLAS object to stdout 250
11.3 GxB Type fprint: Print a GrB Type 250
11.4 GxB UnaryOp fprint: Print a GrB UnaryOp 251
11.5 GxB BinaryOp fprint: Print a GrB BinaryOp 251
11.6 GxB IndexUnaryOp fprint: Print a GrB IndexUnaryOp 251

8

11.7 GxB Monoid fprint: Print a GrB Monoid 252
11.8 GxB Semiring fprint: Print a GrB Semiring 252
11.9 GxB Descriptor fprint: Print a GrB Descriptor 252
11.10GxB Matrix fprint: Print a GrB Matrix 253
11.11GxB Vector fprint: Print a GrB Vector 253
11.12GxB Scalar fprint: Print a GrB Scalar 253
11.13Performance and portability considerations 254

12 Matrix and Vector iterators 255
12.1 Creating and destroying an iterator 257
12.2 Attaching an iterator to a matrix or vector 257
12.3 Seeking to an arbitrary position . 258
12.4 Advancing to the next position . 261
12.5 Accessing the indices of the current entry 263
12.6 Accessing the value of the current entry 265
12.7 Example: row iterator for a matrix 267
12.8 Example: column iterator for a matrix 268
12.9 Example: entry iterator for a matrix 269
12.10Example: vector iterator . 269
12.11Performance . 270

13 Iso-Valued Matrices and Vectors 271
13.1 Using iso matrices and vectors in a graph algorithm 271
13.2 Iso matrices from matrix multiplication 274
13.3 Iso matrices from eWiseMult and kronecker 275
13.4 Iso matrices from eWiseAdd . 275
13.5 Iso matrices from eWiseUnion . 276
13.6 Reducing iso matrices to a scalar or vector 276
13.7 Iso matrices from apply . 277
13.8 Iso matrices from select . 277
13.9 Iso matrices from assign and subassign 278

13.9.1 Assignment with no accumulator operator 278
13.9.2 Assignment with an accumulator operator 279

13.10Iso matrices from build methods 280
13.11Iso matrices from other methods 280
13.12Iso matrices not exploited . 281

14 Performance 282
14.1 The burble is your friend . 282
14.2 Data types and typecasting . 282
14.3 Matrix data structures: sparse, hypersparse, bitmap, or full 282

9

14.4 Matrix formats: by row or by column, or using the transpose of a
matrix . 283

14.5 Push/pull optimization . 285
14.6 Computing with full matrices and vectors 285
14.7 Iso-valued matrices and vectors . 287
14.8 User-defined types and operators 287
14.9 About NUMA systems . 287

15 Examples 289
15.1 LAGraph . 289
15.2 Creating a random matrix . 289
15.3 Creating a finite-element matrix 291
15.4 Reading a matrix from a file . 294
15.5 User-defined types and operators 297
15.6 User applications using OpenMP or other threading models 298

16 Compiling and Installing SuiteSparse:GraphBLAS 299
16.1 On Linux and Mac . 299
16.2 More details on the Mac . 301
16.3 On the ARM64 architecture . 302
16.4 On Microsoft Windows . 302
16.5 Compiling the MATLAB/Octave interface (for Octave) 304
16.6 Compiling the MATLAB/Octave interface (for MATLAB) 307
16.7 Setting the C flags and using CMake 308
16.8 Using a plain makefile . 309
16.9 Running the Demos . 309
16.10Installing SuiteSparse:GraphBLAS 310
16.11Linking issues after installation . 310
16.12Running the tests . 311
16.13Cleaning up . 311

17 Release Notes 311
17.1 Regarding historical and deprecated functions and symbols 324

18 Acknowledgments 325

19 Additional Resources 326

References 326

10

1 Introduction

The GraphBLAS standard defines sparse matrix and vector operations on an
extended algebra of semirings. The operations are useful for creating a wide
range of graph algorithms.

For example, consider the matrix-matrix multiplication, C = AB. Sup-
pose A and B are sparse n-by-n Boolean adjacency matrices of two undi-
rected graphs. If the matrix multiplication is redefined to use logical AND
instead of scalar multiply, and if it uses the logical OR instead of add, then
the matrix C is the sparse Boolean adjacency matrix of a graph that has an
edge (i, j) if node i in A and node j in B share any neighbor in common. The
OR-AND pair forms an algebraic semiring, and many graph operations like
this one can be succinctly represented by matrix operations with different
semirings and different numerical types. GraphBLAS provides a wide range
of built-in types and operators, and allows the user application to create new
types and operators without needing to recompile the GraphBLAS library.

For more details on SuiteSparse:GraphBLAS, and its use in LAGraph,
see [Dav19, Dav22, Dav18, DAK19, ACD+20, MDK+19].

A full and precise definition of the GraphBLAS specification is pro-
vided in The GraphBLAS C API Specification by Aydın Buluç, Timothy
Mattson, Scott McMillan, José Moreira, Carl Yang, and Benjamin Brock
[BMM+17a, BMM+17b, BBM+21], based on GraphBLAS Mathematics by
Jeremy Kepner [Kep17]. The GraphBLAS C API Specification is available
at http://graphblas.org. This version of SuiteSparse:GraphBLAS conforms to
Version 2.0.0 (Nov 15, 2021) of The GraphBLAS C API specification.

In this User Guide, aspects of the GraphBLAS specification that would be
true for any GraphBLAS implementation are simply called “GraphBLAS.”
Details unique to this particular implementation are referred to as Suite-
Sparse:GraphBLAS.

All functions, objects, and macros with a name of the form GxB_* are
SuiteSparse-specific extensions to the specification.

SPEC: Non-obvious deviations or additions to the GraphBLAS C API
Specification are highlighted in a box like this one, except for GxB* meth-
ods. They are not highlighted since their name makes it clear that they
are extensions to the GraphBLAS C API.

11

http://graphblas.org

2 Basic Concepts

Since the GraphBLAS C API Specification provides a precise definition of
GraphBLAS, not every detail of every function is provided here. For example,
some error codes returned by GraphBLAS are self-explanatory, but since a
specification must precisely define all possible error codes a function can
return, these are listed in detail in the GraphBLAS C API Specification.
However, including them here is not essential and the additional information
on the page might detract from a clearer view of the essential features of the
GraphBLAS functions.

This User Guide also assumes the reader is familiar with MATLAB/Octave.
MATLAB supports only the conventional plus-times semiring on sparse dou-
ble and complex matrices, but a MATLAB-like notation easily extends to the
arbitrary semirings used in GraphBLAS. The matrix multiplication in the ex-
ample in the Introduction can be written in MATLAB notation as C=A*B,
if the Boolean OR-AND semiring is understood. Relying on a MATLAB-like
notation allows the description in this User Guide to be expressive, easy to
understand, and terse at the same time. The GraphBLAS C API Specifi-
cation also makes use of some MATLAB-like language, such as the colon
notation.

MATLAB notation will always appear here in fixed-width font, such as
C=A*B(:,j). In standard mathematical notation it would be written as the
matrix-vector multiplication C = Abj where bj is the jth column of the ma-
trix B. The GraphBLAS standard is a C API and SuiteSparse:GraphBLAS
is written in C, and so a great deal of C syntax appears here as well, also
in fixed-width font. This User Guide alternates between all three styles as
needed.

2.1 Graphs and sparse matrices

Graphs can be huge, with many nodes and edges. A dense adjacency matrix
A for a graph of n nodes takes O(n2) memory, which is impossible if n is,
say, a million. Let |A| denote the number of entries in a matrix. Most graphs
arising in practice are sparse, however, with only |A| = O(n) edges, where
|A| denotes the number of edges in the graph, or the number of explicit
entries present in the data structure for the matrix A. Sparse graphs with
millions of nodes and edges can easily be created by representing them as
sparse matrices, where only explicit values need to be stored. Some graphs

12

are hypersparse, with |A| << n. SuiteSparse:GraphBLAS supports three
kinds of sparse matrix formats: a regular sparse format, taking O(n + |A|)
space, a hypersparse format taking only O(|A|) space, and a bitmap form,
taking O(n2) space. Full matrices are also represented in O(n2) space. Using
its hypersparse format, creating a sparse matrix of size n-by-n where n = 260

(about 1018) can be done on quite easily on a commodity laptop, limited only
by |A|. To the GraphBLAS user application, all matrices look alike, since
these formats are opaque, and SuiteSparse:GraphBLAS switches between
them at will.

A sparse matrix data structure only stores a subset of the possible n2

entries, and it assumes the values of entries not stored have some implicit
value. In conventional linear algebra, this implicit value is zero, but it differs
with different semirings. Explicit values are called entries and they appear
in the data structure. The pattern (also called the structure) of a matrix
defines where its explicit entries appear. It will be referenced in one of two
equivalent ways. It can be viewed as a set of indices (i, j), where (i, j) is in the
pattern of a matrix A if A(i, j) is an explicit value. It can also be viewed as
a Boolean matrix S where S(i, j) is true if (i, j) is an explicit entry and false
otherwise. In MATLAB notation, S=spones(A) or S=(A~=0), if the implicit
value is zero. The (i,j) pairs, and their values, can also be extracted from
the matrix via the MATLAB expression [I,J,X]=find(A), where the kth
tuple (I(k),J(k),X(k)) represents the explicit entry A(I(k),J(k)), with
numerical value X(k) equal to aij, with row index i=I(k) and column index
j=J(k).

The entries in the pattern of A can take on any value, including the im-
plicit value, whatever it happens to be. This differs slightly from MATLAB,
which always drops all explicit zeros from its sparse matrices. This is a minor
difference but GraphBLAS cannot drop explicit zeros. For example, in the
max-plus tropical algebra, the implicit value is negative infinity, and zero
has a different meaning. Here, the MATLAB notation used will assume that
no explicit entries are ever dropped because their explicit value happens to
match the implicit value.

Graph Algorithms in the Language on Linear Algebra, Kepner and Gilbert,
eds., provides a framework for understanding how graph algorithms can be
expressed as matrix computations [KG11]. For additional background on
sparse matrix algorithms, see also [Dav06] and [DRSL16].

13

2.2 Overview of GraphBLAS methods and operations

GraphBLAS provides a collection of methods to create, query, and free its of
objects: sparse matrices, sparse vectors, scalars, types, operators, monoids,
semirings, and a descriptor object used for parameter settings. Details are
given in Section 6. Once these objects are created they can be used in
mathematical operations (not to be confused with the how the term operator
is used in GraphBLAS). A short summary of these operations and their
nearest MATLAB/Octave analog is given in the table below.

operation approximate MATLAB/Octave analog
matrix multiplication C=A*B

element-wise operations C=A+B and C=A.*B

reduction to a vector or scalar s=sum(A)

apply unary operator C=-A

transpose C=A’

submatrix extraction C=A(I,J)

submatrix assignment C(I,J)=A

select C=tril(A)

GraphBLAS can do far more than what MATLAB/Octave can do in
these rough analogs, but the list provides a first step in describing what
GraphBLAS can do. Details of each GraphBLAS operation are given in
Section 10. With this brief overview, the full scope of GraphBLAS extensions
of these operations can now be described.

SuiteSparse:GraphBLAS has 13 built-in scalar types: Boolean, single and
double precision floating-point (real and complex), and 8, 16, 32, and 64-bit
signed and unsigned integers. In addition, user-defined scalar types can be
created from nearly any C typedef, as long as the entire type fits in a fixed-
size contiguous block of memory (of arbitrary size). All of these types can
be used to create GraphBLAS sparse matrices, vectors, or scalars.

The scalar addition of conventional matrix multiplication is replaced with
a monoid. A monoid is an associative and commutative binary operator
z=f(x,y) where all three domains are the same (the types of x, y, and z), and
where the operator has an identity value id such that f(x,id)=f(id,x)=x.
Performing matrix multiplication with a semiring uses a monoid in place of
the “add” operator, scalar addition being just one of many possible monoids.
The identity value of addition is zero, since x + 0 = 0 + x = x. Graph-
BLAS includes many built-in operators suitable for use as a monoid: min

14

(with an identity value of positive infinity), max (whose identity is negative
infinity), add (identity is zero), multiply (with an identity of one), four logi-
cal operators: AND, OR, exclusive-OR, and Boolean equality (XNOR), four
bitwise operators (AND, OR, XOR, and XNOR), and the ANY operator See
Section 6.3.8 for more details on the unusual ANY operator. User-created
monoids can be defined with any associative and commutative operator that
has an identity value.

Finally, a semiring can use any built-in or user-defined binary operator
z=f(x,y) as its “multiply” operator, as long as the type of its output, z
matches the type of the semiring’s monoid. The user application can create
any semiring based on any types, monoids, and multiply operators, as long
these few rules are followed.

Just considering built-in types and operators, GraphBLAS can perform
C=A*B in thousands of unique semirings. With typecasting, any of these
semirings can be applied to matrices C, A, and B of 13 predefined types, in
any combination. This results in millions of possible kinds of sparse matrix
multiplication supported by GraphBLAS, and this is counting just built-in
types and operators. By contrast, MATLAB provides just two semirings
for its sparse matrix multiplication C=A*B: plus-times-double and plus-times-
complex, not counting the typecasting that MATLAB does when multiplying
a real matrix times a complex matrix.

A monoid can also be used in a reduction operation, like s=sum(A) in
MATLAB. MATLAB provides the plus, times, min, and max reductions of
a real or complex sparse matrix as s=sum(A), s=prod(A), s=min(A), and
s=max(A), respectively. In GraphBLAS, any monoid can be used (min, max,
plus, times, AND, OR, exclusive-OR, equality, bitwise operators, or any user-
defined monoid on any user-defined type).

Element-wise operations are also expanded from what can be done in
MATLAB. Consider matrix addition, C=A+B in MATLAB. The pattern of
the result is the set union of the pattern of A and B. In GraphBLAS, any
binary operator can be used in this set-union “addition.” The operator is
applied to entries in the intersection. Entries in A but not B, or visa-versa,
are copied directly into C, without any application of the binary operator.
The accumulator operation for Z = C⊙T described in Section 2.3 is one
example of this set-union application of an arbitrary binary operator.

Consider element-wise multiplication, C=A.*B in MATLAB. The operator
(multiply in this case) is applied to entries in the set intersection, and the
pattern of C just this set intersection. Entries in A but not B, or visa-versa,

15

do not appear in C. In GraphBLAS, any binary operator can be used in this
manner, not just scalar multiplication. The difference between element-wise
“add” and “multiply” is not the operators, but whether or not the pattern of
the result is the set union or the set intersection. In both cases, the operator
is only applied to the set intersection.

Finally, GraphBLAS includes a non-blocking mode where operations can
be left pending, and saved for later. This is very useful for submatrix as-
signment (C(I,J)=A where I and J are integer vectors), or scalar assignment
(C(i,j)=x where i and j are scalar integers). Because of how MATLAB
stores its matrices, adding and deleting individual entries is very costly. For
example, this is very slow in MATLAB, taking O(nz2) time:

A = sparse (m,n) ; % an empty sparse matrix

for k = 1:nz

compute a value x, row index i, and column index j

A (i,j) = x ;

end

The above code is very easy read and simple to write, but exceedingly
slow. In MATLAB, the method below is preferred and is far faster, taking
at most O(|A| log |A|+ n) time. It can easily be a million times faster than
the method above. Unfortunately the second method below is a little harder
to read and a little less natural to write:

I = zeros (nz,1) ;

J = zeros (nz,1) ;

X = zeros (nz,1) ;

for k = 1:nz

compute a value x, row index i, and column index j

I (k) = i ;

J (k) = j ;

X (k) = x ;

end

A = sparse (I,J,X,m,n) ;

GraphBLAS can do both methods. SuiteSparse:GraphBLAS stores its
matrices in a format that allows for pending computations, which are done
later in bulk, and as a result it can do both methods above equally as fast
as the MATLAB sparse function, allowing the user to write simpler code.

16

2.3 The accumulator and the mask

Most GraphBLAS operations can be modified via transposing input matrices,
using an accumulator operator, applying a mask or its complement, and by
clearing all entries the matrix C after using it in the accumulator operator but
before the final results are written back into it. All of these steps are optional,
and are controlled by a descriptor object that holds parameter settings (see
Section 6.14) that control the following options:

• the input matrices A and/or B can be transposed first.

• an accumulator operator can be used, like the plus in the statement
C=C+A*B. The accumulator operator can be any binary operator, and
an element-wise “add” (set union) is performed using the operator.

• an optional mask can be used to selectively write the results to the
output. The mask is a sparse Boolean matrix Mask whose size is the
same size as the result. If Mask(i,j) is true, then the corresponding
entry in the output can be modified by the computation. If Mask(i,j)
is false, then the corresponding in the output is protected and cannot
be modified by the computation. The Mask matrix acts exactly like
logical matrix indexing in MATLAB, with one minor difference: in
GraphBLAS notation, the mask operation is C⟨M⟩ = Z, where the
mask M appears only on the left-hand side. In MATLAB, it would
appear on both sides as C(Mask)=Z(Mask). If no mask is provided, the
Mask matrix is implicitly all true. This is indicated by passing the value
GrB_NULL in place of the Mask argument in GraphBLAS operations.

This process can be described in mathematical notation as:

A = AT, if requested via descriptor (first input option)

B = BT, if requested via descriptor (second input option)
T is computed according to the specific operation
C⟨M⟩ = C⊙T, accumulating and writing the results back via the mask

The application of the mask and the accumulator operator is written as
C⟨M⟩ = C⊙T where Z = C⊙T denotes the application of the accumu-
lator operator, and C⟨M⟩ = Z denotes the mask operator via the Boolean
matrix M. The Accumulator Phase, Z = C⊙T, is performed as follows:

17

Accumulator Phase: compute Z = C⊙T:
if accum is NULL

Z = T
else

Z = C⊙T

The accumulator operator is ⊙ in GraphBLAS notation, or accum in the
code. The pattern of C⊙T is the set union of the patterns of C and T, and
the operator is applied only on the set intersection of C and T. Entries in
neither the pattern of C nor T do not appear in the pattern of Z. That is:

for all entries (i, j) in C ∩T (that is, entries in both C and T)
zij = cij ⊙ tij

for all entries (i, j) in C \T (that is, entries in C but not T)
zij = cij

for all entries (i, j) in T \C (that is, entries in T but not C)
zij = tij

The Accumulator Phase is followed by the Mask/Replace Phase,C⟨M⟩ = Z
as controlled by the GrB_REPLACE and GrB_COMP descriptor options:

Mask/Replace Phase: compute C⟨M⟩ = Z:
if (GrB_REPLACE) delete all entries in C
if Mask is NULL

if (GrB_COMP)
C is not modified

else
C = Z

else
if (GrB_COMP)

C⟨¬M⟩ = Z
else

C⟨M⟩ = Z

Both phases of the accum/mask process are illustrated in MATLAB no-
tation in Figure 1.

A GraphBLAS operation starts with its primary computation, producing
a result T; for matrix multiply, T=A*B, or if A is transposed first, T=A’*B, for
example. Applying the accumulator, mask (or its complement) to obtain the
final result matrix C can be expressed in the MATLAB accum_mask function

18

function C = accum_mask (C, Mask, accum, T, C_replace, Mask_complement)

[m n] = size (C.matrix) ;

Z.matrix = zeros (m, n) ;

Z.pattern = false (m, n) ;

if (isempty (accum))

Z = T ; % no accum operator

else

% Z = accum (C,T), like Z=C+T but with an binary operator, accum

p = C.pattern & T.pattern ; Z.matrix (p) = accum (C.matrix (p), T.matrix (p));

p = C.pattern & ~T.pattern ; Z.matrix (p) = C.matrix (p) ;

p = ~C.pattern & T.pattern ; Z.matrix (p) = T.matrix (p) ;

Z.pattern = C.pattern | T.pattern ;

end

% apply the mask to the values and pattern

C.matrix = mask (C.matrix, Mask, Z.matrix, C_replace, Mask_complement) ;

C.pattern = mask (C.pattern, Mask, Z.pattern, C_replace, Mask_complement) ;

end

function C = mask (C, Mask, Z, C_replace, Mask_complement)

% replace C if requested

if (C_replace)

C (:,:) = 0 ;

end

if (isempty (Mask)) % if empty, Mask is implicit ones(m,n)

% implicitly, Mask = ones (size (C))

if (~Mask_complement)

C = Z ; % this is the default

else

C = C ; % Z need never have been computed

end

else

% apply the mask

if (~Mask_complement)

C (Mask) = Z (Mask) ;

else

C (~Mask) = Z (~Mask) ;

end

end

end

Figure 1: Applying the mask and accumulator, C⟨M⟩ = C⊙T

19

shown in the figure. This function is an exact, fully functional, and nearly-
complete description of the GraphBLAS accumulator/mask operation. The
only aspects it does not consider are typecasting (see Section 2.4), and the
value of the implicit identity (for those, see another version in the Test

folder).
One aspect of GraphBLAS cannot be as easily expressed in a MATLAB

sparse matrix: namely, what is the implicit value of entries not in the pat-
tern? To accommodate this difference in the accum_mask MATLAB func-
tion, each sparse matrix A is represented with its values A.matrix and its
pattern, A.pattern. The latter could be expressed as the sparse matrix
A.pattern=spones(A) or A.pattern=(A~=0) in MATLAB, if the implicit
value is zero. With different semirings, entries not in the pattern can be 1,
+Inf, -Inf, or whatever is the identity value of the monoid. As a result,
Figure 1 performs its computations on two MATLAB matrices: the values in
A.matrix and the pattern in the logical matrix A.pattern. Implicit values
are untouched.

The final computation in Figure 1 with a complemented Mask is easily
expressed in MATLAB as C(~Mask)=Z(~Mask) but this is costly if Mask is
very sparse (the typical case). It can be computed much faster in MATLAB
without complementing the sparse Mask via:

R = Z ; R (Mask) = C (Mask) ; C = R ;

A set of MATLAB functions that precisely compute the C⟨M⟩ = C⊙T
operation according to the full GraphBLAS specification is provided in Suite-
Sparse:GraphBLAS as GB_spec_accum.m, which computes Z = C⊙T, and
GB_spec_mask.m, which computes C⟨M⟩ = Z. SuiteSparse:GraphBLAS in-
cludes a complete list of GB_spec_* functions that illustrate every Graph-
BLAS operation.

The methods in Figure 1 rely heavily on MATLAB’s logical matrix in-
dexing. For those unfamiliar with logical indexing in MATLAB, here is short
summary. Logical matrix indexing in MATLAB is written as A(Mask) where
A is any matrix and Mask is a logical matrix the same size as A. The expression
x=A(Mask) produces a column vector x consisting of the entries of A where
Mask is true. On the left-hand side, logical submatrix assignment A(Mask)=x
does the opposite, copying the components of the vector x into the places in
A where Mask is true. For example, to negate all values greater than 10 using
logical indexing in MATLAB:

20

>> A = magic (4)

A =

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

>> A (A>10) = - A (A>10)

A =

-16 2 3 -13

5 -11 10 8

9 7 6 -12

4 -14 -15 1

In MATLAB, logical indexing with a sparse matrix A and sparse logical
matrix Mask is a built-in method. The Mask operator in GraphBLAS works
identically as sparse logical indexing in MATLAB, but is typically far faster
in SuiteSparse:GraphBLAS than the same operation using MATLAB sparse
matrices.

2.4 Typecasting

If an operator z=f(x) or z=f(x,y) is used with inputs that do not match
its inputs x or y, or if its result z does not match the type of the matrix it
is being stored into, then the values are typecasted. Typecasting in Graph-
BLAS extends beyond just operators. Almost all GraphBLAS methods and
operations are able to typecast their results, as needed.

If one type can be typecasted into the other, they are said to be compat-
ible. All built-in types are compatible with each other. GraphBLAS cannot
typecast user-defined types thus any user-defined type is only compatible
with itself. When GraphBLAS requires inputs of a specific type, or when
one type cannot be typecast to another, the GraphBLAS function returns an
error code, GrB_DOMAIN_MISMATCH (refer to Section 5.6 for a complete list of
error codes). Typecasting can only be done between built-in types, and it
follows the rules of the ANSI C language (not MATLAB) wherever the rules
of ANSI C are well-defined.

However, unlike MATLAB, the ANSI C11 language specification states
that the results of typecasting a float or double to an integer type is not
always defined. In SuiteSparse:GraphBLAS, whenever C leaves the result un-
defined the rules used in MATLAB are followed. In particular +Inf converts
to the largest integer value, -Inf converts to the smallest (zero for unsigned

21

integers), and NaN converts to zero. Positive values outside the range of the
integer are converted to the largest positive integer, and negative values less
than the most negative integer are converted to that most negative inte-
ger. Other than these special cases, SuiteSparse:GraphBLAS trusts the C
compiler for the rest of its typecasting.

Typecasting to bool is fully defined in the C language specification, even
for NaN. The result is false if the value compares equal to zero, and true
otherwise. Thus NaN converts to true. This is unlike MATLAB, which does
not allow a typecast of a NaN to the MATLAB logical type.

SPEC: the GraphBLAS API C Specification states that typecasting fol-
lows the rules of ANSI C. Yet C leaves some typecasting undefined. All
typecasting between built-in types in SuiteSparse:GraphBLAS is pre-
cisely defined, as an extension to the specification.

SPEC: Some functions do not make use of all of their inputs; in par-
ticular the binary operators FIRST, SECOND, and ONEB, and many of the
index unary operators. The Specification requires that the inputs to
these operators must be compatible with (that is, can be typecasted
to) the inputs to the operators, even if those inputs are not used and
no typecasting would ever occur. As an extension to the specification,
SuiteSparse:GraphBLAS does not perform this error check on unused
inputs of built-in operators. For example, the GrB_FIRST_INT64 opera-
tor can be used in GrB_eWiseAdd(C,..,A,B,...) on a matrix B of any
type, including user-defined types. For this case, the matrix A must be
compatible with GrB_INT64.

2.5 Notation and list of GraphBLAS operations

As a summary of what GraphBLAS can do, the following table lists all Graph-
BLAS operations. Upper case letters denote a matrix, lower case letters are
vectors, and AB denote the multiplication of two matrices over a semiring.

Each operation takes an optional GrB_Descriptor argument that modi-
fies the operation. The input matricesA andB can be optionally transposed,
the mask M can be complemented, and C can be cleared of its entries after
it is used in Z = C⊙T but before the C⟨M⟩ = Z assignment. Vectors are
never transposed via the descriptor.

22

Let A⊕B denote the element-wise operator that produces a set union
pattern (like A+B in MATLAB). Any binary operator can be used this way
in GraphBLAS, not just plus. Let A⊗B denote the element-wise operator
that produces a set intersection pattern (like A.*B in MATLAB); any binary
operator can be used this way, not just times.

Reduction of a matrix A to a vector reduces the ith row of A to a scalar
wi. This is like w=sum(A’) since by default, MATLAB reduces down the
columns, not across the rows.

GrB_mxm matrix-matrix multiply C⟨M⟩ = C⊙AB
GrB_vxm vector-matrix multiply wT⟨mT⟩ = wT ⊙ uTA
GrB_mxv matrix-vector multiply w⟨m⟩ = w ⊙Au
GrB_eWiseMult element-wise, C⟨M⟩ = C⊙ (A⊗B)

set intersection w⟨m⟩ = w ⊙ (u⊗ v)
GrB_eWiseAdd element-wise, C⟨M⟩ = C⊙ (A⊕B)

set union w⟨m⟩ = w ⊙ (u⊕ v)
GxB_eWiseUnion element-wise, C⟨M⟩ = C⊙ (A⊕B)

set union w⟨m⟩ = w ⊙ (u⊕ v)
GrB_extract extract submatrix C⟨M⟩ = C⊙A(I,J)

w⟨m⟩ = w ⊙ u(i)
GxB_subassign assign submatrix C(I,J)⟨M⟩ = C(I,J)⊙A

(with submask for C(I,J)) w(i)⟨m⟩ = w(i)⊙ u
GrB_assign assign submatrix C⟨M⟩(I,J) = C(I,J)⊙A

(with mask for C) w⟨m⟩(i) = w(i)⊙ u
GrB_apply apply unary operator C⟨M⟩ = C⊙f(A)

w⟨m⟩ = w⊙f(u)
apply binary operator C⟨M⟩ = C⊙f(A, y)

C⟨M⟩ = C⊙f(x,A)
w⟨m⟩ = w⊙f(u, y)
w⟨m⟩ = w⊙f(x,u)

apply index-unary op C⟨M⟩ = C⊙f(A, i, j, k)
w⟨m⟩ = w⊙f(u, i, 0, k)

GrB_select select entries C⟨M⟩ = C⊙select(A, i, j, k)
w⟨m⟩ = w⊙select(u, i, 0, k)

GrB_reduce reduce to vector w⟨m⟩ = w⊙[⊕jA(:, j)]
reduce to scalar s = s⊙ [⊕ijA(i, j)]

GrB_transpose transpose C⟨M⟩ = C⊙AT

GrB_kronecker Kronecker product C⟨M⟩ = C⊙ kron(A,B)

23

3 Interfaces to MATLAB, Octave, Python,

Julia, Java

The MATLAB/Octave interface to SuiteSparse:GraphBLAS is included with
this distribution, described in Section 3.1. It is fully polished, and fully
tested, but does have some limitations that will be addressed in future re-
leases. Two Python interfaces are now available, as is a Julia interface. These
are not part of the SuiteSparse:GraphBLAS distribution. See the links below
(see Sections 3.2 and 3.3).

3.1 MATLAB/Octave Interface

An easy-to-use MATLAB/Octave interface for SuiteSparse:GraphBLAS is
available; see the documentation in the GraphBLAS/GraphBLAS folder for de-
tails. Start with the README.md file in that directory. An easy-to-read output
of the MATLAB demos can be found in GraphBLAS/GraphBLAS/demo/html.

The MATLAB/Octave interface adds the @GrB class, which is an opaque
MATLAB/Octave object that contains a GraphBLAS matrix, either double
or single precision (real or complex), boolean, or any of the built-in integer
types. MATLAB/Octave sparse and full matrices can be arbitrarily mixed
with GraphBLAS matrices. The following overloaded operators and methods
all work as you would expect for any matrix. The matrix multiplication A*B

uses the conventional PLUS_TIMES semiring.

A+B A-B A*B A.*B A./B A.\B A.^b A/b C=A(I,J)

-A +A ~A A’ A.’ A&B A|B b\A C(I,J)=A

A~=B A>B A==B A<=B A>=B A<B [A,B] [A;B] A(1:end,1:end)

For a list of overloaded operations and static methods, type methods GrB

in MATLAB/Octave, or help GrB for more details.
Limitations: Some features for MATLAB/Octave sparse matrices are

not yet available for GraphBLAS matrices. Some of these may be added in
future releases.

• GrB matrices with dimension larger than 2^53 do not display properly
in the whos command. The size is displayed correctly with disp or
display.

• Non-blocking mode is not exploited.

24

• Linear indexing: A(:) for a 2D matrix, and I=find(A).

• Singleton expansion.

• Dynamically growing arrays, where C(i)=x can increase the size of C.

• Saturating element-wise binary and unary operators for integers. For
C=A+B with MATLAB uint8 matrices, results saturate if they exceed
255. This is not compatible with a monoid for C=A*B, and thus MAT-
LAB does not support matrix-matrix multiplication with uint8 matri-
ces. In GraphBLAS, uint8 addition acts in a modulo fashion.

• Solvers, so that x=A\b could return a GF(2) solution, for example.

• Sparse matrices with dimension higher than 2.

3.2 Python Interface

See Michel Pelletier’s Python interface at https://github.com/michelp/pygraphblas;
it also appears at https://anaconda.org/conda-forge/pygraphblas.

See Jim Kitchen and Erik Welch’s (both from Anaconda, Inc.) Python
interface at https://github.com/python-graphblas/python-graphblas (formerly
known as grblas). See also
https://anaconda.org/conda-forge/graphblas.

Both of them allow for pending work to be left pending in a GrB_Matrix.

3.3 Julia Interface

The Julia interface is at https://github.com/JuliaSparse/SuiteSparseGraphBLAS.
jl, developed by Will Kimmerer, Abhinav Mehndiratta, Miha Zgubic, and
Viral Shah. Unlike the MATLAB/Octave interface (and like the Python in-
terfaces) the Julia interface can keep pending work (zombies, pending tuples,
jumbled state) in a GrB_Matrix. This makes Python and Julia the best high-
level interfaces for SuiteSparse:GraphBLAS. MATLAB is not as well suited,
since it does not allow inputs to a function or mexFunction to be modified,
so any pending work must be finished before a matrix can be used as input.

3.4 Java Interface

Fabian Murariu is working on a Java interface. See
https://github.com/fabianmurariu/graphblas-java-native.

25

https://github.com/michelp/pygraphblas
https://anaconda.org/conda-forge/pygraphblas
https://github.com/python-graphblas/python-graphblas
https://anaconda.org/conda-forge/graphblas
https://github.com/JuliaSparse/SuiteSparseGraphBLAS.jl
https://github.com/JuliaSparse/SuiteSparseGraphBLAS.jl
https://github.com/fabianmurariu/graphblas-java-native

4 Performance of MATLAB versus Graph-

BLAS

MATLAB R2021a includes v3.3 of SuiteSparse:GraphBLAS as a built-in li-
brary, but uses it only for C=A*B when both A and B are sparse. In prior
versions of MATLAB, C=A*B relied on the SFMULT and SSMULT packages in
SuiteSparse, which are single-threaded (also written by this author). The
GraphBLAS GrB_mxm is up to 30x faster on a 20-core Intel Xeon, compared
with C=A*B in MATLAB R2020b and earlier. With MATLAB R2021a and
later, the performance of C=A*B when using MATLAB sparse matrices is
identical to the performance for GraphBLAS matrices, since the same code
is being used by both (GrB_mxm).

Other methods in GraphBLAS are also faster, some extremely so, but are
not yet exploited as built-in operations MATLAB. In particular, the state-
ment C(M)=A (where M is a logical matrix) takes under a second for a large
sparse problem when using GraphBLAS via its @GrB interface. By stark con-
trast, MATLAB would take about 4 or 5 days, a speedup of about 500,000x.
For a smaller problem, GraphBLAS takes 0.4 seconds while MATLAB takes
28 hours (a speedup of about 250,000x). Both cases use the same statement
with the same syntax (C(M)=A) and compute exactly the same result. Be-
low are the results for n-by-n matrices in GraphBLAS v5.0.6 and MATLAB
R2020a, on a Dell XPS13 laptop (16GB RAM, Intel(R) Core(TM) i7-8565U
CPU @ 1.80GHz with 4 hardware cores). GraphBLAS is using 4 threads.

n nnz(C) nnz(M) GraphBLAS (sec) MATLAB (sec) speedup
2,048 20,432 2,048 0.005 0.024 4.7
4,096 40,908 4,096 0.003 0.115 39
8,192 81,876 8,191 0.009 0.594 68

16,384 163,789 16,384 0.009 2.53 273
32,768 327,633 32,767 0.014 12.4 864
65,536 655,309 65,536 0.025 65.9 2,617

131,072 1,310,677 131,070 0.055 276.2 4,986
262,144 2,621,396 262,142 0.071 1,077 15,172
524,288 5,242,830 524,288 0.114 5,855 51,274

1,048,576 10,485,713 1,048,576 0.197 27,196 137,776
2,097,152 20,971,475 2,097,152 0.406 100,799 248,200
4,194,304 41,942,995 4,194,304 0.855 4 to 5 days? 500,000?

The assignment C(I,J)=A in MATLAB, when using @GrB objects, is up
to 1000x faster than the same statement with the same syntax, when using
MATLAB sparse matrices instead. Matrix concatenation C = [A B] is about
17 times faster in GraphBLAS, on a 20-core Intel Xeon. For more details,
see the GraphBLAS/GraphBLAS/demo folder and its contents.

26

Below is a comparison of other methods in SuiteSparse:GraphBLAS, com-
pared with MATLAB 2021a. SuiteSparse:GraphBLAS: v6.1.4 (Jan 12, 2022),
was used, compiled with gcc 11.2.0. The system is an Intel(R) Xeon(R)
CPU E5-2698 v4 @ 2.20GHz (20 hardware cores, 40 threads), Ubuntu 20.04,
256GB RAM. Full details appear in the GraphBLAS/GraphBLAS/demo/benchmark
folder. For this matrix, SuiteSparse:GraphBLAS is anywhere from 3x to 17x
faster than the built-in methods in MATLAB. This matrix is not special, but
is typical of the relative performance of many large matrices. Note that two of
these (C=L*S and C=S*R) rely on an older version of SuiteSparse:GraphBLAS
(v3.3.3) built into MATLAB R2021a.

Legend:

S: large input sparse matrix (n-by-n), the GAP-twitter matrix

x: dense vector (1-by-n or n-by-1)

F: dense matrix (4-by-n or n-by-4)

L: 8-by-n sparse matrix, about 1000 entries

R: n-by-8 sparse matrix, about 1000 entries

B: n-by-n sparse matrix, about nnz(S)/10 entries

p,q: random permutation vectors

GAP/GAP-twitter: n: 61.5784 million nnz: 1468.36 million

(run time in seconds):

y=S*x: MATLAB: 22.8012 GrB: 2.4018 speedup: 9.49

y=x*S: MATLAB: 16.1618 GrB: 1.1610 speedup: 13.92

C=S*F: MATLAB: 30.6121 GrB: 9.7052 speedup: 3.15

C=F*S: MATLAB: 26.4044 GrB: 1.5245 speedup: 17.32

C=L*S: MATLAB: 19.1228 GrB: 2.4301 speedup: 7.87

C=S*R: MATLAB: 0.0087 GrB: 0.0020 speedup: 4.40

C=S’ MATLAB: 224.7268 GrB: 22.6855 speedup: 9.91

C=S+S: MATLAB: 14.3368 GrB: 1.5539 speedup: 9.23

C=S+B: MATLAB: 15.5600 GrB: 1.5098 speedup: 10.31

C=S(p,q) MATLAB: 95.6219 GrB: 15.9468 speedup: 6.00

27

5 GraphBLAS Context and Sequence

A user application that directly relies on GraphBLAS must include the
GraphBLAS.h header file:

#include "GraphBLAS.h"

The GraphBLAS.h file defines functions, types, and macros prefixed with
GrB_ and GxB_ that may be used in user applications. The prefix GrB_

denotes items that appear in the official GraphBLAS C API Specification.
The prefix GxB_ refers to SuiteSparse-specific extensions to the GraphBLAS
API.

The GraphBLAS.h file includes all the definitions required to use Graph-
BLAS, including the following macros that can assist a user application in
compiling and using GraphBLAS.

There are two version numbers associated with SuiteSparse:GraphBLAS:
the version of the GraphBLAS C API Specification it conforms to, and the
version of the implementation itself. These can be used in the following
manner in a user application:

#if GxB_SPEC_VERSION >= GxB_VERSION (2,0,3)

... use features in GraphBLAS specification 2.0.3 ...

#else

... only use features in early specifications

#endif

#if GxB_IMPLEMENTATION >= GxB_VERSION (5,2,0)

... use features from version 5.2.0 (or later)

of a specific GraphBLAS implementation

#endif

SuiteSparse:GraphBLAS also defines the following strings with #define.
Refer to the GraphBLAS.h file for details.

Macro purpose
GxB_IMPLEMENTATION_ABOUT this particular implementation, copyright, and URL
GxB_IMPLEMENTATION_DATE the date of this implementation
GxB_SPEC_ABOUT the GraphBLAS specification for this implementation
GxB_SPEC_DATE the date of the GraphBLAS specification
GxB_IMPLEMENTATION_LICENSE the license for this particular implementation

28

Finally, SuiteSparse:GraphBLAS gives itself a unique name of the form
GxB_SUITESPARSE_GRAPHBLAS that the user application can use in #ifdef

tests. This is helpful in case a particular implementation provides non-
standard features that extend the GraphBLAS specification, such as addi-
tional predefined built-in operators, or if a GraphBLAS implementation does
not yet fully implement all of the GraphBLAS specification.

For example, SuiteSparse:GraphBLAS predefines additional built-in op-
erators not in the specification. If the user application wishes to use these
in any GraphBLAS implementation, an #ifdef can control when they are
used. Refer to the examples in the GraphBLAS/Demo folder.

As another example, the GraphBLAS API states that an implementa-
tion need not define the order in which GrB_Matrix_build assembles dupli-
cate tuples in its [I,J,X] input arrays. As a result, no particular ordering
should be relied upon in general. However, SuiteSparse:GraphBLAS does
guarantee an ordering, and this guarantee will be kept in future versions of
SuiteSparse:GraphBLAS as well. Since not all implementations will ensure a
particular ordering, the following can be used to exploit the ordering returned
by SuiteSparse:GraphBLAS.

#ifdef GxB_SUITESPARSE_GRAPHBLAS

// duplicates in I, J, X assembled in a specific order;

// results are well-defined even if op is not associative.

GrB_Matrix_build (C, I, J, X, nvals, op) ;

#else

// duplicates in I, J, X assembled in no particular order;

// results are undefined if op is not associative.

GrB_Matrix_build (C, I, J, X, nvals, op) ;

#endif

The remainder of this section describes GraphBLAS functions that start
or finalize GraphBLAS, error handling, and the GraphBLAS integer.

GraphBLAS function/type purpose Section
GrB_Index the GraphBLAS integer 5.1
GrB_init start up GraphBLAS 5.2
GrB_getVersion C API supported by the library 5.3
GxB_init start up GraphBLAS with different malloc 5.4
GrB_Info status code returned by GraphBLAS functions 5.5
GrB_error get more details on the last error 5.6
GrB_finalize finish GraphBLAS 5.7

29

5.1 GrB Index: the GraphBLAS integer

Matrix and vector dimensions and indexing rely on a specific integer, GrB_Index,
which is defined in GraphBLAS.h as

typedef uint64_t GrB_Index ;

Row and column indices of an nrows-by-ncols matrix range from zero
to the nrows-1 for the rows, and zero to ncols-1 for the columns. Indices
are zero-based, like C, and not one-based, like MATLAB/Octave. In Suite-
Sparse:GraphBLAS, the largest permitted index value is GrB_INDEX_MAX, de-
fined as 260−1. The largest permitted matrix or vector dimension is 260 (that
is, GrB_INDEX_MAX+1). The largest GrB_Matrix that SuiteSparse: Graph-
BLAS can construct is thus 260-by-260. An n-by-n matrix A that size can
easily be constructed in practice with O(|A|) memory requirements, where
|A| denotes the number of entries that explicitly appear in the pattern of
A. The time and memory required to construct a matrix that large does not
depend on n, since SuiteSparse:GraphBLAS can represent A in hypersparse
form (see Section 8.3). The largest GrB_Vector that can be constructed is
260-by-1.

5.2 GrB init: initialize GraphBLAS

typedef enum

{

GrB_NONBLOCKING = 0, // methods may return with pending computations

GrB_BLOCKING = 1 // no computations are ever left pending

}

GrB_Mode ;

GrB_Info GrB_init // start up GraphBLAS

(

GrB_Mode mode // blocking or non-blocking mode

) ;

GrB_init must be called before any other GraphBLAS operation. It
defines the mode that GraphBLAS will use: blocking or non-blocking. With
blocking mode, all operations finish before returning to the user applica-
tion. With non-blocking mode, operations can be left pending, and are
computed only when needed. Non-blocking mode can be much faster than

30

blocking mode, by many orders of magnitude in extreme cases. Blocking
mode should be used only when debugging a user application. The mode
cannot be changed once it is set by GrB_init.

GraphBLAS objects are opaque. This allows GraphBLAS to postpone
operations and then do them later in a more efficient manner by rearranging
them and grouping them together. In non-blocking mode, the computations
required to construct an opaque GraphBLAS object might not be finished
when the GraphBLAS method or operation returns to the user. However,
user-provided arrays are not opaque, and GraphBLAS methods and opera-
tions that read them (such as GrB_Matrix_build) or write to them (such as
GrB_Matrix_extractTuples) always finish reading them, or creating them,
when the method or operation returns to the user application.

All methods and operations that extract values from a GraphBLAS ob-
ject and return them into non-opaque user arrays always ensure that the
user-visible arrays are fully populated when they return: GrB_*_reduce (to
scalar), GrB_*_nvals, GrB_*_extractElement, and GrB_*_extractTuples.
These functions do not guarantee that the opaque objects they depend on
are finalized. To do that, use GrB_wait instead.

SuiteSparse:GraphBLAS is multithreaded internally, via OpenMP, and
it is also safe to use in a multithreaded user application. See Section 16
for details. User threads must not operate on the same matrices at the same
time, with one exception. Multiple user threads can use the same matrices or
vectors as read-only inputs to GraphBLAS operations or methods, but only
if they have no pending operations (use GrB_wait first). User threads cannot
simultaneously modify a matrix or vector via any GraphBLAS operation or
method.

It is safe to use the internal parallelism in SuiteSparse:GraphBLAS on
matrices, vectors, and scalars that are not yet completed. The library han-
dles this on its own. The GrB_wait function is only needed when a user
application makes multiple calls to GraphBLAS in parallel, from multiple
user threads.

With multiple user threads, exactly one user thread must call GrB_init
before any user thread may call any GrB_* or GxB_* function. When the user
application is finished, exactly one user thread must call GrB_finalize, after
which no user thread may call any GrB_* or GxB_* function. The mode of a
GraphBLAS session can be queried with GxB_get; see Section 8 for details.

31

5.3 GrB getVersion: determine the C API Version

GrB_Info GrB_getVersion // runtime access to C API version number

(

unsigned int *version, // returns GRB_VERSION

unsigned int *subversion // returns GRB_SUBVERSION

) ;

GraphBLAS defines two compile-time constants that define the version
of the C API Specification that is implemented by the library: GRB_VERSION
and GRB_SUBVERSION. If the user program was compiled with one version of
the library but linked with a different one later on, the compile-time version
check with GRB_VERSION would be stale. GrB_getVersion thus provides a
runtime access of the version of the C API Specification supported by the
library.

32

5.4 GxB init: initialize with alternate malloc

GrB_Info GxB_init // start up GraphBLAS and also define malloc

(

GrB_Mode mode, // blocking or non-blocking mode

// pointers to memory management functions.

void * (* user_malloc_function) (size_t),

void * (* user_calloc_function) (size_t, size_t),

void * (* user_realloc_function) (void *, size_t),

void (* user_free_function) (void *)

) ;

GxB_init is identical to GrB_init, except that it also redefines the mem-
ory management functions that SuiteSparse:GraphBLAS will use. Giving the
user application control over this is particularly important when using the
GxB_*pack, GxB_*unpack, and GxB_*serialize functions described in Sec-
tions 6.10 and 6.11, since they require the user application and GraphBLAS
to use the same memory manager.

user_calloc_function and user_realloc_function are optional, and
may be NULL. If NULL, then the user_malloc_function is relied on instead,
for all memory allocations.

These functions can only be set once, when GraphBLAS starts. Either
GrB_init or GxB_init must be called before any other GraphBLAS opera-
tion, but not both. The functions passed to GxB_init must be thread-safe.

The following usage is identical to GrB_init(mode):

GxB_init (mode, malloc, calloc, realloc, free) ;

33

5.5 GrB Info: status code returned by GraphBLAS

Each GraphBLAS method and operation returns its status to the caller as
its return value, an enumerated type (an enum) called GrB_Info. The first
two values in the following table denote a successful status, the rest are error
codes.

Not all GraphBLAS methods or operations can return all status codes.
In the discussions of each method and operation in this User Guide, most of
the obvious error code returns are not discussed. For example, if a required
input is a NULL pointer, then GrB_NULL_POINTER is returned. Only error
codes specific to the method or that require elaboration are discussed here.
For a full list of the status codes that each GraphBLAS function can return,
refer to The GraphBLAS C API Specification [BMM+17b, BBM+21].

Error value description

GrB_SUCCESS 0 the method or operation was successful
GrB_NO_VALUE 1 the method was successful, but the entry

does not appear in the matrix or vector.
GxB_EXHAUSTED 2 the iterator is exhausted

GrB_UNINITIALIZED_OBJECT -1 object has not been initialized
GrB_NULL_POINTER -2 input pointer is NULL
GrB_INVALID_VALUE -3 generic error code; some value is bad
GrB_INVALID_INDEX -4 a row or column index is out of bounds
GrB_DOMAIN_MISMATCH -5 object domains are not compatible
GrB_DIMENSION_MISMATCH -6 matrix dimensions do not match
GrB_OUTPUT_NOT_EMPTY -7 output matrix already has values in it
GrB_NOT_IMPLEMENTED -8 not implemented in SS:GrB
GrB_PANIC -101 unrecoverable error
GrB_OUT_OF_MEMORY -102 out of memory
GrB_INSUFFICIENT_SPACE -103 output array not large enough
GrB_INVALID_OBJECT -104 object is corrupted
GrB_INDEX_OUT_OF_BOUNDS -105 a row or column index is out of bounds
GrB_EMPTY_OBJECT -106 a input scalar has no entry

34

5.6 GrB error: get more details on the last error

GrB_Info GrB_error // return a string describing the last error

(

const char **error, // error string

<type> object // a GrB_matrix, GrB_Vector, etc.

) ;

Each GraphBLAS method and operation returns a GrB_Info error code.
The GrB_error function returns additional information on the error for a par-
ticular object in a null-terminated string. The string returned by GrB_error

is never a NULL string, but it may have length zero (with the first entry being
the ’\0’ string-termination value). The string must not be freed or modified.

info = GrB_some_method_here (C, ...) ;

if (! (info == GrB_SUCCESS || info == GrB_NO_VALUE))

{

char *err ;

GrB_error (&err, C) ;

printf ("info: %d error: %s\n", info, err) ;

}

If C has no error status, or if the error is not recorded in the string, an
empty non-null string is returned. In particular, out-of-memory conditions
result in an empty string from GrB_error.

SuiteSparse:GraphBLAS reports many helpful details via GrB_error. For
example, if a row or column index is out of bounds, the report will state
what those bounds are. If a matrix dimension is incorrect, the mismatching
dimensions will be provided. GrB_BinaryOp_new, GrB_UnaryOp_new, and
GrB_IndexUnaryOp_new record the name the function passed to them, and
GrB_Type_new records the name of its type parameter, and these are printed
if the user-defined types and operators are used incorrectly. Refer to the out-
put of the example programs in the Demo and Test folder, which intentionally
generate errors to illustrate the use of GrB_error.

The only functions in GraphBLAS that return an error string are func-
tions that have a single input/output argument C, as a GrB_Matrix, GrB_Vector,
GrB_Scalar, or GrB_Descriptor. Methods that create these objects (such as
GrB_Matrix_new) return a NULL object on failure, so these methods cannot
also return an error string in C.

Any subsequent GraphBLAS method that modifies the object C clears
the error string.

35

Note that GrB_NO_VALUE is an not error, but an informational status.
GrB_*_extractElment(&x,A,i,j), which does x=A(i,j), returns this value
to indicate that A(i,j) is not present in the matrix. That method does not
have an input/output object so it cannot return an error string.

36

5.7 GrB finalize: finish GraphBLAS

GrB_Info GrB_finalize () ; // finish GraphBLAS

GrB_finalize must be called as the last GraphBLAS operation, even af-
ter all calls to GrB_free. All GraphBLAS objects created by the user appli-
cation should be freed first, before calling GrB_finalize since GrB_finalize
will not free those objects. In non-blocking mode, GraphBLAS may leave
some computations as pending. These computations can be safely abandoned
if the user application frees all GraphBLAS objects it has created and then
calls GrB_finalize. When the user application is finished, exactly one user
thread must call GrB_finalize.

37

6 GraphBLAS Objects and their Methods

GraphBLAS defines ten different objects to represent matrices, vectors, scalars,
data types, operators (binary, unary, and index-unary), monoids, semirings,
and a descriptor object used to specify optional parameters that modify the
behavior of a GraphBLAS operation.

The GraphBLAS API makes a distinction between methods and opera-
tions. A method is a function that works on a GraphBLAS object, creating
it, destroying it, or querying its contents. An operation (not to be confused
with an operator) acts on matrices and/or vectors in a semiring.

GrB_Type a scalar data type
GrB_UnaryOp a unary operator z = f(x), where z and x are scalars
GrB_BinaryOp a binary operator z = f(x, y), where z, x, and y are scalars
GrB_IndexUnaryOp an index-unary operator
GrB_Monoid an associative and commutative binary operator

and its identity value
GrB_Semiring a monoid that defines the “plus” and a binary operator

that defines the “multiply” for an algebraic semiring
GrB_Matrix a 2D sparse matrix of any type
GrB_Vector a 1D sparse column vector of any type
GrB_Scalar a scalar of any type
GrB_Descriptor a collection of parameters that modify an operation

Each of these objects is implemented in C as an opaque handle, which
is a pointer to a data structure held by GraphBLAS. User applications may
not examine the content of the object directly; instead, they can pass the
handle back to GraphBLAS which will do the work. Assigning one handle
to another is valid but it does not make a copy of the underlying object.

38

6.1 The GraphBLAS type: GrB Type

A GraphBLAS GrB_Type defines the type of scalar values that a matrix
or vector contains, and the type of scalar operands for a unary or binary
operator. There are 13 built-in types, and a user application can define any
types of its own as well. The built-in types correspond to built-in types in
C (in the #include files stdbool.h, stdint.h, and complex.h) as listed in
the following table.

GraphBLAS C type description range
type
GrB_BOOL bool Boolean true (1), false (0)
GrB_INT8 int8_t 8-bit signed integer -128 to 127
GrB_INT16 int16_t 16-bit integer −215 to 215 − 1
GrB_INT32 int32_t 32-bit integer −231 to 231 − 1
GrB_INT64 int64_t 64-bit integer −263 to 263 − 1
GrB_UINT8 uint8_t 8-bit unsigned integer 0 to 255
GrB_UINT16 uint16_t 16-bit unsigned integer 0 to 216 − 1
GrB_UINT32 uint32_t 32-bit unsigned integer 0 to 232 − 1
GrB_UINT64 uint64_t 64-bit unsigned integer 0 to 264 − 1
GrB_FP32 float 32-bit IEEE 754 -Inf to +Inf

GrB_FP64 double 64-bit IEEE 754 -Inf to +Inf

GxB_FC32 float complex 32-bit complex -Inf to +Inf

GxB_FC64 double complex 64-bit complex -Inf to +Inf

The ANSI C11 definitions of float complex and double complex are
not always available. The GraphBLAS.h header defines them as GxB_FC32_t
and GxB_FC64_t, respectively.

The user application can also define new types based on any typedef in
the C language whose values are held in a contiguous region of memory of
fixed size. For example, a user-defined GrB_Type could be created to hold any
C struct whose content is self-contained. A C struct containing pointers
might be problematic because GraphBLAS would not know to dereference
the pointers to traverse the entire “scalar” entry, but this can be done if the
objects referenced by these pointers are not moved. A user-defined complex
type with real and imaginary types can be defined, or even a “scalar” type
containing a fixed-sized dense matrix (see Section 6.1.1). The possibilities are
endless. GraphBLAS can create and operate on sparse matrices and vectors
in any of these types, including any user-defined ones. For user-defined types,
GraphBLAS simply moves the data around itself (via memcpy), and then

39

passes the values back to user-defined functions when it needs to do any
computations on the type. The next sections describe the methods for the
GrB_Type object:

GraphBLAS function purpose Section
GrB_Type_new create a user-defined type 6.1.1
GxB_Type_new create a user-defined type, with name and definition 6.1.2
GrB_Type_wait wait for a user-defined type 6.1.3
GxB_Type_size return the size of a type 6.1.4
GxB_Type_name return the name of a type 6.1.5
GxB_Type_from_name return the type from its name 6.1.6
GrB_Type_free free a user-defined type 6.1.7

6.1.1 GrB Type new: create a user-defined type

GrB_Info GrB_Type_new // create a new GraphBLAS type

(

GrB_Type *type, // handle of user type to create

size_t sizeof_ctype // size = sizeof (ctype) of the C type

) ;

GrB_Type_new creates a new user-defined type. The type is a handle, or
a pointer to an opaque object. The handle itself must not be NULL on input,
but the content of the handle can be undefined. On output, the handle
contains a pointer to a newly created type. The ctype is the type in C
that will be used to construct the new GraphBLAS type. It can be either
a built-in C type, or defined by a typedef. The second parameter should
be passed as sizeof(ctype). The only requirement on the C type is that
sizeof(ctype) is valid in C, and that the type reside in a contiguous block
of memory so that it can be moved with memcpy. For example, to create a
user-defined type called Complex for double-precision complex values using
the ANSI C11 double complex type, the following can be used. A complete
example can be found in the usercomplex.c and usercomplex.h files in the
Demo folder.

#include <math.h>

#include <complex.h>

GrB_Type Complex ;

GrB_Type_new (&Complex, sizeof (double complex)) ;

To demonstrate the flexibility of the GrB_Type, consider a “scalar” con-
sisting of 4-by-4 floating-point matrix and a string. This type might be useful

40

for the 4-by-4 translation/rotation/scaling matrices that arise in computer
graphics, along with a string containing a description or even a regular ex-
pression that can be parsed and executed in a user-defined operator. All that
is required is a fixed-size type, where sizeof(ctype) is a constant.

typedef struct

{

float stuff [4][4] ;

char whatstuff [64] ;

}

wildtype ;

GrB_Type WildType ;

GrB_Type_new (&WildType, sizeof (wildtype)) ;

With this type a sparse matrix can be created in which each entry con-
sists of a 4-by-4 dense matrix stuff and a 64-character string whatstuff.
GraphBLAS treats this 4-by-4 as a “scalar.” Any GraphBLAS method or
operation that simply moves data can be used with this type without any
further information from the user application. For example, entries of this
type can be assigned to and extracted from a matrix or vector, and matrices
containing this type can be transposed. A working example (wildtype.c
in the Demo folder) creates matrices and multiplies them with a user-defined
semiring with this type.

Performing arithmetic on matrices and vectors with user-defined types
requires operators to be defined. Refer to Section 15.5 for more details on
these example user-defined types.

6.1.2 GxB Type new: create a user-defined type (with name and
definition)

GrB_Info GxB_Type_new // create a new named GraphBLAS type

(

GrB_Type *type, // handle of user type to create

size_t sizeof_ctype, // size = sizeof (ctype) of the C type

const char *type_name, // name of the type (max 128 characters)

const char *type_defn // typedef for the type (no max length)

) ;

GxB_Type_new creates a type with a name and definition that are known
to GraphBLAS, as strings. The type_name is any valid string (max length of
128 characters, including the required null-terminating character) that may

41

appear as the name of a C type created by a C typedef statement. It must
not contain any white-space characters. For example, to create a type of size
16*4+1 = 65 bytes, with a 4-by-4 dense float array and a 32-bit integer:

typedef struct { float x [4][4] ; int color ; } myquaternion ;

GrB_Type MyQtype ;

GxB_Type_new (&MyQtype, sizeof (myquaternion), "myquaternion",

"typedef struct { float x [4][4] ; int color ; } myquaternion ;") ;

The type_name and type_defn are both null-terminated strings. Cur-
rently, type_defn is unused, but it will be required for best performance
when a JIT is implemented in SuiteSparse:GraphBLAS (both on the CPU
and GPU). User defined types created by GrB_Type_new will not work with
a JIT.

At most GxB_MAX_NAME_LEN characters are accessed in type_name; char-
acters beyond that limit are silently ignored.

6.1.3 GrB Type wait: wait for a type

GrB_Info GrB_wait // wait for a user-defined type

(

GrB_Type type, // type to wait for

GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

After creating a user-defined type, a GraphBLAS library may choose to
exploit non-blocking mode to delay its creation. Currently, SuiteSparse:GraphBLAS
currently does nothing except to ensure that type is valid.

6.1.4 GxB Type size: return the size of a type

GrB_Info GxB_Type_size // determine the size of the type

(

size_t *size, // the sizeof the type

GrB_Type type // type to determine the sizeof

) ;

This function acts just like sizeof(type) in the C language. For example
GxB_Type_size (&s, GrB_INT32) sets s to 4, the same as sizeof(int32_t).

42

6.1.5 GxB Type name: return the name of a type

GrB_Info GxB_Type_name // return the name of a GraphBLAS type

(

char *type_name, // name of the type (char array of size at least

// GxB_MAX_NAME_LEN, owned by the user application).

const GrB_Type type

) ;

Returns the name of a type, as a string. For built-in types, the name is the
same as the C type. For example, GxB_Type_name(type_name,GrB_FP32)
returns the name as "float". The following table lists the names of the 13
built-in types.

Type name GraphBLAS type

"bool" GrB_BOOL

"int8_t" GrB_INT8

"int16_t" GrB_INT16

"int32_t" GrB_INT32

"int64_t" GrB_INT64

"uint8_t" GrB_UINT8

"uint16_t" GrB_UINT16

"uint32_t" GrB_UINT32

"uint64_t" GrB_UINT64

"float" GrB_FP32

"double" GrB_FP64

"float complex" GxB_FC32

"double complex" GxB_FC64

43

6.1.6 GxB Type from name: return the type from its name

GrB_Info GxB_Type_from_name // return the built-in GrB_Type from a name

(

GrB_Type *type, // built-in type, or NULL if user-defined

const char *type_name // array of size at least GxB_MAX_NAME_LEN

) ;

Returns the built-in type from the corresponding name of the type. For
example, GxB_Type_from_name (&type, "bool") returns GrB_BOOL. If the
name is from a user-defined type, the type is returned as NULL. This is not
an error condition. The user application must itself do this translation since
GraphBLAS does not keep a registry of all user-defined types.

With this function, a user application can manage the translation for both
built-in types and its own user-defined types, as in the following example.

typedef struct { double x ; char stuff [16] ; } myfirsttype ;

typedef struct { float z [4][4] ; int color ; } myquaternion ;

GrB_Type MyType1, MyQType ;

GxB_Type_new (&MyType1, sizeof (myfirsttype), "myfirsttype",

"typedef struct { double x ; char stuff [16] ; } myfirsttype ;") ;

GxB_Type_new (&MyQType, sizeof (myquaternion), "myquaternion",

"typedef struct { float z [4][4] ; int color ; } myquaternion ;") ;

GrB_Matrix A ;

// ... create a matrix A of some built-in or user-defined type

// later on, to query the type of A:

size_t typesize ;

GxB_Type_size (&typesize, type) ; // works for any type

GrB_Type atype ;

char atype_name [GxB_MAX_NAME_LEN] ;

GxB_Matrix_type_name (atype_name, A) ;

GxB_Type_from_name (&atype, atype_name) ;

if (atype == NULL)

{

// This is not yet an error. It means that A has a user-defined type.

if ((strcmp (atype_name, "myfirsttype")) == 0) atype = MyType1 ;

else if ((strcmp (atype_name, "myquaternion")) == 0) atype = MyQType ;

else { ... this is now an error ... the type of A is unknown. }

}

44

6.1.7 GrB Type free: free a user-defined type

GrB_Info GrB_free // free a user-defined type

(

GrB_Type *type // handle of user-defined type to free

) ;

GrB_Type_free frees a user-defined type. Either usage:

GrB_Type_free (&type) ;

GrB_free (&type) ;

frees the user-defined type and sets type to NULL. It safely does nothing if
passed a NULL handle, or if type == NULL on input.

It is safe to attempt to free a built-in type. SuiteSparse:GraphBLAS
silently ignores the request and returns GrB_SUCCESS. A user-defined type
should not be freed until all operations using the type are completed. Suite-
Sparse:GraphBLAS attempts to detect this condition but it must query a
freed object in its attempt. This is hazardous and not recommended. Oper-
ations on such objects whose type has been freed leads to undefined behavior.

It is safe to first free a type, and then a matrix of that type, but after the
type is freed the matrix can no longer be used. The only safe thing that can
be done with such a matrix is to free it.

The function signature of GrB_Type_free uses the generic name GrB_free,
which can free any GraphBLAS object. See Section 6.15 details. GraphBLAS
includes many such generic functions. When describing a specific variation,
a function is described with its specific name in this User Guide (such as
GrB_Type_free). When discussing features applicable to all specific forms,
the generic name is used instead (such as GrB_free).

45

6.2 GraphBLAS unary operators: GrB UnaryOp, z =
f(x)

A unary operator is a scalar function of the form z = f(x). The domain
(type) of z and x need not be the same.

In the notation in the tables below, T is any of the 13 built-in types and
is a place-holder for BOOL, INT8, UINT8, ... FP32, FP64, FC32, or FC64. For
example, GrB_AINV_INT32 is a unary operator that computes z=-x for two
values x and z of type GrB_INT32.

The notation R refers to any real type (all but FC32 and FC64), I refers to
any integer type (INT* and UINT*), F refers to any real or complex floating
point type (FP32, FP64, FC32, or FC64), Z refers to any complex floating
point type (FC32 or FC64), and N refers to INT32 or INT64.

The logical negation operator GrB_LNOT only works on Boolean types.
The GxB_LNOT_R functions operate on inputs of type R, implicitly typecast-
ing their input to Boolean and returning result of type R, with a value 1
for true and 0 for false. The operators GxB_LNOT_BOOL and GrB_LNOT are
identical.

Unary operators for all types
GraphBLAS name types (domains) z = f(x) description
GxB_ONE_T T → T z = 1 one
GrB_IDENTITY_T T → T z = x identity
GrB_AINV_T T → T z = −x additive inverse
GrB_MINV_T T → T z = 1/x multiplicative inverse

Unary operators for real and integer types
GraphBLAS name types (domains) z = f(x) description
GrB_ABS_T R → R z = |x| absolute value
GrB_LNOT bool → bool z = ¬x logical negation
GxB_LNOT_R R → R z = ¬(x ̸= 0) logical negation
GrB_BNOT_I I → I z = ¬x bitwise negation

Positional unary operators for any type (including user-defined)
GraphBLAS name types (domains) z = f(aij) description
GxB_POSITIONI_N → N z = i row index (0-based)
GxB_POSITIONI1_N → N z = i+ 1 row index (1-based)
GxB_POSITIONJ_N → N z = j column index (0-based)
GxB_POSITIONJ1_N → N z = j + 1 column index (1-based)

46

Unary operators for floating-point types (real and complex)
GraphBLAS name types (domains) z = f(x) description

GxB_SQRT_F F → F z =
√
(x) square root

GxB_LOG_F F → F z = loge(x) natural logarithm
GxB_EXP_F F → F z = ex natural exponent
GxB_LOG10_F F → F z = log10(x) base-10 logarithm
GxB_LOG2_F F → F z = log2(x) base-2 logarithm
GxB_EXP2_F F → F z = 2x base-2 exponent
GxB_EXPM1_F F → F z = ex − 1 natural exponent - 1
GxB_LOG1P_F F → F z = log(x+ 1) natural log of x+ 1
GxB_SIN_F F → F z = sin(x) sine
GxB_COS_F F → F z = cos(x) cosine
GxB_TAN_F F → F z = tan(x) tangent

GxB_ASIN_F F → F z = sin−1(x) inverse sine
GxB_ACOS_F F → F z = cos−1(x) inverse cosine
GxB_ATAN_F F → F z = tan−1(x) inverse tangent
GxB_SINH_F F → F z = sinh(x) hyperbolic sine
GxB_COSH_F F → F z = cosh(x) hyperbolic cosine
GxB_TANH_F F → F z = tanh(x) hyperbolic tangent

GxB_ASINH_F F → F z = sinh−1(x) inverse hyperbolic sine

GxB_ACOSH_F F → F z = cosh−1(x) inverse hyperbolic cosine

GxB_ATANH_F F → F z = tanh−1(x) inverse hyperbolic tangent
GxB_SIGNUM_F F → F z = sgn(x) sign, or signum function
GxB_CEIL_F F → F z = ⌈x⌉ ceiling function
GxB_FLOOR_F F → F z = ⌊x⌋ floor function
GxB_ROUND_F F → F z = round(x) round to nearest
GxB_TRUNC_F F → F z = trunc(x) round towards zero
GxB_ISINF_F F → bool z = isinf(x) true if ±∞
GxB_ISNAN_F F → bool z = isnan(x) true if NaN
GxB_ISFINITE_F F → bool z = isfinite(x) true if finite

Unary operators for floating-point types (real only)
GraphBLAS name types (domains) z = f(x) description
GxB_LGAMMA_R R → R z = log(|Γ(x)|) log of gamma function
GxB_TGAMMA_R R → R z = Γ(x) gamma function
GxB_ERF_R R → R z = erf(x) error function
GxB_ERFC_R R → R z = erfc(x) complimentary error function
GxB_CBRT_R R → R z = x1/3 cube root
GxB_FREXPX_R R → R z = frexpx(x) normalized fraction
GxB_FREXPE_R R → R z = frexpe(x) normalized exponent

47

Unary operators for complex types
GraphBLAS name types (domains) z = f(x) description
GxB_CONJ_Z Z → Z z = x complex conjugate
GxB_ABS_Z Z → F z = |x| absolute value
GxB_CREAL_Z Z → F z = real(x) real part
GxB_CIMAG_Z Z → F z = imag(x) imaginary part
GxB_CARG_Z Z → F z = carg(x) angle

A positional unary operator return the row or column index of an entry.
For a matrix z = f(aij) returns z = i or z = j, or +1 for 1-based indices.
The latter is useful in the MATLAB/Octave interface, where row and column
indices are 1-based. When applied to a vector, j is always zero, and i is the
index in the vector. Positional unary operators come in two types: INT32

and INT64, which is the type of the output, z. The functions are agnostic
to the type of their inputs; they only depend on the position of the entries,
not their values. User-defined positional operators cannot be defined by
GrB_UnaryOp_new.

GxB_FREXPX and GxB_FREXPE return the mantissa and exponent, respec-
tively, from the ANSI C11 frexp function. The exponent is returned as a
floating-point value, not an integer.

The operators GxB_EXPM1_FC* and GxB_LOG1P_FC* for complex types are
currently not accurate. They will be revised in a future version.

The functions casin, casinf, casinh, and casinhf provided by Mi-
crosoft Visual Studio for computing sin−1(x) and sinh−1(x) when x is complex
do not compute the correct result. Thus, the unary operators GxB_ASIN_FC32,
GxB_ASIN_FC64 GxB_ASINH_FC32, and GxB_ASINH_FC64 do not work prop-
erly if the MS Visual Studio compiler is used. These functions work properly
if the gcc, icc, or clang compilers are used on Linux or MacOS.

Integer division by zero normally terminates an application, but this is
avoided in SuiteSparse:GraphBLAS. For details, see the binary GrB_DIV_T
operators.

SPEC: The definition of integer division by zero is an extension to the
specification.

The next sections define the following methods for the GrB_UnaryOp ob-
ject:

48

GraphBLAS function purpose Section
GrB_UnaryOp_new create a user-defined unary operator 6.2.1
GxB_UnaryOp_new create a named user-defined unary operator 6.2.2
GrB_UnaryOp_wait wait for a user-defined unary operator 6.2.3
GxB_UnaryOp_ztype_name return the name of the type of the output z for z = f(x) 6.2.4
GxB_UnaryOp_xtype_name return the name of the type of the input x for z = f(x) 6.2.5
GrB_UnaryOp_free free a user-defined unary operator 6.2.6

49

6.2.1 GrB UnaryOp new: create a user-defined unary operator

GrB_Info GrB_UnaryOp_new // create a new user-defined unary operator

(

GrB_UnaryOp *unaryop, // handle for the new unary operator

void *function, // pointer to the unary function

GrB_Type ztype, // type of output z

GrB_Type xtype // type of input x

) ;

GrB_UnaryOp_new creates a new unary operator. The new operator is
returned in the unaryop handle, which must not be NULL on input. On
output, its contents contains a pointer to the new unary operator.

The two types xtype and ztype are the GraphBLAS types of the input
x and output z of the user-defined function z = f(x). These types may be
built-in types or user-defined types, in any combination. The two types need
not be the same, but they must be previously defined before passing them
to GrB_UnaryOp_new.

The function argument to GrB_UnaryOp_new is a pointer to a user-
defined function with the following signature:

void (*f) (void *z, const void *x) ;

When the function f is called, the arguments z and x are passed as
(void *) pointers, but they will be pointers to values of the correct type,
defined by ztype and xtype, respectively, when the operator was created.

NOTE: The pointers passed to a user-defined operator may not be
unique. That is, the user function may be called with multiple pointers
that point to the same space, such as when z=f(z,y) is to be computed by
a binary operator, or z=f(z) for a unary operator. Any parameters passed
to the user-callable function may be aliased to each other.

50

6.2.2 GxB UnaryOp new: create a named user-defined unary opera-
tor

GrB_Info GxB_UnaryOp_new // create a new user-defined unary operator

(

GrB_UnaryOp *unaryop, // handle for the new unary operator

GxB_unary_function function, // pointer to the unary function

GrB_Type ztype, // type of output z

GrB_Type xtype, // type of input x

const char *unop_name, // name of the user function

const char *unop_defn // definition of the user function

) ;

Creates a named GrB_UnaryOp. Only the first 127 characters of unop_name
are used. The unop_defn is a string containing the entire function itself. For
example:

void square (double *z, double *x) { (*z) = (*x) * (*x) ; } ;

...

GrB_Type Square ;

GxB_UnaryOp_new (&Square, square, GrB_FP64, GrB_FP64, "square",

"void square (double *z, double *x) { (*z) = (*x) * (*x) ; } ;") ;

Currently, only the unop_name is used, but future versions will rely on
the unop_defn when employing a JIT for better performance.

6.2.3 GrB UnaryOp wait: wait for a unary operator

GrB_Info GrB_wait // wait for a user-defined unary operator

(

GrB_UnaryOp unaryop, // unary operator to wait for

GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

After creating a user-defined unary operator, a GraphBLAS library may
choose to exploit non-blocking mode to delay its creation. Currently, Suite-
Sparse:GraphBLAS currently does nothing except to ensure that the unaryop
is valid.

51

6.2.4 GxB UnaryOp ztype name: return the name of the type of z

GrB_Info GxB_UnaryOp_ztype_name // return the type_name of z

(

char *type_name, // user array of size GxB_MAX_NAME_LEN

const GrB_UnaryOp unaryop // unary operator

) ;

GxB_UnaryOp_ztype_name returns the name of the ztype of the unary
operator, which is the type of z in the function z = f(x).

6.2.5 GxB UnaryOp xtype name: return the name of the type of x

GrB_Info GxB_UnaryOp_xtype_name // return the type_name of x

(

char *type_name, // user array of size GxB_MAX_NAME_LEN

const GrB_UnaryOp unaryop // unary operator

) ;

GxB_UnaryOp_xtype_name returns the name of the xtype of the unary
operator, which is the type of x in the function z = f(x).

6.2.6 GrB UnaryOp free: free a user-defined unary operator

GrB_Info GrB_free // free a user-created unary operator

(

GrB_UnaryOp *unaryop // handle of unary operator to free

) ;

GrB_UnaryOp_free frees a user-defined unary operator. Either usage:

GrB_UnaryOp_free (&unaryop) ;

GrB_free (&unaryop) ;

frees the unaryop and sets unaryop to NULL. It safely does nothing if passed
a NULL handle, or if unaryop == NULL on input. It does nothing at all if
passed a built-in unary operator.

52

6.3 GraphBLAS binary operators: GrB BinaryOp, z =
f(x, y)

A binary operator is a scalar function of the form z = f(x, y). The types of
z, x, and y need not be the same. The built-in binary operators are listed
in the tables below. The notation T refers to any of the 13 built-in types,
but two of those types are SuiteSparse extensions (GxB_FC32 and GxB_FC64).
For those types, the operator name always starts with GxB, not GrB). The
notation R refers to any real type (all but FC32 and FC64).

The six GxB_IS* comparators and the GxB_* logical operators all return
a result one for true and zero for false, in the same domain T or R as their
inputs. These six comparators are useful as “multiply” operators for creating
semirings with non-Boolean monoids.

Binary operators for all 13 types
GraphBLAS name types (domains) z = f(x, y) description
GrB_FIRST_T T × T → T z = x first argument
GrB_SECOND_T T × T → T z = y second argument
GxB_ANY_T T × T → T z = x or y pick x or y arbitrarily
GrB_ONEB_T T × T → T z = 1 one
GxB_PAIR_T T × T → T z = 1 one (historical)
GrB_PLUS_T T × T → T z = x+ y addition
GrB_MINUS_T T × T → T z = x− y subtraction
GxB_RMINUS_T T × T → T z = y − x reverse subtraction
GrB_TIMES_T T × T → T z = xy multiplication
GrB_DIV_T T × T → T z = x/y division
GxB_RDIV_T T × T → T z = y/x reverse division
GxB_POW_T T × T → T z = xy power
GxB_ISEQ_T T × T → T z = (x == y) equal
GxB_ISNE_T T × T → T z = (x ̸= y) not equal

The GxB_POW_* operators for real types do not return a complex result,
and thus z = f(x, y) = xy is undefined if x is negative and y is not an integer.
To compute a complex result, use GxB_POW_FC32 or GxB_POW_FC64.

Operators that require the domain to be ordered (MIN, MAX, less-than,
greater-than, and so on) are not defined for complex types. These are listed
in the following table:

53

Binary operators for all non-complex types
GraphBLAS name types (domains) z = f(x, y) description
GrB_MIN_R R×R → R z = min(x, y) minimum
GrB_MAX_R R×R → R z = max(x, y) maximum
GxB_ISGT_R R×R → R z = (x > y) greater than
GxB_ISLT_R R×R → R z = (x < y) less than
GxB_ISGE_R R×R → R z = (x ≥ y) greater than or equal
GxB_ISLE_R R×R → R z = (x ≤ y) less than or equal
GxB_LOR_R R×R → R z = (x ̸= 0) ∨ (y ̸= 0) logical OR
GxB_LAND_R R×R → R z = (x ̸= 0) ∧ (y ̸= 0) logical AND
GxB_LXOR_R R×R → R z = (x ̸= 0) ⊻ (y ̸= 0) logical XOR

Another set of six kinds of built-in comparators have the form T ×
T →bool. Note that when T is bool, the six operators give the same results
as the six GxB_IS*_BOOL operators in the table above. These six compara-
tors are useful as “multiply” operators for creating semirings with Boolean
monoids.

Binary comparators for all 13 types
GraphBLAS name types (domains) z = f(x, y) description
GrB_EQ_T T × T →bool z = (x == y) equal
GrB_NE_T T × T →bool z = (x ̸= y) not equal

Binary comparators for non-complex types
GraphBLAS name types (domains) z = f(x, y) description
GrB_GT_R R×R →bool z = (x > y) greater than
GrB_LT_R R×R →bool z = (x < y) less than
GrB_GE_R R×R →bool z = (x ≥ y) greater than or equal
GrB_LE_R R×R →bool z = (x ≤ y) less than or equal

GraphBLAS has four built-in binary operators that operate purely in the
Boolean domain. The first three are identical to the GxB_L*_BOOL operators
described above, just with a shorter name. The GrB_LXNOR operator is the
same as GrB_EQ_BOOL.

Binary operators for the boolean type only
GraphBLAS name types (domains) z = f(x, y) description
GrB_LOR bool × bool → bool z = x ∨ y logical OR
GrB_LAND bool × bool → bool z = x ∧ y logical AND
GrB_LXOR bool × bool → bool z = x ⊻ y logical XOR
GrB_LXNOR bool × bool → bool z = ¬(x ⊻ y) logical XNOR

54

The following operators are defined for real floating-point types only
(GrB_FP32 and GrB_FP64). They are identical to the ANSI C11 functions
of the same name. The last one in the table constructs the corresponding
complex type.

Binary operators for the real floating-point types only
GraphBLAS name types (domains) z = f(x, y) description
GxB_ATAN2_F F × F → F z = tan−1(y/x) 4-quadrant arc tangent

GxB_HYPOT_F F × F → F z =
√

x2 + y2 hypotenuse
GxB_FMOD_F F × F → F ANSI C11 fmod

GxB_REMAINDER_F F × F → F ANSI C11 remainder

GxB_LDEXP_F F × F → F ANSI C11 ldexp

GxB_COPYSIGN_F F × F → F ANSI C11 copysign

GxB_CMPLX_F F × F → Z z = x+ y × i complex from real & imag

Eight bitwise operators are predefined for signed and unsigned integers.

Binary operators for signed and unsigned integers
GraphBLAS name types (domains) z = f(x, y) description
GrB_BOR_I I × I → I z=x|y bitwise logical OR
GrB_BAND_I I × I → I z=x&y bitwise logical AND
GrB_BXOR_I I × I → I z=x^y bitwise logical XOR
GrB_BXNOR_I I × I → I z=~(x^y) bitwise logical XNOR
GxB_BGET_I I × I → I get bit y of x
GxB_BSET_I I × I → I set bit y of x
GxB_BCLR_I I × I → I clear bit y of x
GxB_BSHIFT_I I×int8→ I bit shift

There are two sets of built-in comparators in SuiteSparse:GraphBLAS,
but they are not redundant. They are identical except for the type (domain)
of their output, z. The GrB_EQ_T and related operators compare their inputs
of type T and produce a Boolean result of true or false. The GxB_ISEQ_T and
related operators compute the same thing and produce a result with same
type T as their input operands, returning one for true or zero for false. The
IS* comparators are useful when combining comparators with other non-
Boolean operators. For example, a PLUS-ISEQ semiring counts how many
terms are true. With this semiring, matrix multiplication C = AB for two
weighted undirected graphs A and B computes cij as the number of edges
node i and j have in common that have identical edge weights. Since the
output type of the “multiplier” operator in a semiring must match the type

55

of its monoid, the Boolean EQ cannot be combined with a non-Boolean PLUS

monoid to perform this operation.
Likewise, SuiteSparse:GraphBLAS has two sets of logical OR, AND, and

XOR operators. Without the _T suffix, the three operators GrB_LOR, GrB_LAND,
and GrB_LXOR operate purely in the Boolean domain, where all input and
output types are GrB_BOOL. The second set (GxB_LOR_T GxB_LAND_T and
GxB_LXOR_T) provides Boolean operators to all 11 real domains, implicitly
typecasting their inputs from type T to Boolean and returning a value of
type T that is 1 for true or zero for false. The set of GxB_L*_T operators are
useful since they can be combined with non-Boolean monoids in a semiring.

Floating-point operations follow the IEEE 754 standard. Thus, comput-
ing x/0 for a floating-point x results in +Inf if x is positive, -Inf if x is
negative, and NaN if x is zero. The application is not terminated. How-
ever, integer division by zero normally terminates an application. Suite-
Sparse:GraphBLAS avoids this by adopting the same rules as MATLAB,
which are analogous to how the IEEE standard handles floating-point di-
vision by zero. For integers, when x is positive, x/0 is the largest positive
integer, for negative x it is the minimum integer, and 0/0 results in zero.
For example, for an integer x of type GrB_INT32, 1/0 is 231 − 1 and (-1)/0 is
−231. Refer to Section 6.1 for a list of integer ranges.

Eight positional operators are predefined. They differ when used in a
semiring and when used in GrB_eWise* and GrB_apply. Positional operators
cannot be used in GrB_build, nor can they be used as the accum operator
for any operation.

The positional binary operators do not depend on the type or numerical
value of their inputs, just their position in a matrix or vector. For a vector,
j is always 0, and i is the index into the vector. There are two types N
available: INT32 and INT64, which is the type of the output z. User-defined
positional operators cannot be defined by GrB_BinaryOp_new.

56

Positional binary operators for any type (including user-defined)
when used as a multiplicative operator in a semiring

GraphBLAS name types (domains) z = f(aik, bkj) description
GxB_FIRSTI_N → N z = i row index of aik (0-based)
GxB_FIRSTI1_N → N z = i+ 1 row index of aik (1-based)
GxB_FIRSTJ_N → N z = k column index of aik (0-based)
GxB_FIRSTJ1_N → N z = k + 1 column index of aik (1-based)
GxB_SECONDI_N → N z = k row index of bkj (0-based)
GxB_SECONDI1_N → N z = k + 1 row index of bkj (1-based)
GxB_SECONDJ_N → N z = j column index of bkj (0-based)
GxB_SECONDJ1_N → N z = j + 1 column index of bkj (1-based)

Positional binary operators for any type (including user-defined)
when used in all other methods

GraphBLAS name types (domains) z = f(aij , bij) description
GxB_FIRSTI_N → N z = i row index of aij (0-based)
GxB_FIRSTI1_N → N z = i+ 1 row index of aij (1-based)
GxB_FIRSTJ_N → N z = j column index of aij (0-based)
GxB_FIRSTJ1_N → N z = j + 1 column index of aij (1-based)
GxB_SECONDI_N → N z = i row index of bij (0-based)
GxB_SECONDI1_N → N z = i+ 1 row index of bij (1-based)
GxB_SECONDJ_N → N z = j column index of bij (0-based)
GxB_SECONDJ1_N → N z = j + 1 column index of bij (1-based)

Finally, one special binary operator can only be used as input to GrB_Matrix_build
or GrB_Vector_build: the GxB_IGNORE_DUP operator. If dup is NULL, any
duplicates in the GrB*build methods result in an error. If dup is the special
binary operator GxB_IGNORE_DUP, then any duplicates are ignored. If dupli-
cates appear, the last one in the list of tuples is taken and the prior ones
ignored. This is not an error.

The next sections define the following methods for the GrB_BinaryOp

object:

GraphBLAS function purpose Section
GrB_BinaryOp_new create a user-defined binary operator 6.3.1
GxB_BinaryOp_new create a named user-defined binary operator 6.3.2
GrB_BinaryOp_wait wait for a user-defined binary operator 6.3.3
GxB_BinaryOp_ztype_name return the type of the output z for z = f(x, y) 6.3.4
GxB_BinaryOp_xtype_name return the type of the input x for z = f(x, y) 6.3.5
GxB_BinaryOp_ytype_name return the type of the input y for z = f(x, y) 6.3.6
GrB_BinaryOp_free free a user-defined binary operator 6.3.7

57

6.3.1 GrB BinaryOp new: create a user-defined binary operator

GrB_Info GrB_BinaryOp_new

(

GrB_BinaryOp *binaryop, // handle for the new binary operator

void *function, // pointer to the binary function

GrB_Type ztype, // type of output z

GrB_Type xtype, // type of input x

GrB_Type ytype // type of input y

) ;

GrB_BinaryOp_new creates a new binary operator. The new operator is
returned in the binaryop handle, which must not be NULL on input. On
output, its contents contains a pointer to the new binary operator.

The three types xtype, ytype, and ztype are the GraphBLAS types of
the inputs x and y, and output z of the user-defined function z = f(x, y).
These types may be built-in types or user-defined types, in any combination.
The three types need not be the same, but they must be previously defined
before passing them to GrB_BinaryOp_new.

The final argument to GrB_BinaryOp_new is a pointer to a user-defined
function with the following signature:

void (*f) (void *z, const void *x, const void *y) ;

When the function f is called, the arguments z, x, and y are passed as
(void *) pointers, but they will be pointers to values of the correct type,
defined by ztype, xtype, and ytype, respectively, when the operator was
created.

NOTE: SuiteSparse:GraphBLAS may call the function with the pointers
z and x equal to one another, in which case z=f(z,y) should be computed.
Future versions may use additional pointer aliasing.

58

6.3.2 GxB BinaryOp new: create a named user-defined binary oper-
ator

GrB_Info GxB_BinaryOp_new

(

GrB_BinaryOp *op, // handle for the new binary operator

GxB_binary_function function, // pointer to the binary function

GrB_Type ztype, // type of output z

GrB_Type xtype, // type of input x

GrB_Type ytype, // type of input y

const char *binop_name, // name of the user function

const char *binop_defn // definition of the user function

) ;

Creates a named GrB_BinaryOp. Only the first 127 characters of binop_name
are used. The binop_defn is a string containing the entire function itself.
For example:

void absdiff (double *z, double *x, double *y) { (*z) = fabs ((*x) - (*y)) ; } ;

...

GrB_Type AbsDiff ;

GxB_BinaryOp_new (&AbsDiff, absdiff, GrB_FP64, GrB_FP64, GrB_FP64, "absdiff",

"void absdiff (double *z, double *x, double *y) { (*z) = fabs ((*x) - (*y)) ; }") ;

Currently, only the binop_name is used, but future versions will rely on
the binop_defn when employing a JIT for better performance.

59

6.3.3 GrB BinaryOp wait: wait for a binary operator

GrB_Info GrB_wait // wait for a user-defined binary operator

(

GrB_BinaryOp binaryop, // binary operator to wait for

GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

After creating a user-defined binary operator, a GraphBLAS library may
choose to exploit non-blocking mode to delay its creation. Currently, Suite-
Sparse:GraphBLAS currently does nothing for except to ensure that the
binaryop is valid.

6.3.4 GxB BinaryOp ztype name: return the name of the type of z

GrB_Info GxB_BinaryOp_ztype_name // return the type_name of z

(

char *type_name, // user array of size GxB_MAX_NAME_LEN

const GrB_BinaryOp binaryop // binary operator to query

) ;

GxB_BinaryOp_ztype_name returns name of the ztype of the binary op-
erator, which is the type of z in the function z = f(x, y).

6.3.5 GxB BinaryOp xtype name: return the name of the type of x

GrB_Info GxB_BinaryOp_xtype_name // return the type_name of x

(

char *type_name, // user array of size GxB_MAX_NAME_LEN

const GrB_BinaryOp binaryop // binary operator to query

) ;

GxB_BinaryOp_xtype_name returns name of the xtype of the binary op-
erator, which is the type of x in the function z = f(x, y).

6.3.6 GxB BinaryOp ytype name: return the name of the type of y

GrB_Info GxB_BinaryOp_ytype_name // return the type_name of y

(

char *type_name, // user array of size GxB_MAX_NAME_LEN

60

const GrB_BinaryOp binaryop // binary operator to query

) ;

GxB_BinaryOp_ytype_name returns name of the ytype of the binary op-
erator, which is the type of y in the function z = f(x, y).

6.3.7 GrB BinaryOp free: free a user-defined binary operator

GrB_Info GrB_free // free a user-created binary operator

(

GrB_BinaryOp *binaryop // handle of binary operator to free

) ;

GrB_BinaryOp_free frees a user-defined binary operator. Either usage:

GrB_BinaryOp_free (&op) ;

GrB_free (&op) ;

frees the op and sets op to NULL. It safely does nothing if passed a NULL

handle, or if op == NULL on input. It does nothing at all if passed a built-in
binary operator.

6.3.8 ANY and PAIR (ONEB) operators

The GxB_PAIR operator (also called GrB_ONEB) is simple to describe: just
f(x, y) = 1. It is called the PAIR operator since it returns 1 in a semiring
when a pair of entries aik and bkj is found in the matrix multiply. This
operator is simple yet very useful. It allows purely structural computations
to be performed on matrices of any type, without having to typecast them
to Boolean with all values being true. Typecasting need not be performed
on the inputs to the PAIR operator, and the PAIR operator does not need to
access the values of the matrix. This cuts memory accesses, so it is a very
fast operator to use.

The GxB_PAIR_T operator is a SuiteSparse:GraphBLAS extension. It has
since been added to the v2.0 C API Specification as GrB_ONEB_T. They are
identical, but the latter name should be used for compatibility with other
GraphBLAS libraries.

The ANY operator is very unusual, but very powerful. It is the function
fany(x, y) = x, or y, where GraphBLAS has to freedom to select either x,
or y, at its own discretion. Do not confuse the ANY operator with the any

61

function in MATLAB/Octave, which computes a reduction using the logical
OR operator.

The ANY function is associative and commutative, and can thus serve as an
operator for a monoid. The selection of x are y is not randomized. Instead,
SuiteSparse:GraphBLAS uses this freedom to compute as fast a result as
possible. When used as the monoid in a dot product,

cij =
∑
k

aikbkj

for example, the computation can terminate as soon as any matching pair of
entries is found. When used in a parallel saxpy-style computation, the ANY

operator allows for a relaxed form of synchronization to be used, resulting in
a fast benign race condition.

Because of this benign race condition, the result of the ANY monoid can be
non-deterministic, unless it is coupled with the PAIR multiplicative operator.
In this case, the ANY_PAIR semiring will return a deterministic result, since
fany(1, 1) is always 1.

When paired with a different operator, the results are non-deterministic.
This gives a powerful method when computing results for which any value
selected by the ANY operator is valid. One such example is the breadth-first-
search tree. Suppose node j is at level v, and there are multiple nodes i
at level v − 1 for which the edge (i, j) exists in the graph. Any of these
nodes i can serve as a valid parent in the BFS tree. Using the ANY operator,
GraphBLAS can quickly compute a valid BFS tree; if it used again on the
same inputs, it might return a different, yet still valid, BFS tree, due to the
non-deterministic nature of intra-thread synchronization.

62

6.4 GraphBLAS IndexUnaryOp operators: GrB IndexUnaryOp

An index-unary operator is a scalar function of the form z = f(aij, i, j, y)
that is applied to the entries aij of an m-by-n matrix. It can be used in
GrB_apply (Section 10.12) or in GrB_select (Section 10.13) to select entries
from a matrix or vector.

The signature of the index-unary function f is as follows:

void f

(

void *z, // output value z, of type ztype

const void *x, // input value x of type xtype; value of v(i) or A(i,j)

GrB_Index i, // row index of A(i,j)

GrB_Index j, // column index of A(i,j), or zero for v(i)

const void *y // input scalar y

) ;

The following built-in operators are available. Operators that do not de-
pend on the value of A(i,j) can be used on any matrix or vector, including
those of user-defined type. In the table, y is a scalar whose type matches the
suffix of the operator. The VALUEEQ and VALUENE operators are defined for
any built-in type. The other VALUE operators are defined only for real (not
complex) built-in types. Any index computations are done in int64_t arith-
metic; the result is typecasted to int32_t for the *INDEX_INT32 operators.

63

GraphBLAS name MATLAB/Octave description
analog

GrB_ROWINDEX_INT32 z=i+y row index of A(i,j), as int32
GrB_ROWINDEX_INT64 z=i+y row index of A(i,j), as int64
GrB_COLINDEX_INT32 z=j+y column index of A(i,j), as int32
GrB_COLINDEX_INT64 z=j+y column index of A(i,j), as int64
GrB_DIAGINDEX_INT32 z=j-(i+y) column diagonal index of A(i,j), as int32
GrB_DIAGINDEX_INT64 z=j-(i+y) column diagonal index of A(i,j), as int64
GrB_TRIL z=(j<=(i+y)) true for entries on or below the yth diagonal
GrB_TRIU z=(j>=(i+y)) true for entries on or above the yth diagonal
GrB_DIAG z=(j==(i+y)) true for entries on the yth diagonal
GrB_OFFDIAG z=(j!=(i+y)) true for entries not on the yth diagonal
GrB_COLLE z=(j<=y) true for entries in columns 0 to y

GrB_COLGT z=(j>y) true for entries in columns y+1 and above
GrB_ROWLE z=(i<=y) true for entries in rows 0 to y

GrB_ROWGT z=(i>y) true for entries in rows y+1 and above
GrB_VALUENE_T z=(aij!=y) true if A(i,j) is not equal to y

GrB_VALUEEQ_T z=(aij==y) true if A(i,j) is equal to y

GrB_VALUEGT_T z=(aij>y) true if A(i,j) is greater than y

GrB_VALUEGE_T z=(aij>=y) true if A(i,j) is greater than or equal to y

GrB_VALUELT_T z=(aij<y) true if A(i,j) is less than y

GrB_VALUELE_T z=(aij<=y) true if A(i,j) is less than or equal to y

The following methods operate on the GrB_IndexUnaryOp object:

GraphBLAS function purpose Section
GrB_IndexUnaryOp_new create a user-defined index-unary operator 6.4.1
GxB_IndexUnaryOp_new create a named user-defined index-unary operator 6.4.2
GrB_IndexUnaryOp_wait wait for a user-defined index-unary operator 6.4.3
GrB_IndexUnaryOp_ztype_name return the type of the output z 6.4.4
GrB_IndexUnaryOp_xtype_name return the type of the input x 6.4.5
GrB_IndexUnaryOp_ytype_name return the type of the scalar y 6.4.6
GrB_IndexUnaryOp_free free a user-defined index-unary operator 6.4.7

64

6.4.1 GrB IndexUnaryOp new: create a user-defined index-unary op-
erator

GrB_Info GrB_IndexUnaryOp_new // create a new user-defined IndexUnary op

(

GrB_IndexUnaryOp *op, // handle for the new IndexUnary operator

void *function, // pointer to IndexUnary function

GrB_Type ztype, // type of output z

GrB_Type xtype, // type of input x (the A(i,j) entry)

GrB_Type ytype // type of scalar input y

) ;

GrB_IndexUnaryOp_new creates a new index-unary operator. The new
operator is returned in the op handle, which must not be NULL on input. On
output, its contents contains a pointer to the new index-unary operator.

The function argument to GrB_IndexUnaryOp_new is a pointer to a user-
defined function whose signature is given at the beginning of Section 6.4.
Given the properties of an entry aij in a matrix, the function should return
z as true if the entry should be kept in the output of GrB_select, or false
if it should not appear in the output. If the return value is not GrB_BOOL, it
is typecasted to GrB_BOOL by GrB_select.

The type xtype is the GraphBLAS type of the input x of the user-defined
function z = f(x, i, j, y), which is used for the entry A(i,j) of a matrix or
v(i) of a vector. The type may be built-in or user-defined.

The type ytype is the GraphBLAS type of the scalar input y of the user-
defined function z = f(x, i, j, y). The type may be built-in or user-defined.

6.4.2 GxB IndexUnaryOp new: create a named user-defined index-
unary operator

GrB_Info GxB_IndexUnaryOp_new // create a named user-created IndexUnaryOp

(

GrB_IndexUnaryOp *op, // handle for the new IndexUnary operator

GxB_index_unary_function function, // pointer to index_unary function

GrB_Type ztype, // type of output z

GrB_Type xtype, // type of input x

GrB_Type ytype, // type of scalar input y

const char *idxop_name, // name of the user function

const char *idxop_defn // definition of the user function

) ;

Creates a named GrB_IndexUnaryOp. Only the first 127 characters of

65

idxop_name are used. The ixdop_defn is a string containing the entire
function itself. Currently, only the idxop_name is used, but future versions
will rely on the idxop_defn when employing a JIT for better performance.

6.4.3 GrB IndexUnaryOp wait: wait for an index-unary operator

GrB_Info GrB_wait // wait for a user-defined binary operator

(

GrB_IndexUnaryOp op, // index-unary operator to wait for

GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

After creating a user-defined select operator, a GraphBLAS library may
choose to exploit non-blocking mode to delay its creation. Currently, Suite-
Sparse:GraphBLAS currently does nothing except to ensure that the op is
valid.

6.4.4 GxB IndexUnaryOp ztype name: return the name of the type of
z

GrB_Info GxB_IndexUnaryOp_ztype_name // return the type_name of x

(

char *type_name, // user array of size GxB_MAX_NAME_LEN

const GrB_IndexUnaryOp op // index-unary operator

) ;

GrB_IndexUnaryOp_ztype_name returns the ztype of the index-unary
operator, which is the type of z in the function z = f(x, i, j, y).

6.4.5 GxB IndexUnaryOp xtype name: return the name of the type of
x

GrB_Info GxB_IndexUnaryOp_xtype_name // return the type_name of x

(

char *type_name, // user array of size GxB_MAX_NAME_LEN

const GrB_IndexUnaryOp op // index-unary operator

) ;

GrB_IndexUnaryOp_xtype_name returns the xtype of the index-unary
operator, which is the type of x in the function z = f(x, i, j, y). This input
is used for the entry A(i,j) of a matrix or v(i) of a vector.

66

6.4.6 GxB IndexUnaryOp ytype name: return the name of the type of
scalar y

GrB_Info GxB_IndexUnaryOp_ytype_name // return the type_name of the scalar y

(

char *type_name, // user array of size GxB_MAX_NAME_LEN

const GrB_IndexUnaryOp op // index-unary operator

) ;

GrB_IndexUnaryOp_ytype_name returns the ytype of the index-unary
operator, which is the type of the scalar y in the function z = f(x, i, j, y).

6.4.7 GrB IndexUnaryOp free: free a user-defined index-unary opera-
tor

GrB_Info GrB_free // free a user-created index-unary operator

(

GrB_IndexUnaryOp *op // handle of IndexUnary to free

) ;

GrB_IndexUnaryOp_free frees a user-defined index-unary operator. Ei-
ther usage:

GrB_IndexUnaryOp_free (&op) ;

GrB_free (&op) ;

frees the op and sets op to NULL. It safely does nothing if passed a NULL

handle, or if op == NULL on input. It does nothing at all if passed a built-in
index-unary operator.

67

6.5 GraphBLAS monoids: GrB Monoid

A monoid is defined on a single domain (that is, a single type), T . It consists
of an associative binary operator z = f(x, y) whose three operands x, y,
and z are all in this same domain T (that is T × T → T). The operator
must also have an identity element, or “zero” in this domain, such that
f(x, 0) = f(0, x) = x. Recall that an associative operator f(x, y) is one
for which the condition f(a, f(b, c)) = f(f(a, b), c) always holds. That is,
operator can be applied in any order and the results remain the same. If
used in a semiring, the operator must also be commutative.

The 77 predefined monoids are listed in the table below, which includes
nearly all monoids that can be constructed from built-in binary operators.
A few additional monoids can be defined with GrB_Monoid_new using built-
in operators, such as bitwise monoids for signed integers. Recall that T
denotes any built-in type (including boolean, integer, floating point real, and
complex), R denotes any non-complex type (including bool), I denotes any
integer type, and Z denotes any complex type. Let S denote the 10 non-
boolean real types. Let U denote all unsigned integer types.

The table lists the GraphBLAS monoid, its type, expression, identity
value, and terminal value (if any). For these built-in monoids, the terminal
values are the annihilators of the function, which is the value z so that
z = f(z, y) regardless of the value of y. For example min(−∞, y) = −∞ for
any y. For integer domains, +∞ and −∞ are the largest and smallest integer
in their range. With unsigned integers, the smallest value is zero, and thus
GrB_MIN_MONOID_UINT8 has an identity of 255 and a terminal value of 0.

When computing with a monoid, the computation can terminate early if
the terminal value arises. No further work is needed since the result will not
change. This value is called the terminal value instead of the annihilator,
since a user-defined operator can be created with a terminal value that is not
an annihilator. See Section 6.5.3 for an example.

The GxB_ANY_* monoid can terminate as soon as it finds any value at all.

68

GraphBLAS types (domains) expression identity terminal
operator z = f(x, y)
GrB_PLUS_MONOID_S S × S → S z = x+ y 0 none
GrB_TIMES_MONOID_S S × S → S z = xy 1 0 or none (see note)
GrB_MIN_MONOID_S S × S → S z = min(x, y) +∞ −∞
GrB_MAX_MONOID_S S × S → S z = max(x, y) −∞ +∞
GxB_PLUS_Z_MONOID Z × Z → Z z = x+ y 0 none
GxB_TIMES_Z_MONOID Z × Z → Z z = xy 1 none
GxB_ANY_T_MONOID T × T → T z = x or y any any
GrB_LOR_MONOID bool × bool → bool z = x ∨ y false true
GrB_LAND_MONOID bool × bool → bool z = x ∧ y true false
GrB_LXOR_MONOID bool × bool → bool z = x ⊻ y false none
GrB_LXNOR_MONOID bool × bool → bool z = (x == y) true none
GxB_BOR_U_MONOID U × U → U z=x|y all bits zero all bits one
GxB_BAND_U_MONOID U × U → U z=x&y all bits one all bits zero
GxB_BXOR_U_MONOID U × U → U z=x^y all bits zero none
GxB_BXNOR_U_MONOID U × U → U z=~(x^y) all bits one none

The C API Specification includes 44 predefined monoids, with the nam-
ing convention GrB_op_MONOID_type. Forty monoids are available for the
four operators MIN, MAX, PLUS, and TIMES, each with the 10 non-boolean
real types. Four boolean monoids are predefined: GrB_LOR_MONOID_BOOL,
GrB_LAND_MONOID_BOOL, GrB_LXOR_MONOID_BOOL, and GrB_LXNOR_MONOID_BOOL.

These all appear in SuiteSparse:GraphBLAS, which adds 33 additional
predefined GxB*monoids, with the naming convention GxB_op_type_MONOID.
The ANY operator can be used for all 13 types (including complex). The PLUS
and TIMES operators are provided for both complex types, for 4 additional
complex monoids. Sixteen monoids are predefined for four bitwise operators
(BOR, BAND, BXOR, and BNXOR), each with four unsigned integer types (UINT8,
UINT16, UINT32, and UINT64).

NOTE: The GrB_TIMES_FP* operators do not have a terminal value of
zero, since they comply with the IEEE 754 standard, and 0*NaN is not zero,
but NaN. Technically, their terminal value is NaN, but this value is rare in
practice and thus the terminal condition is not worth checking.

The next sections define the following methods for the GrB_Monoid object:

69

GraphBLAS function purpose Section
GrB_Monoid_new create a user-defined monoid 6.5.1
GrB_Monoid_wait wait for a user-defined monoid 6.5.2
GxB_Monoid_terminal_new create a monoid that has a terminal value 6.5.3
GxB_Monoid_operator return the monoid operator 6.5.4
GxB_Monoid_identity return the monoid identity value 6.5.5
GxB_Monoid_terminal return the monoid terminal value (if any) 6.5.6
GrB_Monoid_free free a monoid 6.5.7

70

6.5.1 GrB Monoid new: create a monoid

GrB_Info GrB_Monoid_new // create a monoid

(

GrB_Monoid *monoid, // handle of monoid to create

GrB_BinaryOp op, // binary operator of the monoid

<type> identity // identity value of the monoid

) ;

GrB_Monoid_new creates a monoid. The operator, op, must be an asso-
ciative binary operator, either built-in or user-defined.

In the definition above, <type> is a place-holder for the specific type of
the monoid. For built-in types, it is the C type corresponding to the built-in
type (see Section 6.1), such as bool, int32_t, float, or double. In this case,
identity is a scalar value of the particular type, not a pointer. For user-
defined types, <type> is void *, and thus identity is a not a scalar itself
but a void * pointer to a memory location containing the identity value of
the user-defined operator, op.

If op is a built-in operator with a known identity value, then the identity
parameter is ignored, and its known identity value is used instead.

6.5.2 GrB Monoid wait: wait for a monoid

GrB_Info GrB_wait // wait for a user-defined monoid

(

GrB_Monoid monoid, // monoid to wait for

GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

After creating a user-defined monoid, a GraphBLAS library may choose to
exploit non-blocking mode to delay its creation. Currently, SuiteSparse:GraphBLAS
currently does nothing except to ensure that the monoid is valid.

71

6.5.3 GxB Monoid terminal new: create a monoid with terminal

GrB_Info GxB_Monoid_terminal_new // create a monoid that has a terminal value

(

GrB_Monoid *monoid, // handle of monoid to create

GrB_BinaryOp op, // binary operator of the monoid

<type> identity, // identity value of the monoid

<type> terminal // terminal value of the monoid

) ;

GxB_Monoid_terminal_new is identical to GrB_Monoid_new, except that
it allows for the specification of a terminal value. The <type> of the terminal
value is the same as the identity parameter; see Section 6.5.1 for details.

The terminal value of a monoid is the value z for which z = f(z, y) for
any y, where z = f(x, y) is the binary operator of the monoid. This is also
called the annihilator, but the term terminal value is used here. This is
because all annihilators are terminal values, but a terminal value need not
be an annihilator, as described in the MIN example below.

If the terminal value is encountered during computation, the rest of the
computations can be skipped. This can greatly improve the performance
of GrB_reduce, and matrix multiply in specific cases (when a dot product
method is used). For example, using GrB_reduce to compute the sum of all
entries in a GrB_FP32 matrix with e entries takes O(e) time, since a monoid
based on GrB_PLUS_FP32 has no terminal value. By contrast, a reduction
using GrB_LOR on a GrB_BOOL matrix can take as little as O(1) time, if a
true value is found in the matrix very early.

Monoids based on the built-in GrB_MIN_* and GrB_MAX_* operators (for
any type), the boolean GrB_LOR, and the boolean GrB_LAND operators all
have terminal values. For example, the identity value of GrB_LOR is false,
and its terminal value is true. When computing a reduction of a set of
boolean values to a single value, once a true is seen, the computation can
exit early since the result is now known.

If op is a built-in operator with known identity and terminal values, then
the identity and terminal parameters are ignored, and its known identity
and terminal values are used instead.

There may be cases in which the user application needs to use a non-
standard terminal value for a built-in operator. For example, suppose the
matrix has type GrB_FP32, but all values in the matrix are known to be
non-negative. The annihilator value of MIN is -INFINITY, but this will never
be seen. However, the computation could terminate when finding the value

72

zero. This is an example of using a terminal value that is not actually an
annihilator, but it functions like one since the monoid will operate strictly
on non-negative values.

In this case, a monoid created with GrB_MIN_FP32 will not terminate
early, because the identity and terminal inputs are ignored when using GrB_Monoid_new
with a built-in operator as its input. To create a monoid that can termi-
nate early, create a user-defined operator that computes the same thing as
GrB_MIN_FP32, and then create a monoid based on this user-defined operator
with a terminal value of zero and an identity of +INFINITY.

6.5.4 GxB Monoid operator: return the monoid operator

GrB_Info GxB_Monoid_operator // return the monoid operator

(

GrB_BinaryOp *op, // returns the binary op of the monoid

GrB_Monoid monoid // monoid to query

) ;

GxB_Monoid_operator returns the binary operator of the monoid.

6.5.5 GxB Monoid identity: return the monoid identity

GrB_Info GxB_Monoid_identity // return the monoid identity

(

void *identity, // returns the identity of the monoid

GrB_Monoid monoid // monoid to query

) ;

GxB_Monoid_identity returns the identity value of the monoid. The
void * pointer, identity, must be non-NULL and must point to a memory
space of size at least equal to the size of the type of the monoid. The type
size can be obtained via GxB_Monoid_operator to return the monoid addi-
tive operator, then GxB_BinaryOp_ztype to obtain the ztype, followed by
GxB_Type_size to get its size.

73

6.5.6 GxB Monoid terminal: return the monoid terminal value

GrB_Info GxB_Monoid_terminal // return the monoid terminal

(

bool *has_terminal, // true if the monoid has a terminal value

void *terminal, // returns the terminal of the monoid

GrB_Monoid monoid // monoid to query

) ;

GxB_Monoid_terminal returns the terminal value of the monoid (if any).
The void * pointer, terminal, must be non-NULL and must point to a mem-
ory space of size at least equal to the size of the type of the monoid. The
type size can be obtained via GxB_Monoid_operator to return the monoid
additive operator, then GxB_BinaryOp_ztype to obtain the ztype, followed
by GxB_Type_size to get its size.

If the monoid has a terminal value, then has_terminal is true, and its
value is returned in the terminal parameter. If it has no terminal value,
then has_terminal is false, and the terminal parameter is not modified.

6.5.7 GrB Monoid free: free a monoid

GrB_Info GrB_free // free a user-created monoid

(

GrB_Monoid *monoid // handle of monoid to free

) ;

GrB_Monoid_frees frees a monoid. Either usage:

GrB_Monoid_free (&monoid) ;

GrB_free (&monoid) ;

frees the monoid and sets monoid to NULL. It safely does nothing if passed a
NULL handle, or if monoid == NULL on input. It does nothing at all if passed
a built-in monoid.

74

6.6 GraphBLAS semirings: GrB Semiring

A semiring defines all the operators required to define the multiplication
of two sparse matrices in GraphBLAS, C = AB. The “add” operator is a
commutative and associative monoid, and the binary “multiply” operator
defines a function z = fmult(x, y) where the type of z matches the exactly
with the monoid type. SuiteSparse:GraphBLAS includes 1,473 predefined
built-in semirings. The next sections define the following methods for the
GrB_Semiring object:

GraphBLAS function purpose Section
GrB_Semiring_new create a user-defined semiring 6.6.1
GrB_Semiring_wait wait for a user-defined semiring 6.6.2
GxB_Semiring_add return the additive monoid of a semiring 6.6.3
GxB_Semiring_multiply return the binary operator of a semiring 6.6.4
GrB_Semiring_free free a semiring 6.6.5

6.6.1 GrB Semiring new: create a semiring

GrB_Info GrB_Semiring_new // create a semiring

(

GrB_Semiring *semiring, // handle of semiring to create

GrB_Monoid add, // add monoid of the semiring

GrB_BinaryOp multiply // multiply operator of the semiring

) ;

GrB_Semiring_new creates a new semiring, with add being the additive
monoid and multiply being the binary “multiply” operator. In addition to
the standard error cases, the function returns GrB_DOMAIN_MISMATCH if the
output (ztype) domain of multiply does not match the domain of the add

monoid.
The v2.0 C API Specification for GraphBLAS includes 124 predefined

semirings, with names of the form GrB_add_mult_SEMIRING_type, where
add is the operator of the additive monoid, mult is the multiply opera-
tor, and type is the type of the input x to the multiply operator, f(x, y).
The name of the domain for the additive monoid does not appear in the
name, since it always matches the type of the output of the mult oper-
ator. Twelve kinds of GrB* semirings are available for all 10 real, non-
boolean types: PLUS_TIMES, PLUS_MIN, MIN_PLUS, MIN_TIMES, MIN_FIRST,
MIN_SECOND, MIN_MAX, MAX_PLUS, MAX_TIMES, MAX_FIRST, MAX_SECOND, and

75

MAX_MIN. Four semirings are for boolean types only: LOR_LAND, LAND_LOR,
LXOR_LAND, and LXNOR_LOR.

SuiteSparse:GraphBLAS pre-defines 1,553 semirings from built-in types
and operators, listed below. The naming convention is GxB_add_mult_type.
The 124 GrB* semirings are a subset of the list below, included with two
names: GrB* and GxB*. If the GrB* name is provided, its use is preferred,
for portability to other GraphBLAS implementations.

• 1000 semirings with a multiplier T × T → T where T is any of the 10
non-Boolean, real types, from the complete cross product of:

– 5 monoids (MIN, MAX, PLUS, TIMES, ANY)

– 20 multiply operators (FIRST, SECOND, PAIR (same as ONEB), MIN,
MAX, PLUS, MINUS, RMINUS, TIMES, DIV, RDIV, ISEQ, ISNE, ISGT,
ISLT, ISGE, ISLE, LOR, LAND, LXOR).

– 10 non-Boolean types, T

• 300 semirings with a comparator T×T → bool, where T is non-Boolean
and real, from the complete cross product of:

– 5 Boolean monoids (LAND, LOR, LXOR, EQ, ANY)

– 6 multiply operators (EQ, NE, GT, LT, GE, LE)

– 10 non-Boolean types, T

• 55 semirings with purely Boolean types, bool × bool → bool, from
the complete cross product of:

– 5 Boolean monoids (LAND, LOR, LXOR, EQ, ANY)

– 11 multiply operators (FIRST, SECOND, PAIR (same as ONEB), LOR,
LAND, LXOR, EQ, GT, LT, GE, LE)

• 54 complex semirings, Z×Z → Z where Z is GxB_FC32 (single precision
complex) or GxB_FC64 (double precision complex):

– 3 complex monoids (PLUS, TIMES, ANY)

– 9 complex multiply operators (FIRST, SECOND, PAIR (same as ONEB),
PLUS, MINUS, TIMES, DIV, RDIV, RMINUS)

– 2 complex types, Z

76

• 64 bitwise semirings, U × U → U where U is an unsigned integer.

– 4 bitwise monoids (BOR, BAND, BXOR, BXNOR)

– 4 bitwise multiply operators (the same list)

– 4 unsigned integer types

• 80 positional semirings, X ×X → N where N is INT32 or INT64:

– 5 monoids (MIN, MAX, PLUS, TIMES, ANY)

– 8 positional operators (FIRSTI, FIRSTI1, FIRSTJ, FIRSTJ1, SECONDI,
SECONDI1, SECONDJ, SECONDJ1)

– 2 integer types (INT32, INT64)

77

6.6.2 GrB Semiring wait: wait for a semiring

GrB_Info GrB_wait // wait for a user-defined semiring

(

GrB_Semiring semiring, // semiring to wait for

GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

After creating a user-defined semiring, a GraphBLAS library may choose
to exploit non-blocking mode to delay its creation. Currently, SuiteSparse:GraphBLAS
currently does nothing except to ensure that the semiring is valid.

6.6.3 GxB Semiring add: return the additive monoid of a semiring

GrB_Info GxB_Semiring_add // return the add monoid of a semiring

(

GrB_Monoid *add, // returns add monoid of the semiring

GrB_Semiring semiring // semiring to query

) ;

GxB_Semiring_add returns the additive monoid of a semiring.

6.6.4 GxB Semiring multiply: return multiply operator of a semiring

GrB_Info GxB_Semiring_multiply // return multiply operator of a semiring

(

GrB_BinaryOp *multiply, // returns multiply operator of the semiring

GrB_Semiring semiring // semiring to query

) ;

GxB_Semiring_multiply returns the binary multiplicative operator of a
semiring.

6.6.5 GrB Semiring free: free a semiring

GrB_Info GrB_free // free a user-created semiring

(

GrB_Semiring *semiring // handle of semiring to free

) ;

GrB_Semiring_free frees a semiring. Either usage:

78

GrB_Semiring_free (&semiring) ;

GrB_free (&semiring) ;

frees the semiring and sets semiring to NULL. It safely does nothing if passed
a NULL handle, or if semiring == NULL on input. It does nothing at all if
passed a built-in semiring.

79

6.7 GraphBLAS scalars: GrB Scalar

This section describes a set of methods that create, modify, query, and de-
stroy a GraphBLAS scalar, GrB_Scalar:

GraphBLAS function purpose Section
GrB_Scalar_new create a scalar 6.7.1
GrB_Scalar_wait wait for a scalar 6.7.2
GrB_Scalar_dup copy a scalar 6.7.3
GrB_Scalar_clear clear a scalar of its entry 6.7.4
GrB_Scalar_nvals return number of entries in a scalar 6.7.5
GxB_Scalar_type_name return name of the type of a scalar 6.7.6
GrB_Scalar_setElement set the single entry of a scalar 6.7.7
GrB_Scalar_extractElement get the single entry from a scalar 6.7.8
GxB_Scalar_memoryUsage memory used by a scalar 6.7.9
GrB_Scalar_free free a scalar 6.7.10

6.7.1 GrB Scalar new: create a scalar

GrB_Info GrB_Scalar_new // create a new GrB_Scalar with no entry

(

GrB_Scalar *s, // handle of GrB_Scalar to create

GrB_Type type // type of GrB_Scalar to create

) ;

GrB_Scalar_new creates a new scalar with no entry in it, of the given
type. This is analogous to MATLAB/Octave statement s = sparse(0),
except that GraphBLAS can create scalars any type. The pattern of the new
scalar is empty.

6.7.2 GrB Scalar wait: wait for a scalar

GrB_Info GrB_wait // wait for a scalar

(

GrB_Scalar s, // scalar to wait for

GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

In non-blocking mode, the computations for a GrB_Scalar may be de-
layed. In this case, the scalar is not yet safe to use by multiple indepen-
dent user threads. A user application may force completion of a scalar
s via GrB_Scalar_wait(&s) (in v5.2.0), or GrB_Scalar_wait(s,mode) (in
v6.0.0). With a mode of GrB_MATERIALIZE, all pending computations are

80

finished, and different user threads may simultaneously call GraphBLAS op-
erations that use the scalar s as an input parameter. See Section 8.1 if
GraphBLAS is compiled without OpenMP.

6.7.3 GrB Scalar dup: copy a scalar

GrB_Info GrB_Scalar_dup // make an exact copy of a GrB_Scalar

(

GrB_Scalar *s, // handle of output GrB_Scalar to create

const GrB_Scalar t // input GrB_Scalar to copy

) ;

GrB_Scalar_dup makes a deep copy of a scalar. In GraphBLAS, it is
possible, and valid, to write the following:

GrB_Scalar t, s ;

GrB_Scalar_new (&t, GrB_FP64) ;

s = t ; // s is a shallow copy of t

Then s and t can be used interchangeably. However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one
of them leaves the other as a dangling handle that should not be used. If
two different scalars are needed, then this should be used instead:

GrB_Scalar t, s ;

GrB_Scalar_new (&t, GrB_FP64) ;

GrB_Scalar_dup (&s, t) ; // like s = t, but making a deep copy

Then s and t are two different scalars that currently have the same value,
but they do not depend on each other. Modifying one has no effect on the
other.

6.7.4 GrB Scalar clear: clear a scalar of its entry

GrB_Info GrB_Scalar_clear // clear a GrB_Scalar of its entry

(// type remains unchanged.

GrB_Scalar s // GrB_Scalar to clear

) ;

GrB_Scalar_clear clears the entry from a scalar. The pattern of s is
empty, just as if it were created fresh with GrB_Scalar_new. Analogous
with s = sparse (0) in MATLAB/Octave. The type of s does not change.
Any pending updates to the scalar are discarded.

81

6.7.5 GrB Scalar nvals: return the number of entries in a scalar

GrB_Info GrB_Scalar_nvals // get the number of entries in a GrB_Scalar

(

GrB_Index *nvals, // GrB_Scalar has nvals entries (0 or 1)

const GrB_Scalar s // GrB_Scalar to query

) ;

GrB_Scalar_nvals returns the number of entries in a scalar, which is
either 0 or 1. Roughly analogous to nvals = nnz(s) in MATLAB/Octave,
except that the implicit value in GraphBLAS need not be zero and nnz (short
for “number of nonzeros”) in MATLAB is better described as “number of
entries” in GraphBLAS.

6.7.6 GxB Scalar type name: return name of the type of a scalar

GrB_Info GxB_Scalar_type_name // return the name of the type of a scalar

(

char *type_name, // name of the type (char array of size at least

// GxB_MAX_NAME_LEN, owned by the user application).

const GrB_Scalar s // GrB_Scalar to query

) ;

GxB_Scalar_type_name returns the name of the type of a scalar. Anal-
ogous to type = class (s) in MATLAB.

6.7.7 GrB Scalar setElement: set the single entry of a scalar

GrB_Info GrB_Scalar_setElement // s = x

(

GrB_Scalar s, // GrB_Scalar to modify

<type> x // user scalar to assign to s

) ;

GrB_Scalar_setElement sets the single entry in a scalar, like s = sparse(x)

in MATLAB notation. For further details of this function, see GrB_Matrix_setElement
in Section 6.9.11. If an error occurs, GrB_error(&err,s) returns details
about the error. The scalar x can be any non-opaque C scalar correspond-
ing to a built-in type, or void * for a user-defined type. It cannot be a
GrB_Scalar.

82

6.7.8 GrB Scalar extractElement: get the single entry from a scalar

GrB_Info GrB_Scalar_extractElement // x = s

(

<type> *x, // user scalar extracted

const GrB_Scalar s // GrB_Sclar to extract an entry from

) ;

GrB_Scalar_extractElement extracts the single entry from a sparse
scalar, like x = full(s) in MATLAB. Further details of this method are
discussed in Section 6.9.12, which discusses GrB_Matrix_extractElement.
NOTE: if no entry is present in the scalar s, then x is not modified, and
the return value of GrB_Scalar_extractElement is GrB_NO_VALUE.

6.7.9 GxB Scalar memoryUsage: memory used by a scalar

GrB_Info GxB_Scalar_memoryUsage // return # of bytes used for a scalar

(

size_t *size, // # of bytes used by the scalar s

const GrB_Scalar s // GrB_Scalar to query

) ;

Returns the memory space required for a scalar, in bytes.

6.7.10 GrB Scalar free: free a scalar

GrB_Info GrB_free // free a GrB_Scalar

(

GrB_Scalar *s // handle of GrB_Scalar to free

) ;

GrB_Scalar_free frees a scalar. Either usage:

GrB_Scalar_free (&s) ;

GrB_free (&s) ;

frees the scalar s and sets s to NULL. It safely does nothing if passed a NULL

handle, or if s == NULL on input. Any pending updates to the scalar are
abandoned.

83

6.8 GraphBLAS vectors: GrB Vector

This section describes a set of methods that create, modify, query, and de-
stroy a GraphBLAS sparse vector, GrB_Vector:

GraphBLAS function purpose Section
GrB_Vector_new create a vector 6.8.1
GrB_Vector_wait wait for a vector 6.8.2
GrB_Vector_dup copy a vector 6.8.3
GrB_Vector_clear clear a vector of all entries 6.8.4
GrB_Vector_size size of a vector 6.8.5
GrB_Vector_nvals number of entries in a vector 6.8.6
GxB_Vector_type_name name of the type of a vector 6.8.7
GrB_Vector_build build a vector from tuples 6.8.8
GxB_Vector_build_Scalar build a vector from tuples 6.8.9
GrB_Vector_setElement add an entry to a vector 6.8.10
GrB_Vector_extractElement get an entry from a vector 6.8.11
GxB_Vector_isStoredElement check if entry present in vector 6.8.12
GrB_Vector_removeElement remove an entry from a vector 6.8.13
GrB_Vector_extractTuples get all entries from a vector 6.8.14
GrB_Vector_resize resize a vector 6.8.15
GxB_Vector_diag extract a diagonal from a matrix 6.8.16
GxB_Vector_iso query iso status 6.8.17
GxB_Vector_memoryUsage memory used by a vector 6.8.18
GrB_Vector_free free a vector 6.8.19

GxB_Vector_serialize serialize a vector 6.10.1
GxB_Vector_deserialize deserialize a vector 6.10.2

GxB_Vector_pack_CSC pack in CSC format 6.11.1
GxB_Vector_unpack_CSC unpack in CSC format 6.11.2
GxB_Vector_pack_Bitmap pack in bitmap format 6.11.3
GxB_Vector_unpack_Bitmap unpack in bitmap format 6.11.4
GxB_Vector_pack_Full pack in full format 6.11.5
GxB_Vector_unpack_Full unpack in full format 6.11.6

GxB_Vector_sort sort a vector 6.13.1

Refer to Section 6.10 for serialization/deserialization methods, Section 6.11
for pack/unpack methods, and to Section 6.13 for sorting methods.

84

6.8.1 GrB Vector new: create a vector

GrB_Info GrB_Vector_new // create a new vector with no entries

(

GrB_Vector *v, // handle of vector to create

GrB_Type type, // type of vector to create

GrB_Index n // vector dimension is n-by-1

) ;

GrB_Vector_new creates a new n-by-1 sparse vector with no entries in
it, of the given type. This is analogous to MATLAB/Octave statement
v = sparse (n,1), except that GraphBLAS can create sparse vectors any
type. The pattern of the new vector is empty.

SPEC: n may be zero, as an extension to the specification.

6.8.2 GrB Vector wait: wait for a vector

GrB_Info GrB_wait // wait for a vector

(

GrB_Vector w, // vector to wait for

GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

In non-blocking mode, the computations for a GrB_Vector may be de-
layed. In this case, the vector is not yet safe to use by multiple indepen-
dent user threads. A user application may force completion of a vector
w via GrB_Vector_wait(&w) (in v5.2.0), or GrB_Vector_wait(w,mode) (in
v6.0.0). With a mode of GrB_MATERIALIZE, all pending computations are
finished, and different user threads may simultaneously call GraphBLAS op-
erations that use the vector w as an input parameter. See Section 8.1 if
GraphBLAS is compiled without OpenMP.

85

6.8.3 GrB Vector dup: copy a vector

GrB_Info GrB_Vector_dup // make an exact copy of a vector

(

GrB_Vector *w, // handle of output vector to create

const GrB_Vector u // input vector to copy

) ;

GrB_Vector_dup makes a deep copy of a sparse vector. In GraphBLAS,
it is possible, and valid, to write the following:

GrB_Vector u, w ;

GrB_Vector_new (&u, GrB_FP64, n) ;

w = u ; // w is a shallow copy of u

Then w and u can be used interchangeably. However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one
of them leaves the other as a dangling handle that should not be used. If
two different vectors are needed, then this should be used instead:

GrB_Vector u, w ;

GrB_Vector_new (&u, GrB_FP64, n) ;

GrB_Vector_dup (&w, u) ; // like w = u, but making a deep copy

Then w and u are two different vectors that currently have the same set
of values, but they do not depend on each other. Modifying one has no effect
on the other.

6.8.4 GrB Vector clear: clear a vector of all entries

GrB_Info GrB_Vector_clear // clear a vector of all entries;

(// type and dimension remain unchanged.

GrB_Vector v // vector to clear

) ;

GrB_Vector_clear clears all entries from a vector. All values v(i) are
now equal to the implicit value, depending on what semiring ring is used to
perform computations on the vector. The pattern of v is empty, just as if it
were created fresh with GrB_Vector_new. Analogous with v (:) = sparse(0)

in MATLAB. The type and dimension of v do not change. Any pending up-
dates to the vector are discarded.

86

6.8.5 GrB Vector size: return the size of a vector

GrB_Info GrB_Vector_size // get the dimension of a vector

(

GrB_Index *n, // vector dimension is n-by-1

const GrB_Vector v // vector to query

) ;

GrB_Vector_size returns the size of a vector (the number of rows). Anal-
ogous to n = length(v) or n = size(v,1) in MATLAB.

6.8.6 GrB Vector nvals: return the number of entries in a vector

GrB_Info GrB_Vector_nvals // get the number of entries in a vector

(

GrB_Index *nvals, // vector has nvals entries

const GrB_Vector v // vector to query

) ;

GrB_Vector_nvals returns the number of entries in a vector. Roughly
analogous to nvals = nnz(v) in MATLAB, except that the implicit value
in GraphBLAS need not be zero and nnz (short for “number of nonzeros”)
in MATLAB is better described as “number of entries” in GraphBLAS.

6.8.7 GxB Vector type name: return name of the type of a vector

GrB_Info GxB_Vector_type_name // return the name of the type of a vector

(

char *type_name, // name of the type (char array of size at least

// GxB_MAX_NAME_LEN, owned by the user application).

const GrB_Vector v // vector to query

) ;

GxB_Vector_type_name returns the name of the type of a vector. Anal-
ogous to type = class (v) in MATLAB.

87

6.8.8 GrB Vector build: build a vector from a set of tuples

GrB_Info GrB_Vector_build // build a vector from (I,X) tuples

(

GrB_Vector w, // vector to build

const GrB_Index *I, // array of row indices of tuples

const <type> *X, // array of values of tuples

GrB_Index nvals, // number of tuples

const GrB_BinaryOp dup // binary function to assemble duplicates

) ;

GrB_Vector_build constructs a sparse vector w from a set of tuples, I
and X, each of length nvals. The vector w must have already been initial-
ized with GrB_Vector_new, and it must have no entries in it before calling
GrB_Vector_build. This function is just like GrB_Matrix_build (see Sec-
tion 6.9.9), except that it builds a sparse vector instead of a sparse matrix.
For a description of what GrB_Vector_build does, refer to GrB_Matrix_build.
For a vector, the list of column indices J in GrB_Matrix_build is implicitly a
vector of length nvals all equal to zero. Otherwise the methods are identical.

If dup is NULL, any duplicates result in an error. If dup is the special binary
operator GxB_IGNORE_DUP, then any duplicates are ignored. If duplicates
appear, the last one in the list of tuples is taken and the prior ones ignored.
This is not an error.

SPEC: Results are defined even if dup is non-associative.

6.8.9 GxB Vector build Scalar: build a vector from a set of tuples

GrB_Info GxB_Vector_build_Scalar // build a vector from (i,scalar) tuples

(

GrB_Vector w, // vector to build

const GrB_Index *I, // array of row indices of tuples

GrB_Scalar scalar, // value for all tuples

GrB_Index nvals // number of tuples

) ;

GxB_Vector_build_Scalar constructs a sparse vector w from a set of
tuples defined by the index array I of length nvals, and a scalar. The
scalar is the value of all of the tuples. Unlike GrB_Vector_build, there is
no dup operator to handle duplicate entries. Instead, any duplicates are
silently ignored (if the number of duplicates is desired, simply compare the

88

input nvals with the value returned by GrB_Vector_nvals after the vector
is constructed). All entries in the sparsity pattern of w are identical, and
equal to the input scalar value.

89

6.8.10 GrB Vector setElement: add an entry to a vector

GrB_Info GrB_Vector_setElement // w(i) = x

(

GrB_Vector w, // vector to modify

<type> x, // scalar to assign to w(i)

GrB_Index i // index

) ;

GrB_Vector_setElement sets a single entry in a vector, w(i) = x. The
operation is exactly like setting a single entry in an n-by-1 matrix, A(i,0) = x,
where the column index for a vector is implicitly j=0. For further details of
this function, see GrB_Matrix_setElement in Section 6.9.11. If an error
occurs, GrB_error(&err,w) returns details about the error.

6.8.11 GrB Vector extractElement: get an entry from a vector

GrB_Info GrB_Vector_extractElement // x = v(i)

(

<type> *x, // scalar extracted (non-opaque, C scalar)

const GrB_Vector v, // vector to extract an entry from

GrB_Index i // index

) ;

GrB_Info GrB_Vector_extractElement // x = v(i)

(

GrB_Scalar x, // GrB_Scalar extracted

const GrB_Vector v, // vector to extract an entry from

GrB_Index i // index

) ;

GrB_Vector_extractElement extracts a single entry from a vector, x = v(i).
The method is identical to extracting a single entry x = A(i,0) from an n-
by-1 matrix; see Section 6.9.12.

6.8.12 GxB Vector isStoredElement: check if entry present in vector

GrB_Info GxB_Vector_isStoredElement

(

const GrB_Vector v, // check presence of entry v(i)

GrB_Index i // index

) ;

90

GxB_Vector_isStoredElement checks if a single entry v(i) is present,
returning GrB_SUCCESS if the entry is present or GrB_NO_VALUE otherwise.
The value of v(i) is not returned. See also Section 6.9.13.

6.8.13 GrB Vector removeElement: remove an entry from a vector

GrB_Info GrB_Vector_removeElement

(

GrB_Vector w, // vector to remove an entry from

GrB_Index i // index

) ;

GrB_Vector_removeElement removes a single entry w(i) from a vector.
If no entry is present at w(i), then the vector is not modified. If an error
occurs, GrB_error(&err,w) returns details about the error.

6.8.14 GrB Vector extractTuples: get all entries from a vector

GrB_Info GrB_Vector_extractTuples // [I,~,X] = find (v)

(

GrB_Index *I, // array for returning row indices of tuples

<type> *X, // array for returning values of tuples

GrB_Index *nvals, // I, X size on input; # tuples on output

const GrB_Vector v // vector to extract tuples from

) ;

GrB_Vector_extractTuples extracts all tuples from a sparse vector,
analogous to [I,~,X] = find(v) in MATLAB/Octave. This function is
identical to its GrB_Matrix_extractTuples counterpart, except that the
array of column indices J does not appear in this function. Refer to Sec-
tion 6.9.15 where further details of this function are described.

6.8.15 GrB Vector resize: resize a vector

GrB_Info GrB_Vector_resize // change the size of a vector

(

GrB_Vector u, // vector to modify

GrB_Index nrows_new // new number of rows in vector

) ;

GrB_Vector_resize changes the size of a vector. If the dimension de-
creases, entries that fall outside the resized vector are deleted.

91

6.8.16 GxB Vector diag: extract a diagonal from a matrix

GrB_Info GxB_Vector_diag // extract a diagonal from a matrix

(

GrB_Vector v, // output vector

const GrB_Matrix A, // input matrix

int64_t k,

const GrB_Descriptor desc // unused, except threading control

) ;

GxB_Vector_diag extracts a vector v from an input matrix A, which may
be rectangular. If k = 0, the main diagonal of A is extracted; k > 0 denotes
diagonals above the main diagonal of A, and k < 0 denotes diagonals below
the main diagonal of A. Let A have dimension m-by-n. If k is in the range 0
to n− 1, then v has length min(m,n− k). If k is negative and in the range
-1 to −m+ 1, then v has length min(m+ k, n). If k is outside these ranges,
v has length 0 (this is not an error). This function computes the same thing
as the MATLAB/Octave statement v=diag(A,k) when A is a matrix, except
that GxB_Vector_diag can also do typecasting.

The vector vmust already exist on input, and GrB_Vector_size (&len,v)

must return len = 0 if k ≥ n or k ≤ −m, len = min(m,n− k) if k is in the
range 0 to n− 1, and len = min(m+ k, n) if k is in the range -1 to −m+ 1.
Any existing entries in v are discarded. The type of v is preserved, so that if
the type of A and v differ, the entries are typecasted into the type of v. Any
settings made to v by GxB_Vector_Option_set (bitmap switch and sparsity
control) are unchanged.

6.8.17 GxB Vector iso: query iso status of a vector

GrB_Info GxB_Vector_iso // return iso status of a vector

(

bool *iso, // true if the vector is iso-valued

const GrB_Vector v // vector to query

) ;

Returns the true if the vector is iso-valued, false otherwise.

92

6.8.18 GxB Vector memoryUsage: memory used by a vector

GrB_Info GxB_Vector_memoryUsage // return # of bytes used for a vector

(

size_t *size, // # of bytes used by the vector v

const GrB_Vector v // vector to query

) ;

Returns the memory space required for a vector, in bytes.

6.8.19 GrB Vector free: free a vector

GrB_Info GrB_free // free a vector

(

GrB_Vector *v // handle of vector to free

) ;

GrB_Vector_free frees a vector. Either usage:

GrB_Vector_free (&v) ;

GrB_free (&v) ;

frees the vector v and sets v to NULL. It safely does nothing if passed a NULL

handle, or if v == NULL on input. Any pending updates to the vector are
abandoned.

93

6.9 GraphBLAS matrices: GrB Matrix

This section describes a set of methods that create, modify, query, and de-
stroy a GraphBLAS sparse matrix, GrB_Matrix:

GraphBLAS function purpose Section
GrB_Matrix_new create a matrix 6.9.1
GrB_Matrix_wait wait for a matrix 6.9.2
GrB_Matrix_dup copy a matrix 6.9.3
GrB_Matrix_clear clear a matrix of all entries 6.9.4
GrB_Matrix_nrows number of rows of a matrix 6.9.5
GrB_Matrix_ncols number of columns of a matrix 6.9.6
GrB_Matrix_nvals number of entries in a matrix 6.9.7
GxB_Matrix_type_name type of a matrix 6.9.8
GrB_Matrix_build build a matrix from tuples 6.9.9
GxB_Matrix_build_Scalar build a matrix from tuples 6.9.10
GrB_Matrix_setElement add an entry to a matrix 6.9.11
GrB_Matrix_extractElement get an entry from a matrix 6.9.12
GxB_Matrix_isStoredElement check if entry present in matrix 6.9.13
GrB_Matrix_removeElement remove an entry from a matrix 6.9.14
GrB_Matrix_extractTuples get all entries from a matrix 6.9.15
GrB_Matrix_resize resize a matrix 6.9.16
GxB_Matrix_concat concatenate matrices 6.9.19
GxB_Matrix_split split a matrix into matrices 6.9.20
GrB_Matrix_diag diagonal matrix from vector 6.9.21
GxB_Matrix_diag diagonal matrix from vector 6.9.22
GxB_Matrix_iso query iso status 6.9.23
GxB_Matrix_memoryUsage memory used by a matrix 6.9.24
GrB_Matrix_free free a matrix 6.9.25

GrB_Matrix_serializeSize return size of serialized matrix 6.10.3
GrB_Matrix_serialize serialize a matrix 6.10.4
GxB_Matrix_serialize serialize a matrix 6.10.5
GrB_Matrix_deserialize deserialize a matrix 6.10.6
GxB_Matrix_deserialize deserialize a matrix 6.10.7

94

GraphBLAS function purpose Section
GxB_Matrix_pack_CSR pack CSR 6.11.7
GxB_Matrix_unpack_CSR unpack CSR 6.11.8
GxB_Matrix_pack_CSC pack CSC 6.11.9
GxB_Matrix_unpack_CSC unpack CSC 6.11.10
GxB_Matrix_pack_HyperCSR pack HyperCSR 6.11.11
GxB_Matrix_unpack_HyperCSR unpack HyperCSR 6.11.12
GxB_Matrix_pack_HyperCSC pack HyperCSC 6.11.13
GxB_Matrix_unpack_HyperCSC unpack HyperCSC 6.11.14
GxB_Matrix_pack_BitmapR pack BitmapR 6.11.17
GxB_Matrix_unpack_BitmapR unpack BitmapR 6.11.18
GxB_Matrix_pack_BitmapC pack BitmapC 6.11.19
GxB_Matrix_unpack_BitmapC unpack BitmapC 6.11.20
GxB_Matrix_pack_FullR pack FullR 6.11.21
GxB_Matrix_unpack_FullR unpack FullR 6.11.22
GxB_Matrix_pack_FullC pack FullC 6.11.23
GxB_Matrix_unpack_FullC unpack FullC 6.11.24

GrB_Matrix_import import in various formats 6.12.1
GrB_Matrix_export export in various formats 6.12.2
GrB_Matrix_exportSize array sizes for export 6.12.3
GrB_Matrix_exportHint hint best export format 6.12.4

GxB_Matrix_sort sort a matrix 6.13.2

Refer to Section 6.10 for serialization/deserialization methods, Section 6.11
for GxBpack/unpack methods, Section 6.12 for GrB import/export methods,
and Section 6.13 for sorting methods.

6.9.1 GrB Matrix new: create a matrix

GrB_Info GrB_Matrix_new // create a new matrix with no entries

(

GrB_Matrix *A, // handle of matrix to create

GrB_Type type, // type of matrix to create

GrB_Index nrows, // matrix dimension is nrows-by-ncols

GrB_Index ncols

) ;

GrB_Matrix_new creates a new nrows-by-ncols sparse matrix with no
entries in it, of the given type. This is analogous to the MATLAB statement
A = sparse (nrows, ncols), except that GraphBLAS can create sparse
matrices of any type.

By default, matrices of size nrows-by-1 are held by column, regardless of
the global setting controlled by GxB_set (GxB_FORMAT, ...), for any value

95

of nrows. Matrices of size 1-by-ncols with ncols not equal to 1 are held by
row, regardless of this global setting. The global setting only affects matrices
with both m > 1 and n > 1. Empty matrices (0-by-0) are also controlled
by the global setting.

Once a matrix is created, its format (by-row or by-column) can be ar-
bitrarily changed with GxB_set (A, GxB_FORMAT, fmt) with fmt equal to
GxB_BY_COL or GxB_BY_ROW.

SPEC: nrows and/or ncols may be zero, as an extension to the speci-
fication.

6.9.2 GrB Matrix wait: wait for a matrix

GrB_Info GrB_wait // wait for a matrix

(

GrB_Matrix C, // matrix to wait for

GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

In non-blocking mode, the computations for a GrB_Matrix may be de-
layed. In this case, the matrix is not yet safe to use by multiple indepen-
dent user threads. A user application may force completion of a matrix
C via GrB_Matrix_wait(&C) (in v5.2.0), or GrB_Matrix_wait(C,mode) (in
v6.0.0). With a mode of GrB_MATERIALIZE, all pending computations are
finished, and different user threads may simultaneously call GraphBLAS op-
erations that use the matrix C as an input parameter. See Section 8.1 if
GraphBLAS is compiled without OpenMP.

96

6.9.3 GrB Matrix dup: copy a matrix

GrB_Info GrB_Matrix_dup // make an exact copy of a matrix

(

GrB_Matrix *C, // handle of output matrix to create

const GrB_Matrix A // input matrix to copy

) ;

GrB_Matrix_dup makes a deep copy of a sparse matrix. In GraphBLAS,
it is possible, and valid, to write the following:

GrB_Matrix A, C ;

GrB_Matrix_new (&A, GrB_FP64, n) ;

C = A ; // C is a shallow copy of A

Then C and A can be used interchangeably. However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one
of them leaves the other as a dangling handle that should not be used. If
two different matrices are needed, then this should be used instead:

GrB_Matrix A, C ;

GrB_Matrix_new (&A, GrB_FP64, n) ;

GrB_Matrix_dup (&C, A) ; // like C = A, but making a deep copy

Then C and A are two different matrices that currently have the same set
of values, but they do not depend on each other. Modifying one has no effect
on the other.

6.9.4 GrB Matrix clear: clear a matrix of all entries

GrB_Info GrB_Matrix_clear // clear a matrix of all entries;

(// type and dimensions remain unchanged

GrB_Matrix A // matrix to clear

) ;

GrB_Matrix_clear clears all entries from a matrix. All values A(i,j)

are now equal to the implicit value, depending on what semiring ring is used
to perform computations on the matrix. The pattern of A is empty, just as
if it were created fresh with GrB_Matrix_new. Analogous with A (:,:) = 0

in MATLAB. The type and dimensions of A do not change. Any pending
updates to the matrix are discarded.

97

6.9.5 GrB Matrix nrows: return the number of rows of a matrix

GrB_Info GrB_Matrix_nrows // get the number of rows of a matrix

(

GrB_Index *nrows, // matrix has nrows rows

const GrB_Matrix A // matrix to query

) ;

GrB_Matrix_nrows returns the number of rows of a matrix (nrows=size(A,1)
in MATLAB).

6.9.6 GrB Matrix ncols: return the number of columns of a matrix

GrB_Info GrB_Matrix_ncols // get the number of columns of a matrix

(

GrB_Index *ncols, // matrix has ncols columns

const GrB_Matrix A // matrix to query

) ;

GrB_Matrix_ncols returns the number of columns of a matrix (ncols=size(A,2)
in MATLAB).

6.9.7 GrB Matrix nvals: return the number of entries in a matrix

GrB_Info GrB_Matrix_nvals // get the number of entries in a matrix

(

GrB_Index *nvals, // matrix has nvals entries

const GrB_Matrix A // matrix to query

) ;

GrB_Matrix_nvals returns the number of entries in a matrix. Roughly
analogous to nvals = nnz(A) in MATLAB, except that the implicit value
in GraphBLAS need not be zero and nnz (short for “number of nonzeros”)
in MATLAB is better described as “number of entries” in GraphBLAS.

98

6.9.8 GxB Matrix type name: return name of the type of a matrix

GrB_Info GxB_Matrix_type_name // return the name of the type of a matrix

(

char *type_name, // name of the type (char array of size at least

// GxB_MAX_NAME_LEN, owned by the user application).

const GrB_Matrix A // matrix to query

) ;

GxB_Matrix_type_name returns the name of the type of a matrix, like
type=class(A) in MATLAB.

6.9.9 GrB Matrix build: build a matrix from a set of tuples

GrB_Info GrB_Matrix_build // build a matrix from (I,J,X) tuples

(

GrB_Matrix C, // matrix to build

const GrB_Index *I, // array of row indices of tuples

const GrB_Index *J, // array of column indices of tuples

const <type> *X, // array of values of tuples

GrB_Index nvals, // number of tuples

const GrB_BinaryOp dup // binary function to assemble duplicates

) ;

GrB_Matrix_build constructs a sparse matrix C from a set of tuples, I,
J, and X, each of length nvals. The matrix C must have already been initial-
ized with GrB_Matrix_new, and it must have no entries in it before calling
GrB_Matrix_build. Thus the dimensions and type of C are not changed by
this function, but are inherited from the prior call to GrB_Matrix_new or
GrB_matrix_dup.

An error is returned (GrB_INDEX_OUT_OF_BOUNDS) if any row index in I

is greater than or equal to the number of rows of C, or if any column index
in J is greater than or equal to the number of columns of C

Any duplicate entries with identical indices are assembled using the bi-
nary dup operator provided on input. All three types (x, y, z for z=dup(x,y))
must be identical. The types of dup, C and X must all be compatible. See
Section 2.4 regarding typecasting and compatibility. The values in X are type-
casted, if needed, into the type of dup. Duplicates are then assembled into a
matrix T of the same type as dup, using T(i,j) = dup (T (i,j), X (k)).
After T is constructed, it is typecasted into the result C. That is, typecasting
does not occur at the same time as the assembly of duplicates.

99

If dup is NULL, any duplicates result in an error. If dup is the special binary
operator GxB_IGNORE_DUP, then any duplicates are ignored. If duplicates
appear, the last one in the list of tuples is taken and the prior ones ignored.
This is not an error.

SPEC: As an extension to the specification, results are defined even if
dup is non-associative.

The GraphBLAS API requires dup to be associative so that entries can
be assembled in any order, and states that the result is undefined if dup is
not associative. However, SuiteSparse:GraphBLAS guarantees a well-defined
order of assembly. Entries in the tuples [I,J,X] are first sorted in increasing
order of row and column index, with ties broken by the position of the tuple
in the [I,J,X] list. If duplicates appear, they are assembled in the order
they appear in the [I,J,X] input. That is, if the same indices i and j appear
in positions k1, k2, k3, and k4 in [I,J,X], where k1 < k2 < k3 < k4, then
the following operations will occur in order:

T (i,j) = X (k1) ;

T (i,j) = dup (T (i,j), X (k2)) ;

T (i,j) = dup (T (i,j), X (k3)) ;

T (i,j) = dup (T (i,j), X (k4)) ;

This is a well-defined order but the user should not depend upon it when
using other GraphBLAS implementations since the GraphBLAS API does
not require this ordering.

However, SuiteSparse:GraphBLAS guarantees this ordering, even when it
compute the result in parallel. With this well-defined order, several operators
become very useful. In particular, the SECOND operator results in the last
tuple overwriting the earlier ones. The FIRST operator means the value of
the first tuple is used and the others are discarded.

The acronym dup is used here for the name of binary function used for
assembling duplicates, but this should not be confused with the _dup suffix
in the name of the function GrB_Matrix_dup. The latter function does not
apply any operator at all, nor any typecasting, but simply makes a pure deep
copy of a matrix.

The parameter X is a pointer to any C equivalent built-in type, or a
void * pointer. The GrB_Matrix_build function uses the _Generic feature
of ANSI C11 to detect the type of pointer passed as the parameter X. If X is

100

a pointer to a built-in type, then the function can do the right typecasting.
If X is a void * pointer, then it can only assume X to be a pointer to a user-
defined type that is the same user-defined type of C and dup. This function
has no way of checking this condition that the void * X pointer points to
an array of the correct user-defined type, so behavior is undefined if the user
breaks this condition.

The GrB_Matrix_build method is analogous to C = sparse (I,J,X)

in MATLAB, with several important extensions that go beyond that which
MATLAB can do. In particular, the MATLAB sparse function only provides
one option for assembling duplicates (summation), and it can only build
double, double complex, and logical sparse matrices.

6.9.10 GxB Matrix build Scalar: build a matrix from a set of tuples

GrB_Info GxB_Matrix_build_Scalar // build a matrix from (I,J,scalar) tuples

(

GrB_Matrix C, // matrix to build

const GrB_Index *I, // array of row indices of tuples

const GrB_Index *J, // array of column indices of tuples

GrB_Scalar scalar, // value for all tuples

GrB_Index nvals // number of tuples

) ;

GxB_Matrix_build_Scalar constructs a sparse matrix C from a set of
tuples defined the index arrays I and J of length nvals, and a scalar. The
scalar is the value of all of the tuples. Unlike GrB_Matrix_build, there is
no dup operator to handle duplicate entries. Instead, any duplicates are
silently ignored (if the number of duplicates is desired, simply compare the
input nvals with the value returned by GrB_Vector_nvals after the matrix
is constructed). All entries in the sparsity pattern of C are identical, and
equal to the input scalar value.

101

6.9.11 GrB Matrix setElement: add an entry to a matrix

GrB_Info GrB_Matrix_setElement // C (i,j) = x

(

GrB_Matrix C, // matrix to modify

<type> x, // scalar to assign to C(i,j)

GrB_Index i, // row index

GrB_Index j // column index

) ;

GrB_Matrix_setElement sets a single entry in a matrix, C(i,j)=x. If the
entry is already present in the pattern of C, it is overwritten with the new
value. If the entry is not present, it is added to C. In either case, no entry
is ever deleted by this function. Passing in a value of x=0 simply creates an
explicit entry at position (i,j) whose value is zero, even if the implicit value
is assumed to be zero.

An error is returned (GrB_INVALID_INDEX) if the row index i is greater
than or equal to the number of rows of C, or if the column index j is greater
than or equal to the number of columns of C. Note that this error code
differs from the same kind of condition in GrB_Matrix_build, which re-
turns GrB_INDEX_OUT_OF_BOUNDS. This is because GrB_INVALID_INDEX is an
API error, and is caught immediately even in non-blocking mode, whereas
GrB_INDEX_OUT_OF_BOUNDS is an execution error whose detection may wait
until the computation completes sometime later.

The scalar x is typecasted into the type of C. Any value can be passed to
this function and its type will be detected, via the _Generic feature of ANSI
C11. For a user-defined type, x is a void * pointer that points to a memory
space holding a single entry of this user-defined type. This user-defined type
must exactly match the user-defined type of C since no typecasting is done
between user-defined types. If x is a GrB_Scalar and contains no entry, then
the entry C(i,j) is removed (if it exists). The action taken is identical to
GrB_Matrix_removeElement(C,i,j) in this case.

Performance considerations: SuiteSparse:GraphBLAS exploits the
non-blocking mode to greatly improve the performance of this method. Re-
fer to the example shown in Section 2.2. If the entry exists in the pattern
already, it is updated right away and the work is not left pending. Otherwise,
it is placed in a list of pending updates, and the later on the updates are done
all at once, using the same algorithm used for GrB_Matrix_build. In other
words, setElement in SuiteSparse:GraphBLAS builds its own internal list of

102

tuples [I,J,X], and then calls GrB_Matrix_build whenever the matrix is
needed in another computation, or whenever GrB_Matrix_wait is called.

As a result, if calls to setElement are mixed with calls to most other
methods and operations (even extractElement) then the pending updates
are assembled right away, which will be slow. Performance will be good if
many setElement updates are left pending, and performance will be poor if
the updates are assembled frequently.

A few methods and operations can be intermixed with setElement, in
particular, some forms of the GrB_assign and GxB_subassign operations are
compatible with the pending updates from setElement. Section 10.11 gives
more details on which GxB_subassign and GrB_assign operations can be in-
terleaved with calls to setElement without forcing updates to be assembled.
Other methods that do not access the existing entries may also be done
without forcing the updates to be assembled, namely GrB_Matrix_clear

(which erases all pending updates), GrB_Matrix_free, GrB_Matrix_ncols,
GrB_Matrix_nrows, GxB_Matrix_type, and of course GrB_Matrix_setElement
itself. All other methods and operations cause the updates to be assembled.
Future versions of SuiteSparse:GraphBLAS may extend this list.

See Section 15.2 for an example of how to use GrB_Matrix_setElement.
If an error occurs, GrB_error(&err,C) returns details about the error.

103

6.9.12 GrB Matrix extractElement: get an entry from a matrix

GrB_Info GrB_Matrix_extractElement // x = A(i,j)

(

<type> *x, // extracted scalar (non-opaque C scalar)

const GrB_Matrix A, // matrix to extract a scalar from

GrB_Index i, // row index

GrB_Index j // column index

) ;

GrB_Info GrB_Matrix_extractElement // x = A(i,j)

(

GrB_Scalar x, // extracted GrB_Scalar

const GrB_Matrix A, // matrix to extract a scalar from

GrB_Index i, // row index

GrB_Index j // column index

) ;

GrB_Matrix_extractElement extracts a single entry from a matrix x=A(i,j).
An error is returned (GrB_INVALID_INDEX) if the row index i is greater than
or equal to the number of rows of C, or if column index j is greater than
or equal to the number of columns of C. If the entry is present, x=A(i,j) is
performed and the scalar x is returned with this value. The method returns
GrB_SUCCESS. If no entry is present at A(i,j), and x is a non-opaque C scalar,
then x is not modified, and the return value of GrB_Matrix_extractElement
is GrB_NO_VALUE. If x is a GrB_Scalar, then x is returned as an empty scalar
with no entry, and GrB_SUCCESS is returned.

The function knows the type of the pointer x, so it can do typecasting as
needed, from the type of A into the type of x. User-defined types cannot be
typecasted, so if A has a user-defined type then x must be a void * pointer
that points to a memory space the same size as a single scalar of the type of
A.

Currently, this method causes all pending updates from GrB_setElement,
GrB_assign, or GxB_subassign to be assembled, so its use can have perfor-
mance implications. Calls to this function should not be arbitrarily inter-
mixed with calls to these other two functions. Everything will work correctly
and results will be predictable, it will just be slow.

104

6.9.13 GxB Matrix isStoredElement: check if entry present in matrix

GrB_Info GxB_Matrix_isStoredElement

(

const GrB_Matrix A, // check for A(i,j)

GrB_Index i, // row index

GrB_Index j // column index

) ;

GxB_Matrix_isStoredElement check if the single entry A(i,j) is present
in the matrix A. It returns GrB_SUCCESS if the entry is present, or GrB_NO_VALUE
otherwise. The value of A(i,j) is not returned. It is otherwise identical to
GrB_Matrix_extractElement.

6.9.14 GrB Matrix removeElement: remove an entry from a matrix

GrB_Info GrB_Matrix_removeElement

(

GrB_Matrix C, // matrix to remove an entry from

GrB_Index i, // row index

GrB_Index j // column index

) ;

GrB_Matrix_removeElement removes a single entry A(i,j) from a ma-
trix. If no entry is present at A(i,j), then the matrix is not modified. If an
error occurs, GrB_error(&err,A) returns details about the error.

6.9.15 GrB Matrix extractTuples: get all entries from a matrix

GrB_Info GrB_Matrix_extractTuples // [I,J,X] = find (A)

(

GrB_Index *I, // array for returning row indices of tuples

GrB_Index *J, // array for returning col indices of tuples

<type> *X, // array for returning values of tuples

GrB_Index *nvals, // I,J,X size on input; # tuples on output

const GrB_Matrix A // matrix to extract tuples from

) ;

GrB_Matrix_extractTuples extracts all the entries from the matrix A,
returning them as a list of tuples, analogous to [I,J,X]=find(A) in MAT-
LAB. Entries in the tuples [I,J,X] are unique. No pair of row and column
indices (i,j) appears more than once.

105

The GraphBLAS API states the tuples can be returned in any order.
If GrB_wait is called first, then SuiteSparse:GraphBLAS chooses to always
return them in sorted order, depending on whether the matrix is stored by
row or by column. Otherwise, the indices can be returned in any order.

The number of tuples in the matrix A is given by GrB_Matrix_nvals(&anvals,A).
If anvals is larger than the size of the arrays (nvals in the parameter list),
an error GrB_INSUFFICIENT_SIZE is returned, and no tuples are extracted. If
nvals is larger than anvals, then only the first anvals entries in the arrays
I J, and X are modified, containing all the tuples of A, and the rest of I J,
and X are left unchanged. On output, nvals contains the number of tuples
extracted.

SPEC: As an extension to the specification, the arrays I, J, and/or X
may be passed in as NULL pointers. GrB_Matrix_extractTuples does
not return a component specified as NULL. This is not an error condition.

6.9.16 GrB Matrix resize: resize a matrix

GrB_Info GrB_Matrix_resize // change the size of a matrix

(

GrB_Matrix A, // matrix to modify

const GrB_Index nrows_new, // new number of rows in matrix

const GrB_Index ncols_new // new number of columns in matrix

) ;

GrB_Matrix_resize changes the size of a matrix. If the dimensions
decrease, entries that fall outside the resized matrix are deleted. Unlike
GxB_Matrix_reshape* (see Sections 6.9.17 and 6.9.18), entries remain in
their same position after resizing the matrix.

106

6.9.17 GxB Matrix reshape: reshape a matrix

GrB_Info GxB_Matrix_reshape // reshape a GrB_Matrix in place

(

// input/output:

GrB_Matrix C, // input/output matrix, reshaped in place

// input:

bool by_col, // true if reshape by column, false if by row

GrB_Index nrows_new, // new number of rows of C

GrB_Index ncols_new, // new number of columns of C

const GrB_Descriptor desc // to control # of threads used

) ;

GxB_Matrix_reshape changes the size of a matrix C, taking entries from
the input matrix either column-wise or row-wise. If matrix C on input is
nrows-by-ncols, and the requested dimensions of C on output are nrows_new-
by-nrows_cols, then the condition nrows*ncols == nrows_new*nrows_cols

must hold. The matrix C is modified in-place, as both an input and output for
this method. To create a new matrix, use GxB_Matrix_reshapeDup instead
(Section 6.9.18).

For example, if C is 3-by-4 on input, and is reshaped column-wise to have
dimensions 2-by-6:

C on input C on output (by_col true)

00 01 02 03 00 20 11 02 22 13

10 11 12 13 10 01 21 12 03 23

20 21 22 23

If the same C on input is reshaped row-wise to dimensions 2-by-6:

C on input C on output (by_col false)

00 01 02 03 00 01 02 03 10 11

10 11 12 13 12 13 20 21 22 23

20 21 22 23

NOTE: because an intermediate linear index must be computed for each
entry, GxB_Matrix_reshape cannot be used on matrices for which nrows*ncols
exceeds 260.

107

6.9.18 GxB Matrix reshapeDup: reshape a matrix

GrB_Info GxB_Matrix_reshapeDup // reshape a GrB_Matrix into another GrB_Matrix

(

// output:

GrB_Matrix *C, // newly created output matrix, not in place

// input:

GrB_Matrix A, // input matrix, not modified

bool by_col, // true if reshape by column, false if by row

GrB_Index nrows_new, // number of rows of C

GrB_Index ncols_new, // number of columns of C

const GrB_Descriptor desc // to control # of threads used

) ;

GxB_Matrix_reshapeDup is identical to GxB_Matrix_reshape (see Sec-
tion 6.9.17), except that creates a new output matrix C that is reshaped from
the input matrix A.

6.9.19 GxB Matrix concat: concatenate matrices

GrB_Info GxB_Matrix_concat // concatenate a 2D array of matrices

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix *Tiles, // 2D row-major array of size m-by-n

const GrB_Index m,

const GrB_Index n,

const GrB_Descriptor desc // unused, except threading control

) ;

GxB_Matrix_concat concatenates an array of matrices (Tiles) into a
single GrB_Matrix C.

Tiles is an m-by-n dense array of matrices held in row-major format,
where Tiles [i*n+j] is the (i, j)th tile, and where m > 0 and n > 0 must
hold. Let Ai,j denote the (i, j)th tile. The matrix C is constructed by con-
catenating these tiles together, as:

C =

A0,0 A0,1 A0,2 · · · A0,n−1

A1,0 A1,1 A1,2 · · · A1,n−1

· · ·
Am−1,0 Am−1,1 Am−1,2 · · · Am−1,n−1

On input, the matrix C must already exist. Any existing entries in C are

discarded. C must have dimensions nrows by ncols where nrows is the sum

108

of the number of rows in the matrices Ai,0 for all i, and ncols is the sum
of the number of columns in the matrices A0,j for all j. All matrices in any
given tile row i must have the same number of rows (that is, and all matrices
in any given tile column j must have the same number of columns).

The type of C is unchanged, and all matrices Ai,j are typecasted into the
type of C. Any settings made to C by GxB_Matrix_Option_set (format by
row or by column, bitmap switch, hyper switch, and sparsity control) are
unchanged.

6.9.20 GxB Matrix split: split a matrix

GrB_Info GxB_Matrix_split // split a matrix into 2D array of matrices

(

GrB_Matrix *Tiles, // 2D row-major array of size m-by-n

const GrB_Index m,

const GrB_Index n,

const GrB_Index *Tile_nrows, // array of size m

const GrB_Index *Tile_ncols, // array of size n

const GrB_Matrix A, // input matrix to split

const GrB_Descriptor desc // unused, except threading control

) ;

GxB_Matrix_split does the opposite of GxB_Matrix_concat. It splits a
single input matrix A into a 2D array of tiles. On input, the Tiles array
must be a non-NULL pointer to a previously allocated array of size at least
m*n where both m and n must be greater than zero. The Tiles_nrows array
has size m, and Tiles_ncols has size n. The (i, j)th tile has dimension
Tiles_nrows[i]-by-Tiles_ncols[j]. The sum of Tiles_nrows [0:m-1]

must equal the number of rows of A, and the sum of Tiles_ncols [0:n-1]

must equal the number of columns of A. The type of each tile is the same as
the type of A; no typecasting is done.

6.9.21 GrB Matrix diag: construct a diagonal matrix

GrB_Info GrB_Matrix_diag // construct a diagonal matrix from a vector

(

GrB_Matrix *C, // output matrix

const GrB_Vector v, // input vector

int64_t k

) ;

109

GrB_Matrix_diag constructs a matrix from a vector. Let n be the length
of the v vector, from GrB_Vector_size (&n, v). If k = 0, then C is an
n-by-n diagonal matrix with the entries from v along the main diagonal
of C, with C(i,i)=v(i). If k is nonzero, C is square with dimension n +
|k|. If k is positive, it denotes diagonals above the main diagonal, with
C(i,i+k)=v(i). If k is negative, it denotes diagonals below the main diag-
onal of C, with C(i-k,i)=v(i). This behavior is identical to the MATLAB
statement C=diag(v,k), where v is a vector.

The output matrix C is a newly-constructed square matrix with the same
type as the input vector v. No typecasting is performed.

6.9.22 GxB Matrix diag: build a diagonal matrix

GrB_Info GxB_Matrix_diag // build a diagonal matrix from a vector

(

GrB_Matrix C, // output matrix

const GrB_Vector v, // input vector

int64_t k,

const GrB_Descriptor desc // unused, except threading control

) ;

Identical to GrB_Matrix_diag, except for the extra parameter (a descriptor
to provide control over the number of threads used), and this method is not
a constructor.

The matrix C must already exist on input, of the correct size. It must be
square of dimension n + |k| where the vector v has length n. Any existing
entries in C are discarded. The type of C is preserved, so that if the type
of C and v differ, the entries are typecasted into the type of C. Any settings
made to C by GxB_Matrix_Option_set (format by row or by column, bitmap
switch, hyper switch, and sparsity control) are unchanged.

6.9.23 GxB Matrix iso: query iso status of a matrix

GrB_Info GxB_Matrix_iso // return iso status of a matrix

(

bool *iso, // true if the matrix is iso-valued

const GrB_Matrix A // matrix to query

) ;

Returns the true if the matrix is iso-valued, false otherwise.

110

6.9.24 GxB Matrix memoryUsage: memory used by a matrix

GrB_Info GxB_Matrix_memoryUsage // return # of bytes used for a matrix

(

size_t *size, // # of bytes used by the matrix A

const GrB_Matrix A // matrix to query

) ;

Returns the memory space required for a matrix, in bytes.

6.9.25 GrB Matrix free: free a matrix

GrB_Info GrB_free // free a matrix

(

GrB_Matrix *A // handle of matrix to free

) ;

GrB_Matrix_free frees a matrix. Either usage:

GrB_Matrix_free (&A) ;

GrB_free (&A) ;

frees the matrix A and sets A to NULL. It safely does nothing if passed a NULL

handle, or if A == NULL on input. Any pending updates to the matrix are
abandoned.

111

6.10 Serialize/deserialize methods

Serialization takes an opaque GraphBLAS object (a vector or matrix) and
encodes it in a single non-opaque array of bytes, the blob. The blob can only
be deserialized by the same library that created it (SuiteSparse:GraphBLAS
in this case). The array of bytes can be written to a file, sent to another
process over an MPI channel, or operated on in any other way that moves
the bytes around. The contents of the array cannot be interpreted except
by deserialization back into a vector or matrix, by the same library (and
sometimes the same version) that created the blob. Currently, all versions
of SuiteSparse:GraphBLAS that implement serialization/deserialization use
the same format for the blob, so the library versions are compatible with
each other.

There are two forms of serialization: GrB*serialize and GxB*serialize.
For the GrB form, the blob must first be allocated by the user application,
and it must be large enough to hold the matrix or vector.

By default, ZSTD (level 1) compression is used for serialization, but other
options can be selected via the descriptor: GxB_set (desc, GxB_COMPRESSION, method),
where method is an integer selected from the following options:

method description
GxB_COMPRESSION_NONE no compression
GxB_COMPRESSION_DEFAULT ZSTD, with default level 1
GxB_COMPRESSION_LZ4 LZ4
GxB_COMPRESSION_LZ4HC LZ4HC, with default level 9
GxB_COMPRESSION_ZSTD ZSTD, with default level 1

The LZ4HC method can be modified by adding a level of zero to 9, with
9 being the default. Higher levels lead to a more compact blob, at the cost
of extra computational time. This level is simply added to the method, so
to compress a vector with LZ4HC with level 6, use:

GxB_set (desc, GxB_COMPRESSION, GxB_COMPRESSION_LZ4HC + 6) ;

The ZSTD method can be specified as level 1 to 19, with 1 being the
default. To compress with ZSTD at level 6, use:

GxB_set (desc, GxB_COMPRESSION, GxB_COMPRESSION_ZSTD + 6) ;

Deserialization of untrusted data is a common security problem; see https:
//cwe.mitre.org/data/definitions/502.html. The deserialization methods do a

112

https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/502.html

few basic checks so that no out-of-bounds access occurs during deserialization,
but the output matrix or vector itself may still be corrupted. If the data is
untrusted, use GxB_*_fprint to check the matrix or vector after deserializing
it:

info = GxB_Vector_fprint (w, "w deserialized", GrB_SILENT, NULL) ;

if (info != GrB_SUCCESS) GrB_free (&w) ;

info = GxB_Matrix_fprint (A, "A deserialized", GrB_SILENT, NULL) ;

if (info != GrB_SUCCESS) GrB_free (&A) ;

The following methods are described in this Section:

GraphBLAS function purpose Section
GxB_Vector_serialize serialize a vector 6.10.1
GxB_Vector_deserialize deserialize a vector 6.10.2
GrB_Matrix_serializeSize return size of serialized matrix 6.10.3
GrB_Matrix_serialize serialize a matrix 6.10.4
GxB_Matrix_serialize serialize a matrix 6.10.5
GrB_Matrix_deserialize deserialize a matrix 6.10.6
GxB_Matrix_deserialize deserialize a matrix 6.10.7
GrB_deserialize_type_name return the name of type of the blob 6.10.8

6.10.1 GxB Vector serialize: serialize a vector

GrB_Info GxB_Vector_serialize // serialize a GrB_Vector to a blob

(

// output:

void **blob_handle, // the blob, allocated on output

GrB_Index *blob_size_handle, // size of the blob on output

// input:

GrB_Vector u, // vector to serialize

const GrB_Descriptor desc // descriptor to select compression method

// and to control # of threads used

) ;

GxB_Vector_serialize serializes a vector into a single array of bytes (the
blob), which is malloc’ed and filled with the serialized vector. By default,
ZSTD (level 1) compression is used, but other options can be selected via
the descriptor. Serializing a vector is identical to serializing a matrix; see
Section 6.10.5 for more information.

113

6.10.2 GxB Vector deserialize: deserialize a vector

GrB_Info GxB_Vector_deserialize // deserialize blob into a GrB_Vector

(

// output:

GrB_Vector *w, // output vector created from the blob

// input:

GrB_Type type, // type of the vector w. See GxB_Matrix_deserialize.

const void *blob, // the blob

GrB_Index blob_size, // size of the blob

const GrB_Descriptor desc // to control # of threads used

) ;

This method creates a vector w by deserializing the contents of the blob,
constructed by GxB_Vector_serialize. Deserializing a vector is identical
to deserializing a matrix; see Section 6.10.7 for more information.

The blob is allocated with the malloc function passed to GxB_init, or
the ANSI C11 malloc if GrB_init was used to initialize GraphBLAS. The
blob must be freed by the matching free method, either the free function
passed to GxB_init or the ANSI C11 free if GrB_init was used.

6.10.3 GrB Matrix serializeSize: return size of serialized matrix

GrB_Info GrB_Matrix_serializeSize // estimate the size of a blob

(

// output:

GrB_Index *blob_size_handle, // upper bound on the required size of the

// blob on output.

// input:

GrB_Matrix A // matrix to serialize

) ;

GrB_Matrix_serializeSize returns an upper bound on the size of the
blob needed to serialize a GrB_Matrix with GrB_Matrix_serialize. Af-
ter the matrix is serialized, the actual size used is returned, and the blob
may be realloc’d to that size if desired. This method is not required for
GxB_Matrix_serialize.

114

6.10.4 GrB Matrix serialize: serialize a matrix

GrB_Info GrB_Matrix_serialize // serialize a GrB_Matrix to a blob

(

// output:

void *blob, // the blob, already allocated in input

// input/output:

GrB_Index *blob_size_handle, // size of the blob on input. On output,

// the # of bytes used in the blob.

// input:

GrB_Matrix A // matrix to serialize

) ;

GrB_Matrix_serialize serializes a matrix into a single array of bytes
(the blob), which must be already allocated by the user application. On
input, &blob_size is the size of the allocated blob in bytes. On output,
it is reduced to the numbed of bytes actually used to serialize the matrix.
After calling GrB_Matrix_serialize, the blob may be realloc’d to this
revised size if desired (this is optional). ZSTD (level 1) compression is used
to construct a compact blob.

6.10.5 GxB Matrix serialize: serialize a matrix

GrB_Info GxB_Matrix_serialize // serialize a GrB_Matrix to a blob

(

// output:

void **blob_handle, // the blob, allocated on output

GrB_Index *blob_size_handle, // size of the blob on output

// input:

GrB_Matrix A, // matrix to serialize

const GrB_Descriptor desc // descriptor to select compression method

// and to control # of threads used

) ;

GxB_Matrix_serialize is identical to GrB_Matrix_serialize, except
that it does not require a pre-allocated blob. Instead, it allocates the blob
internally, and fills it with the serialized matrix. By default, ZSTD (level 1)
compression is used, but other options can be selected via the descriptor.

The blob is allocated with the malloc function passed to GxB_init, or
the ANSI C11 malloc if GrB_init was used to initialize GraphBLAS. The
blob must be freed by the matching free method, either the free function
passed to GxB_init or the ANSI C11 free if GrB_init was used.

115

6.10.6 GrB Matrix deserialize: deserialize a matrix

GrB_Info GrB_Matrix_deserialize // deserialize blob into a GrB_Matrix

(

// output:

GrB_Matrix *C, // output matrix created from the blob

// input:

GrB_Type type, // type of the matrix C. Required if the blob holds a

// matrix of user-defined type. May be NULL if blob

// holds a built-in type; otherwise must match the

// type of C.

const void *blob, // the blob

GrB_Index blob_size // size of the blob

) ;

This method creates a matrix A by deserializing the contents of the blob,
constructed by either GrB_Matrix_serialize or GxB_Matrix_serialize.

SPEC: The specification requires the type to always be non-NULL. As
an extension, SuiteSparse:GraphBLAS allows type to be NULL if the
blob contains a serialized matrix with a built-in type.

6.10.7 GxB Matrix deserialize: deserialize a matrix

GrB_Info GxB_Matrix_deserialize // deserialize blob into a GrB_Matrix

(

// output:

GrB_Matrix *C, // output matrix created from the blob

// input:

GrB_Type type, // type of the matrix C. Required if the blob holds a

// matrix of user-defined type. May be NULL if blob

// holds a built-in type; otherwise must match the

// type of C.

const void *blob, // the blob

GrB_Index blob_size, // size of the blob

const GrB_Descriptor desc // to control # of threads used

) ;

Identical to GrB_Matrix_deserialize, except that the descriptor ap-
pears as the last parameter to control the number of threads used.

116

6.10.8 GxB deserialize type name: name of the type of a blob

GrB_Info GxB_deserialize_type_name // return the type name of a blob

(

// output:

char *type_name, // name of the type (char array of size at least

// GxB_MAX_NAME_LEN, owned by the user application).

// input, not modified:

const void *blob, // the blob

GrB_Index blob_size // size of the blob

) ;

GrB_deserialize_type_name returns the name of type of the matrix
or vector serialized into the blob. This method works for any blob, from
GxB_Vector_serialize, GrB_Matrix_serialize, or GxB_Matrix_serialize.

117

6.11 GraphBLAS pack/unpack: using move semantics

The pack/unpack functions allow the user application to create a GrB_Matrix
or GrB_Vector object, and to extract its contents, faster and with less mem-
ory overhead than the GrB_*_build and GrB_*_extractTuples functions.

The GrB_Matrix_import and GrB_Matrix_export are not described in
this section. Refer to Section 6.12 instead.

The semantics of the GxB pack/unpack are the same as the move con-
structor in C++. For GxB*pack*, the user provides a set of arrays that have
been previously allocated via the ANSI C malloc, calloc, or realloc func-
tions (by default), or by the corresponding functions passed to GxB_init.
The arrays define the content of the matrix or vector. Unlike GrB_*_build,
the GraphBLAS library then takes ownership of the user’s input arrays and
may either:

1. incorporate them into its internal data structure for the new GrB_Matrix

or GrB_Vector, potentially creating the GrB_Matrix or GrB_Vector in
constant time with no memory copying performed, or

2. if the library does not support the format directly, then it may convert
the input to its internal format, and then free the user’s input arrays.

3. A GraphBLAS implementation may also choose to use a mix of the
two strategies.

SuiteSparse:GraphBLAS takes the first approach, and so the pack func-
tions always take O(1) time, and require O(1) memory space to be allocated.

Regardless of the method chosen, as listed above, the input arrays are
no longer owned by the user application. If A is a GrB_Matrix created by a
pack method, the user input arrays are freed no later than GrB_free(&A),
and may be freed earlier, at the discretion of the GraphBLAS library. The
data structure of the GrB_Matrix and GrB_Vector remain opaque.

The GxB*unpack* of a GrB_Matrix or GrB_Vector is symmetric with the
pack operation. The unpack changes the ownership of the arrays, which are
returned to the user and which contain the matrix or vector in the requested
format. Ownership of these arrays is given to the user application, which is
then responsible for freeing them via the ANSI C free function (by default),
or by the free_function that was passed in to GxB_init. Alternatively,
these arrays can be re-packed into a GrB_Matrix or GrB_Vector, at which
point they again become the responsibility of GraphBLAS.

118

For an unpack method, if the output format matches the current internal
format of the matrix or vector then these arrays are returned to the user
application in O(1) time and with no memory copying performed. Otherwise,
the GrB_Matrix or GrB_Vector is first converted into the requested format,
and then unpacked.

For the pack methods, the A matrix/vector must already exist on input,
and its contents are populated with the new content, just like GrB_Matrix_build.
For the unpack methods, A is passed in, and the matrix/vector still exists on
return, just with no entries. Its type and dimensions are preserved.

Unpacking a matrix or vector forces completion of any pending operations
on the matrix, with one exception. SuiteSparse:GraphBLAS supports three
kinds of pending operations: zombies (pending deletions), pending tuples
(pending insertions), and a lazy sort. Zombies and pending tuples are never
unpacked, but the jumbled state may be optionally unpacked. In the latter,
if the matrix or vector is unpacked in a jumbled state, indices in any row
or column may appear out of order. If unpacked as unjumbled, the indices
always appear in ascending order.

The vector pack/unpack methods use three formats for a GrB_Vector.
Eight different formats are provided for the pack/unpack of a GrB_Matrix.
For each format, the numerical value array (Ax or vx) has a C type cor-
responding to one of the 13 built-in types in GraphBLAS (bool, int*_t,
uint*_t, float, double float complex, double complex), or that corre-
sponds with the user-defined type. No typecasting is done.

If iso is true, then all entries present in the matrix or vector have the
same value, and the Ax array (for matrices) or vx array (for vectors) only
need to be large enough to hold a single value.

The unpack of a GrB_Vector in CSC format may return the indices in a
jumbled state, in any order. For a GrB_Matrix in CSR or HyperCSR format, if
the matrix is returned as jumbled, the column indices in any given row may
appear out of order. For CSC or HyperCSC formats, if the matrix is returned
as jumbled, the row indices in any given column may appear out of order.

On pack, if the user-provided arrays contain jumbled row or column vec-
tors, then the input flag jumbled must be passed in as true. On unpack, if
*jumbled is NULL, this indicates to the unpack method that the user expects
the unpacked matrix or vector to be returned in an ordered, unjumbled state.
If *jumbled is provided as non-NULL, then it is returned as true if the indices
may appear out of order, or false if they are known to be in ascending order.

Matrices and vectors in bitmap or full format are never jumbled.

119

If data is packed using GxB*_pack_*, the default is to trust the input
data so that the pack can be done in O(1) time. However, if the data comes
from an untrusted source, additional checks should be made during the pack.
This is indicated with a descriptor setting, and then passing the descriptor
to the GxB pack methods:

GxB_set (desc, GxB_IMPORT, GxB_SECURE_IMPORT) ;

The table below lists the methods presented in this section.

method purpose Section
GxB_Vector_pack_CSC pack a vector in CSC format 6.11.1
GxB_Vector_unpack_CSC unpack a vector in CSC format 6.11.2
GxB_Vector_pack_Bitmap pack a vector in bitmap format 6.11.3
GxB_Vector_unpack_Bitmap unpack a vector in bitmap format 6.11.4
GxB_Vector_pack_Full pack a vector in full format 6.11.5
GxB_Vector_unpack_Full unpack a vector in full format 6.11.6

GxB_Matrix_pack_CSR pack a matrix in CSR form 6.11.7
GxB_Matrix_unpack_CSR unpack a matrix in CSR form 6.11.8
GxB_Matrix_pack_CSC pack a matrix in CSC form 6.11.9
GxB_Matrix_unpack_CSC unpack a matrix in CSC form 6.11.10
GxB_Matrix_pack_HyperCSR pack a matrix in HyperCSR form 6.11.11
GxB_Matrix_unpack_HyperCSR unpack a matrix in HyperCSR form 6.11.12
GxB_Matrix_pack_HyperCSC pack a matrix in HyperCSC form 6.11.13
GxB_Matrix_unpack_HyperCSC unpack a matrix in HyperCSC form 6.11.14
GxB_unpack_HyperHash unpack a hyper-hash 6.11.15
GxB_pack_HyperHash pack a hyper-hash 6.11.16
GxB_Matrix_pack_BitmapR pack a matrix in BitmapR form 6.11.17
GxB_Matrix_unpack_BitmapR unpack a matrix in BitmapR form 6.11.18
GxB_Matrix_pack_BitmapC pack a matrix in BitmapC form 6.11.19
GxB_Matrix_unpack_BitmapC unpack a matrix in BitmapC form 6.11.20
GxB_Matrix_pack_FullR pack a matrix in FullR form 6.11.21
GxB_Matrix_unpack_FullR unpack a matrix in FullR form 6.11.22
GxB_Matrix_pack_FullC pack a matrix in FullC form 6.11.23
GxB_Matrix_unpack_FullC unpack a matrix in FullC form 6.11.24

120

6.11.1 GxB Vector pack CSC pack a vector in CSC form

GrB_Info GxB_Vector_pack_CSC // pack a vector in CSC format

(

GrB_Vector v, // vector to create (type and length unchanged)

GrB_Index **vi, // indices, vi_size >= nvals(v) * sizeof(int64_t)

void **vx, // values, vx_size >= nvals(v) * (type size)

// or vx_size >= (type size), if iso is true

GrB_Index vi_size, // size of vi in bytes

GrB_Index vx_size, // size of vx in bytes

bool iso, // if true, v is iso

GrB_Index nvals, // # of entries in vector

bool jumbled, // if true, indices may be unsorted

const GrB_Descriptor desc

) ;

GxB_Vector_pack_CSC is analogous to GxB_Matrix_pack_CSC. Refer to the
description of GxB_Matrix_pack_CSC for details (Section 6.11.9).

The vector v must exist on input with the right type and length. No
typecasting is done. Its entries are the row indices given by vi, with the
corresponding values in vx. The two pointers vi and vx are returned as
NULL, which denotes that they are no longer owned by the user application.
They have instead been moved into v. If jumbled is true, the row indices in
vi must appear in sorted order. No duplicates can appear. These conditions
are not checked, so results are undefined if they are not met exactly. The
user application can check the resulting vector v with GxB_print, if desired,
which will determine if these conditions hold.

If not successful, v, vi and vx are not modified.

121

6.11.2 GxB Vector unpack CSC: unpack a vector in CSC form

GrB_Info GxB_Vector_unpack_CSC // unpack a CSC vector

(

GrB_Vector v, // vector to unpack (type and length unchanged)

GrB_Index **vi, // indices

void **vx, // values

GrB_Index *vi_size, // size of vi in bytes

GrB_Index *vx_size, // size of vx in bytes

bool *iso, // if true, v is iso

GrB_Index *nvals, // # of entries in vector

bool *jumbled, // if true, indices may be unsorted

const GrB_Descriptor desc

) ;

GxB_Vector_unpack_CSC is analogous to GxB_Matrix_unpack_CSC. Refer
to the description of GxB_Matrix_unpack_CSC for details (Section 6.11.10).

Exporting a vector forces completion of any pending operations on the
vector, except that indices may be unpacked out of order (jumbled is true
if they may be out of order, false if sorted in ascending order). If jumbled
is NULL on input, then the indices are always returned in sorted order.

If successful, v is returned with no entries, and its contents are returned
to the user. A list of row indices of entries that were in v is returned in vi,
and the corresponding numerical values are returned in vx. If nvals is zero,
the vi and vx arrays are returned as NULL; this is not an error condition.

If not successful, v is unmodified and vi and vx are not modified.

122

6.11.3 GxB Vector pack Bitmap pack a vector in bitmap form

GrB_Info GxB_Vector_pack_Bitmap // pack a bitmap vector

(

GrB_Vector v, // vector to create (type and length unchanged)

int8_t **vb, // bitmap, vb_size >= n

void **vx, // values, vx_size >= n * (type size)

// or vx_size >= (type size), if iso is true

GrB_Index vb_size, // size of vb in bytes

GrB_Index vx_size, // size of vx in bytes

bool iso, // if true, v is iso

GrB_Index nvals, // # of entries in bitmap

const GrB_Descriptor desc

) ;

GxB_Vector_pack_Bitmap is analogous to GxB_Matrix_pack_BitmapC. Re-
fer to the description of GxB_Matrix_pack_BitmapC for details (Section 6.11.19).

The vector v must exist on input with the right type and length. No
typecasting is done. Its entries are determined by vb, where vb[i]=1 denotes
that the entry v(i) is present with value given by vx[i], and vb[i]=0 denotes
that the entry v(i) is not present (vx[i] is ignored in this case).

The two pointers vb and vx are returned as NULL, which denotes that
they are no longer owned by the user application. They have instead been
moved into the new GrB_Vector v.

The vb array must not hold any values other than 0 and 1. The value
nvals must exactly match the number of 1s in the vb array. These conditions
are not checked, so results are undefined if they are not met exactly. The
user application can check the resulting vector v with GxB_print, if desired,
which will determine if these conditions hold.

If not successful, v, vb and vx are not modified.

123

6.11.4 GxB Vector unpack Bitmap: unpack a vector in bitmap form

GrB_Info GxB_Vector_unpack_Bitmap // unpack a bitmap vector

(

GrB_Vector v, // vector to unpack (type and length unchanged)

int8_t **vb, // bitmap

void **vx, // values

GrB_Index *vb_size, // size of vb in bytes

GrB_Index *vx_size, // size of vx in bytes

bool *iso, // if true, v is iso

GrB_Index *nvals, // # of entries in bitmap

const GrB_Descriptor desc

) ;

GxB_Vector_unpack_Bitmap is analogous to GxB_Matrix_unpack_BitmapC;
see Section 6.11.20. Exporting a vector forces completion of any pending op-
erations on the vector. If successful, v is returned with no entries, and its
contents are returned to the user. The entries that were in v are returned
in vb, where vb[i]=1 means v(i) is present with value vx[i], and vb[i]=0

means v(i) is not present (vx[i] is undefined in this case). The correspond-
ing numerical values are returned in vx.

If not successful, v is unmodified and vb and vx are not modified.

124

6.11.5 GxB Vector pack Full pack a vector in full form

GrB_Info GxB_Vector_pack_Full // pack a full vector

(

GrB_Vector v, // vector to create (type and length unchanged)

void **vx, // values, vx_size >= nvals(v) * (type size)

// or vx_size >= (type size), if iso is true

GrB_Index vx_size, // size of vx in bytes

bool iso, // if true, v is iso

const GrB_Descriptor desc

) ;

GxB_Vector_pack_Full is analogous to GxB_Matrix_pack_FullC. Refer to
the description of GxB_Matrix_pack_BitmapC for details (Section 6.11.23).
The vector v must exist on input with the right type and length. No type-
casting is done. If successful, v has all entries are present, and the value of
v(i) is given by vx[i]. The pointer vx is returned as NULL, which denotes
that it is no longer owned by the user application. It has instead been moved
into the new GrB_Vector v. If not successful, v and vx are not modified.

6.11.6 GxB Vector unpack Full: unpack a vector in full form

GrB_Info GxB_Vector_unpack_Full // unpack a full vector

(

GrB_Vector v, // vector to unpack (type and length unchanged)

void **vx, // values

GrB_Index *vx_size, // size of vx in bytes

bool *iso, // if true, v is iso

const GrB_Descriptor desc

) ;

GxB_Vector_unpack_Full is analogous to GxB_Matrix_unpack_FullC.
Refer to the description of GxB_Matrix_unpack_FullC for details (Section 6.11.24).
Exporting a vector forces completion of any pending operations on the vec-
tor. All entries in v must be present. In other words, prior to the unpack,
GrB_Vector_nvals for a vector of length n must report that the vector con-
tains n entries; GrB_INVALID_VALUE is returned if this condition does not
hold. If successful, v is returned with no entries, and its contents are re-
turned to the user. The entries that were in v are returned in the array vx,
vb, where vb[i]=1 means v(i) is present with value where the value of v(i)
is vx[i]. If not successful, v and vx are not modified.

125

6.11.7 GxB Matrix pack CSR: pack a CSR matrix

GrB_Info GxB_Matrix_pack_CSR // pack a CSR matrix

(

GrB_Matrix A, // matrix to create (type, nrows, ncols unchanged)

GrB_Index **Ap, // row "pointers", Ap_size >= (nrows+1)* sizeof(int64_t)

GrB_Index **Aj, // column indices, Aj_size >= nvals(A) * sizeof(int64_t)

void **Ax, // values, Ax_size >= nvals(A) * (type size)

// or Ax_size >= (type size), if iso is true

GrB_Index Ap_size, // size of Ap in bytes

GrB_Index Aj_size, // size of Aj in bytes

GrB_Index Ax_size, // size of Ax in bytes

bool iso, // if true, A is iso

bool jumbled, // if true, indices in each row may be unsorted

const GrB_Descriptor desc

) ;

GxB_Matrix_pack_CSR packs a matrix from 3 user arrays in CSR format.
In the resulting GrB_Matrix A, the CSR format is a sparse matrix with a
format (GxB_FORMAT) of GxB_BY_ROW.

The GrB_Matrix A must exist on input with the right type and dimen-
sions. No typecasting is done.

This function populates the matrix A with the three arrays Ap, Aj and
Ax, provided by the user, all of which must have been created with the ANSI
C malloc, calloc, or realloc functions (by default), or by the correspond-
ing malloc_function, calloc_function, or realloc_function provided to
GxB_init. These arrays define the pattern and values of the new matrix A:

• GrB_Index Ap [nrows+1] ; The Ap array is the row “pointer” array.
It does not actual contain pointers. More precisely, it is an integer
array that defines where the column indices and values appear in Aj

and Ax, for each row. The number of entries in row i is given by the
expression Ap [i+1] - Ap [i].

• GrB_Index Aj [nvals] ; The Aj array defines the column indices of
entries in each row.

• ctype Ax [nvals] ; The Ax array defines the values of entries in each
row. It is passed in as a (void *) pointer, but it must point to an array
of size nvals values, each of size sizeof(ctype), where ctype is the
exact type in C that corresponds to the GrB_Type type parameter.

126

That is, if type is GrB_INT32, then ctype is int32_t. User types may
be used, just the same as built-in types.

The content of the three arrays Ap Aj, and Ax is very specific. This
content is not checked, since this function takes only O(1) time. Results are
undefined if the following specification is not followed exactly.

The column indices of entries in the ith row of the matrix are held in
Aj [Ap [i] ... Ap[i+1]], and the corresponding values are held in the
same positions in Ax. Column indices must be in the range 0 to ncols-1.
If jumbled is false, column indices must appear in ascending order within
each row. If jumbled is true, column indices may appear in any order within
each row. No duplicate column indices may appear in any row. Ap [0] must
equal zero, and Ap [nrows] must equal nvals. The Ap array must be of size
nrows+1 (or larger), and the Aj and Ax arrays must have size at least nvals.

If nvals is zero, then the content of the Aj and Ax arrays is not accessed
and they may be NULL on input (if not NULL, they are still freed and returned
as NULL, if the method is successful).

An example of the CSR format is shown below. Consider the following
matrix with 10 nonzero entries, and suppose the zeros are not stored.

A =

4.5 0 3.2 0
3.1 2.9 0 0.9
0 1.7 3.0 0
3.5 0.4 0 1.0

 (1)

The Ap array has length 5, since the matrix is 4-by-4. The first entry
must always zero, and Ap [5] = 10 is the number of entries. The content
of the arrays is shown below:

int64_t Ap [] = { 0, 2, 5, 7, 10 } ;

int64_t Aj [] = { 0, 2, 0, 1, 3, 1, 2, 0, 1, 3 } ;

double Ax [] = { 4.5, 3.2, 3.1, 2.9, 0.9, 1.7, 3.0, 3.5, 0.4, 1.0 } ;

Spaces have been added to the Ap array, just for illustration. Row
zero is in Aj [0..1] (column indices) and Ax [0..1] (values), starting at
Ap [0] = 0 and ending at Ap [0+1]-1 = 1. The list of column indices of
row one is at Aj [2..4] and row two is in Aj [5..6]. The last row (three)
appears Aj [7..9], because Ap [3] = 7 and Ap [4]-1 = 10-1 = 9. The
corresponding numerical values appear in the same positions in Ax.

To iterate over the rows and entries of this matrix, the following code can
be used (assuming it has type GrB_FP64):

127

int64_t nvals = Ap [nrows] ;

for (int64_t i = 0 ; i < nrows ; i++)

{

// get A(i,:)

for (int64_t p = Ap [i] ; p < Ap [i+1] ; p++)

{

// get A(i,j)

int64_t j = Aj [p] ; // column index

double aij = Ax [iso ? 0 : p] ; // numerical value

}

}

If successful, the three pointers Ap, Aj, and Ax are set to NULL on output.
This denotes to the user application that it is no longer responsible for freeing
these arrays. Internally, GraphBLAS has moved these arrays into its internal
data structure. They will eventually be freed no later than when the user
does GrB_free(&A), but they may be freed or resized later, if the matrix
changes. If an unpack is performed, the freeing of these three arrays again
becomes the responsibility of the user application.

The GxB_Matrix_pack_CSR function will rarely fail, since it allocates just
O(1) space. If it does fail, it returns GrB_OUT_OF_MEMORY, and it leaves the
three user arrays unmodified. They are still owned by the user application,
which is eventually responsible for freeing them with free(Ap), etc.

128

6.11.8 GxB Matrix unpack CSR: unpack a CSR matrix

GrB_Info GxB_Matrix_unpack_CSR // unpack a CSR matrix

(

GrB_Matrix A, // matrix to unpack (type, nrows, ncols unchanged)

GrB_Index **Ap, // row "pointers"

GrB_Index **Aj, // column indices

void **Ax, // values

GrB_Index *Ap_size, // size of Ap in bytes

GrB_Index *Aj_size, // size of Aj in bytes

GrB_Index *Ax_size, // size of Ax in bytes

bool *iso, // if true, A is iso

bool *jumbled, // if true, indices in each row may be unsorted

const GrB_Descriptor desc

) ;

GxB_Matrix_unpack_CSR unpacks a matrix in CSR form.
If successful, the GrB_Matrix A is returned with no entries. The CSR

format is in the three arrays Ap, Aj, and Ax. If the matrix has no entries,
the Aj and Ax arrays may be returned as NULL; this is not an error, and
GxB_Matrix_pack_CSR also allows these two arrays to be NULL on input when
the matrix has no entries. After a successful unpack, the user application
is responsible for freeing these three arrays via free (or the free function
passed to GxB_init). The CSR format is described in Section 6.11.8.

If jumbled is returned as false, column indices will appear in ascending
order within each row. If jumbled is returned as true, column indices may
appear in any order within each row. If jumbled is passed in as NULL, then
column indices will be returned in ascending order in each row. No duplicate
column indices will appear in any row. Ap [0] is zero, and Ap [nrows] is
equal to the number of entries in the matrix (nvals). The Ap array will be
of size nrows+1 (or larger), and the Aj and Ax arrays will have size at least
nvals.

This method takes O(1) time if the matrix is already in CSR format inter-
nally. Otherwise, the matrix is converted to CSR format and then unpacked.

129

6.11.9 GxB Matrix pack CSC: pack a CSC matrix

GrB_Info GxB_Matrix_pack_CSC // pack a CSC matrix

(

GrB_Matrix A, // matrix to create (type, nrows, ncols unchanged)

GrB_Index **Ap, // col "pointers", Ap_size >= (ncols+1)*sizeof(int64_t)

GrB_Index **Ai, // row indices, Ai_size >= nvals(A)*sizeof(int64_t)

void **Ax, // values, Ax_size >= nvals(A) * (type size)

// or Ax_size >= (type size), if iso is true

GrB_Index Ap_size, // size of Ap in bytes

GrB_Index Ai_size, // size of Ai in bytes

GrB_Index Ax_size, // size of Ax in bytes

bool iso, // if true, A is iso

bool jumbled, // if true, indices in each column may be unsorted

const GrB_Descriptor desc

) ;

GxB_Matrix_pack_CSC packs a matrix from 3 user arrays in CSC format.
The GrB_Matrix A must exist on input with the right type and dimensions.
No typecasting is done. The arguments are identical to GxB_Matrix_pack_CSR,
except for how the 3 user arrays are interpreted. The column “pointer” array
has size ncols+1. The row indices of the columns are in Ai, and if jumbled is
false, they must appear in ascending order in each column. The correspond-
ing numerical values are held in Ax. The row indices of column j are held in
Ai [Ap [j]...Ap [j+1]-1], and the corresponding numerical values are in
the same locations in Ax.

The same matrix from Equation 1in the last section (repeated here):

A =

4.5 0 3.2 0
3.1 2.9 0 0.9
0 1.7 3.0 0
3.5 0.4 0 1.0

 (2)

is held in CSC form as follows:

int64_t Ap [] = { 0, 3, 6, 8, 10 } ;

int64_t Ai [] = { 0, 1, 3, 1, 2, 3, 0, 2, 1, 3 } ;

double Ax [] = { 4.5, 3.1, 3.5, 2.9, 1.7, 0.4, 3.2, 3.0, 0.9, 1.0 } ;

That is, the row indices of column 1 (the second column) are in Ai [3..5],
and the values in the same place in Ax, since Ap [1] = 3 and Ap [2]-1 = 5.

To iterate over the columns and entries of this matrix, the following code
can be used (assuming it has type GrB_FP64):

130

int64_t nvals = Ap [ncols] ;

for (int64_t j = 0 ; j < ncols ; j++)

{

// get A(:,j)

for (int64_t p = Ap [j] ; p < Ap [j+1] ; p++)

{

// get A(i,j)

int64_t i = Ai [p] ; // row index

double aij = Ax [iso ? 0 : p] ; // numerical value

}

}

The method is identical to GxB_Matrix_pack_CSR; just the format is
transposed.

If Ap [ncols] is zero, then the content of the Ai and Ax arrays is not
accessed and they may be NULL on input (if not NULL, they are still freed and
returned as NULL, if the method is successful).

131

6.11.10 GxB Matrix unpack CSC: unpack a CSC matrix

GrB_Info GxB_Matrix_unpack_CSC // unpack a CSC matrix

(

GrB_Matrix A, // matrix to unpack (type, nrows, ncols unchanged)

GrB_Index **Ap, // column "pointers"

GrB_Index **Ai, // row indices

void **Ax, // values

GrB_Index *Ap_size, // size of Ap in bytes

GrB_Index *Ai_size, // size of Ai in bytes

GrB_Index *Ax_size, // size of Ax in bytes

bool *iso, // if true, A is iso

bool *jumbled, // if true, indices in each column may be unsorted

const GrB_Descriptor desc

) ;

GxB_Matrix_unpack_CSC unpacks a matrix in CSC form.
If successful, the GrB_Matrix A is returned with no entries. The CSC

format is in the three arrays Ap, Ai, and Ax. If the matrix has no en-
tries, Ai and Ax arrays are returned as NULL; this is not an error, and
GxB_Matrix_pack_CSC also allows these two arrays to be NULL on input when
the matrix has no entries. After a successful unpack, the user application
is responsible for freeing these three arrays via free (or the free function
passed to GxB_init). The CSC format is described in Section 6.11.10.

This method takes O(1) time if the matrix is already in CSC format inter-
nally. Otherwise, the matrix is converted to CSC format and then unpacked.

132

6.11.11 GxB Matrix pack HyperCSR: pack a HyperCSR matrix

GrB_Info GxB_Matrix_pack_HyperCSR // pack a hypersparse CSR matrix

(

GrB_Matrix A, // matrix to create (type, nrows, ncols unchanged)

GrB_Index **Ap, // row "pointers", Ap_size >= (plen+1)*sizeof(int64_t)

GrB_Index **Ah, // row indices, Ah_size >= plen*sizeof(int64_t)

// where plen = 1 if nrows = 1, or nvec otherwise.

GrB_Index **Aj, // column indices, Aj_size >= nvals(A)*sizeof(int64_t)

void **Ax, // values, Ax_size >= nvals(A) * (type size)

// or Ax_size >= (type size), if iso is true

GrB_Index Ap_size, // size of Ap in bytes

GrB_Index Ah_size, // size of Ah in bytes

GrB_Index Aj_size, // size of Aj in bytes

GrB_Index Ax_size, // size of Ax in bytes

bool iso, // if true, A is iso

GrB_Index nvec, // number of rows that appear in Ah

bool jumbled, // if true, indices in each row may be unsorted

const GrB_Descriptor desc

) ;

GxB_Matrix_pack_HyperCSR packs a matrix in hypersparse CSR format.
The hypersparse HyperCSR format is identical to the CSR format, except
that the Ap array itself becomes sparse, if the matrix has rows that are
completely empty. An array Ah of size nvec provides a list of rows that
appear in the data structure. For example, consider Equation 3, which is
a sparser version of the matrix in Equation 1. Row 2 and column 1 of this
matrix are all zero.

A =

4.5 0 3.2 0
3.1 0 0 0.9
0 0 0 0
3.5 0 0 1.0

 (3)

The conventional CSR format would appear as follows. Since the third
row (row 2) is all zero, accessing Ai [Ap [2] ... Ap [3]-1] gives an empty
set ([2..1]), and the number of entries in this row is Ap [i+1] - Ap [i]

= Ap [3] - Ap [2] = 0.

int64_t Ap [] = { 0, 2,2, 4, 5 } ;

int64_t Aj [] = { 0, 2, 0, 3, 0 3 }

double Ax [] = { 4.5, 3.2, 3.1, 0.9, 3.5, 1.0 } ;

133

A hypersparse CSR format for this same matrix would discard these du-
plicate integers in Ap. Doing so requires another array, Ah, that keeps track
of the rows that appear in the data structure.

int64_t nvec = 3 ;

int64_t Ah [] = { 0, 1, 3 } ;

int64_t Ap [] = { 0, 2, 4, 5 } ;

int64_t Aj [] = { 0, 2, 0, 3, 0 3 }

double Ax [] = { 4.5, 3.2, 3.1, 0.9, 3.5, 1.0 } ;

Note that the Aj and Ax arrays are the same in the CSR and HyperCSR
formats. If jumbled is false, the row indices in Ah must appear in ascending
order, and no duplicates can appear. To iterate over this data structure
(assuming it has type GrB_FP64):

int64_t nvals = Ap [nvec] ;

for (int64_t k = 0 ; k < nvec ; k++)

{

int64_t i = Ah [k] ; // row index

// get A(i,:)

for (int64_t p = Ap [k] ; p < Ap [k+1] ; p++)

{

// get A(i,j)

int64_t j = Aj [p] ; // column index

double aij = Ax [iso ? 0 : p] ; // numerical value

}

}

This is more complex than the CSR format, but it requires at most O(e)
space, where A is m-by-n with e = nvals entries. The CSR format requires
O(m + e) space. If e << m, then the size m + 1 of Ap can dominate the
memory required. In the hypersparse form, Ap takes on size nvec+1, and Ah

has size nvec, where nvec is the number of rows that appear in the data
structure. The CSR format can be viewed as a dense array (of size nrows)
of sparse row vectors. By contrast, the hypersparse CSR format is a sparse
array (of size nvec) of sparse row vectors.

The pack takes O(1) time. If successful, the four arrays Ah, Ap, Aj, and
Ax are returned as NULL, and the hypersparse GrB_Matrix A is modified to
contain the entries they describe.

If the matrix has no entries, then the content of the Aj and Ax arrays is
not accessed and they may be NULL on input (if not NULL, they are still freed
and returned as NULL, if the method is successful).

134

6.11.12 GxB Matrix unpack HyperCSR: unpack a HyperCSR matrix

GrB_Info GxB_Matrix_unpack_HyperCSR // unpack a hypersparse CSR matrix

(

GrB_Matrix A, // matrix to unpack (type, nrows, ncols unchanged)

GrB_Index **Ap, // row "pointers"

GrB_Index **Ah, // row indices

GrB_Index **Aj, // column indices

void **Ax, // values

GrB_Index *Ap_size, // size of Ap in bytes

GrB_Index *Ah_size, // size of Ah in bytes

GrB_Index *Aj_size, // size of Aj in bytes

GrB_Index *Ax_size, // size of Ax in bytes

bool *iso, // if true, A is iso

GrB_Index *nvec, // number of rows that appear in Ah

bool *jumbled, // if true, indices in each row may be unsorted

const GrB_Descriptor desc

) ;

GxB_Matrix_unpack_HyperCSR unpacks a matrix in HyperCSR format.
If successful, the GrB_Matrix A is returned with no entries. The number

of non-empty rows is nvec. The hypersparse CSR format is in the four arrays
Ah, Ap, Aj, and Ax. If the matrix has no entries, the Aj and Ax arrays are
returned as NULL; this is not an error. After a successful unpack, the user
application is responsible for freeing these three arrays via free (or the free
function passed to GxB_init). The hypersparse CSR format is described in
Section 6.11.11.

This method takes O(1) time if the matrix is already in HyperCSR format
internally. Otherwise, the matrix is converted to HyperCSR format and then
unpacked.

In v7.3.0 and later, a hypersparse matrix A also may include a hash table
for Ah, called the hyper-hash, based on [Gre21]. It allows for fast lookups
of entries in Ah. The hyper-hash is not exported by this method. Instead,
it is discarded. Use GxB_unpack_HyperHash (Section 6.11.15) to preserve it,
prior to calling this method. If the matrix is re-imported, and the hyper-hash
is not preserved, it is recomputed from Ah when needed.

135

6.11.13 GxB Matrix pack HyperCSC: pack a HyperCSC matrix

GrB_Info GxB_Matrix_pack_HyperCSC // pack a hypersparse CSC matrix

(

GrB_Matrix A, // matrix to create (type, nrows, ncols unchanged)

GrB_Index **Ap, // col "pointers", Ap_size >= (plen+1)*sizeof(int64_t)

GrB_Index **Ah, // column indices, Ah_size >= plen*sizeof(int64_t)

// where plen = 1 if ncols = 1, or nvec otherwise.

GrB_Index **Ai, // row indices, Ai_size >= nvals(A)*sizeof(int64_t)

void **Ax, // values, Ax_size >= nvals(A)*(type size)

// or Ax_size >= (type size), if iso is true

GrB_Index Ap_size, // size of Ap in bytes

GrB_Index Ah_size, // size of Ah in bytes

GrB_Index Ai_size, // size of Ai in bytes

GrB_Index Ax_size, // size of Ax in bytes

bool iso, // if true, A is iso

GrB_Index nvec, // number of columns that appear in Ah

bool jumbled, // if true, indices in each column may be unsorted

const GrB_Descriptor desc

) ;

GxB_Matrix_pack_HyperCSC packs a matrix in hypersparse CSC format.
It is identical to GxB_Matrix_pack_HyperCSR, except the data structure de-
fined by the four arrays Ah, Ap, Ai, and Ax holds the matrix as a sparse array
of nvec sparse column vectors. The following code iterates over the matrix,
assuming it has type GrB_FP64:

int64_t nvals = Ap [nvec] ;

for (int64_t k = 0 ; k < nvec ; k++)

{

int64_t j = Ah [k] ; // column index

// get A(:,j)

for (int64_t p = Ap [k] ; p < Ap [k+1] ; p++)

{

// get A(i,j)

int64_t i = Ai [p] ; // row index

double aij = Ax [iso ? 0 : p] ; // numerical value

}

}

136

6.11.14 GxB Matrix unpack HyperCSC: unpack a HyperCSC matrix

GrB_Info GxB_Matrix_unpack_HyperCSC // unpack a hypersparse CSC matrix

(

GrB_Matrix A, // matrix to unpack (type, nrows, ncols unchanged)

GrB_Index **Ap, // column "pointers"

GrB_Index **Ah, // column indices

GrB_Index **Ai, // row indices

void **Ax, // values

GrB_Index *Ap_size, // size of Ap in bytes

GrB_Index *Ah_size, // size of Ah in bytes

GrB_Index *Ai_size, // size of Ai in bytes

GrB_Index *Ax_size, // size of Ax in bytes

bool *iso, // if true, A is iso

GrB_Index *nvec, // number of columns that appear in Ah

bool *jumbled, // if true, indices in each column may be unsorted

const GrB_Descriptor desc

) ;

GxB_Matrix_unpack_HyperCSC unpacks a matrix in HyperCSC form.
If successful, the GrB_Matrix A is returned with no entries. The number

of non-empty rows is in nvec. The hypersparse CSC format is in the four
arrays Ah, Ap, Ai, and Ax. If the matrix has no entries, the Ai and Ax arrays
are returned as NULL; this is not an error. After a successful unpack, the user
application is responsible for freeing these three arrays via free (or the free
function passed to GxB_init). The hypersparse CSC format is described in
Section 6.11.13.

This method takes O(1) time if the matrix is already in HyperCSC format
internally. Otherwise, the matrix is converted to HyperCSC format and then
unpacked.

In v7.3.0 and later, a hypersparse matrix A also may include a hash table
for Ah, called the hyper-hash, based on [Gre21]. It allows for fast lookups
of entries in Ah. The hyper-hash is not exported by this method. Instead,
it is discarded. Use GxB_unpack_HyperHash (Section 6.11.15) to preserve it,
prior to calling this method. If the matrix is re-imported, and the hyper-hash
is not preserved, it is recomputed from Ah when needed.

137

6.11.15 GxB unpack HyperHash: unpack the hypersparse hash

GrB_Info GxB_unpack_HyperHash // move A->Y into Y

(

GrB_Matrix A, // matrix to modify

GrB_Matrix *Y, // hyper_hash matrix to move from A

const GrB_Descriptor desc // unused

) ;

SuiteSparse:GraphBLAS v7.3.0 adds a new internal component to the
hypersparse matrix format: the hyper-hash GrB_Matrix A->Y. The matrix
provides a fast lookup into the hyperlist Ah.

GxB_unpack_HyperHash unpacks the hyper-hash from the hypersparse
matrix A. Normally, this method is called immediately before calling one
of the two methods GxB_Matrix_unpack_Hyper(CSR/CSC). For example, to
unpack then pack a hypersparse CSC matrix:

GrB_Matrix Y = NULL ;

// to unpack all of A:

GxB_unpack_HyperHash (A, &Y, desc) ; // first unpack A->Y into Y

GxB_Matrix_unpack_HyperCSC (A, // then unpack the rest of A

&Ap, &Ah, &Ai, &Ax, &Ap_size, &Ah_size, &Ai_size, &Ax_size,

&iso, &nvec, &jumbled, descriptor) ;

// use the unpacked contents of A here, but do not change Ah or nvec.

...

// to pack the data back into A:

GxB_Matrix_pack_HyperCSC (A, ...) ; // pack most of A, except A->Y

GxB_pack_HyperHash (A, &Y, desc) ; // then pack A->Y

The same process is used with GxB_Matrix_unpack_HyperCSR.
If A is not hypersparse on input to GxB_unpack_HyperHash, or if A is hy-

persparse but does yet not have a hyper-hash, then Y is returned as NULL. This
is not an error condition, and GrB_SUCCESS is returned. The hyper-hash of a
hypersparse matrix A is a matrix that provides quick access to the inverse of
Ah. It is not always needed and may not be present. It is left as pending work
to be computed when needed. To ensure that the hyper-hash is constructed
for a hypersparse matrix A, use GrB_Matrix_wait (A, GrB_MATERIALIZE)

If Y is moved from A and returned as non-NULL to the caller, then it is
the responsibility of the user application to free it, or to re-pack it back into
A via GxB_pack_HyperHash, as shown in the example above.

If this method is called to remove the hyper-hash Y from the hypersparse
matrix A, and then GrB_Matrix_wait (A, GrB_MATERIALZE) is called, a new
hyper-hash matrix is constructed for A.

138

6.11.16 GxB pack HyperHash: pack the hypersparse hash

GrB_Info GxB_pack_HyperHash // move Y into A->Y

(

GrB_Matrix A, // matrix to modify

GrB_Matrix *Y, // hyper_hash matrix to pack into A

const GrB_Descriptor desc // unused

) ;

GxB_pack_HyperHash assigns the input Y matrix as the A->Y hyper-hash
of the hypersparse matrix A. Normally, this method is called immediately
after calling one of the two methods GxB_Matrix_pack_Hyper(CSR/CSC).

If A is not hypersparse on input to GxB_pack_HyperHash, or if A already
has a hyper-hash matrix, or if Y is NULL on input, then nothing happens
and Y is unchanged. This is not an error condition and this method returns
GrB_SUCCESS. In this case, if Y is non-NULL after calling this method, it
owned by the user application and freeing it is the responsibility of the user
application.

If Y is moved into A as its hyper-hash, then the caller’s Y is set to NULL to
indicate that it has been moved into A. It is no longer owned by the caller,
but is instead becomes an opaque component of the A matrix. It will be freed
by SuiteSparse:GraphBLAS if A is modified or freed.

Results are undefined if the input Y was not created by GxB_unpack_HyperHash
(see the example in Section 6.11.15) or if the Ah contents or nvec of the matrix
A are modified after they were unpacked by GxB_Matrix_unpack_Hyper(CSR/CSC).

139

6.11.17 GxB Matrix pack BitmapR: pack a BitmapR matrix

GrB_Info GxB_Matrix_pack_BitmapR // pack a bitmap matrix, held by row

(

GrB_Matrix A, // matrix to create (type, nrows, ncols unchanged)

int8_t **Ab, // bitmap, Ab_size >= nrows*ncols

void **Ax, // values, Ax_size >= nrows*ncols * (type size)

// or Ax_size >= (type size), if iso is true

GrB_Index Ab_size, // size of Ab in bytes

GrB_Index Ax_size, // size of Ax in bytes

bool iso, // if true, A is iso

GrB_Index nvals, // # of entries in bitmap

const GrB_Descriptor desc

) ;

GxB_Matrix_pack_BitmapR packs a matrix from 2 user arrays in BitmapR
format. The matrix must exist on input with the right type and dimensions.
No typecasting is done.

The GrB_Matrix A is populated from the arrays Ab and Ax, each of which
are size nrows*ncols. Both arrays must have been created with the ANSI
C malloc, calloc, or realloc functions (by default), or by the correspond-
ing malloc_function, calloc_function, or realloc_function provided to
GxB_init. These arrays define the pattern and values of the new matrix A:

• int8_t Ab [nrows*ncols] ; The Ab array defines which entries of A
are present. If Ab[i*ncols+j]=1, then the entry A(i, j) is present, with
value Ax[i*ncols+j]. If Ab[i*ncols+j]=0, then the entry A(i, j) is
not present. The Ab array must contain only 0s and 1s. The nvals

input must exactly match the number of 1s in the Ab array.

• ctype Ax [nrows*ncols] ; The Ax array defines the values of entries
in the matrix. It is passed in as a (void *) pointer, but it must point to
an array of size nrows*ncols values, each of size sizeof(ctype), where
ctype is the exact type in C that corresponds to the GrB_Type type

parameter. That is, if type is GrB_INT32, then ctype is int32_t. User
types may be used, just the same as built-in types. If Ab[p] is zero,
the value of Ax[p] is ignored.

To iterate over the rows and entries of this matrix, the following code can
be used (assuming it has type GrB_FP64):

140

for (int64_t i = 0 ; i < nrows ; i++)

{

// get A(i,:)

for (int64_t j = 0 ; j < ncols ; j++)

{

// get A(i,j)

int64_t p = i*ncols + j ;

if (Ab [p])

{

double aij = Ax [iso ? 0 : p] ; // numerical value

}

}

}

On successful pack of A, the two pointers Ab, Ax, are set to NULL on
output. This denotes to the user application that it is no longer responsible
for freeing these arrays. Internally, GraphBLAS has moved these arrays into
its internal data structure. They will eventually be freed no later than when
the user does GrB_free(&A), but they may be freed or resized later, if the
matrix changes. If an unpack is performed, the freeing of these three arrays
again becomes the responsibility of the user application.

The GxB_Matrix_pack_BitmapR function will rarely fail, since it allocates
just O(1) space. If it does fail, it returns GrB_OUT_OF_MEMORY, and it leaves
the two user arrays unmodified. They are still owned by the user application,
which is eventually responsible for freeing them with free(Ab), etc.

141

6.11.18 GxB Matrix unpack BitmapR: unpack a BitmapR matrix

GrB_Info GxB_Matrix_unpack_BitmapR // unpack a bitmap matrix, by row

(

GrB_Matrix A, // matrix to unpack (type, nrows, ncols unchanged)

int8_t **Ab, // bitmap

void **Ax, // values

GrB_Index *Ab_size, // size of Ab in bytes

GrB_Index *Ax_size, // size of Ax in bytes

bool *iso, // if true, A is iso

GrB_Index *nvals, // # of entries in bitmap

const GrB_Descriptor desc

) ;

GxB_Matrix_unpack_BitmapR unpacks a matrix in BitmapR form. If
successful, the GrB_Matrix A is returned with no entries. The number of
entries is in nvals. The BitmapR format is two arrays Ab, and Ax. After
an unpack, the user application is responsible for freeing these arrays via
free (or the free function passed to GxB_init). The BitmapR format is
described in Section 6.11.17. If Ab[p] is zero, the value of Ax[p] is undefined.
This method takes O(1) time if the matrix is already in BitmapR format.

142

6.11.19 GxB Matrix pack BitmapC: pack a BitmapC matrix

GrB_Info GxB_Matrix_pack_BitmapC // pack a bitmap matrix, held by column

(

GrB_Matrix A, // matrix to create (type, nrows, ncols unchanged)

int8_t **Ab, // bitmap, Ab_size >= nrows*ncols

void **Ax, // values, Ax_size >= nrows*ncols * (type size)

// or Ax_size >= (type size), if iso is true

GrB_Index Ab_size, // size of Ab in bytes

GrB_Index Ax_size, // size of Ax in bytes

bool iso, // if true, A is iso

GrB_Index nvals, // # of entries in bitmap

const GrB_Descriptor desc

) ;

GxB_Matrix_pack_BitmapC packs a matrix from 2 user arrays in BitmapC
format. It is identical to GxB_Matrix_pack_BitmapR, except that the entry
A(i, j) is held in Ab[i+j*nrows] and Ax[i+j*nrows], in column-major for-
mat.

6.11.20 GxB Matrix unpack BitmapC: unpack a BitmapC matrix

GrB_Info GxB_Matrix_unpack_BitmapC // unpack a bitmap matrix, by col

(

GrB_Matrix A, // matrix to unpack (type, nrows, ncols unchanged)

int8_t **Ab, // bitmap

void **Ax, // values

GrB_Index *Ab_size, // size of Ab in bytes

GrB_Index *Ax_size, // size of Ax in bytes

bool *iso, // if true, A is iso

GrB_Index *nvals, // # of entries in bitmap

const GrB_Descriptor desc

) ;

GxB_Matrix_unpack_BitmapC unpacks a matrix in BitmapC form. It is
identical to GxB_Matrix_unpack_BitmapR, except that the entry A(i, j) is
held in Ab[i+j*nrows] and Ax[i+j*nrows], in column-major format.

143

6.11.21 GxB Matrix pack FullR: pack a FullR matrix

GrB_Info GxB_Matrix_pack_FullR // pack a full matrix, held by row

(

GrB_Matrix A, // matrix to create (type, nrows, ncols unchanged)

void **Ax, // values, Ax_size >= nrows*ncols * (type size)

// or Ax_size >= (type size), if iso is true

GrB_Index Ax_size, // size of Ax in bytes

bool iso, // if true, A is iso

const GrB_Descriptor desc

) ;

GxB_Matrix_pack_FullR packs a matrix from a user array in FullR for-
mat. For the FullR format, t value of A(i, j) is Ax[i*ncols+j]. To iterate
over the rows and entries of this matrix, the following code can be used (as-
suming it has type GrB_FP64). If A is both full and iso, it takes O(1) memory,
regardless of nrows and ncols.

for (int64_t i = 0 ; i < nrows ; i++)

{

for (int64_t j = 0 ; j < ncols ; j++)

{

int64_t p = i*ncols + j ;

double aij = Ax [iso ? 0 : p] ; // numerical value of A(i,j)

}

}

6.11.22 GxB Matrix unpack FullR: unpack a FullR matrix

GrB_Info GxB_Matrix_unpack_FullR // unpack a full matrix, by row

(

GrB_Matrix A, // matrix to unpack (type, nrows, ncols unchanged)

void **Ax, // values

GrB_Index *Ax_size, // size of Ax in bytes

bool *iso, // if true, A is iso

const GrB_Descriptor desc

) ;

GxB_Matrix_unpack_FullR unpacks a matrix in FullR form. It is identi-
cal to GxB_Matrix_unpack_BitmapR, except that all entries must be present.
Prior to unpack, GrB_Matrix_nvals (&nvals, A) must return nvals equal
to nrows*ncols. Otherwise, if the A is unpacked with
GxB_Matrix_unpack_FullR, an error is returned (GrB_INVALID_VALUE) and
the matrix is not unpacked.

144

6.11.23 GxB Matrix pack FullC: pack a FullC matrix

GrB_Info GxB_Matrix_pack_FullC // pack a full matrix, held by column

(

GrB_Matrix A, // matrix to create (type, nrows, ncols unchanged)

void **Ax, // values, Ax_size >= nrows*ncols * (type size)

// or Ax_size >= (type size), if iso is true

GrB_Index Ax_size, // size of Ax in bytes

bool iso, // if true, A is iso

const GrB_Descriptor desc

) ;

GxB_Matrix_pack_FullC packs a matrix from a user arrays in FullC for-
mat. For the FullC format, the value of A(i, j) is Ax[i+j*nrows]. To iterate
over the rows and entries of this matrix, the following code can be used (as-
suming it has type GrB_FP64). If A is both full and iso, it takes O(1) memory,
regardless of nrows and ncols.

for (int64_t i = 0 ; i < nrows ; i++)

{

for (int64_t j = 0 ; j < ncols ; j++)

{

int64_t p = i + j*nrows ;

double aij = Ax [iso ? 0 : p] ; // numerical value of A(i,j)

}

}

6.11.24 GxB Matrix unpack FullC: unpack a FullC matrix

GrB_Info GxB_Matrix_unpack_FullC // unpack a full matrix, by column

(

GrB_Matrix A, // matrix to unpack (type, nrows, ncols unchanged)

void **Ax, // values

GrB_Index *Ax_size, // size of Ax in bytes

bool *iso, // if true, A is iso

const GrB_Descriptor desc

) ;

GxB_Matrix_unpack_FullC unpacks a matrix in FullC form. It is identi-
cal to GxB_Matrix_unpack_BitmapC, except that all entries must be present.
That is, prior to unpack, GrB_Matrix_nvals (&nvals, A)must return nvals
equal to nrows*ncols. Otherwise, if the A is unpacked with
GxB_Matrix_unpack_FullC, an error is returned (GrB_INVALID_VALUE) and
the matrix is not unpacked.

145

6.12 GraphBLAS import/export: using copy seman-
tics

The v2.0 C API includes import/export methods for matrices (not vectors)
using a different strategy as compared to the GxB*pack/unpack* methods.
The GxB methods are based on move semantics, in which ownership of arrays
is passed between SuiteSparse:GraphBLAS and the user application. This
allows the GxB*pack/unpack* methods to work in O(1) time, and require no
additional memory, but it requires that GraphBLAS and the user application
agree on which memory manager to use. This is done via GxB_init. This
allows GraphBLAS to malloc an array that can be later freed by the user
application, and visa versa.

The GrB import/export methods take a different approach. The data is
always copied in and out between the opaque GraphBLAS matrix and the
user arrays. This takes Ω(e) time, if the matrix has e entries, and requires
more memory. It has the advantage that it does not require GraphBLAS
and the user application to agree on what memory manager to use, since no
ownership of allocated arrays is changed.

The format for GrB_Matrix_import and GrB_Matrix_export is controlled
by the following enum:

typedef enum

{

GrB_CSR_FORMAT = 0, // CSR format (equiv to GxB_SPARSE with GxB_BY_ROW)

GrB_CSC_FORMAT = 1, // CSC format (equiv to GxB_SPARSE with GxB_BY_COL)

GrB_COO_FORMAT = 2 // triplet format (like input to GrB*build)

}

GrB_Format ;

146

6.12.1 GrB Matrix import: import a matrix

GrB_Info GrB_Matrix_import // import a matrix

(

GrB_Matrix *A, // handle of matrix to create

GrB_Type type, // type of matrix to create

GrB_Index nrows, // number of rows of the matrix

GrB_Index ncols, // number of columns of the matrix

const GrB_Index *Ap, // pointers for CSR, CSC, column indices for COO

const GrB_Index *Ai, // row indices for CSR, CSC

const <type> *Ax, // values

GrB_Index Ap_len, // number of entries in Ap (not # of bytes)

GrB_Index Ai_len, // number of entries in Ai (not # of bytes)

GrB_Index Ax_len, // number of entries in Ax (not # of bytes)

GrB_Format format // import format

) ;

The GrB_Matrix_import method copies from user-provided arrays into
an opaque GrB_Matrix and GrB_Matrix_export copies data out, from an
opaque GrB_Matrix into user-provided arrays.

The suffix TYPE in the prototype above is one of BOOL, INT8, INT16, etc,
for built-n types, or UDT for user-defined types. The type of the Ax array
must match this type. No typecasting is performed.

Unlike the GxB pack/unpack methods, memory is not handed off between
the user application and GraphBLAS. The three arrays Ap, Ai. and Ax are
not modified, and are still owned by the user application when the method
finishes.

The matrix can be imported in one of three different formats:

• GrB_CSR_FORMAT: Compressed-row format. Ap is an array of size nrows+1.
The arrays Ai and Ax are of size nvals = Ap [nrows], and Ap[0]

must be zero. The column indices of entries in the ith row appear in
Ai[Ap[i]...Ap[i+1]-1], and the values of those entries appear in the
same locations in Ax. The column indices need not be in any particular
order.

• GrB_CSC_FORMAT: Compressed-column format. Ap is an array of size
ncols+1. The arrays Ai and Ax are of size nvals = Ap [ncols], and
Ap[0]must be zero. The row indices of entries in the jth column appear
in Ai[Ap[j]...Ap[j+1]-1], and the values of those entries appear in
the same locations in Ax. The row indices need not be in any particular
order.

147

• GrB_COO_FORMAT: Coordinate format. This is the same format as
GrB_Matrix_build. The three arrays Ap, Ai, and Ax have the same
size. The kth tuple has row index Ai[k], column index Ap[k], and
value Ax[k]. The tuples can appear any order, but no duplicates are
permitted.

6.12.2 GrB Matrix export: export a matrix

GrB_Info GrB_Matrix_export // export a matrix

(

GrB_Index *Ap, // pointers for CSR, CSC, column indices for COO

GrB_Index *Ai, // col indices for CSR/COO, row indices for CSC

<type> *Ax, // values (must match the type of A_input)

GrB_Index *Ap_len, // number of entries in Ap (not # of bytes)

GrB_Index *Ai_len, // number of entries in Ai (not # of bytes)

GrB_Index *Ax_len, // number of entries in Ax (not # of bytes)

GrB_Format format, // export format

GrB_Matrix A // matrix to export

) ;

GrB_Matrix_export copies the contents of a matrix into three user-
provided arrays, using any one of the three different formats described in
Section 6.12.1. The size of the arrays must be at least as large as the lengths
returned by GrB_Matrix_exportSize. The matrix A is not modified.

On input, the size of the three arrays Ap, Ai, and Ax is given by Ap_len,
Ai_len, and Ax_len, respectively. These values are in terms of the number
of entries in these arrays, not the number of bytes. On output, these three
value are adjusted to report the number of entries written to the three arrays.

The suffix TYPE in the prototype above is one of BOOL, INT8, INT16, etc,
for built-n types, or UDT for user-defined types. The type of the Ax array
must match this type. No typecasting is performed.

148

6.12.3 GrB Matrix exportSize: determine size of export

GrB_Info GrB_Matrix_exportSize // determine sizes of user arrays for export

(

GrB_Index *Ap_len, // # of entries required for Ap (not # of bytes)

GrB_Index *Ai_len, // # of entries required for Ai (not # of bytes)

GrB_Index *Ax_len, // # of entries required for Ax (not # of bytes)

GrB_Format format, // export format

GrB_Matrix A // matrix to export

) ;

Returns the required sizes of the arrays Ap, Ai, and Ax for exporting a
matrix using GrB_Matrix_export, using the same format.

6.12.4 GrB Matrix exportHint: determine best export format

GrB_Info GrB_Matrix_exportHint // suggest the best export format

(

GrB_Format *format, // export format

GrB_Matrix A // matrix to export

) ;

This method suggests the most efficient format for the export of a given
matrix. For SuiteSparse:GraphBLAS, the hint depends on the current format
of the GrB_Matrix:

• GxB_SPARSE, GxB_BY_ROW: export as GrB_CSR_FORMAT

• GxB_SPARSE, GxB_BY_COL: export as GrB_CSC_FORMAT

• GxB_HYPERSPARSE: export as GrB_COO_FORMAT

• GxB_BITMAP, GxB_BY_ROW: export as GrB_CSR_FORMAT

• GxB_BITMAP, GxB_BY_COL: export as GrB_CSC_FORMAT

• GxB_FULL, GxB_BY_ROW: export as GrB_CSR_FORMAT

• GxB_FULL, GxB_BY_COL: export as GrB_CSC_FORMAT

149

6.13 Sorting methods

GxB_Matrix_sort provides a mechanism to sort all the rows or all the columns
of a matrix, and GxB_Vector_sort sorts all the entries in a vector.

6.13.1 GxB Vector sort: sort a vector

GrB_Info GxB_sort

(

// output:

GrB_Vector w, // vector of sorted values

GrB_Vector p, // vector containing the permutation

// input

GrB_BinaryOp op, // comparator op

GrB_Vector u, // vector to sort

const GrB_Descriptor desc

) ;

GxB_Vector_sort is identical to sorting the single column of an n-by-1
matrix. The descriptor is ignored, except to control the number of threads
to use. Refer to Section 6.13.2 for details.

6.13.2 GxB Matrix sort: sort the rows/columns of a matrix

GrB_Info GxB_sort

(

// output:

GrB_Matrix C, // matrix of sorted values

GrB_Matrix P, // matrix containing the permutations

// input

GrB_BinaryOp op, // comparator op

GrB_Matrix A, // matrix to sort

const GrB_Descriptor desc

) ;

GxB_Matrix_sort sorts all the rows or all the columns of a matrix. Each
row (or column) is sorted separately. The rows are sorted by default. To
sort the columns, use GrB_DESC_T0. A comparator operator is provided to
define the sorting order (ascending or descending). For example, to sort a
GrB_FP64 matrix in ascending order, use GrB_LT_FP64 as the op, and to sort
in descending order, use GrB_GT_FP64.

The op must have a return value of GrB_BOOL, and the types of its two
inputs must be the same. The entries in A are typecasted to the inputs of

150

the op, if necessary. Matrices with user-defined types can be sorted with a
user-defined comparator operator, whose two input types must match the
type of A, and whose output is GrB_BOOL.

The two matrix outputs are C and P. Any entries present on input in
C or P are discarded on output. The type of C must match the type of A
exactly. The dimensions of C, P, and A must also match exactly (even with
the GrB_DESC_T0 descriptor).

With the default sort (by row), suppose A(i,:) contains k entries. In
this case, C(i,0:k-1) contains the values of those entries in sorted order,
and P(i,0:k-1) contains their corresponding column indices in the matrix
A. If two values are the same, ties are broken according column index.

If the matrix is sorted by column, and A(:,j) contains k entries, then
C(0:k-1,j) contains the values of those entries in sorted order, and P(0:k-1,j)
contains their corresponding row indices in the matrix A. If two values are
the same, ties are broken according row index.

The outputs C and P are both optional; either one (but not both) may be
NULL, in which case that particular output matrix is not computed.

151

6.14 GraphBLAS descriptors: GrB Descriptor

A GraphBLAS descriptor modifies the behavior of a GraphBLAS operation.
If the descriptor is GrB_NULL, defaults are used.

The access to these parameters and their values is governed by two enum

types, GrB_Desc_Field and GrB_Desc_Value:

#define GxB_NTHREADS 5 // for both GrB_Desc_field and GxB_Option_field

#define GxB_CHUNK 7

typedef enum

{

GrB_OUTP = 0, // descriptor for output of a method

GrB_MASK = 1, // descriptor for the mask input of a method

GrB_INP0 = 2, // descriptor for the first input of a method

GrB_INP1 = 3, // descriptor for the second input of a method

GxB_DESCRIPTOR_NTHREADS = GxB_NTHREADS, // number of threads to use

GxB_DESCRIPTOR_CHUNK = GxB_CHUNK, // chunk size for small problems

GxB_AxB_METHOD = 1000, // descriptor for selecting C=A*B algorithm

GxB_SORT = 35 // control sort in GrB_mxm

GxB_COMPRESSION = 36, // select compression for serialize

GxB_IMPORT = 37, // secure vs fast pack

}

GrB_Desc_Field ;

typedef enum

{

// for all GrB_Descriptor fields:

GxB_DEFAULT = 0, // default behavior of the method

// for GrB_OUTP only:

GrB_REPLACE = 1, // clear the output before assigning new values to it

// for GrB_MASK only:

GrB_COMP = 2, // use the complement of the mask

GrB_STRUCTURE = 4, // use the structure of the mask

// for GrB_INP0 and GrB_INP1 only:

GrB_TRAN = 3, // use the transpose of the input

// for GxB_AxB_METHOD only:

GxB_AxB_GUSTAVSON = 1001, // gather-scatter saxpy method

GxB_AxB_DOT = 1003, // dot product

GxB_AxB_HASH = 1004, // hash-based saxpy method

GxB_AxB_SAXPY = 1005 // saxpy method (any kind)

// for GxB_IMPORT only:

GxB_SECURE_IMPORT = 502 // GxB*_pack* methods trust their input data

}

GrB_Desc_Value ;

152

• GrB_OUTP is a parameter that modifies the output of a GraphBLAS op-
eration. In the default case, the output is not cleared, and Z = C⊙T
then C⟨M⟩ = Z are computed as-is, where T is the results of the par-
ticular GraphBLAS operation.

In the non-default case, Z = C⊙T is first computed, using the results
of T and the accumulator ⊙. After this is done, if the GrB_OUTP de-
scriptor field is set to GrB_REPLACE, then the output is cleared of its
entries. Next, the assignment C⟨M⟩ = Z is performed.

• GrB_MASK is a parameter that modifies the Mask, even if the mask is
not present.

If this parameter is set to its default value, and if the mask is not present
(Mask==NULL) then implicitly Mask(i,j)=1 for all i and j. If the mask
is present then Mask(i,j)=1 means that C(i,j) is to be modified by
the C⟨M⟩ = Z update. Otherwise, if Mask(i,j)=0, then C(i,j) is not
modified, even if Z(i,j) is an entry with a different value; that value
is simply discarded.

If the GrB_MASK parameter is set to GrB_COMP, then the use of the mask
is complemented. In this case, if the mask is not present (Mask==NULL)
then implicitly Mask(i,j)=0 for all i and j. This means that none of
C is modified and the entire computation of Z might as well have been
skipped. That is, a complemented empty mask means no modifications
are made to the output object at all, except perhaps to clear it in
accordance with the GrB_OUTP descriptor. With a complemented mask,
if the mask is present then Mask(i,j)=0 means that C(i,j) is to be
modified by the C⟨M⟩ = Z update. Otherwise, if Mask(i,j)=1, then
C(i,j) is not modified, even if Z(i,j) is an entry with a different
value; that value is simply discarded.

If the GrB_MASK parameter is set to GrB_STRUCTURE, then the values of
the mask are ignored, and just the pattern of the entries is used. Any
entry M(i,j) in the pattern is treated as if it were true.

The GrB_COMP and GrB_STRUCTURE settings can be combined, either by
setting the mask option twice (once with each value), or by setting the
mask option to GrB_COMP+GrB_STRUCTURE (the latter is an extension
to the specification).

153

Using a parameter to complement the Mask is very useful because con-
structing the actual complement of a very sparse mask is impossible
since it has too many entries. If the number of places in C that should
be modified is very small, then use a sparse mask without complement-
ing it. If the number of places in C that should be protected from
modification is very small, then use a sparse mask to indicate those
places, and use a descriptor GrB_MASK that complements the use of the
mask.

• GrB_INP0 and GrB_INP1 modify the use of the first and second input
matrices A and B of the GraphBLAS operation.

If the GrB_INP0 is set to GrB_TRAN, then A is transposed before using
it in the operation. Likewise, if GrB_INP1 is set to GrB_TRAN, then the
second input, typically called B, is transposed.

Vectors and scalars are never transposed via the descriptor. If a method’s
first parameter is a matrix and the second a vector or scalar, then
GrB_INP0 modifies the matrix parameter and GrB_INP1 is ignored. If
a method’s first parameter is a vector or scalar and the second a ma-
trix, then GrB_INP1 modifies the matrix parameter and GrB_INP0 is
ignored.

To clarify this in each function, the inputs are labeled as first input:

and second input: in the function signatures.

• GxB_AxB_METHOD suggests the method that should be used to compute
C=A*B. All the methods compute the same result, except they may
have different floating-point roundoff errors. This descriptor should be
considered as a hint; SuiteSparse:GraphBLAS is free to ignore it.

– GxB_DEFAULT means that a method is selected automatically.

– GxB_AxB_SAXPY: select any saxpy-based method: GxB_AxB_GUSTAVSON,
and/or GxB_AxB_HASH, or any mix of the two, in contrast to the
dot-product method.

– GxB_AxB_GUSTAVSON: an extended version of Gustavson’s method
[Gus78], which is a very good general-purpose method, but some-
times the workspace can be too large. Assuming all matrices are
stored by column, it computes C(:,j)=A*B(:,j) with a sequence
of saxpy operations (C(:,j)+=A(:,k)*B(k:,j) for each nonzero

154

B(k,j)). In the coarse Gustavson method, each internal thread
requires workspace of size m, to the number of rows of C, which
is not suitable if the matrices are extremely sparse or if there are
many threads. For the fine Gustavson method, threads can share
workspace and update it via atomic operations. If all matrices
are stored by row, then it computes C(i,:)=A(i,:)*B in a se-
quence of sparse saxpy operations, and using workspace of size n
per thread, or group of threads, corresponding to the number of
columns of C.

– GxB_AxB_HASH: a hash-based method, based on [NMAB18]. It
is very efficient for hypersparse matrices, matrix-vector-multiply,
and when |B| is small. SuiteSparse:GraphBLAS includes a coarse
hash method, in which each thread has its own hash workspace,
and a fine hash method, in which groups of threads share a single
hash workspace, as concurrent data structure, using atomics.

– GxB_AxB_DOT: computes C(i,j)=A(i,:)*B(j,:)’, for each entry
C(i,j). If the mask is present and not complemented, only en-
tries for which M(i,j)=1 are computed. This is a very specialized
method that works well only if the mask is present, very sparse,
and not complemented, when C is small, or when C is bitmap or
full. For example, it works very well when A and B are tall and
thin, and C<M>=A*B’ or C=A*B’ are computed. These expressions
assume all matrices are in CSR format. If in CSC format, then
the dot-product method used for A’*B. The method is impossibly
slow if C is large and the mask is not present, since it takes Ω(mn)
time if C is m-by-n in that case. It does not use any workspace at
all. Since it uses no workspace, it can work very well for extremely
sparse or hypersparse matrices, when the mask is present and not
complemented.

• GxB_NTHREADS controls how many threads a method uses. By default
(if set to zero, or GxB_DEFAULT), all available threads are used. The
maximum available threads is controlled by the global setting, which is
omp_get_max_threads () by default. If set to some positive integer
nthreads less than this maximum, at most nthreads threads will be
used. See Section 8.1 for details.

• GxB_CHUNK is a double value that controls how many threads a method

155

uses for small problems. See Section 8.1 for details.

• GxB_SORT provides a hint to GrB_mxm, GrB_mxv, GrB_vxm, and GrB_reduce
(to vector). These methods can leave the output matrix or vector in a
jumbled state, where the final sort is left as pending work. This is typ-
ically fastest, since some algorithms can tolerate jumbled matrices on
input, and sometimes the sort can be skipped entirely. However, if the
matrix or vector will be immediately exported in unjumbled form, or
provided as input to a method that requires it to not be jumbled, then
sorting it during the matrix multiplication is faster. By default, these
methods leave the result in jumbled form (a lazy sort), if GxB_SORT
is set to zero (GxB_DEFAULT). A nonzero value will inform the matrix
multiplication to sort its result, instead.

• GxB_COMPRESSION selects the compression method for serialization. The
default is ZSTD (level 1). See Section 6.10 for other options.

• GxB_IMPORT informs the GxB pack methods that they can trust their
input data, or not. The default is to trust the input, for faster packing.
If the data is being packed from an untrusted source, then additional
checks should be made, and the following descriptor setting should be
used:

GxB_set (desc, GxB_IMPORT, GxB_SECURE_IMPORT) ;

The next sections describe the methods for a GrB_Descriptor:

GraphBLAS function purpose Section
GrB_Descriptor_new create a descriptor 6.14.1
GrB_Descriptor_wait wait for a descriptor 6.14.2
GrB_Descriptor_set set a parameter in a descriptor 6.14.3
GxB_Desc_set set a parameter in a descriptor 6.14.4
GxB_Desc_get get a parameter from a descriptor 6.14.5
GrB_Descriptor_free free a descriptor 6.14.6

156

6.14.1 GrB Descriptor new: create a new descriptor

GrB_Info GrB_Descriptor_new // create a new descriptor

(

GrB_Descriptor *descriptor // handle of descriptor to create

) ;

GrB_Descriptor_new creates a new descriptor, with all fields set to their
defaults (output is not replaced, the mask is not complemented, the mask is
valued not structural, neither input matrix is transposed, the method used in
C=A*B is selected automatically, and GrB_mxm leaves the final sort as pending
work).

6.14.2 GrB Descriptor wait: wait for a descriptor

GrB_Info GrB_wait // wait for a descriptor

(

GrB_Descriptor descriptor, // descriptor to wait for

GrB_WaitMode mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

After creating a user-defined descriptor, a GraphBLAS library may choose
to exploit non-blocking mode to delay its creation. Currently, SuiteSparse:GraphBLAS
does nothing except to ensure that d is valid.

157

6.14.3 GrB Descriptor set: set a parameter in a descriptor

GrB_Info GrB_Descriptor_set // set a parameter in a descriptor

(

GrB_Descriptor desc, // descriptor to modify

GrB_Desc_Field field, // parameter to change

GrB_Desc_Value val // value to change it to

) ;

GrB_Descriptor_set sets a descriptor field (GrB_OUTP, GrB_MASK, GrB_INP0,
GrB_INP1, or GxB_AxB_METHOD) to a particular value. Use GxB_Dec_set to
set the value of GxB_NTHREADS, GxB_CHUNK, and GxB_SORT. If an error occurs,
GrB_error(&err,desc) returns details about the error.

Descriptor Default Non-default
field
GrB_OUTP GxB_DEFAULT: The output matrix is

not cleared. The operation computes
C⟨M⟩ = C⊙T.

GrB_REPLACE: After computing
Z = C⊙T, the output C is cleared
of all entries. Then C⟨M⟩ = Z is
performed.

GrB_MASK GxB_DEFAULT: The Mask is not comple-
mented. Mask(i,j)=1 means the value
Cij can be modified by the operation,
while Mask(i,j)=0 means the value Cij

shall not be modified by the operation.

GrB_COMP: The Mask is comple-
mented. Mask(i,j)=0 means the
value Cij can be modified by the op-
eration, while Mask(i,j)=1 means
the value Cij shall not be modified
by the operation.
GrB_STRUCTURE: The values of the
Mask are ignored. If Mask(i,j) is an
entry in the Maskmatrix, it is treated
as if Mask(i,j)=1. The two options
GrB_COMP and GrB_STRUCTURE can
be combined, with two subsequent
calls, or with a single call with the
setting GrB_COMP+GrB_STRUCTURE.

GrB_INP0 GxB_DEFAULT: The first input is not
transposed prior to using it in the op-
eration.

GrB_TRAN: The first input is trans-
posed prior to using it in the opera-
tion. Only matrices are transposed,
never vectors.

GrB_INP1 GxB_DEFAULT: The second input is not
transposed prior to using it in the oper-
ation.

GrB_TRAN: The second input is trans-
posed prior to using it in the opera-
tion. Only matrices are transposed,
never vectors.

GrB_AxB_METHOD GxB_DEFAULT: The method for C=A*B is
selected automatically.

GxB_AxB_method: The selected
method is used to compute C=A*B.

158

6.14.4 GxB Desc set: set a parameter in a descriptor

GrB_Info GxB_Desc_set // set a parameter in a descriptor

(

GrB_Descriptor desc, // descriptor to modify

GrB_Desc_Field field, // parameter to change

... // value to change it to

) ;

GxB_Desc_set is like GrB_Descriptor_set, except that the type of the
third parameter can vary with the field. This function can modify all descrip-
tor settings, including those that do not have the type GrB_Desc_Value. See
also GxB_set described in Section 8. If an error occurs, GrB_error(&err,desc)
returns details about the error.

6.14.5 GxB Desc get: get a parameter from a descriptor

GrB_Info GxB_Desc_get // get a parameter from a descriptor

(

GrB_Descriptor desc, // descriptor to query; NULL means defaults

GrB_Desc_Field field, // parameter to query

... // value of the parameter

) ;

GxB_Desc_get returns the value of a single field in a descriptor. The type
of the third parameter is a pointer to a variable type, whose type depends
on the field. See also GxB_get described in Section 8.

6.14.6 GrB Descriptor free: free a descriptor

GrB_Info GrB_free // free a descriptor

(

GrB_Descriptor *descriptor // handle of descriptor to free

) ;

GrB_Descriptor_free frees a descriptor. Either usage:

GrB_Descriptor_free (&descriptor) ;

GrB_free (&descriptor) ;

frees the descriptor and sets descriptor to NULL. It safely does nothing if
passed a NULL handle, or if descriptor == NULL on input.

159

6.14.7 GrB DESC *: built-in descriptors

Built-in descriptors are listed in the table below. A dash in the table indicates
the default. These descriptors may not be modified or freed. Attempts to
modify them result in an error (GrB_INVALID_VALUE); attempts to free them
are silently ignored.

Descriptor OUTP MASK MASK INP0 INP1

structural complement
GrB_NULL - - - - -
GrB_DESC_T1 - - - - GrB_TRAN

GrB_DESC_T0 - - - GrB_TRAN -
GrB_DESC_T0T1 - - - GrB_TRAN GrB_TRAN

GrB_DESC_C - - GrB_COMP - -
GrB_DESC_CT1 - - GrB_COMP - GrB_TRAN

GrB_DESC_CT0 - - GrB_COMP GrB_TRAN -
GrB_DESC_CT0T1 - - GrB_COMP GrB_TRAN GrB_TRAN

GrB_DESC_S - GrB_STRUCTURE - - -
GrB_DESC_ST1 - GrB_STRUCTURE - - GrB_TRAN

GrB_DESC_ST0 - GrB_STRUCTURE - GrB_TRAN -
GrB_DESC_ST0T1 - GrB_STRUCTURE - GrB_TRAN GrB_TRAN

GrB_DESC_SC - GrB_STRUCTURE GrB_COMP - -
GrB_DESC_SCT1 - GrB_STRUCTURE GrB_COMP - GrB_TRAN

GrB_DESC_SCT0 - GrB_STRUCTURE GrB_COMP GrB_TRAN -
GrB_DESC_SCT0T1 - GrB_STRUCTURE GrB_COMP GrB_TRAN GrB_TRAN

GrB_DESC_R GrB_REPLACE - - - -
GrB_DESC_RT1 GrB_REPLACE - - - GrB_TRAN

GrB_DESC_RT0 GrB_REPLACE - - GrB_TRAN -
GrB_DESC_RT0T1 GrB_REPLACE - - GrB_TRAN GrB_TRAN

GrB_DESC_RC GrB_REPLACE - GrB_COMP - -
GrB_DESC_RCT1 GrB_REPLACE - GrB_COMP - GrB_TRAN

GrB_DESC_RCT0 GrB_REPLACE - GrB_COMP GrB_TRAN -
GrB_DESC_RCT0T1 GrB_REPLACE - GrB_COMP GrB_TRAN GrB_TRAN

GrB_DESC_RS GrB_REPLACE GrB_STRUCTURE - - -
GrB_DESC_RST1 GrB_REPLACE GrB_STRUCTURE - - GrB_TRAN

GrB_DESC_RST0 GrB_REPLACE GrB_STRUCTURE - GrB_TRAN -
GrB_DESC_RST0T1 GrB_REPLACE GrB_STRUCTURE - GrB_TRAN GrB_TRAN

GrB_DESC_RSC GrB_REPLACE GrB_STRUCTURE GrB_COMP - -
GrB_DESC_RSCT1 GrB_REPLACE GrB_STRUCTURE GrB_COMP - GrB_TRAN

GrB_DESC_RSCT0 GrB_REPLACE GrB_STRUCTURE GrB_COMP GrB_TRAN -
GrB_DESC_RSCT0T1 GrB_REPLACE GrB_STRUCTURE GrB_COMP GrB_TRAN GrB_TRAN

160

6.15 GrB free: free any GraphBLAS object

Each of the ten objects has GrB_*_new and GrB_*_free methods that are
specific to each object. They can also be accessed by a generic function,
GrB_free, that works for all ten objects. If G is any of the ten objects, the
statement

GrB_free (&G) ;

frees the object and sets the variable G to NULL. It is safe to pass in a NULL

handle, or to free an object twice:

GrB_free (NULL) ; // SuiteSparse:GraphBLAS safely does nothing

GrB_free (&G) ; // the object G is freed and G set to NULL

GrB_free (&G) ; // SuiteSparse:GraphBLAS safely does nothing

However, the following sequence of operations is not safe. The first two are
valid but the last statement will lead to undefined behavior.

H = G ; // valid; creates a 2nd handle of the same object

GrB_free (&G) ; // valid; G is freed and set to NULL; H now undefined

GrB_some_method (H) ; // not valid; H is undefined

Some objects are predefined, such as the built-in types. If a user applica-
tion attempts to free a built-in object, SuiteSparse:GraphBLAS will safely do
nothing. The GrB_free function in SuiteSparse:GraphBLAS always returns
GrB_SUCCESS.

161

7 The mask, accumulator, and replace option

After a GraphBLAS operation computes a result T, (for example, T = AB
for GrB_mxm), the results are assigned to an output matrix C via the mask/
accumulator phase, written as C⟨M⟩ = C⊙T. This phase is affected by
the GrB_REPLACE option in the descriptor, the presence of an optional binary
accumulator operator (⊙), the presence of the optional mask matrix M,
and the status of the mask descriptor. The interplay of these options is
summarized in Table 1.

The mask M may be present, or not. It may be structural or valued,
and it may be complemented, or not. These options may be combined, for a
total of 8 cases, although the structural/valued option as no effect if M is not
present. If M is not present and not complemented, then mij is implicitly
true. If not present yet complemented, then all mij entries are implicitly
zero; in this case, T need not be computed at all. Either C is not modified,
or all its entries are cleared if the replace option is enabled. If M is present,
and the structural option is used, then mij is treated as true if it is an entry
in the matrix (its value is ignored). Otherwise, the value of mij is used. In
both cases, entries not present are implicitly zero. These values are negated
if the mask is complemented. All of these various cases are combined to give
a single effective value of the mask at position ij.

The combination of all these options are presented in the Table 1. The
first column is the GrB_REPLACE option. The second column lists whether or
not the accumulator operator is present. The third column lists whether or
not cij exists on input to the mask/accumulator phase (a dash means that
it does not exist). The fourth column lists whether or not the entry tij is
present in the result matrix T. The mask column is the final effective value
of mij, after accounting for the presence of M and the mask options. Finally,
the last column states the result of the mask/accum step; if no action is listed
in this column, then cij is not modified.

Several important observations can be made from this table. First, if no
mask is present (and the mask-complement descriptor option is not used),
then only the first half of the table is used. In this case, the GrB_REPLACE

option has no effect. The entire matrix C is modified.
Consider the cases when cij is present but tij is not, and there is no

mask or the effective value of the mask is true for this ij position. With no
accumulator operator, cij is deleted. If the accumulator operator is present
and the replace option is not used, cij remains unchanged.

162

repl accum C T mask action taken by C⟨M⟩ = C⊙T

- - cij tij 1 cij = tij , update
- - - tij 1 cij = tij , insert
- - cij - 1 delete cij because tij not present
- - - - 1
- - cij tij 0
- - - tij 0
- - cij - 0
- - - - 0

yes - cij tij 1 cij = tij , update
yes - - tij 1 cij = tij , insert
yes - cij - 1 delete cij because tij not present
yes - - - 1
yes - cij tij 0 delete cij (because of GrB_REPLACE)
yes - - tij 0
yes - cij - 0 delete cij (because of GrB_REPLACE)
yes - - - 0

- yes cij tij 1 cij = cij ⊙ tij , apply accumulator
- yes - tij 1 cij = tij , insert
- yes cij - 1
- yes - - 1
- yes cij tij 0
- yes - tij 0
- yes cij - 0
- yes - - 0

yes yes cij tij 1 cij = cij ⊙ tij , apply accumulator
yes yes - tij 1 cij = tij , insert
yes yes cij - 1
yes yes - - 1
yes yes cij tij 0 delete cij (because of GrB_REPLACE)
yes yes - tij 0
yes yes cij - 0 delete cij (because of GrB_REPLACE)
yes yes - - 0

Table 1: Results of the mask/accumulator phase.

163

When there is no mask and the mask GrB_COMP option is not selected, the
table simplifies (Table 2). The GrB_REPLACE option no longer has any effect.
The GrB_SECOND_T binary operator when used as the accumulator unifies
the first cases, shown in Table 3. The only difference now is the behavior
when cij is present but tij is not. Finally, the effect of GrB_FIRST_T as the
accumulator is shown in Table 4.

accum C T action taken by C = C⊙T

- cij tij cij = tij , update
- - tij cij = tij , insert
- cij - delete cij because tij not present
- - -

yes cij tij cij = cij ⊙ tij , apply accumulator
yes - tij cij = tij , insert
yes cij -
yes - -

Table 2: When no mask is present (and not complemented).

accum C T action taken by C = C⊙T

yes cij tij cij = tij , apply GrB_SECOND accumulator
yes - tij cij = tij , insert
yes cij -
yes - -

Table 3: No mask, with the SECOND operator as the accumulator.

accum C T action taken by C = C⊙T

yes cij tij
yes - tij cij = tij , insert
yes cij -
yes - -

Table 4: No Mask, with the FIRST operator as the accumulator.

164

8 SuiteSparse:GraphBLAS Options

SuiteSparse:GraphBLAS includes two type-generic methods, GxB_set and
GxB_get, that set and query various options and parameters settings, includ-
ing a generic way to set values in the GrB_Descriptor object. Using these
methods, the user application can provide hints to SuiteSparse:GraphBLAS
on how it should store and operate on its matrices. These hints have no effect
on the results of any GraphBLAS operation (except perhaps floating-point
roundoff differences), but they can have a great impact on the amount of
time or memory taken.

• GxB_set (field, value) sets global options.

field value description
GxB_HYPER_SWITCH double hypersparsity control (0 to 1)
GxB_BITMAP_SWITCH double [8] bitmap control
GxB_FORMAT int GxB_BY_ROW or GxB_BY_COL
GxB_GLOBAL_NTHREADS int number of threads to use
GxB_NTHREADS int number of threads to use
GxB_GLOBAL_CHUNK double chunk size
GxB_CHUNK double chunk size
GxB_BURBLE int diagnostic output
GxB_PRINTF see below diagnostic output
GxB_FLUSH see below diagnostic output
GxB_MEMORY_POOL int64_t [64] memory pool control
GxB_PRINT_1BASED int for printing matrices/vectors

• GxB_set (GrB_Matrix A, field, value) provides hints to SuiteSparse:
GraphBLAS on how to store a particular matrix.

field value description
GxB_HYPER_SWITCH double hypersparsity control (0 to 1)
GxB_BITMAP_SWITCH double bitmap control (0 to 1)
GxB_FORMAT int GxB_BY_ROW or GxB_BY_COL
GxB_SPARSITY_CONTROL int 0 to 15

• GxB_set (GrB_Vector v, field, value) provides hints to SuiteSparse:
GraphBLAS on how to store a particular vector.

field value description
GxB_BITMAP_SWITCH double bitmap control (0 to 1)
GxB_SPARSITY_CONTROL int 0 to 15

• GxB_set (GrB_Descriptor desc, field, value) sets the value of a
field in a GrB_Descriptor.

165

field value description
GrB_OUTP GrB_Desc_Value replace option
GrB_MASK GrB_Desc_Value mask option
GrB_INP0 GrB_Desc_Value transpose input 0
GrB_INP1 GrB_Desc_Value transpose input 1
GxB_DESCRIPTOR_NTHREADS int number of threads to use
GxB_NTHREADS int number of threads to use
GxB_DESCRIPTOR_CHUNK double chunk size
GxB_CHUNK double chunk size
GxB_AxB_METHOD int method for matrix multiply
GxB_SORT int lazy vs aggressive sort
GxB_COMPRESSION int compression for serialization
GxB_IMPORT GrB_Desc_Value trust data on import/pack

GxB_get queries a GrB_Descriptor, a GrB_Matrix, a GrB_Vector, or the
global options.

• GxB_get (field, &value) retrieves the value of a global option.

166

field value description
GxB_HYPER_SWITCH double hypersparsity control (0 to 1)
GxB_BITMAP_SWITCH double [8] bitmap control
GxB_FORMAT int GxB_BY_ROW or GxB_BY_COL
GxB_GLOBAL_NTHREADS int number of threads to use
GxB_NTHREADS int number of threads to use
GxB_GLOBAL_CHUNK double chunk size
GxB_CHUNK double chunk size
GxB_BURBLE int diagnostic output
GxB_PRINTF see below diagnostic output
GxB_FLUSH see below diagnostic output
GxB_MEMORY_POOL int64_t [64] memory pool control
GxB_PRINT_1BASED int for printing matrices/vectors
GxB_MODE int blocking/non-blocking
GxB_LIBRARY_NAME char * name of library
GxB_LIBRARY_VERSION int [3] library version
GxB_LIBRARY_DATE char * release date
GxB_LIBRARY_ABOUT char * about the library
GxB_LIBRARY_LICENSE char * license
GxB_LIBRARY_COMPILE_DATE char * date of compilation
GxB_LIBRARY_COMPILE_TIME char * time of compilation
GxB_LIBRARY_OPENMP bool true if compiled with OpenMP
GxB_LIBRARY_URL char * url of library
GxB_API_VERSION int [3] C API version
GxB_API_DATE char * C API date
GxB_API_ABOUT char * about the C API
GxB_API_URL char * http://graphblas.org

GxB_COMPILER_NAME char * C compiler name
GxB_COMPILER_VERSION int [3] C compiler version

• GxB_get (GrB_Matrix A, field, &value) retrieves the current value
of an option from a particular matrix A.

field value description
GxB_HYPER_SWITCH double hypersparsity control (0 to 1)
GxB_BITMAP_SWITCH double bitmap control (0 to 1)
GxB_FORMAT int GxB_BY_ROW or GxB_BY_COL
GxB_SPARSITY_CONTROL int 0 to 15
GxB_SPARSITY_STATUS int 1, 2, 4, or 8

• GxB_get (GrB_Vector A, field, &value) retrieves the current value
of an option from a particular vector v.

167

field value description
GxB_BITMAP_SWITCH double bitmap control (0 to 1)
GxB_FORMAT int GxB_BY_ROW or GxB_BY_COL
GxB_SPARSITY_CONTROL int 0 to 15
GxB_SPARSITY_STATUS int 1, 2, 4, or 8

• GxB_get (GrB_Descriptor desc, field, &value) retrieves the value
of a field in a descriptor.

field value description
GrB_OUTP GrB_Desc_Value replace option
GrB_MASK GrB_Desc_Value mask option
GrB_INP0 GrB_Desc_Value transpose input 0
GrB_INP1 GrB_Desc_Value transpose input 1
GxB_DESCRIPTOR_NTHREADS int number of threads to use
GxB_NTHREADS int number of threads to use
GxB_DESCRIPTOR_CHUNK double chunk size
GxB_CHUNK double chunk size
GxB_AxB_METHOD int method for matrix multiply
GxB_SORT int lazy vs aggressive sort
GxB_COMPRESSION int compression for serialization
GxB_IMPORT GrB_Desc_Value trust data on import/pack

8.1 OpenMP parallelism

SuiteSparse:GraphBLAS is a parallel library, based on OpenMP. By de-
fault, all GraphBLAS operations will use up to the maximum number of
threads specified by the omp_get_max_threads OpenMP function. For small
problems, GraphBLAS may choose to use fewer threads, using two param-
eters: the maximum number of threads to use (which may differ from the
omp_get_max_threads value), and a parameter called the chunk. Suppose
work is a measure of the work an operation needs to perform (say the num-
ber of entries in the two input matrices for GrB_eWiseAdd). No more than
floor(work/chunk) threads will be used (or one thread if the ratio is less
than 1).

The default chunk value is 65,536, but this may change in future versions,
or it may be modified when GraphBLAS is installed on a particular machine.

Both parameters can be set in two ways:

• Globally: If the following methods are used, then all subsequent Graph-
BLAS operations will use these settings. Note the typecast, (double)
chunk. This is necessary if a literal constant such as 20000 is passed
as this argument. The type of the constant must be double.

168

int nthreads_max = 40 ;

GxB_set (GxB_NTHREADS, nthreads_max) ;

GxB_set (GxB_CHUNK, (double) 20000) ;

• Per operation: Most GraphBLAS operations take a GrB_Descriptor

input, and this can be modified to set the number of threads and chunk
size for the operation that uses this descriptor. Note that chunk is a
double.

GrB_Descriptor desc ;

GrB_Descriptor_new (&desc)

int nthreads_max = 40 ;

GxB_set (desc, GxB_NTHREADS, nthreads_max) ;

double chunk = 20000 ;

GxB_set (desc, GxB_CHUNK, chunk) ;

The smaller of nthreads_max and floor(work/chunk) is used for any
given GraphBLAS operation, except that a single thread is used if this value
is zero or less.

If either parameter is set to GxB_DEFAULT, then default values are used.
The default for nthreads_max is the return value from omp_get_max_threads,
and the default chunk size is currently 65,536.

If a descriptor value for either parameter is left at its default, or set to
GxB_DEFAULT, then the global setting is used. This global setting may have
been modified from its default, and this modified value will be used.

For example, suppose omp_get_max_threads reports 8 threads. If
GxB_set (GxB_NTHREADS, 4) is used, then the global setting is four threads,
not eight. If a descriptor is used but its GxB_NTHREADS is not set, or set to
GxB_DEFAULT, then any operation that uses this descriptor will use 4 threads.

GraphBLAS may be compiled without OpenMP, by setting -DNOPENMP=1.
The library will be thread-safe, with one exception. GrB_wait is intended
to provide thread-safety by flushing the cache of one user thread so the
object can be safely read by another thread. This is accomplished with
pragma omp flush, but if OpenMP is not available, this does nothing. If
OpenMP is not available or -DNOPEMP=1 is used, then user applications need
to ensure their own thread safety when one user thread computes a result
that is then read by another thread.

You can query GraphBLAS at run time to ask if it was compiled with
OpenMP:

169

bool have_openmp ;

GxB_get (GxB_LIBRARY_OPENMP, &have_openmp) ;

if (!have_openmp) printf ("GraphBLAS not compiled with OpenMP\n") :

Compiling GraphBLAS without OpenMP is not recommended for instal-
lation in a package manager (Linux, conda-forge, spack, brew, vcpkg, etc).

8.2 Storing a matrix by row or by column

The GraphBLAS GrB_Matrix is entirely opaque to the user application, and
the GraphBLAS API does not specify how the matrix should be stored.
However, choices made in how the matrix is represented in a particular im-
plementation, such as SuiteSparse:GraphBLAS, can have a large impact on
performance.

Many graph algorithms are just as fast in any format, but some algorithms
are much faster in one format or the other. For example, suppose the user ap-
plication stores a directed graph as a matrix A, with the edge (i, j) represented
as the value A(i,j), and the application makes many accesses to the ith
row of the matrix, with GrB_Col_extract (w,...,A,GrB_ALL,...,i,desc)

with the transposed descriptor (GrB_INP0 set to GrB_TRAN). If the matrix
is stored by column this can be extremely slow, just like the expression
w=A(i,:) in MATLAB, where i is a scalar. Since this is a typical use-
case in graph algorithms, the default format in SuiteSparse:GraphBLAS is
to store its matrices by row, in Compressed Sparse Row format (CSR).

MATLAB stores its sparse matrices by column, in “non-hypersparse”
format, in what is called the Compressed Sparse Column format, or CSC for
short. An m-by-n matrix in MATLAB is represented as a set of n column
vectors, each with a sorted list of row indices and values of the nonzero
entries in that column. As a result, w=A(:,j) is very fast in MATLAB, since
the result is already held in the data structure a single list, the jth column
vector. However, w=A(i,:) is very slow in MATLAB, since every column in
the matrix has to be searched to see if it contains row i. In MATLAB, if
many such accesses are made, it is much better to transpose the matrix (say
AT=A’) and then use w=AT(:,i) instead. This can have a dramatic impact
on the performance of MATLAB.

Likewise, if u is a very sparse column vector and A is stored by column,
then w=u’*A (via GrB_vxm) is slower than w=A*u (via GrB_mxv). The opposite
is true if the matrix is stored by row.

170

SuiteSparse:GraphBLAS stores its matrices by row, by default (with one
exception described below). However, it can also be instructed to store any
selected matrices, or all matrices, by column instead (just like MATLAB),
so that w=A(:,j) (via GrB_Col_extract) is very fast. The change in data
format has no effect on the result, just the time and memory usage. To use
a column-oriented format by default, the following can be done in a user
application that tends to access its matrices by column.

GrB_init (...) ;

// just after GrB_init: do the following:

#ifdef GxB_SUITESPARSE_GRAPHBLAS

GxB_set (GxB_FORMAT, GxB_BY_COL) ;

#endif

If this is done, and no other GxB_set calls are made with GxB_FORMAT,
all matrices will be stored by column. The default format is GxB_BY_ROW.

All vectors (GrB_Vector) are held by column, and this cannot be changed.
By default, matrices of size m-by-1 are held by column, regardless of the

global setting described above. Matrices of size 1-by-n with n not equal to
1 are held by row, regardless of the global setting. The global setting only
affects matrices with both m > 1 and n > 1. Empty matrices (0-by-0) are
also controlled by the global setting.

After creating a matrix with GrB_Matrix_new (&A, ...), its format can
be changed arbitrarily with GxB_set (A, GxB_FORMAT, ...). So even an
m-by-1 matrix can then be changed to be held by row, for example. Likewise,
once a 1-by-n matrix is created, it can be converted to column-oriented
format.

8.3 Hypersparse matrices

MATLAB can store an m-by-n matrix with a very large value of m, since a
CSC data structure takes O(n + |A|) memory, independent of m, where |A|
is the number of nonzeros in the matrix. It cannot store a matrix with a
huge n, and this structure is also inefficient when |A| is much smaller than
n. In contrast, SuiteSparse:GraphBLAS can store its matrices in hypersparse
format, taking only O(|A|) memory, independent of how it is stored (by row
or by column) and independent of both m and n [BG08, BG12].

In both the CSR and CSC formats, the matrix is held as a set of sparse
vectors. In non-hypersparse format, the set of sparse vectors is itself dense; all

171

vectors are present, even if they are empty. For example, an m-by-n matrix in
non-hypersparse CSC format contains n sparse vectors. Each column vector
takes at least one integer to represent, even for a column with no entries. This
allows for quick lookup for a particular vector, but the memory required is
O(n+|A|). With a hypersparse CSC format, the set of vectors itself is sparse,
and columns with no entries take no memory at all. The drawback of the
hypersparse format is that finding an arbitrary column vector j, such as for
the computation C=A(:,j), takes O(log k) time if there k ≤ n vectors in the
data structure. One advantage of the hypersparse structure is the memory
required for an m-by-n hypersparse CSC matrix is only O(|A|), independent
of m and n. Algorithms that must visit all non-empty columns of a matrix are
much faster when working with hypersparse matrices, since empty columns
can be skipped.

The hyper_switch parameter controls the hypersparsity of the internal
data structure for a matrix. The parameter is typically in the range 0 to
1. The default is hyper_switch = GxB_HYPER_DEFAULT, which is an extern

const double value, currently set to 0.0625, or 1/16. This default ratio may
change in the future.

The hyper_switch determines how the matrix is converted between the
hypersparse and non-hypersparse formats. Let n be the number of columns
of a CSC matrix, or the number of rows of a CSR matrix. The matrix can
have at most n non-empty vectors.

Let k be the actual number of non-empty vectors. That is, for the CSC
format, k ≤ n is the number of columns that have at least one entry. Let h
be the value of hyper_switch.

If a matrix is currently hypersparse, it can be converted to non-hypersparse
if the either condition n ≤ 1 or k > 2nh holds, or both. Otherwise, it
stays hypersparse. Note that if n ≤ 1 the matrix is always stored as non-
hypersparse.

If currently non-hypersparse, it can be converted to hypersparse if both
conditions n > 1 and k ≤ nh hold. Otherwise, it stays non-hypersparse.
Note that if n ≤ 1 the matrix always remains non-hypersparse.

The default value of hyper_switch is assigned at startup by GrB_init,
and can then be modified globally with GxB_set. All new matrices are cre-
ated with the same hyper_switch, determined by the global value. Once
a particular matrix A has been constructed, its hypersparsity ratio can be
modified from the default with:

172

double hyper_switch = 0.2 ;

GxB_set (A, GxB_HYPER_SWITCH, hyper_switch) ;

To force a matrix to always be non-hypersparse, use hyper_switch equal
to GxB_NEVER_HYPER. To force a matrix to always stay hypersparse, set
hyper_switch to GxB_ALWAYS_HYPER.

A GrB_Matrix can thus be held in one of four formats: any combination of
hyper/non-hyper and CSR/CSC. All GrB_Vector objects are always stored
in non-hypersparse CSC format.

A new matrix created via GrB_Matrix_new starts with k = 0 and is cre-
ated in hypersparse form by default unless n ≤ 1 or if h < 0, where h is the
global hyper_switch value. The matrix is created in either GxB_BY_ROW or
GxB_BY_COL format, as determined by the last call to GxB_set(GxB_FORMAT,...)
or GrB_init.

A new matrix C created via GrB_dup (&C,A) inherits the CSR/CSC for-
mat, hypersparsity format, and hyper_switch from A.

8.4 Bitmap matrices

By default, SuiteSparse:GraphBLAS switches between all four formats (hy-
persparse, sparse, bitmap, and full) automatically. Let d = |A|/mn for an
m-by-n matrix A with |A| entries. If the matrix is currently in sparse or
hypersparse format, and is modified so that d exceeds a given threshold, it
is converted into bitmap format. The default threshold is controlled by the
GxB_BITMAP_SWITCH setting, which can be set globally, or for a particular
matrix or vector.

The default value of the switch to bitmap format depends on min(m,n),
for a matrix of size m-by-n. For the global setting, the bitmap switch is a
double array of size GxB_NBITMAP_SWITCH. The defaults are given below:

parameter default matrix sizes

bitmap_switch [0] 0.04 min(m,n) = 1 (and all vectors)
bitmap_switch [1] 0.05 min(m,n) = 2
bitmap_switch [2] 0.06 min(m,n) = 3 to 4
bitmap_switch [3] 0.08 min(m,n) = 5 to 8
bitmap_switch [4] 0.10 min(m,n) = 9 to 16
bitmap_switch [5] 0.20 min(m,n) = 17 to 32
bitmap_switch [6] 0.30 min(m,n) = 33 to 64
bitmap_switch [7] 0.40 min(m,n) > 64

173

That is, by default a GrB_Vector is held in bitmap format if its density
exceeds 4%. To change the global settings, do the following:

double bswitch [GxB_NBITMAP_SWITCH] = { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 } ;

GxB_set (GxB_BITMAP_SWITCH, bswitch) ;

If the matrix is currently in bitmap format, it is converted to full if all
entries are present, or to sparse/hypersparse if d drops below b/2, if its bitmap
switch is b. A matrix or vector with d between b/2 and b remains in its current
format.

8.5 Parameter types

The GxB_Option_Field enumerated type gives the type of the field pa-
rameter for the second argument of GxB_set and GxB_get, for setting global
options or matrix options.

typedef enum

{

// for matrix/vector get/set and global get/set:

GxB_HYPER_SWITCH = 0, // defines switch to hypersparse (double value)

GxB_BITMAP_SWITCH = 34, // defines switch to hypersparse (double value)

GxB_FORMAT = 1, // defines CSR/CSC format: GxB_BY_ROW or GxB_BY_COL

GxB_SPARSITY_CONTROL = 32, // control the sparsity of a matrix or vector

// for global get/set only:

GxB_GLOBAL_NTHREADS = GxB_NTHREADS, // max number of threads to use

GxB_GLOBAL_CHUNK = GxB_CHUNK, // chunk size for small problems

GxB_BURBLE = 99, // diagnositic output

GxB_PRINTF = 101, // printf function for diagnostic output

GxB_FLUSH = 102, // flush function for diagnostic output

GxB_MEMORY_POOL = 103, // memory pool control

GxB_PRINT_1BASED = 104, // print matrices as 0-based or 1-based

// for matrix/vector get only:

GxB_SPARSITY_STATUS = 33, // query the sparsity of a matrix or vector

// for global get only:

GxB_MODE = 2, // mode passed to GrB_init (blocking or non-blocking)

GxB_LIBRARY_NAME = 8, // name of the library (char *)

GxB_LIBRARY_VERSION = 9, // library version (3 int’s)

GxB_LIBRARY_DATE = 10, // date of the library (char *)

GxB_LIBRARY_ABOUT = 11, // about the library (char *)

174

GxB_LIBRARY_URL = 12, // URL for the library (char *)

GxB_LIBRARY_LICENSE = 13, // license of the library (char *)

GxB_LIBRARY_COMPILE_DATE = 14, // date library was compiled (char *)

GxB_LIBRARY_COMPILE_TIME = 15, // time library was compiled (char *)

GxB_LIBRARY_OPENMP = 25, // library compiled with OpenMP

GxB_API_VERSION = 16, // API version (3 int’s)

GxB_API_DATE = 17, // date of the API (char *)

GxB_API_ABOUT = 18, // about the API (char *)

GxB_API_URL = 19, // URL for the API (char *)

}

GxB_Option_Field ;

The GxB_FORMAT field can be by row or by column, set to a value with
the type GxB_Format_Value:

typedef enum

{

GxB_BY_ROW = 0, // CSR: compressed sparse row format

GxB_BY_COL = 1 // CSC: compressed sparse column format

}

GxB_Format_Value ;

The default format is given by the predefined value GxB_FORMAT_DEFAULT,
which is equal to GxB_BY_ROW. The default hypersparsity ratio is 0.0625
(1/16), but this value may change in the future.

Setting the GxB_HYPER_SWITCH field to GxB_ALWAYS_HYPER ensures a ma-
trix always stays hypersparse. If set to GxB_NEVER_HYPER, it always stays
non-hypersparse. At startup, GrB_init defines the following initial settings:

GxB_set (GxB_HYPER_SWITCH, GxB_HYPER_DEFAULT) ;

GxB_set (GxB_FORMAT, GxB_BY_ROW) ;

That is, by default, all new matrices are held by row in CSR format
(except for n-by-1 matrices; see GrB_Matrix_new). If a matrix has fewer
than n/16 columns, it can be converted to hypersparse format. If it has
more than n/8 columns, it can be converted to non-hypersparse format.
These options can be changed for all future matrices with GxB_set. For
example, to change all future matrices to be in non-hypersparse CSC when
created, use:

GxB_set (GxB_HYPER_SWITCH, GxB_NEVER_HYPER) ;

GxB_set (GxB_FORMAT, GxB_BY_COL) ;

175

Then if a particular matrix needs a different format, then (as an example):

GxB_set (A, GxB_HYPER_SWITCH, 0.1) ;

GxB_set (A, GxB_FORMAT, GxB_BY_ROW) ;

This changes the matrix A so that it is stored by row, and it is con-
verted from non-hypersparse to hypersparse format if it has fewer than 10%
non-empty columns. If it is hypersparse, it is a candidate for conversion
to non-hypersparse if has 20% or more non-empty columns. If it has be-
tween 10% and 20% non-empty columns, it remains in its current format.
MATLAB only supports a non-hypersparse CSC format. The format in
SuiteSparse:GraphBLAS that is equivalent to the MATLAB format is:

GrB_init (...) ;

GxB_set (GxB_HYPER_SWITCH, GxB_NEVER_HYPER) ;

GxB_set (GxB_FORMAT, GxB_BY_COL) ;

// no subsequent use of GxB_HYPER_SWITCH or GxB_FORMAT

The GxB_HYPER_SWITCH and GxB_FORMAT options should be considered as
suggestions from the user application as to how SuiteSparse:GraphBLAS can
obtain the best performance for a particular application. SuiteSparse:GraphBLAS
is free to ignore any of these suggestions, both now and in the future, and the
available options and formats may be augmented in the future. Any prior
options no longer needed in future versions of SuiteSparse:GraphBLAS will
be silently ignored, so the use these options is safe for future updates.

The sparsity status of a matrix can be queried with the following, which
returns a value of GxB_HYPERSPARSE GxB_SPARSE GxB_BITMAP or GxB_FULL.

int sparsity ;

GxB_get (A, GxB_SPARSITY_STATUS, &sparsity) ;

The sparsity format of a matrix can be controlled with GxB_set, which
can be any mix (a sum or bitwise or) of GxB_HYPERSPARSE GxB_SPARSE

GxB_BITMAP, and GxB_FULL. By default, a matrix or vector can be held in
any format, with the default setting GxB_AUTO_SPARSITY, which is equal
to GxB_HYPERSPARSE + GxB_SPARSE + GxB_BITMAP + GxB_FULL. To en-
able a matrix to take on just GxB_SPARSE or GxB_FULL formats, but not
GxB_HYPERSPARSE or GxB_BITMAP, for example, use the following:

GxB_set (A, GxB_SPARSITY_CONTROL, GxB_SPARSE + GxB_FULL) ;

176

In this case, SuiteSparse:GraphBLAS will hold the matrix in sparse for-
mat (CSC or CSC, depending on its GxB_FORMAT), unless all entries are present,
in which case it will be converted to full format.

Only the least 4 bits of the sparsity control are considered, so the formats
can be bitwise negated. For example, to allow for any format except full:

GxB_set (A, GxB_SPARSITY_CONTROL, ~GxB_FULL) ;

8.6 GxB BURBLE, GxB PRINTF, GxB FLUSH: diagnostics

GxB_set (GxB_BURBLE, ...) controls the burble setting. It can also be
controlled via GrB.burble(b) in the MATLAB/Octave interface.

GxB_set (GxB_BURBLE, true) ; // enable burble

GxB_set (GxB_BURBLE, false) ; // disable burble

If enabled, SuiteSparse:GraphBLAS reports which internal kernels it uses,
and how much time is spent. If you see the word generic, it means that
SuiteSparse:GraphBLAS was unable to use is faster kernels in Source/Generated2,
but used a generic kernel that relies on function pointers. This is done for
user-defined types and operators, and when typecasting is performed, and it
is typically slower than the kernels in Source/Generated2.

If you see a lot of wait statements, it may mean that a lot of time is
spent finishing a matrix or vector. This may be the result of an inefficient
use of the setElement and assign methods. If this occurs you might try
changing the sparsity format of a vector or matrix to GxB_BITMAP, assuming
there’s enough space for it.

GxB_set (GxB_PRINTF, printf) allows the user application to change
the function used to print diagnostic output. This also controls the output
of the GxB_*print functions. By default this parameter is NULL, in which
case the ANSI C11 printf function is used. The parameter is a function
pointer with the same signature as the ANSI C11 printf function. The
MATLAB/Octave interface to GraphBLAS uses the following so that Graph-
BLAS can print to the MATLAB/Octave Command Window:

GxB_set (GxB_PRINTF, mexPrintf)

After each call to the printf function, an optional flush function is
called, which is NULL by default. If NULL, the function is not used. This can

177

be changed with GxB_set (GxB_FLUSH, flush). The flush function takes
no arguments, and returns an int which is 0 if successful, or any nonzero
value on failure (the same output as the ANSI C11 fflush function, except
that flush has no inputs).

8.7 Other global options

GxB_MODE can only be queried by GxB_get; it cannot be modified by GxB_set.
The mode is the value passed to GrB_init (blocking or non-blocking).

All threads in the same user application share the same global options,
including hypersparsity, bitmap options, and CSR/CSC format determined
by GxB_set, and the blocking mode determined by GrB_init. Specific format
and hypersparsity parameters of each matrix are specific to that matrix and
can be independently changed.

The GxB_LIBRARY_* options can be used with GxB_get to query the cur-
rent implementation. For all of these, GxB_get returns a string (char *),
except for GxB_LIBRARY_VERSION, which takes as input an int array of size
three. The GxB_API_* options can be used with GxB_get to query the cur-
rent GraphBLAS C API Specification. For all of these, GxB_get returns a
string (char *), except for GxB_API_VERSION, which takes as input an int

array of size three.

8.8 GxB Global Option set: set a global option

GrB_Info GxB_set // set a global default option

(

const GxB_Option_Field field, // option to change

... // value to change it to

) ;

This usage of GxB_set sets the value of a global option. The field param-
eter can be GxB_HYPER_SWITCH, GxB_BITMAP_SWITCH, GxB_FORMAT, GxB_NTHREADS,
GxB_CHUNK, GxB_BURBLE, GxB_PRINTF, GxB_FLUSH, GxB_MEMORY_POOL, or GxB_PRINT_1BASED.

For example, the following usage sets the global hypersparsity ratio to
0.2, the format of future matrices to GxB_BY_COL, the maximum number of
threads to 4, the chunk size to 10000, and enables the burble. No existing
matrices are changed.

GxB_set (GxB_HYPER_SWITCH, 0.2) ;

178

GxB_set (GxB_FORMAT, GxB_BY_COL) ;

GxB_set (GxB_NTHREADS, 4) ;

GxB_set (GxB_CHUNK, (double) 10000) ;

GxB_set (GxB_BURBLE, true) ;

GxB_set (GxB_PRINTF, mexPrintf) ;

The memory pool parameter sets an upper bound on the number of freed
blocks of memory that SuiteSparse:GraphBLAS keeps in its internal memory
pool for future allocations. free_pool_limit is an int64_t array of size 64,
and free_pool_limit [k] is the upper bound on the number of blocks of
size 2k that are kept in the pool. Passing in a NULL pointer sets the defaults.
Passing in an array of size 64 whose entries are all zero disables the memory
pool entirely.

8.9 GxB Matrix Option set: set a matrix option

GrB_Info GxB_set // set an option in a matrix

(

GrB_Matrix A, // matrix to modify

const GxB_Option_Field field, // option to change

... // value to change it to

) ;

This usage of GxB_set sets the value of a matrix option, for a particular
matrix. The field parameter can be GxB_HYPER_SWITCH, GxB_BITMAP_SWITCH,
GxB_SPARSITY_CONTROL, or GxB_FORMAT.

For example, the following usage sets the hypersparsity ratio to 0.2, and
the format of GxB_BY_COL, for a particular matrix A, and sets the sparsity
control to GxB_SPARSE+GxB_FULL (allowing the matrix to be held in CSC
or FullC formats, but not BitmapC or HyperCSC). SuiteSparse:GraphBLAS
currently applies these changes immediately, but since they are simply hints,
future versions of SuiteSparse:GraphBLAS may delay the change in format
if it can obtain better performance.

If the setting is just GxB_FULL and some entries are missing, then the
matrix is held in bitmap format.

GxB_set (A, GxB_HYPER_SWITCH, 0.2) ;

GxB_set (A, GxB_FORMAT, GxB_BY_COL) ;

GxB_set (A, GxB_SPARSITY_CONTROL, GxB_SPARSE + GxB_FULL) ;

179

For performance, the matrix option should be set as soon as it is created
with GrB_Matrix_new, so the internal transformation takes less time.

If an error occurs, GrB_error(&err,A) returns details about the error.

8.10 GxB Desc set: set a GrB Descriptor value

GrB_Info GxB_set // set a parameter in a descriptor

(

GrB_Descriptor desc, // descriptor to modify

const GrB_Desc_Field field, // parameter to change

... // value to change it to

) ;

This usage is similar to GrB_Descriptor_set, just with a name that is
consistent with the other usages of this generic function. Unlike GrB_Descriptor_set,
the fieldmay also be GxB_NTHREADS, GxB_CHUNK, GxB_SORT, GxB_COMPRESSION,
or GxB_IMPORT. Refer to Sections 6.14.3 and 6.14.4 for details. If an error
occurs, GrB_error(&err,desc) returns details about the error.

180

8.11 GxB Global Option get: retrieve a global option

GrB_Info GxB_get // gets the current global default option

(

const GxB_Option_Field field, // option to query

... // return value of the global option

) ;

This usage of GxB_get retrieves the value of a global option. The field

parameter can be one of the following:

GxB_HYPER_SWITCH sparse/hyper setting
GxB_BITMAP_SWITCH bitmap/sparse setting
GxB_FORMAT by row/col setting
GxB_MODE blocking / non-blocking
GxB_NTHREADS default number of threads
GxB_CHUNK default chunk size
GxB_BURBLE burble setting
GxB_PRINTF printf function
GxB_FLUSH flush function
GxB_MEMORY_POOL memory pool control
GxB_PRINT_1BASED for printing matrices/vectors
GxB_LIBRARY_NAME the string "SuiteSparse:GraphBLAS"

GxB_LIBRARY_VERSION int array of size 3
GxB_LIBRARY_DATE date of release
GxB_LIBRARY_ABOUT author, copyright
GxB_LIBRARY_LICENSE license for the library
GxB_LIBRARY_COMPILE_DATE date of compilation
GxB_LIBRARY_COMPILE_TIME time of compilation
GxB_LIBRARY_OPENMP library compiled with OpenMP
GxB_LIBRARY_URL URL of the library
GxB_API_VERSION GraphBLAS C API Specification Version
GxB_API_DATE date of the C API Spec.
GxB_API_ABOUT about of the C API Spec.
GxB_API_URL URL of the specification

For example:

double h ;

GxB_get (GxB_HYPER_SWITCH, &h) ;

printf ("hyper_switch = %g for all new matrices\n", h) ;

double b [GxB_BITMAP_SWITCH] ;

GxB_get (GxB_BITMAP_SWITCH, b) ;

for (int k = 0 ; k < GxB_NBITMAP_SWITCH ; k++)

181

{

printf ("bitmap_switch [%d] = %g ", k, b [k]) ;

if (k == 0)

{

printf ("for vectors and matrices with 1 row or column\n") ;

}

else if (k == GxB_NBITMAP_SWITCH - 1)

{

printf ("for matrices with min dimension > %d\n", 1 << (k-1)) ;

}

else

{

printf ("for matrices with min dimension %d to %d\n",

(1 << (k-1)) + 1, 1 << k) ;

}

}

GxB_Format_Value s ;

GxB_get (GxB_FORMAT, &s) ;

if (s == GxB_BY_COL) printf ("all new matrices are stored by column\n") ;

else printf ("all new matrices are stored by row\n") ;

GrB_mode mode ;

GxB_get (GxB_MODE, &mode) ;

if (mode == GrB_BLOCKING) printf ("GrB_init(GrB_BLOCKING) was called.\n") ;

else printf ("GrB_init(GrB_NONBLOCKING) was called.\n") ;

int nthreads_max ;

GxB_get (GxB_NTHREADS, &nthreads_max) ;

printf ("max # of threads to use: %d\n", nthreads_max) ;

double chunk ;

GxB_get (GxB_CHUNK, &chunk) ;

printf ("chunk size: %g\n", chunk) ;

int64_t free_pool_limit [64] ;

GxB_get (GxB_MEMORY_POOL, free_pool_limit) ;

for (int k = 0 ; k < 64 ; k++)

printf ("pool %d: limit %ld\n", free_pool_limit [k]) ;

char *name ;

int ver [3] ;

GxB_get (GxB_LIBRARY_NAME, &name) ;

GxB_get (GxB_LIBRARY_VERSION, ver) ;

printf ("Library %s, version %d.%d.%d\n", name, ver [0], ver [1], ver [2]) ;

182

8.12 GxB Matrix Option get: retrieve a matrix option

GrB_Info GxB_get // gets the current option of a matrix

(

GrB_Matrix A, // matrix to query

GxB_Option_Field field, // option to query

... // return value of the matrix option

) ;

This usage of GxB_get retrieves the value of a matrix option. The field
parameter can be GxB_HYPER_SWITCH, GxB_BITMAP_SWITCH, GxB_SPARSITY_CONTROL,
GxB_SPARSITY_STATUS, or GxB_FORMAT. For example:

double h, b ;

int sparsity, scontrol ;

GxB_get (A, GxB_SPARSITY_STATUS, &sparsity) ;

GxB_get (A, GxB_HYPER_SWITCH, &h) ;

printf ("matrix A has hyper_switch = %g\n", h) ;

GxB_get (A, GxB_BITMAP_SWITCH, &b) ;

printf ("matrix A has bitmap_switch = %g\n", b) ;

switch (sparsity)

{

case GxB_HYPERSPARSE: printf ("matrix A is hypersparse\n") ; break ;

case GxB_SPARSE: printf ("matrix A is sparse\n") ; break ;

case GxB_BITMAP: printf ("matrix A is bitmap\n") ; break ;

case GxB_FULL: printf ("matrix A is full\n") ; break ;

}

GxB_Format_Value s ;

GxB_get (A, GxB_FORMAT, &s) ;

printf ("matrix A is stored by %s\n", (s == GxB_BY_COL) ? "col" : "row") ;

GxB_get (A, GxB_SPARSITY_CONTROL, &scontrol) ;

if (scontrol & GxB_HYPERSPARSE) printf ("A may become hypersparse\n") ;

if (scontrol & GxB_SPARSE) printf ("A may become sparse\n") ;

if (scontrol & GxB_BITMAP) printf ("A may become bitmap\n") ;

if (scontrol & GxB_FULL) printf ("A may become full\n") ;

183

8.13 GxB Desc get: retrieve a GrB Descriptor value

GrB_Info GxB_get // get a parameter from a descriptor

(

GrB_Descriptor desc, // descriptor to query; NULL means defaults

GrB_Desc_Field field, // parameter to query

... // value of the parameter

) ;

This usage is the same as GxB_Desc_get. The field parameter can be
GrB_OUTP, GrB_MASK, GrB_INP0, GrB_INP1, GxB_AxB_METHOD, GxB_NTHREADS,
GxB_CHUNK, GxB_SORT, GxB_COMPRESSION, or GxB_IMPORT. Refer to Section 6.14.5
for details.

8.14 Summary of usage of GxB set and GxB get

The different usages of GxB_set and GxB_get are summarized below.
To set/get the global options:

GxB_set (GxB_HYPER_SWITCH, double h) ;

GxB_set (GxB_HYPER_SWITCH, GxB_ALWAYS_HYPER) ;

GxB_set (GxB_HYPER_SWITCH, GxB_NEVER_HYPER) ;

GxB_get (GxB_HYPER_SWITCH, double *h) ;

double b [GxB_NBITMAP_SWITCH] ;

GxB_set (GxB_BITMAP_SWITCH, b) ;

GxB_set (GxB_BITMAP_SWITCH, NULL) ; // set defaults

GxB_get (GxB_BITMAP_SWITCH, b) ;

GxB_set (GxB_FORMAT, GxB_BY_ROW) ;

GxB_set (GxB_FORMAT, GxB_BY_COL) ;

GxB_get (GxB_FORMAT, GxB_Format_Value *s) ;

GxB_set (GxB_NTHREADS, int nthreads_max) ;

GxB_get (GxB_NTHREADS, int *nthreads_max) ;

GxB_set (GxB_CHUNK, double chunk) ;

GxB_get (GxB_CHUNK, double *chunk) ;

GxB_set (GxB_BURBLE, bool burble) ;

GxB_get (GxB_BURBLE, bool *burble) ;

GxB_set (GxB_PRINTF, void *printf_function) ;

GxB_get (GxB_PRINTF, void **printf_function) ;

GxB_set (GxB_FLUSH, void *flush_function) ;

GxB_get (GxB_FLUSH, void **flush_function) ;

int64_t free_pool_limit [64] ;

GxB_set (GxB_MEMORY_POOL, free_pool_limit) ;

GxB_set (GxB_MEMORY_POOL, NULL) ; // set defaults

GxB_get (GxB_MEMORY_POOL, free_pool_limit) ;

184

GxB_set (GxB_PRINT_1BASED, bool onebased) ;

GxB_get (GxB_PRINT_1BASED, bool *onebased) ;

To get global options that can be queried but not modified:

GxB_get (GxB_MODE, GrB_Mode *mode) ;

GxB_get (GxB_LIBRARY_NAME, char **) ;

GxB_get (GxB_LIBRARY_VERSION, int *) ;

GxB_get (GxB_LIBRARY_DATE, char **) ;

GxB_get (GxB_LIBRARY_ABOUT, char **) ;

GxB_get (GxB_LIBRARY_LICENSE, char **) ;

GxB_get (GxB_LIBRARY_COMPILE_DATE, char **) ;

GxB_get (GxB_LIBRARY_COMPILE_TIME, char **) ;

GxB_get (GxB_LIBRARY_OPENMP, bool *) ;

GxB_get (GxB_LIBRARY_URL, char **) ;

GxB_get (GxB_API_VERSION, int *) ;

GxB_get (GxB_API_DATE, char **) ;

GxB_get (GxB_API_ABOUT, char **) ;

GxB_get (GxB_API_URL, char **) ;

To set/get a matrix option or status

GxB_set (GrB_Matrix A, GxB_HYPER_SWITCH, double h) ;

GxB_set (GrB_Matrix A, GxB_HYPER_SWITCH, GxB_ALWAYS_HYPER) ;

GxB_set (GrB_Matrix A, GxB_HYPER_SWITCH, GxB_NEVER_HYPER) ;

GxB_get (GrB_Matrix A, GxB_HYPER_SWITCH, double *h) ;

GxB_set (GrB_Matrix A, GxB_BITMAP_SWITCH, double b) ;

GxB_get (GrB_Matrix A, GxB_BITMAP_SWITCH, double *b) ;

GxB_set (GrB_Matrix A, GxB_FORMAT, GxB_BY_ROW) ;

GxB_set (GrB_Matrix A, GxB_FORMAT, GxB_BY_COL) ;

GxB_get (GrB_Matrix A, GxB_FORMAT, GxB_Format_Value *s) ;

GxB_set (GrB_Matrix A, GxB_SPARSITY_CONTROL, GxB_AUTO_SPARSITY) ;

GxB_set (GrB_Matrix A, GxB_SPARSITY_CONTROL, scontrol) ;

GxB_get (GrB_Matrix A, GxB_SPARSITY_CONTROL, int *scontrol) ;

GxB_get (GrB_Matrix A, GxB_SPARSITY_STATUS, int *sparsity) ;

To set/get a vector option or status:

GxB_set (GrB_Vector v, GxB_BITMAP_SWITCH, double b) ;

GxB_get (GrB_Vector v, GxB_BITMAP_SWITCH, double *b) ;

GxB_set (GrB_Vector v, GxB_FORMAT, GxB_BY_ROW) ;

GxB_set (GrB_Vector v, GxB_FORMAT, GxB_BY_COL) ;

GxB_get (GrB_Vector v, GxB_FORMAT, GxB_Format_Value *s) ;

GxB_set (GrB_Vector v, GxB_SPARSITY_CONTROL, GxB_AUTO_SPARSITY) ;

GxB_set (GrB_Vector v, GxB_SPARSITY_CONTROL, scontrol) ;

GxB_get (GrB_Vector v, GxB_SPARSITY_CONTROL, int *scontrol) ;

GxB_get (GrB_Vector v, GxB_SPARSITY_STATUS, int *sparsity) ;

185

To set/get a descriptor field:

GxB_set (GrB_Descriptor d, GrB_OUTP, GxB_DEFAULT) ;

GxB_set (GrB_Descriptor d, GrB_OUTP, GrB_REPLACE) ;

GxB_get (GrB_Descriptor d, GrB_OUTP, GrB_Desc_Value *v) ;

GxB_set (GrB_Descriptor d, GrB_MASK, GxB_DEFAULT) ;

GxB_set (GrB_Descriptor d, GrB_MASK, GrB_COMP) ;

GxB_set (GrB_Descriptor d, GrB_MASK, GrB_STRUCTURE) ;

GxB_set (GrB_Descriptor d, GrB_MASK, GrB_COMP+GrB_STRUCTURE) ;

GxB_get (GrB_Descriptor d, GrB_MASK, GrB_Desc_Value *v) ;

GxB_set (GrB_Descriptor d, GrB_INP0, GxB_DEFAULT) ;

GxB_set (GrB_Descriptor d, GrB_INP0, GrB_TRAN) ;

GxB_get (GrB_Descriptor d, GrB_INP0, GrB_Desc_Value *v) ;

GxB_set (GrB_Descriptor d, GrB_INP1, GxB_DEFAULT) ;

GxB_set (GrB_Descriptor d, GrB_INP1, GrB_TRAN) ;

GxB_get (GrB_Descriptor d, GrB_INP1, GrB_Desc_Value *v) ;

GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_DEFAULT) ;

GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_GUSTAVSON) ;

GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_HASH) ;

GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_SAXPY) ;

GxB_set (GrB_Descriptor d, GxB_AxB_METHOD, GxB_AxB_DOT) ;

GxB_get (GrB_Descriptor d, GrB_AxB_METHOD, GrB_Desc_Value *v) ;

GxB_set (GrB_Descriptor d, GxB_NTHREADS, int nthreads) ;

GxB_get (GrB_Descriptor d, GxB_NTHREADS, int *nthreads) ;

GxB_set (GrB_Descriptor d, GxB_CHUNK, double chunk) ;

GxB_get (GrB_Descriptor d, GxB_CHUNK, double *chunk) ;

GxB_set (GrB_Descriptor d, GxB_SORT, sort) ;

GxB_get (GrB_Descriptor d, GxB_SORT, int *sort) ;

GxB_set (GrB_Descriptor d, GxB_COMPRESSION, GxB_FAST_IMPORT) ;

GxB_set (GrB_Descriptor d, GxB_COMPRESSION, GxB_SECURE_IMPORT) ;

GxB_get (GrB_Descriptor d, GxB_COMPRESSION, GrB_Desc_Value *method) ;

GxB_set (GrB_Descriptor d, GxB_IMPORT, int method) ;

GxB_get (GrB_Descriptor d, GxB_IMPORT, int *method) ;

186

9 SuiteSparse:GraphBLAS Colon and Index

Notation

MATLAB/Octave uses a colon notation to index into matrices, such as
C=A(2:4,3:8), which extracts C as 3-by-6 submatrix from A, from rows 2
through 4 and columns 3 to 8 of the matrix A. A single colon is used to
denote all rows, C=A(:,9), or all columns, C=A(12,:), which refers to the
9th column and 12th row of A, respectively. An arbitrary integer list can be
given as well, such as the MATLAB/Octave statements:

I = [2 1 4] ;

J = [3 5] ;

C = A (I,J) ;

which creates the 3-by-2 matrix C as follows:

C =

 a2,3 a2,5
a1,3 a1,5
a4,3 a4,5

The GraphBLAS API can do the equivalent of C=A(I,J), C=A(:,J),

C=A(I,:), and C=A(:,:), by passing a parameter const GrB_Index *I as
either an array of size ni, or as the special value GrB_ALL, which corresponds
to the stand-alone colon C=A(:,J), and the same can be done for J.. To
compute C=A(2:4,3:8) in GraphBLAS requires the user application to cre-
ate two explicit integer arrays I and J of size 3 and 5, respectively, and then
fill them with the explicit values [2,3,4] and [3,4,5,6,7,8]. This works
well if the lists are small, or if the matrix has more entries than rows or
columns.

However, particularly with hypersparse matrices, the size of the explicit
arrays I and J can vastly exceed the number of entries in the matrix. When
using its hypersparse format, SuiteSparse:GraphBLAS allows the user appli-
cation to create a GrB_Matrix with dimensions up to 260, with no memory
constraints. The only constraint on memory usage in a hypersparse matrix
is the number of entries in the matrix.

For example, creating a n-by-n matrix A of type GrB_FP64 with n = 260

and one million entries is trivial to do in Version 2.1 (and later) of Suite-
Sparse:GraphBLAS, taking at most 24MB of space. SuiteSparse:GraphBLAS

187

Version 2.1 (or later) could do this on an old smartphone. However, us-
ing just the pure GraphBLAS API, constructing C=A(0:(n/2),0:(n/2)) in
SuiteSparse Version 2.0 would require the creation of an integer array I of
size 259, containing the sequence 0, 1, 2, 3,, requiring about 4 ExaBytes
of memory (4 million terabytes). This is roughly 1000 times larger than the
memory size of the world’s largest computer in 2018.

SuiteSparse:GraphBLAS Version 2.1 and later extends the GraphBLAS
API with a full implementation of the MATLAB colon notation for inte-
gers, I=begin:inc:end. This extension allows the construction of the ma-
trix C=A(0:(n/2),0:(n/2)) in this example, with dimension 259, probably
taking just milliseconds on an old smartphone.

The GrB_extract, GrB_assign, and GxB_subassign operations (described
in the Section 10) each have parameters that define a list of integer indices,
using two parameters:

const GrB_Index *I ; // an array, or a special value GrB_ALL

GrB_Index ni ; // the size of I, or a special value

These two parameters define five kinds of index lists, which can be used
to specify either an explicit or implicit list of row indices and/or column
indices. The length of the list of indices is denoted |I|. This discussion
applies equally to the row indices I and the column indices J. The five kinds
are listed below.

1. An explicit list of indices, such as I = [2 1 4 7 2] in MATLAB no-
tation, is handled by passing in I as a pointer to an array of size
5, and passing ni=5 as the size of the list. The length of the ex-
plicit list is ni=|I|. Duplicates may appear, except that for some
uses of GrB_assign and GxB_subassign, duplicates lead to undefined
behavior according to the GraphBLAS C API Specification. Suite-
Sparse:GraphBLAS specifies how duplicates are handled in all cases,
as an addition to the specification. See Section 10.10 for details.

2. To specify all rows of a matrix, use I = GrB_ALL. The parameter ni is
ignored. This is equivalent to C=A(:,J) in MATLAB. In GraphBLAS,
this is the sequence 0:(m-1) if A has m rows, with length |I|=m. If J
is used the columns of an m-by-n matrix, then J=GrB_ALL refers to all
columns, and is the sequence 0:(n-1), of length |J|=n.

188

SPEC: If I or J are GrB_ALL, the specification requires that ni

be passed in as m (the number of rows) and nj be passed in as
n. Any other value is an error. SuiteSparse:GraphBLAS ignores
these scalar inputs and treats them as if they are equal to their
only possible correct value.

3. To specify a contiguous range of indices, such as I=10:20 in MATLAB,
the array I has size 2, and ni is passed to SuiteSparse:GraphBLAS as
the special value ni = GxB_RANGE. The beginning index is I[GxB_BEGIN]
and the ending index is I[GxB_END]. Both values must be non-negative
since GrB_Index is an unsigned integer (uint64_t). The value of
I[GxB_INC] is ignored.

// to specify I = 10:20

GrB_Index I [2], ni = GxB_RANGE ;

I [GxB_BEGIN] = 10 ; // the start of the sequence

I [GxB_END] = 20 ; // the end of the sequence

Let b = I[GxB_BEGIN], let e = I[GxB_END], The sequence has length
zero if b > e; otherwise the length is |I| = (e− b) + 1.

4. To specify a strided range of indices with a non-negative stride, such
as I=3:2:10, the array I has size 3, and ni has the special value
GxB_STRIDE. This is the sequence 3, 5, 7, 9, of length 4. Note that
10 does not appear in the list. The end point need not appear if the
increment goes past it.

// to specify I = 3:2:10

GrB_Index I [3], ni = GxB_STRIDE ;

I [GxB_BEGIN] = 3 ; // the start of the sequence

I [GxB_INC] = 2 ; // the increment

I [GxB_END] = 10 ; // the end of the sequence

The GxB_STRIDE sequence is the same as the List generated by the
following for loop:

int64_t k = 0 ;

GrB_Index *List = (a pointer to an array of large enough size)

for (int64_t i = I [GxB_BEGIN] ; i <= I [GxB_END] ; i += I [GxB_INC])

{

// i is the kth entry in the sequence

List [k++] = i ;

}

189

Then passing the explicit array List and its length ni=k has the same
effect as passing in the array I of size 3, with ni=GxB_STRIDE. The
latter is simply much faster to produce, and much more efficient for
SuiteSparse:GraphBLAS to process.

Let b = I[GxB_BEGIN], let e = I[GxB_END], and let ∆ = I[GxB_INC].
The sequence has length zero if b > e or ∆ = 0. Otherwise, the length
of the sequence is

|I| =
⌊e− b

∆

⌋
+ 1

5. In MATLAB notation, if the stride is negative, the sequence is decreas-
ing. For example, 10:-2:1 is the sequence 10, 8, 6, 4, 2, in that order.
In SuiteSparse:GraphBLAS, use ni = GxB_BACKWARDS, with an array
I of size 3. The following example specifies defines the equivalent of
the MATLAB expression 10:-2:1 in SuiteSparse:GraphBLAS:

// to specify I = 10:-2:1

GrB_Index I [3], ni = GxB_BACKWARDS ;

I [GxB_BEGIN] = 10 ; // the start of the sequence

I [GxB_INC] = 2 ; // the magnitude of the increment

I [GxB_END] = 1 ; // the end of the sequence

The value -2 cannot be assigned to the GrB_Index array I, since that
is an unsigned type. The signed increment is represented instead with
the special value ni = GxB_BACKWARDS. The GxB_BACKWARDS sequence
is the same as generated by the following for loop:

int64_t k = 0 ;

GrB_Index *List = (a pointer to an array of large enough size)

for (int64_t i = I [GxB_BEGIN] ; i >= I [GxB_END] ; i -= I [GxB_INC])

{

// i is the kth entry in the sequence

List [k++] = i ;

}

Let b = I[GxB_BEGIN], let e = I[GxB_END], and let ∆ = I[GxB_INC]

(note that ∆ is not negative). The sequence has length zero if b < e or
∆ = 0. Otherwise, the length of the sequence is

|I| =
⌊b− e

∆

⌋
+ 1

190

Since GrB_Index is an unsigned integer, all three values I[GxB_BEGIN],
I[GxB_INC], and I[GxB_END] must be non-negative.

Just as in MATLAB, it is valid to specify an empty sequence of length
zero. For example, I = 5:3 has length zero in MATLAB and the same is true
for a GxB_RANGE sequence in SuiteSparse:GraphBLAS, with I[GxB_BEGIN]=5

and I[GxB_END]=3. This has the same effect as array I with ni=0.

191

10 GraphBLAS Operations

The next sections define each of the GraphBLAS operations, also listed in
the table below.

GrB_mxm matrix-matrix multiply C⟨M⟩ = C⊙AB
GrB_vxm vector-matrix multiply wT⟨mT⟩ = wT ⊙ uTA
GrB_mxv matrix-vector multiply w⟨m⟩ = w ⊙Au

GrB_eWiseMult element-wise, C⟨M⟩ = C⊙ (A⊗B)
set intersection w⟨m⟩ = w ⊙ (u⊗ v)

GrB_eWiseAdd element-wise, C⟨M⟩ = C⊙ (A⊕B)
set union w⟨m⟩ = w ⊙ (u⊕ v)

GxB_eWiseUnion element-wise, C⟨M⟩ = C⊙ (A⊕B)
set union w⟨m⟩ = w ⊙ (u⊕ v)

GrB_extract extract submatrix C⟨M⟩ = C⊙A(I,J)
w⟨m⟩ = w ⊙ u(i)

GxB_subassign assign submatrix, C(I,J)⟨M⟩ = C(I,J)⊙A
with submask for C(I,J) w(i)⟨m⟩ = w(i)⊙ u

GrB_assign assign submatrix C⟨M⟩(I,J) = C(I,J)⊙A
with submask for C w⟨m⟩(i) = w(i)⊙ u

GrB_apply apply unary operator C⟨M⟩ = C⊙f(A)
w⟨m⟩ = w⊙f(u)

apply binary operator C⟨M⟩ = C⊙f(x,A)
C⟨M⟩ = C⊙f(A, y)
w⟨m⟩ = w⊙f(x,x)
w⟨m⟩ = w⊙f(u, y)

apply index-unary op C⟨M⟩ = C⊙f(A, i, j, k)
w⟨m⟩ = w⊙f(u, i, 0, k)

GrB_select select entries C⟨M⟩ = C⊙select(A, i, j, k)
w⟨m⟩ = w⊙select(u, i, 0, k)

GrB_reduce reduce to vector w⟨m⟩ = w⊙[⊕jA(:, j)]
reduce to scalar s = s⊙ [⊕ijA(I, J)]

GrB_transpose transpose C⟨M⟩ = C⊙AT

GrB_kronecker Kronecker product C⟨M⟩ = C⊙ kron(A,B)

If an error occurs, GrB_error(&err,C) or GrB_error(&err,w) returns
details about the error, for operations that return a modified matrix C or
vector w. The only operation that cannot return an error string is reduction
to a scalar with GrB_reduce.

192

10.1 GrB mxm: matrix-matrix multiply

GrB_Info GrB_mxm // C<Mask> = accum (C, A*B)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_Semiring semiring, // defines ’+’ and ’*’ for A*B

const GrB_Matrix A, // first input: matrix A

const GrB_Matrix B, // second input: matrix B

const GrB_Descriptor desc // descriptor for C, Mask, A, and B

) ;

GrB_mxm multiplies two sparse matrices A and B using the semiring. The
input matrices A and B may be transposed according to the descriptor, desc
(which may be NULL) and then typecasted to match the multiply operator of
the semiring. Next, T=A*B is computed on the semiring, precisely defined in
the GB_spec_mxm.m script in GraphBLAS/Test. The actual algorithm exploits
sparsity and does not take O(n3) time, but it computes the following:

[m s] = size (A.matrix) ;

[s n] = size (B.matrix) ;

T.matrix = zeros (m, n, multiply.ztype) ;

T.pattern = zeros (m, n, ’logical’) ;

T.matrix (:,:) = identity ; % the identity of the semiring’s monoid

T.class = multiply.ztype ; % the ztype of the semiring’s multiply op

A = cast (A.matrix, multiply.xtype) ; % the xtype of the semiring’s multiply op

B = cast (B.matrix, multiply.ytype) ; % the ytype of the semiring’s multiply op

for j = 1:n

for i = 1:m

for k = 1:s

% T (i,j) += A (i,k) * B (k,j), using the semiring

if (A.pattern (i,k) && B.pattern (k,j))

z = multiply (A (i,k), B (k,j)) ;

T.matrix (i,j) = add (T.matrix (i,j), z) ;

T.pattern (i,j) = true ;

end

end

end

end

Finally, T is typecasted into the type of C, and the results are written back
into C via the accum and Mask, C⟨M⟩ = C⊙T. The latter step is reflected
in the MATLAB function GB_spec_accum_mask.m, discussed in Section 2.3.

193

Performance considerations: Suppose all matrices are in GxB_BY_COL

format, and B is extremely sparse but A is not as sparse. Then computing
C=A*B is very fast, and much faster than when A is extremely sparse. For
example, if A is square and B is a column vector that is all nonzero except for
one entry B(j,0)=1, then C=A*B is the same as extracting column A(:,j).
This is very fast if A is stored by column but slow if A is stored by row. If
A is a sparse row with a single entry A(0,i)=1, then C=A*B is the same as
extracting row B(i,:). This is fast if B is stored by row but slow if B is
stored by column.

If the user application needs to repeatedly extract rows and columns from
a matrix, whether by matrix multiplication or by GrB_extract, then keep
two copies: one stored by row, and other by column, and use the copy that
results in the fastest computation.

By default, GrB_mxm, GrB_mxv, GrB_vxm, and GrB_reduce (to vector) can
return their result in a jumbled state, with the sort left pending. It can
sometimes be faster for these methods to do the sort as they compute their
result. Use the GxB_SORT descriptor setting to select this option. Refer to
Section 6.14 for details.

194

10.2 GrB vxm: vector-matrix multiply

GrB_Info GrB_vxm // w’<mask> = accum (w, u’*A)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Semiring semiring, // defines ’+’ and ’*’ for u’*A

const GrB_Vector u, // first input: vector u

const GrB_Matrix A, // second input: matrix A

const GrB_Descriptor desc // descriptor for w, mask, and A

) ;

GrB_vxm multiplies a row vector u’ times a matrix A. The matrix A may
be first transposed according to desc (as the second input, GrB_INP1); the
column vector u is never transposed via the descriptor. The inputs u and
A are typecasted to match the xtype and ytype inputs, respectively, of the
multiply operator of the semiring. Next, an intermediate column vector
t=A’*u is computed on the semiring using the same method as GrB_mxm.
Finally, the column vector t is typecasted from the ztype of the multiply
operator of the semiring into the type of w, and the results are written back
into w using the optional accumulator accum and mask.

The last step is w⟨m⟩ = w ⊙ t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.

Performance considerations: If the GxB_FORMAT of A is GxB_BY_ROW,
and the default descriptor is used (A is not transposed), then GrB_vxm is
faster than than GrB_mxv with its default descriptor, when the vector u is
very sparse. However, if the GxB_FORMAT of A is GxB_BY_COL, then GrB_mxv

with its default descriptor is faster than GrB_vxm with its default descriptor,
when the vector u is very sparse. Using the non-default GrB_TRAN descriptor
for A makes the GrB_vxm operation equivalent to GrB_mxv with its default
descriptor (with the operands reversed in the multiplier, as well). The reverse
is true as well; GrB_mxv with GrB_TRAN is the same as GrB_vxm with a default
descriptor.

195

10.3 GrB mxv: matrix-vector multiply

GrB_Info GrB_mxv // w<mask> = accum (w, A*u)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Semiring semiring, // defines ’+’ and ’*’ for A*B

const GrB_Matrix A, // first input: matrix A

const GrB_Vector u, // second input: vector u

const GrB_Descriptor desc // descriptor for w, mask, and A

) ;

GrB_mxvmultiplies a matrix A times a column vector u. The matrix Amay
be first transposed according to desc (as the first input); the column vector
u is never transposed via the descriptor. The inputs A and u are typecasted
to match the xtype and ytype inputs, respectively, of the multiply operator
of the semiring. Next, an intermediate column vector t=A*u is computed on
the semiring using the same method as GrB_mxm. Finally, the column vector
t is typecasted from the ztype of the multiply operator of the semiring into
the type of w, and the results are written back into w using the optional
accumulator accum and mask.

The last step is w⟨m⟩ = w ⊙ t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.

Performance considerations: Refer to the discussion of GrB_vxm. In
SuiteSparse:GraphBLAS, GrB_mxv is very efficient when u is sparse or dense,
when the default descriptor is used, and when the matrix is GxB_BY_COL.
When u is very sparse and GrB_INP0 is set to its non-default GrB_TRAN, then
this method is not efficient if the matrix is in GxB_BY_COL format. If an
application needs to perform A’*u repeatedly where u is very sparse, then
use the GxB_BY_ROW format for A instead.

196

10.4 GrB eWiseMult: element-wise operations, set inter-
section

Element-wise “multiplication” is shorthand for applying a binary operator
element-wise on two matrices or vectors A and B, for all entries that appear in
the set intersection of the patterns of A and B. This is like A.*B for two sparse
matrices in MATLAB, except that in GraphBLAS any binary operator can
be used, not just multiplication.

The pattern of the result of the element-wise “multiplication” is exactly
this set intersection. Entries in A but not B, or visa versa, do not appear in
the result.

Let⊗ denote the binary operator to be used. The computationT = A⊗B
is given below. Entries not in the intersection of A and B do not appear in
the pattern of T. That is:

for all entries (i, j) in A ∩B
tij = aij ⊗ bij

Depending on what kind of operator is used and what the implicit value
is assumed to be, this can give the Hadamard product. This is the case for
A.*B in MATLAB since the implicit value is zero. However, computing a
Hadamard product is not necessarily the goal of the eWiseMult operation.
It simply applies any binary operator, built-in or user-defined, to the set
intersection of A and B, and discards any entry outside this intersection.
Its usefulness in a user’s application does not depend upon it computing
a Hadamard product in all cases. The operator need not be associative,
commutative, nor have any particular property except for type compatibility
with A and B, and the output matrix C.

The generic name for this operation is GrB_eWiseMult, which can be used
for both matrices and vectors.

197

10.4.1 GrB Vector eWiseMult: element-wise vector multiply

GrB_Info GrB_eWiseMult // w<mask> = accum (w, u.*v)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const <operator> multiply, // defines ’.*’ for t=u.*v

const GrB_Vector u, // first input: vector u

const GrB_Vector v, // second input: vector v

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_eWiseMult computes the element-wise “multiplication” of
two vectors u and v, element-wise using any binary operator (not just times).
The vectors are not transposed via the descriptor. The vectors u and v are
first typecasted into the first and second inputs of the multiply operator.
Next, a column vector t is computed, denoted t = u⊗ v. The pattern of t
is the set intersection of u and v. The result t has the type of the output
ztype of the multiply operator.

The operator is typically a GrB_BinaryOp, but the method is type-
generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the multiply binary operator. If given a
semiring (GrB_Semiring), the multiply operator of the semiring is used as
the multiply binary operator.

The next and final step is w⟨m⟩ = w ⊙ t, as described in Section 2.3,
except that all the terms are column vectors instead of matrices. Note for all
GraphBLAS operations, including this one, the accumulator w ⊙ t is always
applied in a set union manner, even though t = u⊗ v for this operation is
applied in a set intersection manner.

198

10.4.2 GrB Matrix eWiseMult: element-wise matrix multiply

GrB_Info GrB_eWiseMult // C<Mask> = accum (C, A.*B)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const <operator> multiply, // defines ’.*’ for T=A.*B

const GrB_Matrix A, // first input: matrix A

const GrB_Matrix B, // second input: matrix B

const GrB_Descriptor desc // descriptor for C, Mask, A, and B

) ;

GrB_Matrix_eWiseMult computes the element-wise “multiplication” of
two matrices A and B, element-wise using any binary operator (not just times).
The input matrices may be transposed first, according to the descriptor desc.
They are then typecasted into the first and second inputs of the multiply

operator. Next, a matrix T is computed, denoted T = A⊗B. The pattern
of T is the set intersection of A and B. The result T has the type of the output
ztype of the multiply operator.

The multiply operator is typically a GrB_BinaryOp, but the method is
type-generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the multiply binary operator. If given a
semiring (GrB_Semiring), the multiply operator of the semiring is used as
the multiply binary operator.

The operation can be expressed in MATLAB notation as:

[nrows, ncols] = size (A.matrix) ;

T.matrix = zeros (nrows, ncols, multiply.ztype) ;

T.class = multiply.ztype ;

p = A.pattern & B.pattern ;

A = cast (A.matrix (p), multiply.xtype) ;

B = cast (B.matrix (p), multiply.ytype) ;

T.matrix (p) = multiply (A, B) ;

T.pattern = p ;

The final step is C⟨M⟩ = C⊙T, as described in Section 2.3. Note for all
GraphBLAS operations, including this one, the accumulator C⊙T is always
applied in a set union manner, even though T = A⊗B for this operation is
applied in a set intersection manner.

199

10.5 GrB eWiseAdd: element-wise operations, set union

Element-wise “addition” is shorthand for applying a binary operator element-
wise on two matrices or vectors A and B, for all entries that appear in the
set intersection of the patterns of A and B. This is like A+B for two sparse
matrices in MATLAB, except that in GraphBLAS any binary operator can
be used, not just addition. The pattern of the result of the element-wise
“addition” is the set union of the pattern of A and B. Entries in neither in A

nor in B do not appear in the result.
Let⊕ denote the binary operator to be used. The computationT = A⊕B

is exactly the same as the computation with accumulator operator as de-
scribed in Section 2.3. It acts like a sparse matrix addition, except that any
operator can be used. The pattern of A⊕B is the set union of the patterns
of A and B, and the operator is applied only on the set intersection of A and
B. Entries not in either the pattern of A or B do not appear in the pattern
of T. That is:

for all entries (i, j) in A ∩B
tij = aij ⊕ bij

for all entries (i, j) in A \B
tij = aij

for all entries (i, j) in B \A
tij = bij

The only difference between element-wise “multiplication” (T = A⊗B)
and “addition” (T = A⊕B) is the pattern of the result, and what happens
to entries outside the intersection. With ⊗ the pattern of T is the inter-
section; with ⊕ it is the set union. Entries outside the set intersection are
dropped for ⊗, and kept for ⊕; in both cases the operator is only applied to
those (and only those) entries in the intersection. Any binary operator can
be used interchangeably for either operation.

Element-wise operations do not operate on the implicit values, even im-
plicitly, since the operations make no assumption about the semiring. As a
result, the results can be different from MATLAB, which can always assume
the implicit value is zero. For example, C=A-B is the conventional matrix
subtraction in MATLAB. Computing A-B in GraphBLAS with eWiseAdd

will apply the MINUS operator to the intersection, entries in A but not B will
be unchanged and appear in C, and entries in neither A nor B do not appear
in C. For these cases, the results matches the MATLAB C=A-B. Entries in B

but not A do appear in C but they are not negated; they cannot be subtracted

200

from an implicit value in A. This is by design. If conventional matrix sub-
traction of two sparse matrices is required, and the implicit value is known
to be zero, use GrB_apply to negate the values in B, and then use eWiseAdd
with the PLUS operator, to compute A+(-B).

The generic name for this operation is GrB_eWiseAdd, which can be used
for both matrices and vectors.

There is another minor difference in two variants of the element-wise func-
tions. If given a semiring, the eWiseAdd functions use the binary operator of
the semiring’s monoid, while the eWiseMult functions use the multiplicative
operator of the semiring.

10.5.1 GrB Vector eWiseAdd: element-wise vector addition

GrB_Info GrB_eWiseAdd // w<mask> = accum (w, u+v)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const <operator> add, // defines ’+’ for t=u+v

const GrB_Vector u, // first input: vector u

const GrB_Vector v, // second input: vector v

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_eWiseAdd computes the element-wise “addition” of two vec-
tors u and v, element-wise using any binary operator (not just plus). The
vectors are not transposed via the descriptor. Entries in the intersection of u
and v are first typecasted into the first and second inputs of the add operator.
Next, a column vector t is computed, denoted t = u⊕ v. The pattern of t
is the set union of u and v. The result t has the type of the output ztype of
the add operator.

The add operator is typically a GrB_BinaryOp, but the method is type-
generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the add binary operator. If given a semiring
(GrB_Semiring), the additive operator of the monoid of the semiring is used
as the add binary operator.

The final step is w⟨m⟩ = w ⊙ t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.

201

10.5.2 GrB Matrix eWiseAdd: element-wise matrix addition

GrB_Info GrB_eWiseAdd // C<Mask> = accum (C, A+B)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const <operator> add, // defines ’+’ for T=A+B

const GrB_Matrix A, // first input: matrix A

const GrB_Matrix B, // second input: matrix B

const GrB_Descriptor desc // descriptor for C, Mask, A, and B

) ;

GrB_Matrix_eWiseAdd computes the element-wise “addition” of two ma-
trices A and B, element-wise using any binary operator (not just plus). The
input matrices may be transposed first, according to the descriptor desc.
Entries in the intersection then typecasted into the first and second inputs of
the add operator. Next, a matrix T is computed, denoted T = A⊕B. The
pattern of T is the set union of A and B. The result T has the type of the
output ztype of the add operator.

The add operator is typically a GrB_BinaryOp, but the method is type-
generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the add binary operator. If given a semiring
(GrB_Semiring), the additive operator of the monoid of the semiring is used
as the add binary operator.

The operation can be expressed in MATLAB notation as:

[nrows, ncols] = size (A.matrix) ;

T.matrix = zeros (nrows, ncols, add.ztype) ;

p = A.pattern & B.pattern ;

A = GB_mex_cast (A.matrix (p), add.xtype) ;

B = GB_mex_cast (B.matrix (p), add.ytype) ;

T.matrix (p) = add (A, B) ;

p = A.pattern & ~B.pattern ; T.matrix (p) = cast (A.matrix (p), add.ztype) ;

p = ~A.pattern & B.pattern ; T.matrix (p) = cast (B.matrix (p), add.ztype) ;

T.pattern = A.pattern | B.pattern ;

T.class = add.ztype ;

Except for when typecasting is performed, this is identical to how the
accum operator is applied in Figure 1.

The final step is C⟨M⟩ = C⊙T, as described in Section 2.3.

202

10.6 GxB eWiseUnion: element-wise operations, set union

GxB_eWiseUnion computes a result with the same pattern GrB_eWiseAdd,
namely, a set union of its two inputs. It differs in how the binary operator is
applied.

Let ⊕ denote the binary operator to be used. The operator is applied to
every entry in A and B. A pair of scalars, α and β (alpha and beta in the
API, respectively) define the inputs to the operator when entries are present
in one matrix but not the other.

for all entries (i, j) in A ∩B
tij = aij ⊕ bij

for all entries (i, j) in A \B
tij = aij ⊕ β

for all entries (i, j) in B \A
tij = α⊕ bij

GxB_eWiseUnion is useful in contexts where GrB_eWiseAdd cannot be
used because of the typecasting rules of GraphBLAS. In particular, sup-
pose A and B are matrices with a user-defined type, and suppose < is a
user-defined operator that compares two entries of this type and returns a
Boolean value. Then C=A<B can be computed with GxB_eWiseUnion but not
with GrB_eWiseAdd. In the latter, if A(i,j) is present but B(i,j) is not,
then A(i,j) must typecasted to the type of C (GrB_BOOL in this case), and
the assigment C(i,j) = (bool) A(i,j) would be performed. This is not
possible because user-defined types cannot be typecasted to any other type.

Another advantage of GxB_eWiseUnion is its performance. For example,
the MATLAB/Octave expression C=A-B computes C(i,j)=-B(i,j) when
A(i,j) is not present. This cannot be done with a single call GrB_eWiseAdd,
but it can be done with a single call to GxB_eWiseUnion, with the GrB_MINUS_FP64
operator, and with both alpha and beta scalars equal to zero. It is possi-
ble to compute this result with a temporary matrix, E=-B, computed with
GrB_apply and GrB_AINV_FP64, followed by a call to GrB_eWiseAdd to com-
pute C=A+E, but this is slower than a single call to GxB_eWiseUnion, and uses
more memory.

203

10.6.1 GxB Vector eWiseUnion: element-wise vector addition

GrB_Info GxB_eWiseUnion // w<mask> = accum (w, u+v)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_BinaryOp add, // defines ’+’ for t=u+v

const GrB_Vector u, // first input: vector u

const GrB_Scalar alpha,

const GrB_Vector v, // second input: vector v

const GrB_Scalar beta,

const GrB_Descriptor desc // descriptor for w and mask

) ;

Identical to GrB_Vector_eWiseAdd except that two scalars are used to
define how to compute the result when entries are present in one of the two
input vectors (u and v), but not the other. Each of the two input scalars,
alpha and beta must contain an entry. When computing the result t=u+v,
if u(i) is present but v(i) is not, then t(i)=u(i)+beta. Likewise, if v(i) is
present but u(i) is not, then t(i)=alpha+v(i), where + denotes the binary
operator, add.

204

10.6.2 GxB Matrix eWiseUnion: element-wise matrix addition

GrB_Info GxB_eWiseUnion // C<M> = accum (C, A+B)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_BinaryOp add, // defines ’+’ for T=A+B

const GrB_Matrix A, // first input: matrix A

const GrB_Scalar alpha,

const GrB_Matrix B, // second input: matrix B

const GrB_Scalar beta,

const GrB_Descriptor desc // descriptor for C, M, A, and B

) ;

Identical to GrB_Matrix_eWiseAdd except that two scalars are used to
define how to compute the result when entries are present in one of the two
input matrices (A and B), but not the other. Each of the two input scalars,
alpha and beta must contain an entry. When computing the result T=A+B, if
A(i,j) is present but B(i,j)) is not, then T(i,j)=A(i,j)+beta. Likewise,
if B(i,j) is present but A(i,j) is not, then T(i,j)=alpha+B(i,j), where
+ denotes the binary operator, add.

205

10.7 GrB extract: submatrix extraction

The GrB_extract function is a generic name for three specific functions:
GrB_Vector_extract, GrB_Col_extract, and GrB_Matrix_extract. The
generic name appears in the function signature, but the specific function
name is used when describing what each variation does.

10.7.1 GrB Vector extract: extract subvector from vector

GrB_Info GrB_extract // w<mask> = accum (w, u(I))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Vector u, // first input: vector u

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_extract extracts a subvector from another vector, identical
to t = u (I) in MATLAB where I is an integer vector of row indices. Refer
to GrB_Matrix_extract for further details; vector extraction is the same as
matrix extraction with n-by-1 matrices. See Section 9 for a description of I
and ni. The final step is w⟨m⟩ = w ⊙ t, as described in Section 2.3, except
that all the terms are column vectors instead of matrices.

206

10.7.2 GrB Matrix extract: extract submatrix from matrix

GrB_Info GrB_extract // C<Mask> = accum (C, A(I,J))

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_Matrix A, // first input: matrix A

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C, Mask, and A

) ;

GrB_Matrix_extract extracts a submatrix from another matrix, identi-
cal to T = A(I,J) in MATLAB where I and J are integer vectors of row and
column indices, respectively, except that indices are zero-based in Graph-
BLAS and one-based in MATLAB. The input matrix A may be transposed
first, via the descriptor. The type of T and A are the same. The size of C is
|I|-by-|J|. Entries outside A(I,J) are not accessed and do not take part in
the computation. More precisely, assuming the matrix A is not transposed,
the matrix T is defined as follows:

T.matrix = zeros (ni, nj) ; % a matrix of size ni-by-nj

T.pattern = false (ni, nj) ;

for i = 1:ni

for j = 1:nj

if (A (I(i),J(j)).pattern)

T (i,j).matrix = A (I(i),J(j)).matrix ;

T (i,j).pattern = true ;

end

end

end

If duplicate indices are present in I or J, the above method defines the
result in T. Duplicates result in the same values of A being copied into different
places in T. See Section 9 for a description of the row indices I and ni, and
the column indices J and nj. The final step is C⟨M⟩ = C⊙T, as described
in Section 2.3.

Performance considerations: If A is not transposed via input descriptor:
if |I| is small, then it is fastest if A is GxB_BY_ROW; if |J| is small, then it is
fastest if A is GxB_BY_COL. The opposite is true if A is transposed.

207

10.7.3 GrB Col extract: extract column vector from matrix

GrB_Info GrB_extract // w<mask> = accum (w, A(I,j))

(

GrB_Vector w, // input/output matrix for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Matrix A, // first input: matrix A

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index j, // column index

const GrB_Descriptor desc // descriptor for w, mask, and A

) ;

GrB_Col_extract extracts a subvector from a matrix, identical to t = A (I,j)

in MATLAB where I is an integer vector of row indices and where j is a single
column index. The input matrix A may be transposed first, via the descrip-
tor, which results in the extraction of a single row j from the matrix A, the
result of which is a column vector w. The type of t and A are the same. The
size of w is |I|-by-1.

See Section 9 for a description of the row indices I and ni. The final step
is w⟨m⟩ = w ⊙ t, as described in Section 2.3, except that all the terms are
column vectors instead of matrices.

Performance considerations: If A is not transposed: it is fastest if the
format of A is GxB_BY_COL. The opposite is true if A is transposed.

208

10.8 GxB subassign: submatrix assignment

The methods described in this section are all variations of the form C(I,J)=A,
which modifies a submatrix of the matrix C. All methods can be used in
their generic form with the single name GxB_subassign. This is reflected
in the prototypes. However, to avoid confusion between the different kinds
of assignment, the name of the specific function is used when describing
each variation. If the discussion applies to all variations, the simple name
GxB_subassign is used.

See Section 9 for a description of the row indices I and ni, and the column
indices J and nj.

GxB_subassign is very similar to GrB_assign, described in Section 10.9.
The two operations are compared and contrasted in Section 10.11. For a
discussion of how duplicate indices are handled in I and J, see Section 10.10.

10.8.1 GxB Vector subassign: assign to a subvector

GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),u)

(

GrB_Vector w, // input/output matrix for results

const GrB_Vector mask, // optional mask for w(I), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w(I),t)

const GrB_Vector u, // first input: vector u

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w(I) and mask

) ;

GxB_Vector_subassign operates on a subvector w(I) of w, modifying
it with the vector u. The method is identical to GxB_Matrix_subassign

described in Section 10.8.2, where all matrices have a single column each.
The mask has the same size as w(I) and u. The only other difference is that
the input u in this method is not transposed via the GrB_INP0 descriptor.

209

10.8.2 GxB Matrix subassign: assign to a submatrix

GrB_Info GxB_subassign // C(I,J)<Mask> = accum (C(I,J),A)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C(I,J), unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),T)

const GrB_Matrix A, // first input: matrix A

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C(I,J), Mask, and A

) ;

GxB_Matrix_subassign operates only on a submatrix S of C, modifying
it with the matrix A. For this operation, the result is not the entire matrix C,
but a submatrix S=C(I,J) of C. The steps taken are as follows, except that
A may be optionally transposed via the GrB_INP0 descriptor option.

Step GraphBLAS description
notation

1 S = C(I,J) extract the C(I,J) submatrix
2 S⟨M⟩ = S⊙A apply the accumulator/mask to the submatrix S
3 C(I,J) = S put the submatrix S back into C(I,J)

The accumulator/mask step in Step 2 is the same as for all other Graph-
BLAS operations, described in Section 2.3, except that for GxB_subassign,
it is applied to just the submatrix S = C(I,J), and thus the Mask has the
same size as A, S, and C(I,J).

The GxB_subassign operation is the reverse of matrix extraction:

• For submatrix extraction, GrB_Matrix_extract, the submatrix A(I,J)
appears on the right-hand side of the assignment, C=A(I,J), and entries
outside of the submatrix are not accessed and do not take part in the
computation.

• For submatrix assignment, GxB_Matrix_subassign, the submatrix C(I,J)
appears on the left-hand-side of the assignment, C(I,J)=A, and entries
outside of the submatrix are not accessed and do not take part in the
computation.

210

In both methods, the accumulator and mask modify the submatrix of the
assignment; they simply differ on which side of the assignment the submatrix
resides on. In both cases, if the Mask matrix is present it is the same size as
the submatrix:

• For submatrix extraction, C⟨M⟩ = C⊙A(I,J) is computed, where
the submatrix is on the right. The mask M has the same size as the
submatrix A(I,J).

• For submatrix assignment,C(I,J)⟨M⟩ = C(I,J)⊙A is computed, where
the submatrix is on the left. The mask M has the same size as the sub-
matrix C(I,J).

In Step 1, the submatrix S is first computed by the GrB_Matrix_extract
operation, S=C(I,J).

Step 2 accumulates the results S⟨M⟩ = S⊙T, exactly as described in
Section 2.3, but operating on the submatrix S, not C, using the optional
Mask and accum operator. The matrix T is simply T = A, or T = AT if A
is transposed via the desc descriptor, GrB_INP0. The GrB_REPLACE option
in the descriptor clears S after computing Z = T or Z = C⊙T, not all of
C since this operation can only modify the specified submatrix of C.

Finally, Step 3 writes the result (which is the modified submatrix S and
not all of C) back into the C matrix that contains it, via the assignment
C(I,J)=S, using the reverse operation from the method described for matrix
extraction:

for i = 1:ni

for j = 1:nj

if (S (i,j).pattern)

C (I(i),J(j)).matrix = S (i,j).matrix ;

C (I(i),J(j)).pattern = true ;

end

end

end

Performance considerations: If A is not transposed: if |I| is small, then
it is fastest if the format of C is GxB_BY_ROW; if |J| is small, then it is fastest
if the format of C is GxB_BY_COL. The opposite is true if A is transposed.

211

10.8.3 GxB Col subassign: assign to a sub-column of a matrix

GrB_Info GxB_subassign // C(I,j)<mask> = accum (C(I,j),u)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // optional mask for C(I,j), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(I,j),t)

const GrB_Vector u, // input vector

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index j, // column index

const GrB_Descriptor desc // descriptor for C(I,j) and mask

) ;

GxB_Col_subassign modifies a single sub-column of a matrix C. It is the
same as GxB_Matrix_subassign where the index vector J[0]=j is a single
column index (and thus nj=1), and where all matrices in GxB_Matrix_subassign
(except C) consist of a single column. The mask vector has the same size as
u and the sub-column C(I,j). The input descriptor GrB_INP0 is ignored;
the input vector u is not transposed. Refer to GxB_Matrix_subassign for
further details.

Performance considerations: GxB_Col_subassign is much faster than
GxB_Row_subassign if the format of C is GxB_BY_COL. GxB_Row_subassign
is much faster than GxB_Col_subassign if the format of C is GxB_BY_ROW.

10.8.4 GxB Row subassign: assign to a sub-row of a matrix

GrB_Info GxB_subassign // C(i,J)<mask’> = accum (C(i,J),u’)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // optional mask for C(i,J), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(i,J),t)

const GrB_Vector u, // input vector

const GrB_Index i, // row index

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C(i,J) and mask

) ;

GxB_Row_subassign modifies a single sub-row of a matrix C. It is the
same as GxB_Matrix_subassign where the index vector I[0]=i is a single

212

row index (and thus ni=1), and where all matrices in GxB_Matrix_subassign

(except C) consist of a single row. The mask vector has the same size as u
and the sub-column C(I,j). The input descriptor GrB_INP0 is ignored; the
input vector u is not transposed. Refer to GxB_Matrix_subassign for further
details.

Performance considerations: GxB_Col_subassign is much faster than
GxB_Row_subassign if the format of C is GxB_BY_COL. GxB_Row_subassign
is much faster than GxB_Col_subassign if the format of C is GxB_BY_ROW.

10.8.5 GxB Vector subassign <type>: assign a scalar to a subvector

GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),x)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w(I), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w(I),x)

const <type> x, // scalar to assign to w(I)

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w(I) and mask

) ;

GxB_Vector_subassign_<type> assigns a single scalar to an entire sub-
vector of the vector w. The operation is exactly like setting a single entry in an
n-by-1 matrix, A(I,0) = x, where the column index for a vector is implicitly
j=0. For further details of this function, see GxB_Matrix_subassign_<type>
in Section 10.8.6.

213

10.8.6 GxB Matrix subassign <type>: assign a scalar to a submatrix

GrB_Info GxB_subassign // C(I,J)<Mask> = accum (C(I,J),x)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C(I,J), unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),x)

const <type> x, // scalar to assign to C(I,J)

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C(I,J) and Mask

) ;

GxB_Matrix_subassign_<type> assigns a single scalar to an entire sub-
matrix of C, like the scalar expansion C(I,J)=x in MATLAB. The scalar
x is implicitly expanded into a matrix A of size ni by nj, with all entries
present and equal to x, and then the matrix A is assigned to C(I,J) using
the same method as in GxB_Matrix_subassign. Refer to that function in
Section 10.8.2 for further details. For the accumulation step, the scalar x is
typecasted directly into the type of C when the accum operator is not applied
to it, or into the ytype of the accum operator, if accum is not NULL, for
entries that are already present in C.

The <type> x notation is otherwise the same as GrB_Matrix_setElement
(see Section 6.9.11). Any value can be passed to this function and its type
will be detected, via the _Generic feature of ANSI C11. For a user-defined
type, x is a void * pointer that points to a memory space holding a single
entry of a scalar that has exactly the same user-defined type as the matrix C.
This user-defined type must exactly match the user-defined type of C since
no typecasting is done between user-defined types.

If a void * pointer is passed in and the type of the underlying scalar does
not exactly match the user-defined type of C, then results are undefined. No
error status will be returned since GraphBLAS has no way of catching this
error. If x is a GrB_Scalar with no entry, then it is implicitly expanded into
a matrix A of size ni by nj, with no entries present.

Performance considerations: If A is not transposed: if |I| is small, then
it is fastest if the format of C is GxB_BY_ROW; if |J| is small, then it is fastest
if the format of C is GxB_BY_COL. The opposite is true if A is transposed.

214

10.9 GrB assign: submatrix assignment

The methods described in this section are all variations of the form C(I,J)=A,
which modifies a submatrix of the matrix C. All methods can be used in their
generic form with the single name GrB_assign. These methods are very
similar to their GxB_subassign counterparts in Section 10.8. They differ
primarily in the size of the Mask, and how the GrB_REPLACE option works.
Section 10.11 compares GxB_subassign and GrB_assign.

See Section 9 for a description of I, ni, J, and nj.

10.9.1 GrB Vector assign: assign to a subvector

GrB_Info GrB_assign // w<mask>(I) = accum (w(I),u)

(

GrB_Vector w, // input/output matrix for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w(I),t)

const GrB_Vector u, // first input: vector u

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_assign operates on a subvector w(I) of w, modifying it with
the vector u. The mask vector has the same size as w. The method is identical
to GrB_Matrix_assign described in Section 10.9.2, where all matrices have
a single column each. The only other difference is that the input u in this
method is not transposed via the GrB_INP0 descriptor.

215

10.9.2 GrB Matrix assign: assign to a submatrix

GrB_Info GrB_assign // C<Mask>(I,J) = accum (C(I,J),A)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),T)

const GrB_Matrix A, // first input: matrix A

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C, Mask, and A

) ;

GrB_Matrix_assign operates on a submatrix S of C, modifying it with
the matrix A. It may also modify all of C, depending on the input descriptor
desc and the Mask.

Step GraphBLAS description
notation

1 S = C(I,J) extract C(I,J) submatrix
2 S = S⊙A apply the accumulator (but not the mask) to S
3 Z = C make a copy of C
4 Z(I,J) = S put the submatrix into Z(I,J)
5 C⟨M⟩ = Z apply the mask/replace phase to all of C

In contrast to GxB_subassign, the Mask has the same as C.
Step 1 extracts the submatrix and then Step 2 applies the accumulator

(or S = A if accum is NULL). The Mask is not yet applied.
Step 3 makes a copy of theCmatrix, and then Step 4 writes the submatrix

S into Z. This is the same as Step 3 of GxB_subassign, except that it
operates on a temporary matrix Z.

Finally, Step 5 writes Z back intoC via the Mask, using the Mask/Replace
Phase described in Section 2.3. If GrB_REPLACE is enabled, then all of C is
cleared prior to writing Z via the mask. As a result, the GrB_REPLACE option
can delete entries outside the C(I,J) submatrix.

Performance considerations: If A is not transposed: if |I| is small, then
it is fastest if the format of C is GxB_BY_ROW; if |J| is small, then it is fastest
if the format of C is GxB_BY_COL. The opposite is true if A is transposed.

216

10.9.3 GrB Col assign: assign to a sub-column of a matrix

GrB_Info GrB_assign // C<mask>(I,j) = accum (C(I,j),u)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // optional mask for C(:,j), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(I,j),t)

const GrB_Vector u, // input vector

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index j, // column index

const GrB_Descriptor desc // descriptor for C(:,j) and mask

) ;

GrB_Col_assignmodifies a single sub-column of a matrix C. It is the same
as GrB_Matrix_assign where the index vector J[0]=j is a single column
index, and where all matrices in GrB_Matrix_assign (except C) consist of a
single column.

Unlike GrB_Matrix_assign, the mask is a vector with the same size as a
single column of C.

The input descriptor GrB_INP0 is ignored; the input vector u is not trans-
posed. Refer to GrB_Matrix_assign for further details.

Performance considerations: GrB_Col_assign is much faster than GrB_Row_assign
if the format of C is GxB_BY_COL. GrB_Row_assign is much faster than
GrB_Col_assign if the format of C is GxB_BY_ROW.

217

10.9.4 GrB Row assign: assign to a sub-row of a matrix

GrB_Info GrB_assign // C<mask’>(i,J) = accum (C(i,J),u’)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // optional mask for C(i,:), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(i,J),t)

const GrB_Vector u, // input vector

const GrB_Index i, // row index

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C(i,:) and mask

) ;

GrB_Row_assign modifies a single sub-row of a matrix C. It is the same
as GrB_Matrix_assign where the index vector I[0]=i is a single row index,
and where all matrices in GrB_Matrix_assign (except C) consist of a single
row.

Unlike GrB_Matrix_assign, the mask is a vector with the same size as a
single row of C.

The input descriptor GrB_INP0 is ignored; the input vector u is not trans-
posed. Refer to GrB_Matrix_assign for further details.

Performance considerations: GrB_Col_assign is much faster than GrB_Row_assign
if the format of C is GxB_BY_COL. GrB_Row_assign is much faster than
GrB_Col_assign if the format of C is GxB_BY_ROW.

218

10.9.5 GrB Vector assign <type>: assign a scalar to a subvector

GrB_Info GrB_assign // w<mask>(I) = accum (w(I),x)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w(I),x)

const <type> x, // scalar to assign to w(I)

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_assign_<type> assigns a single scalar to an entire subvector
of the vector w. The operation is exactly like setting a single entry in an n-
by-1 matrix, A(I,0) = x, where the column index for a vector is implicitly
j=0. The mask vector has the same size as w. For further details of this
function, see GrB_Matrix_assign_<type> in the next section (10.9.6).

Following the C API Specification, results are well-defined if I contains
duplicate indices. Duplicate indices are simply ignored. See Section 10.10
for more details.

10.9.6 GrB Matrix assign <type>: assign a scalar to a submatrix

GrB_Info GrB_assign // C<Mask>(I,J) = accum (C(I,J),x)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),x)

const <type> x, // scalar to assign to C(I,J)

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C and Mask

) ;

GrB_Matrix_assign_<type> assigns a single scalar to an entire subma-
trix of C, like the scalar expansion C(I,J)=x in MATLAB. The scalar x is
implicitly expanded into a matrix A of size ni by nj, and then the matrix
A is assigned to C(I,J) using the same method as in GrB_Matrix_assign.
Refer to that function in Section 10.9.2 for further details.

219

The Mask has the same size as C.
For the accumulation step, the scalar x is typecasted directly into the

type of C when the accum operator is not applied to it, or into the ytype

of the accum operator, if accum is not NULL, for entries that are already
present in C.

The <type> x notation is otherwise the same as GrB_Matrix_setElement
(see Section 6.9.11). Any value can be passed to this function and its type
will be detected, via the _Generic feature of ANSI C11. For a user-defined
type, x is a void * pointer that points to a memory space holding a single
entry of a scalar that has exactly the same user-defined type as the matrix C.
This user-defined type must exactly match the user-defined type of C since
no typecasting is done between user-defined types.

If a void * pointer is passed in and the type of the underlying scalar does
not exactly match the user-defined type of C, then results are undefined. No
error status will be returned since GraphBLAS has no way of catching this
error.

If x is a GrB_Scalar with no entry, then it is implicitly expanded into a
matrix A of size ni by nj, with no entries present.

Following the C API Specification, results are well-defined if I or J contain
duplicate indices. Duplicate indices are simply ignored. See Section 10.10
for more details.

Performance considerations: If A is not transposed: if |I| is small, then
it is fastest if the format of C is GxB_BY_ROW; if |J| is small, then it is fastest
if the format of C is GxB_BY_COL. The opposite is true if A is transposed.

220

10.10 Duplicate indices in GrB assign and GxB subassign

According to the GraphBLAS C API Specification if the index vectors I or
J contain duplicate indices, the results are undefined for GrB_Matrix_assign,
GrB_Matrix_assign, GrB_Col_assign, and GrB_Row_assign. Only the scalar
assignment operations (GrB_Matrix_assign_TYPE and GrB_Matrix_assign_TYPE)
are well-defined when duplicates appear in I and J. In those two functions,
duplicate indices are ignored.

As an extension to the specification, SuiteSparse:GraphBLAS provides a
definition of how duplicate indices are handled in all cases. If I has duplicate
indices, they are ignored and the last unique entry in the list is used. When
no mask and no accumulator is present, the results are identical to how MAT-
LAB handles duplicate indices in the built-in expression C(I,J)=A. Details
of how this is done is shown below.

function C = subassign (C, I, J, A)

% submatrix assignment with pre-sort of I and J; and remove duplicates

% delete duplicates from I, keeping the last one seen

[I2 I2k] = sort (I) ;

Idupl = [(I2 (1:end-1) == I2 (2:end)), false] ;

I2 = I2 (~Idupl) ;

I2k = I2k (~Idupl) ;

assert (isequal (I2, unique (I)))

% delete duplicates from J, keeping the last one seen

[J2 J2k] = sort (J) ;

Jdupl = [(J2 (1:end-1) == J2 (2:end)), false] ;

J2 = J2 (~Jdupl) ;

J2k = J2k (~Jdupl) ;

assert (isequal (J2, unique (J)))

% do the submatrix assignment, with no duplicates in I2 or J2

C (I2,J2) = A (I2k,J2k) ;

If a mask is present, then it is replaced with M = M (I2k, J2k) for
GxB_subassign, or with M = M (I2, J2) for GrB_assign. If an accumu-
lator operator is present, it is applied after the duplicates are removed, as
(for example):

C (I2,J2) = C (I2,J2) + A (I2k,J2k) ;

221

These definitions allow the MATLAB/Octave interface to GraphBLAS to
return the same results for C(I,J)=A for a GrB object as they do for built-in
MATLAB/Octave matrices. They also allow the assignment to be done in
parallel.

Results are always well-defined in SuiteSparse:GraphBLAS, but they might
not be what you expect. For example, suppose the MIN operator is being used
the following assigment to the vector x, and suppose I contains the entries
[0 0]. Suppose x is initially empty, of length 1, and suppose y is a vector of
length 2 with the values [5 7].

#include "GraphBLAS.h"

#include <stdio.h>

int main (void)

{

GrB_init (GrB_NONBLOCKING) ;

GrB_Vector x, y ;

GrB_Vector_new (&x, GrB_INT32, 1) ;

GrB_Vector_new (&y, GrB_INT32, 2) ;

GrB_Index I [2] = {0, 0} ;

GrB_Vector_setElement (y, 5, 0) ;

GrB_Vector_setElement (y, 7, 1) ;

GrB_Vector_wait (&y) ;

GxB_print (x, 3) ;

GxB_print (y, 3) ;

GrB_assign (x, NULL, GrB_MIN_INT32, y, I, 2, NULL) ;

GrB_Vector_wait (&y) ;

GxB_print (x, 3) ;

GrB_finalize () ;

}

You might (wrongly) expect the result to be the vector x(0)=5, since two
entries seem to be assigned, and the min operator might be expected to take
the minimum of the two. This is not how SuiteSparse:GraphBLAS handles
duplicates.

Instead, the first duplicate index of I is discarded (I [0] = 0, and y(0)=5).
and only the second entry is used (I [1] = 0, and y(1)=7). The output of
the above program is:

1x1 GraphBLAS int32_t vector, sparse by col:

222

x, no entries

2x1 GraphBLAS int32_t vector, sparse by col:

y, 2 entries

(0,0) 5

(1,0) 7

1x1 GraphBLAS int32_t vector, sparse by col:

x, 1 entry

(0,0) 7

You see that the result is x(0)=7, since the y(0)=5 entry has been ignored
because of the duplicate indices in I.

SPEC: Providing a well-defined behavior for duplicate indices with ma-
trix and vector assignment is an extension to the specification. The spec-
ification only defines the behavior when assigning a scalar into a matrix
or vector, and states that duplicate indices otherwise lead to undefined
results.

223

10.11 Comparing GrB assign and GxB subassign

The GxB_subassign and GrB_assign operations are very similar, but they
differ in two ways:

1. The Mask has a different size: The mask in GxB_subassign has
the same dimensions as w(I) for vectors and C(I,J) for matrices. In
GrB_assign, the mask is the same size as w or C, respectively (ex-
cept for the row/col variants). The two masks are related. If M is the
mask for GrB_assign, then M(I,J) is the mask for GxB_subassign. If
there is no mask, or if I and J are both GrB_ALL, the two masks are
the same. For GrB_Row_assign and GrB_Col_assign, the mask vector
is the same size as a row or column of C, respectively. For the cor-
responding GxB_Row_subassign and GxB_Col_subassign operations,
the mask is the same size as the sub-row C(i,J) or subcolumn C(I,j),
respectively.

2. GrB_REPLACE is different: They differ in how C is affected in areas
outside the C(I,J) submatrix. In GxB_subassign, the C(I,J) sub-
matrix is the only part of C that can be modified, and no part of C
outside the submatrix is ever modified. In GrB_assign, it is possible
to delete entries in C outside the submatrix, but only in one specific
manner. Suppose the mask M is present (or, suppose it is not present
but GrB_COMP is true). After (optionally) complementing the mask, the
value of M(i,j) can be 0 for some entry outside the C(I,J) submatrix.
If the GrB_REPLACE descriptor is true, GrB_assign deletes this entry.

GxB_subassign and GrB_assign are identical if GrB_REPLACE is set to
its default value of false, and if the masks happen to be the same. The two
masks can be the same in two cases: either the Mask input is NULL (and
it is not complemented via GrB_COMP), or I and J are both GrB_ALL. If all
these conditions hold, the two algorithms are identical and have the same
performance. Otherwise, GxB_subassign is much faster than GrB_assign

when the latter must examine the entire matrix C to delete entries (when
GrB_REPLACE is true), and if it must deal with a much larger Mask matrix.
However, both methods have specific uses.

Consider using C(I,J)+=F for many submatrices F (for example, when
assembling a finite-element matrix). If the Mask is meant as a specification
for which entries of C should appear in the final result, then use GrB_assign.

224

If instead the Mask is meant to control which entries of the submatrix
C(I,J) are modified by the finite-element F, then use GxB_subassign. This
is particularly useful is the Mask is a template that follows along with the
finite-element F, independent of where it is applied to C. Using GrB_assign

would be very difficult in this case since a new Mask, the same size as C,
would need to be constructed for each finite-element F.

In GraphBLAS notation, the two methods can be described as follows:

matrix and vector subassign C(I,J)⟨M⟩ = C(I,J)⊙A
matrix and vector assign C⟨M⟩(I,J) = C(I,J)⊙A

This notation does not include the details of the GrB_COMP and GrB_REPLACE
descriptors, but it does illustrate the difference in the Mask. In the sub-
assign, Mask is the same size as C(I,J) and A. If I[0]=i and J[0]=j, Then
Mask(0,0) controls how C(i,j) is modified by the subassign, from the value
A(0,0). In the assign, Mask is the same size as C, and Mask(i,j) controls
how C(i,j) is modified.

The GxB_subassign and GrB_assign functions have the same signatures;
they differ only in how they consider the Mask and the GrB_REPLACE descrip-
tor

Details of each step of the two operations are listed below:

Step GrB_Matrix_assign GxB_Matrix_subassign

1 S = C(I,J) S = C(I,J)
2 S = S⊙A S⟨M⟩ = S⊙A
3 Z = C C(I,J) = S
4 Z(I,J) = S
5 C⟨M⟩ = Z

Step 1 is the same. In the Accumulator Phase (Step 2), the expression
S⊙A, described in Section 2.3, is the same in both operations. The result is
simply A if accum is NULL. It only applies to the submatrix S, not the whole
matrix. The result S⊙A is used differently in the Mask/Replace phase.

The Mask/Replace Phase, described in Section 2.3 is different:

• For GrB_assign (Step 5), the mask is applied to all of C. The mask has
the same size as C. Just prior to making the assignment via the mask,
the GrB_REPLACE option can be used to clear all of C first. This is the
only way in which entries in C that are outside the C(I,J) submatrix
can be modified by this operation.

225

• For GxB_subassign (Step 2b), the mask is applied to just S. The
mask has the same size as C(I,J), S, and A. Just prior to making the
assignment via the mask, the GrB_REPLACE option can be used to clear
S first. No entries in C that are outside the C(I,J) can be modified
by this operation. Thus, GrB_REPLACE has no effect on entries in C
outside the C(I,J) submatrix.

The differences between GrB_assign and GxB_subassign can be seen in
Tables 5 and 6. The first table considers the case when the entry cij is in the
C(I,J) submatrix, and it describes what is computed for both GrB_assign

and GxB_subassign. They perform the exact same computation; the only
difference is how the value of the mask is specified. Compare Table 5 with
Table 1 in Section 7.

The first column of Table 5 is yes if GrB_REPLACE is enabled, and a dash
otherwise. The second column is yes if an accumulator operator is given,
and a dash otherwise. The third column is cij if the entry is present in C,
and a dash otherwise. The fourth column is ai′j′ if the corresponding entry
is present in A, where i = I(i′) and j = J(i′).

The mask column is 1 if the effective value of the mask mask allows C
to be modified, and 0 otherwise. This is mij for GrB_assign, and mi′j′ for
GxB_subassign, to reflect the difference in the mask, but this difference is
not reflected in the table. The value 1 or 0 is the value of the entry in the
mask after it is optionally complemented via the GrB_COMP option.

Finally, the last column is the action taken in this case. It is left blank if
no action is taken, in which case cij is not modified if present, or not inserted
into C if not present.

226

repl accum C A mask action taken by GrB_assign and GxB_subassign

- - cij ai′j′ 1 cij = ai′j′ , update
- - - ai′j′ 1 cij = ai′j′ , insert
- - cij - 1 delete cij because ai′j′ not present
- - - - 1
- - cij ai′j′ 0
- - - ai′j′ 0
- - cij - 0
- - - - 0

yes - cij ai′j′ 1 cij = ai′j′ , update
yes - - ai′j′ 1 cij = ai′j′ , insert
yes - cij - 1 delete cij because ai′j′ not present
yes - - - 1
yes - cij ai′j′ 0 delete cij (because of GrB_REPLACE)
yes - - ai′j′ 0
yes - cij - 0 delete cij (because of GrB_REPLACE)
yes - - - 0

- yes cij ai′j′ 1 cij = cij ⊙ ai′j′ , apply accumulator
- yes - ai′j′ 1 cij = ai′j′ , insert
- yes cij - 1
- yes - - 1
- yes cij ai′j′ 0
- yes - ai′j′ 0
- yes cij - 0
- yes - - 0

yes yes cij ai′j′ 1 cij = cij ⊙ ai′j′ , apply accumulator
yes yes - ai′j′ 1 cij = ai′j′ , insert
yes yes cij - 1
yes yes - - 1
yes yes cij ai′j′ 0 delete cij (because of GrB_REPLACE)
yes yes - ai′j′ 0
yes yes cij - 0 delete cij (because of GrB_REPLACE)
yes yes - - 0

Table 5: Results of assign and subassign for entries in the C(I,J) submatrix

227

repl accum C C = Z mask action taken by GrB_assign

- - cij cij 1
- - - - 1
- - cij cij 0
- - - - 0

yes - cij cij 1
yes - - - 1
yes - cij cij 0 delete cij (because of GrB_REPLACE)
yes - - - 0

- yes cij cij 1
- yes - - 1
- yes cij cij 0
- yes - - 0

yes yes cij cij 1
yes yes - - 1
yes yes cij cij 0 delete cij (because of GrB_REPLACE)
yes yes - - 0

Table 6: Results of assign for entries outside the C(I,J) submatrix. Sub-
assign has no effect on these entries.

Table 6 illustrates how GrB_assign and GxB_subassign differ for entries
outside the submatrix. GxB_subassign never modifies any entry outside the
C(I,J) submatrix, but GrB_assign can modify them in two cases listed in
Table 6. When the GrB_REPLACE option is selected, and when the Mask(i,j)
for an entry cij is false (or if the Mask(i,j) is true and GrB_COMP is enabled
via the descriptor), then the entry is deleted by GrB_assign.

The fourth column of Table 6 differs from Table 5, since entries inA never
affect these entries. Instead, for all index pairs outside the I × J submatrix,
C and Z are identical (see Step 3 above). As a result, each section of the
table includes just two cases: either cij is present, or not. This in contrast
to Table 5, where each section must consider four different cases.

The GrB_Row_assign and GrB_Col_assign operations are slightly differ-
ent. They only affect a single row or column of C. For GrB_Row_assign,
Table 6 only applies to entries in the single row C(i,J) that are outside the
list of indices, J. For GrB_Col_assign, Table 6 only applies to entries in the
single column C(I,j) that are outside the list of indices, I.

228

10.11.1 Example

The difference between GxB_subassign and GrB_assign is illustrated in
the following example. Consider the 2-by-2 matrix C where all entries are
present.

C =

[
11 12
21 22

]
Suppose GrB_REPLACE is true, and GrB_COMP is false. Let the Mask be:

M =

[
1 1
0 1

]
.

Let A = 100, and let the index sets be I = 0 and J = 1. Consider the
computation C⟨M⟩(0, 1) = C(0, 1) + A, using the GrB_assign operation.
The result is:

C =

[
11 112
− 22

]
.

The (0, 1) entry is updated and the (1, 0) entry is deleted because its Mask
is zero. The other two entries are not modified since Z = C outside the
submatrix, and those two values are written back into C because their Mask
values are 1. The (1, 0) entry is deleted because the entry Z(1, 0) = 21 is
prevented from being written back into C since Mask(1,0)=0.

Now consider the analogous GxB_subassign operation. The Mask has the
same size as A, namely:

M =
[
1
]
.

After computing C(0, 1)⟨M⟩ = C(0, 1) +A, the result is

C =

[
11 112
21 22

]
.

Only the C(I,J) submatrix, the single entry C(0, 1), is modified by
GxB_subassign. The entry C(1, 0) = 21 is unaffected by GxB_subassign,
but it is deleted by GrB_assign.

229

10.11.2 Performance of GxB subassign, GrB assign and GrB * setElement

When SuiteSparse:GraphBLAS uses non-blocking mode, the modifications
to a matrix by GxB_subassign, GrB_assign, and GrB_*_setElement can
postponed, and computed all at once later on. This has a huge impact on
performance.

A sequence of assignments is fast if their completion can be postponed
for as long as possible, or if they do not modify the pattern at all. Modifying
the pattern can be costly, but it is fast if non-blocking mode can be fully
exploited.

Consider a sequence of t submatrix assignments C(I,J)=C(I,J)+A to an
n-by-n matrix C where each submatrix A has size a-by-a with s entries, and
where C starts with c entries. Assume the matrices are all stored in non-
hypersparse form, by row (GxB_BY_ROW).

If blocking mode is enabled, or if the sequence requires the matrix to
be completed after each assignment, each of the t assignments takes O(a +
s log n) time to process the A matrix and then O(n + c + s log s) time to
complete C. The latter step uses GrB_*_build to build an update matrix
and then merge it with C. This step does not occur if the sequence of
assignments does not add new entries to the pattern of C, however. As-
suming in the worst case that the pattern does change, the total time is
O(t [a+ s log n+ n+ c+ s log s]).

If the sequence can be computed with all updates postponed until the end
of the sequence, then the total time is no worse than O(a+s log n) to process
each A matrix, for t assignments, and then a single build at the end, taking
O(n+c+st log st) time. The total time is O(t [a+ s log n]+(n+c+st log st)).
If no new entries appear in C the time drops to O(t [a+ s log n]), and in this
case, the time for both methods is the same; both are equally efficient.

A few simplifying assumptions are useful to compare these times. Con-
sider a graph of n nodes with O(n) edges, and with a constant bound on the
degree of each node. The asymptotic bounds assume a worst-case scenario
where C has a least some dense rows (thus the log n terms). If these are not
present, if both t and c are O(n), and if a and s are constants, then the total
time with blocking mode becomes O(n2), assuming the pattern of C changes
at each assignment. This very high for a sparse graph problem. In contrast,
the non-blocking time becomes O(n log n) under these same assumptions,
which is asymptotically much faster.

230

The difference in practice can be very dramatic, since n can be many
millions for sparse graphs with n nodes and O(n), which can be handled on
a commodity laptop.

The following guidelines should be considered when using GxB_subassign,
GrB_assign and GrB_*_setElement.

1. A sequence of assignments that does not modify the pattern at all
is fast, taking as little as Ω(1) time per entry modified. The worst
case time complexity is O(log n) per entry, assuming they all modify
a dense row of C with n entries, which can occur in practice. It is
more common, however, that most rows of C have a constant number
of entries, independent of n. No work is ever left pending when the
pattern of C does not change.

2. A sequence of assignments that modifies the entries that already exist
in the pattern of a matrix, or adds new entries to the pattern (using
the same accum operator), but does not delete any entries, is fast. The
matrix is not completed until the end of the sequence.

3. Similarly, a sequence that modifies existing entries, or deletes them, but
does not add new ones, is also fast. This sequence can also repeatedly
delete pre-existing entries and then reinstate them and still be fast.
The matrix is not completed until the end of the sequence.

4. A sequence that mixes assignments of types (2) and (3) above can be
costly, since the matrix may need to be completed after each assign-
ment. The time complexity can become quadratic in the worst case.

5. However, any single assignment takes no more than O(a+ s log n+n+
c+s log s) time, even including the time for a matrix completion, where
C is n-by-n with c entries and A is a-by-a with s entries. This time is
essentially linear in the size of the matrix C, if A is relatively small and
sparse compared with C. In this case, n+c are the two dominant terms.

6. In general, GxB_subassign is faster than GrB_assign. If GrB_REPLACE
is used with GrB_assign, the entire matrix C must be traversed. This
is much slower than GxB_subassign, which only needs to examine the
C(I,J) submatrix. Furthermore, GrB_assign must deal with a much
larger Mask matrix, whereas GxB_subassign has a smaller mask. Since

231

its mask is smaller, GxB_subassign takes less time than GrB_assign

to access the mask.

Submatrix assignment in SuiteSparse:GraphBLAS is extremely efficient,
even without considering the advantages of non-blocking mode discussed in
Section 10.11. It can be up to 1000x faster than MATLAB R2019b, or
even higher depending on the kind of matrix assignment. MATLAB logical
indexing (the mask of GraphBLAS) is extremely faster with GraphBLAS
as compared in MATLAB R2019b; differences of up to 250,000x have been
observed (0.4 seconds in GraphBLAS versus 28 hours in MATLAB).

All of the 28 variants (each with their own source code) are either asymp-
totically optimal, or to within a log factor of being asymptotically optimal.
The methods are also fully parallel. For hypersparse matrices, the term n
in the expressions in the above discussion is dropped, and is replaced with
h log h, at the worst case, where h << n is the number of non-empty columns
of a hypersparse matrix stored by column, or the number of non-empty rows
of a hypersparse matrix stored by row. In many methods, n is replaced with
h, not h log h.

232

10.12 GrB apply: apply a unary, binary, or index-unary
operator

GrB_apply is the generic name for 92 specific functions:

• GrB_Vector_apply and GrB_Matrix_apply apply a unary operator to
the entries of a matrix (two variants).

• GrB_*_apply_BinaryOp1st_* applies a binary operator where a sin-
gle scalar is provided as the x input to the binary operator. There
are 30 variants, depending on the type of the scalar: (matrix or vec-
tor) x (13 built-in types, one for user-defined types, and a version for
GrB_Scalar).

• GrB_*_apply_BinaryOp2nd_* applies a binary operator where a sin-
gle scalar is provided as the y input to the binary operator. There
are 30 variants, depending on the type of the scalar: (matrix or vec-
tor) x (13 built-in types, one for user-defined types, and a version for
GrB_Scalar).

• GrB_*_apply_IndexOp_* applies a GrB_IndexUnaryOp, single scalar is
provided as the scalar y input to the index-unary operator. There
are 30 variants, depending on the type of the scalar: (matrix or vec-
tor) x (13 built-in types, one for user-defined types, and a version for
GrB_Scalar).

The generic name appears in the function prototypes, but the specific
function name is used when describing each variation. When discussing fea-
tures that apply to all versions, the simple name GrB_apply is used.

233

10.12.1 GrB Vector apply: apply a unary operator to a vector

GrB_Info GrB_apply // w<mask> = accum (w, op(u))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_UnaryOp op, // operator to apply to the entries

const GrB_Vector u, // first input: vector u

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_apply applies a unary operator to the entries of a vector,
analogous to t = op(u) in MATLAB except the operator op is only applied
to entries in the pattern of u. Implicit values outside the pattern of u are not
affected. The entries in u are typecasted into the xtype of the unary operator.
The vector t has the same type as the ztype of the unary operator. The
final step is w⟨m⟩ = w ⊙ t, as described in Section 2.3, except that all the
terms are column vectors instead of matrices.

234

10.12.2 GrB Matrix apply: apply a unary operator to a matrix

GrB_Info GrB_apply // C<Mask> = accum (C, op(A)) or op(A’)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_UnaryOp op, // operator to apply to the entries

const GrB_Matrix A, // first input: matrix A

const GrB_Descriptor desc // descriptor for C, mask, and A

) ;

GrB_Matrix_apply applies a unary operator to the entries of a matrix,
analogous to T = op(A) in MATLAB except the operator op is only applied
to entries in the pattern of A. Implicit values outside the pattern of A are not
affected. The input matrix A may be transposed first. The entries in A are
typecasted into the xtype of the unary operator. The matrix T has the same
type as the ztype of the unary operator. The final step is C⟨M⟩ = C⊙T,
as described in Section 2.3.

The built-in GrB_IDENTITY_T operators (one for each built-in type T)
are very useful when combined with this function, enabling it to compute
C⟨M⟩ = C⊙A. This makes GrB_apply a direct interface to the accumu-
lator/mask function for both matrices and vectors. The GrB_IDENTITY_T
operators also provide the fastest stand-alone typecasting methods in Suite-
Sparse:GraphBLAS, with all 13× 13 = 169 methods appearing as individual
functions, to typecast between any of the 13 built-in types.

To compute C⟨M⟩ = A or C⟨M⟩ = C⊙A for user-defined types, the
user application would need to define an identity operator for the type. Since
GraphBLAS cannot detect that it is an identity operator, it must call the
operator to make the full copy T=A and apply the operator to each entry of
the matrix or vector.

The other GraphBLAS operation that provides a direct interface to the
accumulator/mask function is GrB_transpose, which does not require an
operator to perform this task. As a result, GrB_transpose can be used as
an efficient and direct interface to the accumulator/mask function for both
built-in and user-defined types. However, it is only available for matrices,
not vectors.

235

10.12.3 GrB Vector apply BinaryOp1st: apply a binary operator to a
vector; 1st scalar binding

GrB_Info GrB_apply // w<mask> = accum (w, op(x,u))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_BinaryOp op, // operator to apply to the entries

<type> x, // first input: scalar x

const GrB_Vector u, // second input: vector u

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_apply_BinaryOp1st_<type> applies a binary operator z =
f(x, y) to a vector, where a scalar x is bound to the first input of the operator.
The scalar x can be a non-opaque C scalar corresponding to a built-in type,
a void * for user-defined types, or a GrB_Scalar. It is otherwise identical
to GrB_Vector_apply.

10.12.4 GrB Vector apply BinaryOp2nd: apply a binary operator to a
vector; 2nd scalar binding

GrB_Info GrB_apply // w<mask> = accum (w, op(u,y))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_BinaryOp op, // operator to apply to the entries

const GrB_Vector u, // first input: vector u

<type> y, // second input: scalar y

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_apply_BinaryOp2nd_<type> applies a binary operator z =
f(x, y) to a vector, where a scalar y is bound to the second input of the
operator. The scalar x can be a non-opaque C scalar corresponding to a built-
in type, a void * for user-defined types, or a GrB_Scalar. It is otherwise
identical to GrB_Vector_apply.

236

10.12.5 GrB Vector apply IndexOp: apply an index-unary operator to
a vector

GrB_Info GrB_apply // w<mask> = accum (w, op(u,y))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_IndexUnaryOp op, // operator to apply to the entries

const GrB_Vector u, // first input: vector u

const <type> y, // second input: scalar y

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_apply_IndexOp_<type> applies an index-unary operator z =
f(x, i, 0, y) to a vector. The scalar y can be a non-opaque C scalar corre-
sponding to a built-in type, a void * for user-defined types, or a GrB_Scalar.
It is otherwise identical to GrB_Vector_apply.

10.12.6 GrB Matrix apply BinaryOp1st: apply a binary operator to a
matrix; 1st scalar binding

GrB_Info GrB_apply // C<M>=accum(C,op(x,A))

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_BinaryOp op, // operator to apply to the entries

<type> x, // first input: scalar x

const GrB_Matrix A, // second input: matrix A

const GrB_Descriptor desc // descriptor for C, mask, and A

) ;

GrB_Matrix_apply_BinaryOp1st_<type> applies a binary operator z =
f(x, y) to a matrix, where a scalar x is bound to the first input of the operator.
The scalar x can be a non-opaque C scalar corresponding to a built-in type,
a void * for user-defined types, or a GrB_Scalar. It is otherwise identical
to GrB_Matrix_apply.

237

10.12.7 GrB Matrix apply BinaryOp2nd: apply a binary operator to a
matrix; 2nd scalar binding

GrB_Info GrB_apply // C<M>=accum(C,op(A,y))

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_BinaryOp op, // operator to apply to the entries

const GrB_Matrix A, // first input: matrix A

<type> y, // second input: scalar y

const GrB_Descriptor desc // descriptor for C, mask, and A

) ;

GrB_Matrix_apply_BinaryOp2nd_<type> applies a binary operator z =
f(x, y) to a matrix, where a scalar x is bound to the second input of the
operator. The scalar y can be a non-opaque C scalar corresponding to a built-
in type, a void * for user-defined types, or a GrB_Scalar. It is otherwise
identical to GrB_Matrix_apply.

10.12.8 GrB Matrix apply IndexOp: apply an index-unary operator to
a matrix

GrB_Info GrB_apply // C<M>=accum(C,op(A,y))

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_IndexUnaryOp op, // operator to apply to the entries

const GrB_Matrix A, // first input: matrix A

const <type> y, // second input: scalar y

const GrB_Descriptor desc // descriptor for C, mask, and A

) ;

GrB_Matrix_apply_IndexOp_<type> applies an index-unary operator z =
f(x, i, j, y) to a matrix. The scalar y can be a non-opaque C scalar corre-
sponding to a built-in type, a void * for user-defined types, or a GrB_Scalar.
It is otherwise identical to GrB_Matrix_apply.

238

10.13 GrB select: select entries based on an index-unary
operator

The GrB_select function is the generic name for 30 specific functions, de-
pending on whether it operates on a matrix or vector, and depending on
the type of the scalar y: (matrix or vector) x (13 built-in types, void * for
user-defined types, and a GrB_Scalar). The generic name appears in the
function prototypes, but the specific function name is used when describing
each variation. When discussing features that apply to both versions, the
simple name GrB_select is used.

10.13.1 GrB Vector select: select entries from a vector

GrB_Info GrB_select // w<mask> = accum (w, op(u))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_IndexUnaryOp op, // operator to apply to the entries

const GrB_Vector u, // first input: vector u

const <type> y, // second input: scalar y

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_select_* applies a GrB_IndexUnaryOp operator to the en-
tries of a vector. If the operator evaluates as true for the entry u(i), it is
copied to the vector t, or not copied if the operator evaluates to false. The
vector t is then written to the result w via the mask/accumulator step. This
operation operates on vectors just as if they were m-by-1 matrices, except
that GraphBLAS never transposes a vector via the descriptor. Refer to the
next section (10.13.2) on GrB_Matrix_select for more details.

239

10.13.2 GrB Matrix select: apply a select operator to a matrix

GrB_Info GrB_select // C<M>=accum(C,op(A))

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_IndexUnaryOp op, // operator to apply to the entries

const GrB_Matrix A, // first input: matrix A

const GrB_Scalar y, // second input: scalar y

const GrB_Descriptor desc // descriptor for C, mask, and A

) ;

GrB_Matrix_select_* applies a GrB_IndexUnaryOp operator to the en-
tries of a matrix. If the operator evaluates as true for the entry A(i,j), it
is copied to the matrix T, or not copied if the operator evaluates to false.
The input matrix A may be transposed first. The entries in A are typecasted
into the xtype of the select operator. The final step is C⟨M⟩ = C⊙T, as
described in Section 2.3.

The matrix T has the same size and type as A (or the transpose of A if
the input is transposed via the descriptor). The entries of T are a subset of
those of A. Each entry A(i,j) of A is passed to the op, as z = f(aij, i, j, y). If
A is transposed first then the operator is applied to entries in the transposed
matrix, A’. If z is returned as true, then the entry is copied into T, unchanged.
If it returns false, the entry does not appear in T.

The action of GrB_select with the built-in index-unary operators is de-
scribed in the table below. The MATLAB analogs are precise for tril and
triu, but shorthand for the other operations. The MATLAB diag function
returns a column with the diagonal, if A is a matrix, whereas the matrix T in
GrB_select always has the same size as A (or its transpose if the GrB_INP0

is set to GrB_TRAN). In the MATLAB analog column, diag is as if it operates
like GrB_select, where T is a matrix.

The following operators may be used on matrices with a user-defined
type: GrB_ROWINDEX_*, GrB_COLINDEX_*, GrB_DIAGINDEX_*, GrB_TRIL,
GrB_TRIU, GrB_DIAG, GrB_OFFIAG, GrB_COLLE, GrB_COLGT, GrB_ROWLE, and
GrB_ROWGT.

For floating-point values, comparisons with NaN always return false. The
GrB_VALUE* operators should not be used with a scalar y that is equal to
NaN. For this case, create a user-defined select operator that performs the
test with the ANSI C isnan function instead.

240

GraphBLAS name MATLAB/Octave description
analog

GrB_ROWINDEX_* z=i+y select A(i,j) if i != -y

GrB_COLINDEX_* z=j+y select A(i,j) if j != -y

GrB_DIAGINDEX_* z=j-(i+y) select A(i,j) if j != i+y

GrB_TRIL z=(j<=(i+y)) select entries on or below the yth diagonal
GrB_TRIU z=(j>=(i+y)) select entries on or above the yth diagonal
GrB_DIAG z=(j==(i+y)) select entries on the yth diagonal
GrB_OFFDIAG z=(j!=(i+y)) select entries not on the yth diagonal
GrB_COLLE z=(j<=y) select entries in columns 0 to y

GrB_COLGT z=(j>y) select entries in columns y+1 and above
GrB_ROWLE z=(i<=y) select entries in rows 0 to y

GrB_ROWGT z=(i>y) select entries in rows y+1 and above
GrB_VALUENE_T z=(aij!=y) select A(i,j) if it is not equal to y

GrB_VALUEEQ_T z=(aij==y) select A(i,j) is it equal to y

GrB_VALUEGT_T z=(aij>y) select A(i,j) is it greater than y

GrB_VALUEGE_T z=(aij>=y) select A(i,j) is it greater than or equal to y

GrB_VALUELT_T z=(aij<y) select A(i,j) is it less than y

GrB_VALUELE_T z=(aij<=y) select A(i,j) is it less than or equal to y

241

10.14 GrB reduce: reduce to a vector or scalar

The generic function name GrB_reduce may be used for all specific functions
discussed in this section. When the details of a specific function are discussed,
the specific name is used for clarity.

SPEC:All methods below use a monoid for the reduction. The Specifica-
tion also allows reductions using an associative and commutative binary
operator. SuiteSparse:GraphBLAS permits the use of a GrB_BinaryOp

instead of a GrB_Monoid, but only if the binary operator is built-in and
corresponds to a known built-in monoid. For example, the binary oper-
ator GrB_PLUS_FP64 can be used, since this is the binary operator of the
built-in GrB_PLUS_MONOID_FP64. For other binary ops (including any
user-defined ones), GrB_NOT_IMPLEMENTED is returned.

10.14.1 GrB Matrix reduce Monoid reduce a matrix to a vector

GrB_Info GrB_reduce // w<mask> = accum (w,reduce(A))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Monoid monoid, // reduce monoid for t=reduce(A)

const GrB_Matrix A, // first input: matrix A

const GrB_Descriptor desc // descriptor for w, mask, and A

) ;

GrB_Matrix_reduce_Monoid reduces a matrix to a column vector using
a monoid, roughly analogous to t = sum (A’) in MATLAB, in the default
case, where t is a column vector. By default, the method reduces across the
rows to obtain a column vector; use GrB_TRAN to reduce down the columns.

The input matrix A may be transposed first. Its entries are then typecast
into the type of the reduce operator or monoid. The reduction is applied
to all entries in A (i,:) to produce the scalar t (i). This is done without
the use of the identity value of the monoid. If the ith row A (i,:) has no
entries, then (i) is not an entry in t and its value is implicit. If A (i,:) has
a single entry, then that is the result t (i) and reduce is not applied at all
for the ith row. Otherwise, multiple entries in row A (i,:) are reduced via
the reduce operator or monoid to obtain a single scalar, the result t (i).

The final step is w⟨m⟩ = w ⊙ t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.

242

10.14.2 GrB Vector reduce <type>: reduce a vector to a scalar

GrB_Info GrB_reduce // c = accum (c, reduce_to_scalar (u))

(

<type> *c, // result scalar

const GrB_BinaryOp accum, // optional accum for c=accum(c,t)

const GrB_Monoid monoid, // monoid to do the reduction

const GrB_Vector u, // vector to reduce

const GrB_Descriptor desc // descriptor (currently unused)

) ;

GrB_Info GrB_reduce // c = accum (c, reduce_to_scalar (u))

(

GrB_Scalar c, // result scalar

const GrB_BinaryOp accum, // optional accum for c=accum(c,t)

const GrB_Monoid monoid, // monoid to do the reduction

const GrB_Vector u, // vector to reduce

const GrB_Descriptor desc // descriptor (currently unused)

) ;

GrB_Vector_reduce_<type> reduces a vector to a scalar, analogous to
t = sum (u) in MATLAB, except that in GraphBLAS any commutative and
associative monoid can be used in the reduction.

The scalar c can be a pointer C type: bool, int8_t, ... float, double,
or void * for a user-defined type, or a GrB_Scalar. If c is a void * pointer
to a user-defined type, the type must be identical to the type of the vector
u. This cannot be checked by GraphBLAS and thus results are undefined if
the types are not the same.

If the vector u has no entries, that identity value of the monoid is copied
into the scalar t (unless c is a GrB_Scalar, in which case t is an empty
GrB_Scalar, with no entry). Otherwise, all of the entries in the vector are
reduced to a single scalar using the monoid.

The descriptor is unused, but it appears in case it is needed in future
versions of the GraphBLAS API. This function has no mask so its accumula-
tor/mask step differs from the other GraphBLAS operations. It does not use
the methods described in Section 2.3, but uses the following method instead.

If accum is NULL, then the scalar t is typecast into the type of c, and c = t

is the final result. Otherwise, the scalar t is typecast into the ytype of the
accum operator, and the value of c (on input) is typecast into the xtype of
the accum operator. Next, the scalar z = accum (c,t) is computed, of the
ztype of the accum operator. Finally, z is typecast into the final result, c.

243

If c is a non-opaque scalar, no error message can be returned by GrB_error.
If c is a GrB_Scalar, then GrB_error(&err,c) can be used to return an error
string, if an error occurs.

244

10.14.3 GrB Matrix reduce <type>: reduce a matrix to a scalar

GrB_Info GrB_reduce // c = accum (c, reduce_to_scalar (A))

(

<type> *c, // result scalar

const GrB_BinaryOp accum, // optional accum for c=accum(c,t)

const GrB_Monoid monoid, // monoid to do the reduction

const GrB_Matrix A, // matrix to reduce

const GrB_Descriptor desc // descriptor (currently unused)

) ;

GrB_Info GrB_reduce // c = accum (c, reduce_to_scalar (A))

(

GrB_Scalar c, // result scalar

const GrB_BinaryOp accum, // optional accum for c=accum(c,t)

const GrB_Monoid monoid, // monoid to do the reduction

const GrB_Matrix A, // matrix to reduce

const GrB_Descriptor desc // descriptor (currently unused)

) ;

GrB_Matrix_reduce_<type> reduces a matrix A to a scalar, roughly anal-
ogous to t = sum (A (:)) in MATLAB. This function is identical to reduc-
ing a vector to a scalar, since the positions of the entries in a matrix or vector
have no effect on the result. Refer to the reduction to scalar described in the
previous Section 10.14.2.

245

10.15 GrB transpose: transpose a matrix

GrB_Info GrB_transpose // C<Mask> = accum (C, A’)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_Matrix A, // first input: matrix A

const GrB_Descriptor desc // descriptor for C, Mask, and A

) ;

GrB_transpose transposes a matrix A, just like the array transpose T = A.’

in MATLAB. The internal result matrix T = A’ (or merely T = A if A is
transposed via the descriptor) has the same type as A. The final step is
C⟨M⟩ = C⊙T, as described in Section 2.3, which typecasts T as needed
and applies the mask and accumulator.

To be consistent with the rest of the GraphBLAS API regarding the de-
scriptor, the input matrix A may be transposed first by setting the GrB_INP0
setting to GrB_TRAN. This results in a double transpose, and thus A is not
transposed is computed.

246

10.16 GrB kronecker: Kronecker product

GrB_Info GrB_kronecker // C<Mask> = accum (C, kron(A,B))

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const <operator> op, // defines ’*’ for T=kron(A,B)

const GrB_Matrix A, // first input: matrix A

const GrB_Matrix B, // second input: matrix B

const GrB_Descriptor desc // descriptor for C, Mask, A, and B

) ;

GrB_kronecker computes the Kronecker product,C⟨M⟩ = C⊙ kron(A,B)
where

kron(A,B) =

 a00 ⊗B . . . a0,n−1 ⊗B
...

. . .
...

am−1,0 ⊗B . . . am−1,n−1 ⊗B

The ⊗ operator is defined by the op parameter. It is applied in an element-
wise fashion (like GrB_eWiseMult), where the pattern of the submatrix aij⊗B
is the same as the pattern of B if aij is an entry in the matrix A, or empty
otherwise. The input matrices A and B can be of any dimension, and both
matrices may be transposed first via the descriptor, desc. Entries in A and
B are typecast into the input types of the op. The matrix T=kron(A,B) has
the same type as the ztype of the binary operator, op. The final step is
C⟨M⟩ = C⊙T, as described in Section 2.3.

The operator opmay be a GrB_BinaryOp, a GrB_Monoid, or a GrB_Semiring.
In the latter case, the multiplicative operator of the semiring is used.

247

11 Printing GraphBLAS objects

The ten different objects handled by SuiteSparse:GraphBLAS are all opaque,
although nearly all of their contents can be extracted via methods such as
GrB_Matrix_extractTuples, GrB_Matrix_extractElement, GxB_Matrix_type,
and so on. The GraphBLAS C API has no mechanism for printing all the
contents of GraphBLAS objects, but this is helpful for debugging. Ten type-
specific methods and two type-generic methods are provided:

GxB_Type_fprint print and check a GrB_Type

GxB_UnaryOp_fprint print and check a GrB_UnaryOp

GxB_BinaryOp_fprint print and check a GrB_BinaryOp

GxB_IndexUnaryOP_fprint print and check a GrB_IndexUnaryOp

GxB_Monoid_fprint print and check a GrB_Monoid

GxB_Semiring_fprint print and check a GrB_Semiring

GxB_Descriptor_fprint print and check a GrB_Descriptor

GxB_Matrix_fprint print and check a GrB_Matrix

GxB_Vector_fprint print and check a GrB_Vector

GxB_Scalar_fprint print and check a GrB_Scalar

GxB_fprint print/check any object to a file
GxB_print print/check any object to stdout

These methods do not modify the status of any object, and thus they
cannot return an error string for use by GrB_error.

If a matrix or vector has not been completed, the pending computations
are guaranteed to not be performed. The reason is simple. It is possible
for a bug in the user application (such as accessing memory outside the
bounds of an array) to mangle the internal content of a GraphBLAS object,
and the GxB_*print methods can be helpful tools to track down this bug.
If GxB_*print attempted to complete any computations prior to printing or
checking the contents of the matrix or vector, then further errors could occur,
including a segfault.

By contrast, GraphBLAS methods and operations that return values into
user-provided arrays or variables might finish pending operations before the
return these values, and this would change their state. Since they do not
change the state of any object, the GxB_*print methods provide a useful
alternative for debugging, and for a quick understanding of what GraphBLAS
is computing while developing a user application.

Each of the methods has a parameter of type GxB_Print_Level that
specifies the amount to print:

248

typedef enum

{

GxB_SILENT = 0, // nothing is printed, just check the object

GxB_SUMMARY = 1, // print a terse summary

GxB_SHORT = 2, // short description, about 30 entries of a matrix

GxB_COMPLETE = 3, // print the entire contents of the object

GxB_SHORT_VERBOSE = 4, // GxB_SHORT but with "%.15g" for doubles

GxB_COMPLETE_VERBOSE = 5 // GxB_COMPLETE but with "%.15g" for doubles

}

GxB_Print_Level ;

The ten type-specific functions include an additional argument, the name
string. The name is printed at the beginning of the display (assuming the
print level is not GxB_SILENT) so that the object can be more easily identified
in the output. For the type-generic methods GxB_fprint and GxB_print,
the name string is the variable name of the object itself.

If the file f is NULL, stdout is used. If name is NULL, it is treated as the
empty string. These are not error conditions.

The methods check their input objects carefully and extensively, even
when pr is equal to GxB_SILENT. The following error codes can be returned:

• GrB_SUCCESS: object is valid

• GrB_UNINITIALIZED_OBJECT: object is not initialized

• GrB_INVALID_OBJECT: object is not valid

• GrB_NULL_POINTER: object is a NULL pointer

• GrB_INVALID_VALUE: fprintf returned an I/O error.

The content of any GraphBLAS object is opaque, and subject to change.
As a result, the exact content and format of what is printed is implementation-
dependent, and will change from version to version of SuiteSparse:GraphBLAS.
Do not attempt to rely on the exact content or format by trying to parse
the resulting output via another program. The intent of these functions is
to produce a report of an object for visual inspection. If the user appli-
cation needs to extract content from a GraphBLAS matrix or vector, use
GrB_*_extractTuples or the import/export methods instead.

GraphBLAS matrices and vectors are zero-based, where indices of an n-
by-n matrix are in the range 0 to n − 1. However, MATLAB, Octave, and
Julia prefer to print their matrices and vectors as one-based. To enable 1-
based printing, use GxB_set (GxB_PRINT_1BASED, true). Printing is done
as zero-based by default.

249

11.1 GxB fprint: Print a GraphBLAS object to a file

GrB_Info GxB_fprint // print and check a GraphBLAS object

(

GrB_<objecttype> object, // object to print and check

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

The GxB_fprint function prints the contents of any of the ten Graph-
BLAS objects to the file f. If f is NULL, the results are printed to stdout.
For example, to print the entire contents of a matrix A to the file f, use
GxB_fprint (A, GxB_COMPLETE, f).

11.2 GxB print: Print a GraphBLAS object to stdout

GrB_Info GxB_print // print and check a GrB_Vector

(

GrB_<objecttype> object, // object to print and check

GxB_Print_Level pr // print level

) ;

GxB_print is the same as GxB_fprint, except that it prints the contents
of the object to stdout instead of a file f. For example, to print the entire
contents of a matrix A, use GxB_print (A, GxB_COMPLETE).

11.3 GxB Type fprint: Print a GrB Type

GrB_Info GxB_Type_fprint // print and check a GrB_Type

(

GrB_Type type, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GxB_Type_fprint (GrB_BOOL, "boolean type", GxB_COMPLETE, f)

prints the contents of the GrB_BOOL object to the file f.

250

11.4 GxB UnaryOp fprint: Print a GrB UnaryOp

GrB_Info GxB_UnaryOp_fprint // print and check a GrB_UnaryOp

(

GrB_UnaryOp unaryop, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GxB_UnaryOp_fprint (GrB_LNOT, "not", GxB_COMPLETE, f)

prints the GrB_LNOT unary operator to the file f.

11.5 GxB BinaryOp fprint: Print a GrB BinaryOp

GrB_Info GxB_BinaryOp_fprint // print and check a GrB_BinaryOp

(

GrB_BinaryOp binaryop, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GxB_BinaryOp_fprint (GrB_PLUS_FP64, "plus", GxB_COMPLETE, f)

prints the GrB_PLUS_FP64 binary operator to the file f.

11.6 GxB IndexUnaryOp fprint: Print a GrB IndexUnaryOp

GrB_Info GxB_IndexUnaryOp_fprint // print and check a GrB_IndexUnaryOp

(

GrB_IndexUnaryOp op, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GrB_IndexUnaryOp_fprint (GrB_TRIL, "tril", GxB_COMPLETE, f)

prints the GrB_TRIL index-unary operator to the file f.

251

11.7 GxB Monoid fprint: Print a GrB Monoid

GrB_Info GxB_Monoid_fprint // print and check a GrB_Monoid

(

GrB_Monoid monoid, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GxB_Monoid_fprint (GxB_PLUS_FP64_MONOID, "plus monoid",

GxB_COMPLETE, f) prints the predefined GxB_PLUS_FP64_MONOID (based on
the binary operator GrB_PLUS_FP64) to the file f.

11.8 GxB Semiring fprint: Print a GrB Semiring

GrB_Info GxB_Semiring_fprint // print and check a GrB_Semiring

(

GrB_Semiring semiring, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GxB_Semiring_fprint (GxB_PLUS_TIMES_FP64, "standard",

GxB_COMPLETE, f) prints the predefined GxB_PLUS_TIMES_FP64 semiring to
the file f.

11.9 GxB Descriptor fprint: Print a GrB Descriptor

GrB_Info GxB_Descriptor_fprint // print and check a GrB_Descriptor

(

GrB_Descriptor descriptor, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GxB_Descriptor_fprint (d, "descriptor", GxB_COMPLETE, f)

prints the descriptor d to the file f.

252

11.10 GxB Matrix fprint: Print a GrB Matrix

GrB_Info GxB_Matrix_fprint // print and check a GrB_Matrix

(

GrB_Matrix A, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GxB_Matrix_fprint (A, "my matrix", GxB_SHORT, f) prints
about 30 entries from the matrix A to the file f.

11.11 GxB Vector fprint: Print a GrB Vector

GrB_Info GxB_Vector_fprint // print and check a GrB_Vector

(

GrB_Vector v, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GxB_Vector_fprint (v, "my vector", GxB_SHORT, f) prints
about 30 entries from the vector v to the file f.

11.12 GxB Scalar fprint: Print a GrB Scalar

GrB_Info GxB_Scalar_fprint // print and check a GrB_Scalar

(

GrB_Scalar s, // object to print and check

const char *name, // name of the object

GxB_Print_Level pr, // print level

FILE *f // file for output

) ;

For example, GxB_Scalar_fprint (s, "my scalar", GxB_SHORT, f) prints
a short description of the scalar s to the file f.

253

11.13 Performance and portability considerations

Even when the print level is GxB_SILENT, these methods extensively check
the contents of the objects passed to them, which can take some time. They
should be considered debugging tools only, not for final use in production.

The return value of the GxB_*print methods can be relied upon, but the
output to the file (or stdout) can change from version to version. If these
methods are eventually added to the GraphBLAS C API Specification, a
conforming implementation might never print anything at all, regardless of
the pr value. This may be essential if the GraphBLAS library is installed in
a dedicated device, with no file output, for example.

Some implementations may wish to print nothing at all if the matrix is not
yet completed, or just an indication that the matrix has pending operations
and cannot be printed, when non-blocking mode is employed. In this case,
use GrB_Matrix_wait, GrB_Vector_wait, or GxB_Scalar_wait to finish all
pending computations first. If a matrix or vector has pending operations,
SuiteSparse:GraphBLAS prints a list of the pending tuples, which are the
entries not yet inserted into the primary data structure. It can also print out
entries that remain in the data structure but are awaiting deletion; these are
called zombies in the output report.

Most of the rest of the report is self-explanatory.

254

12 Matrix and Vector iterators

The GxB_Iterator is an object that allows user applications to iterate over
the entries of a matrix or vector, one entry at a time. Iteration can be done
in a linear manner (analogous to reading a file one entry at a time, from start
to finish), or in a random-access pattern (analogous to the fseek method for
repositioning the access to file to a different position).

Multiple iterators can be used on a single matrix or vector, even in parallel
by multiple user threads. While a matrix or vector is being used with an
iterator, the matrix or vector must not be modified. Doing so will lead to
undefined results.

Since accessing a matrix or vector via an iterator requires many calls to
the iterator methods, they must be very fast. Error checking is skipped,
except for the methods that create, attach, or free an iterator. Methods that
advance an iterator or that access values or indices from a matrix or vector
do not return error conditions. Instead, they have well-defined preconditions
that must be met (and which should be checked by the user application). If
those preconditions are not met, results are undefined.

The iterator methods are implemented in SuiteSparse:GraphBLAS as
both macros (via #define) and as functions of the same name that appear
in the compiled libgraphblas.so library. This requires that the opaque
contents of the iterator object be defined in GraphBLAS.h itself. The user
application must not access these contents directly, but can only do so safely
via the iterator methods provided by SuiteSparse:GraphBLAS.

The iterator object can be used in one of four sets of methods, for four
different access patterns:

1. row iterator: iterates across the rows of a matrix, and then within each
row to access the entries in a given row. Accessing all the entries of a
matrix using a row iterator requires an outer loop (for the rows) and an
inner loop (for the entries in each row). A matrix can be accessed via a
row iterator only if its format (determined by GxB_get (A, GxB_FORMAT, &fmt))
is by-row (that is, GxB_BY_ROW). See Section 8.

2. column iterator: iterates across the columns of a matrix, and then
within each column to access the entries in a given column. Accessing
all the entries of a matrix using a column iterator requires an outer loop
(for the columns) and an inner loop (for the entries in each column).

255

A matrix can be accessed via a column iterator only if its format (de-
termined by GxB_get (A, GxB_FORMAT, &fmt)) is by-column (that is,
GxB_BY_COL). See Section 8.

3. entry iterator: iterates across the entries of a matrix. Accessing all the
entries of a matrix using an entry iterator requires just a single loop.
Any matrix can be accessed with an entry iterator.

4. vector iterator: iterates across the entries of a vector. Accessing all the
entries of a vector using a vector iterator requires just a single loop.
Any vector can be accessed with a vector iterator.

256

12.1 Creating and destroying an iterator

The process for using an iterator starts with the creation of an iterator, with
GxB_Iterator_new. This method creates an iterator object but does not
attach it to any specific matrix or vector:

GxB_Iterator iterator ;

GxB_Iterator_new (&iterator) ;

When finished, the iterator is freed with either of these methods:

GrB_free (&iterator) ;

GxB_Iterator_free (&iterator) ;

12.2 Attaching an iterator to a matrix or vector

This new iterator object can be attached to any matrix or vector, and used
as a row, column, or entry iterator for any matrix, or as an iterator for any
vector. The iterator can be used in any of these methods before it is freed,
but with just one access method at a time.

Once it is created, the iterator must be attached to a matrix or vector.
This process also selects the method by which the iterator will be used
for a matrix. Each of the four GxB_*Iterator_attach methods returns a
GrB_Info result. The descriptor desc in the examples below is used only to
control the number of threads used for the internal call to GrB_wait, if the
matrix A or vector v has pending operations.

1. row iterator:

GrB_Info info = GxB_rowIterator_attach (iterator, A, desc) ;

2. column iterator:

GrB_Info info = GxB_colIterator_attach (iterator, A, desc) ;

3. entry iterator:

GrB_Info info = GxB_Matrix_Iterator_attach (iterator, A, desc) ;

4. vector iterator:

257

GrB_Info info = GxB_Vector_Iterator_attach (iterator, v, desc) ;

On input to GxB_*Iterator_attach, the iterator must already exist,
having been created by GxB_Iterator_new. If the iterator is already at-
tached to a matrix or vector, it is detached and then attached to the given
matrix A or vector v.

The return values for row/column methods are:

• GrB_SUCCESS: if the iterator is successfully attached to the matrix A.

• GrB_NULL_POINTER: if the iterator or A are NULL.

• GrB_INVALID_OBJECT: if the matrix A is invalid.

• GrB_NOT_IMPLEMENTED: if the matrix A cannot be iterated in the re-
quested access method (row iterators require the matrix to be held
by-row, and column iterators require the matrix to be held by-column).

• GrB_OUT_OF_MEMORY: if the method runs out of memory.

The other two methods (entry iterator for matrices, or the vector iterator)
return the same error codes, except that they do not return GrB_NOT_IMPLEMENTED.

12.3 Seeking to an arbitrary position

Attaching the iterator to a matrix or vector does not define a specific
position for the iterator. To use the iterator, a single call to the corre-
sponding seek method is required. These GxB*_Iterator_*seek* methods
may also be used later on to change the position of the iterator arbitrarily.

1. row iterator:

GrB_Info info = GxB_rowIterator_seekRow (iterator, row) ;

GrB_Index kount = GxB_rowIterator_kount (iterator) ;

GrB_Info info = GxB_rowIterator_kseek (iterator, k) ;

These methods move a row iterator to a specific row, defined in one
of two ways: (1) the row index itself (in range 0 to nrows-1), or (2)
by specifying k, which moves the iterator to the kth explicit row (in
the range 0 to kount-1). For sparse, bitmap, or full matrices, these

258

two methods are identical. For hypersparse matrices, not all rows
are present in the data structure; these implicit rows are skipped and
not included in the kount. Implicit rows contain no entries. The
GxB_rowIterator_kountmethod returns the kount of the matrix, where
kount is equal to nrows for sparse, bitmap, and matrices, and kount

≤ nrows for hypersparse matrices. All three methods listed above can
be used for any row iterator.

The GxB_rowIterator_*seek* methods return GrB_SUCCESS if the
iterator has been moved to a row that contains at least one entry,
GrB_NO_VALUE if the row has no entries, or GxB_EXHAUSTED if the row
is out of bounds (row ≥ nrows or if k ≥ kount). None of these return
conditions are errors; they are all informational.

For sparse, bitmap, and full matrices, GxB_rowIterator_seekRow al-
ways moves to the given row. For hypersparse matrices, if the requested
row is implicit, the iterator is moved to the first explicit row following
it. If no such row exists, the iterator is exhausted and GxB_EXHAUSTED

is returned. The GxB_rowIterator_kseekmethod always moves to the
kth explicit row, for any matrix. Use GxB_rowIterator_getRowIndex,
described below, to determine the row index of the current position.

Precondition: on input, the iterator must have been successfully at-
tached to a matrix via a prior call to GxB_rowIterator_attach. Re-
sults are undefined if this precondition is not met.

2. column iterator:

GrB_Info info = GxB_colIterator_seekCol (iterator, col) ;

GrB_Index kount = GxB_colIterator_kount (iterator) ;

GrB_Info info = GxB_colIterator_kseek (iterator, k) ;

These methods move a column iterator to a specific column, defined in
one of two ways: (1) the column index itself (in range 0 to ncols-1), or
(2) by specifying k, which moves the iterator to the kth explicit column
(in the range 0 to kount-1). For sparse, bitmap, or full matrices, these
two methods are identical. For hypersparse matrices, not all columns
are present in the data structure; these implicit columns are skipped
and not included in the kount. Implicit columns contain no entries.
The GxB_colIterator_kount method returns the kount of the matrix,
where kount is equal to ncols for sparse, bitmap, and matrices, and

259

kount ≤ ncols for hypersparse matrices. All three methods listed
above can be used for any column iterator.

The GxB_colIterator_*seek* methods return GrB_SUCCESS if the it-
erator has been moved to a column that contains at least one entry,
GrB_NO_VALUE if the column has no entries, or GxB_EXHAUSTED if the
column is out of bounds (col ≥ ncols or k ≥ kount). None of these
return conditions are errors; they are all informational.

For sparse, bitmap, and full matrices, GxB_colIterator_seekCol al-
ways moves to the given column. For hypersparse matrices, if the re-
quested column is implicit, the iterator is moved to the first explicit col-
umn following it. If no such column exists, the iterator is exhausted and
GxB_EXHAUSTED is returned. The GxB_colIterator_kseek method al-
ways moves to the kth explicit column, for any matrix. Use GxB_colIterator_getColIndex,
described below, to determine the column index of the current position.

Precondition: on input, the iterator must have been successfully at-
tached to a matrix via a prior call to GxB_colIterator_attach. Re-
sults are undefined if this precondition is not met.

3. entry iterator:

GrB_Info info = GxB_Matrix_Iterator_seek (iterator, p) ;

GrB_Index pmax = GxB_Matrix_Iterator_getpmax (iterator) ;

GrB_Index p = GxB_Matrix_Iterator_getp (iterator);

The GxB_Matrix_Iterator_seek method moves the iterator to the
given position p, which is in the range 0 to pmax-1, where the value
of pmax is obtained from GxB_Matrix_Iterator_getpmax. For sparse,
hypersparse, and full matrices, pmax is the same as nvals returned by
GrB_Matrix_nvals. For bitmap matrices, pmax is equal to nrows*ncols.
If p ≥ pmax, the iterator is exhausted and GxB_EXHAUSTED is returned.
Otherwise, GrB_SUCCESS is returned.

All entries in the matrix are given an ordinal position, p. Seeking to
position p will either move the iterator to that particular position,
or to the next higher position containing an entry if there is entry
at position p. The latter case only occurs for bitmap matrices. Use
GxB_Matrix_Iterator_getp to determine the current position of the
iterator.

260

Precondition: on input, the iterator must have been successfully at-
tached to a matrix via a prior call to GxB_Matrix_Iterator_attach.
Results are undefined if this precondition is not met.

4. vector iterator:

GrB_Info info = GxB_Vector_Iterator_seek (iterator, p) ;

GrB_Index pmax = GxB_Vector_Iterator_getpmax (iterator) ;

GrB_Index p = GxB_Vector_Iterator_getp (iterator);

The GxB_Vector_Iterator_seek method is identical to the entry it-
erator of a matrix, but applied to a GrB_Vector instead.

Precondition: on input, the iterator must have been successfully at-
tached to a vector via a prior call to GxB_Vector_Iterator_attach.
Results are undefined if this precondition is not met.

12.4 Advancing to the next position

For best performance, the seek methods described above should be used
with care, since some of them require O(log n) time. The fastest method
for changing the position of the iterator is the corresponding next method,
described below for each iterator:

1. row iterator: To move to the next row.

GrB_Info info = GxB_rowIterator_nextRow (iterator) ;

The row iterator is a 2-dimensional iterator, requiring an outer loop and
an inner loop. The outer loop iterates over the rows of the matrix, us-
ing GxB_rowIterator_nextRow to move to the next row. If the matrix
is hypersparse, the next row is always an explicit row; implicit rows are
skipped. The return conditions are identical to GxB_rowIterator_seekRow.

Preconditions: on input, the row iterator must already be attached to a
matrix via a prior call to GxB_rowIterator_attach, and the iterator
must be at a specific row, via a prior call to GxB_rowIterator_*seek*

or GxB_rowIterator_nextRow. Results are undefined if these condi-
tions are not met.

2. row iterator: To move to the next entry within a row.

261

GrB_Info info = GxB_rowIterator_nextCol (iterator) ;

The row iterator is moved to the next entry in the current row. The
method returns GrB_NO_VALUE if the end of the row is reached. The
iterator does not move to the next row in this case. The method returns
GrB_SUCCESS if the iterator has been moved to a specific entry in the
current row.

Preconditions: the same as GxB_rowIterator_nextRow.

3. column iterator: To move to the next column

GrB_Info info = GxB_colIterator_nextCol (iterator) ;

The column iterator is a 2-dimensional iterator, requiring an outer loop
and an inner loop. The outer loop iterates over the columns of the ma-
trix, using GxB_colIterator_nextCol to move to the next column. If
the matrix is hypersparse, the next column is always an explicit col-
umn; implicit columns are skipped. The return conditions are identical
to GxB_colIterator_seekCol.

Preconditions: on input, the column iterator must already be attached
to a matrix via a prior call to GxB_colIterator_attach, and the
iteratormust be at a specific column, via a prior call to GxB_colIterator_*seek*
or GxB_colIterator_nextCol. Results are undefined if these condi-
tions are not met.

4. column iterator: To move to the next entry within a column.

GrB_Info info = GxB_colIterator_nextRow (iterator) ;

The column iterator is moved to the next entry in the current column.
The method returns GrB_NO_VALUE if the end of the column is reached.
The iterator does not move to the next column in this case. The method
returns GrB_SUCCESS if the iterator has been moved to a specific entry
in the current column.

Preconditions: the same as GxB_colIterator_nextCol.

5. entry iterator: To move to the next entry.

262

GrB_Info info = GxB_Matrix_Iterator_next (iterator) ;

This method moves an iterator to the next entry of a matrix. It returns
GrB_SUCCESS if the iterator is at an entry that exists in the matrix, or
GrB_EXHAUSTED otherwise.

Preconditions: on input, the entry iterator must be already attached to
a matrix via GxB_Matrix_Iterator_attach, and the position of the it-
erator must also have been defined by a prior call to GxB_Matrix_Iterator_seek
or GxB_Matrix_Iterator_next. Results are undefined if these condi-
tions are not met.

6. vector iterator: To move to the next entry.

GrB_Info info = GxB_Vector_Iterator_next (iterator) ;

This method moves an iterator to the next entry of a vector. It returns
GrB_SUCCESS if the iterator is at an entry that exists in the vector, or
GrB_EXHAUSTED otherwise.

Preconditions: on input, the iterator must be already attached to a vec-
tor via GxB_Vector_Iterator_attach, and the position of the iterator
must also have been defined by a prior call to GxB_Vector_Iterator_seek
or GxB_Vector_Iterator_next. Results are undefined if these condi-
tions are not met.

12.5 Accessing the indices of the current entry

Once the iterator is attached to a matrix or vector, and is placed in position
at an entry in the matrix or vector, the indices and value of this entry can
be obtained. The methods for accessing the value of the entry are described
in Section 12.6. Accessing the indices is performed with four different sets of
methods, depending on which access pattern is in use, described below:

1. row iterator: To get the current row index.

GrB_Index i = GxB_rowIterator_getRowIndex (iterator) ;

The method returns nrows(A) if the iterator is exhausted, or the cur-
rent row index i otherwise. There need not be any entry in the current

263

row. Zero is returned if the iterator is attached to the matrix but
GxB_rowIterator_*seek* has not been called, but this does not mean
the iterator is positioned at row zero.

Preconditions: on input, the iterator must be already successfully at-
tached to matrix as a row iterator via GxB_rowIterator_attach. Re-
sults are undefined if this condition is not met.

2. row iterator: To get the current column index.

GrB_Index j = GxB_rowIterator_getColIndex (iterator) ;

Preconditions: on input, the iterator must be already successfully at-
tached to matrix as a row iterator via GxB_rowIterator_attach, and
in addition, the row iterator must be positioned at a valid entry present
in the matrix. That is, the last call to GxB_rowIterator_*seek* or
GxB_rowIterator_*next*, must have returned GrB_SUCCESS. Results
are undefined if these conditions are not met.

3. column iterator: To get the current column index.

GrB_Index j = GxB_colIterator_getColIndex (iterator) ;

The method returns ncols(A) if the iterator is exhausted, or the cur-
rent column index j otherwise. There need not be any entry in the
current column. Zero is returned if the iterator is attached to the ma-
trix but GxB_colIterator_*seek* has not been called, but this does
not mean the iterator is positioned at column zero.

Precondition: on input, the iterator must be already successfully at-
tached to matrix as a column iterator via GxB_colIterator_attach.
Results are undefined if this condition is not met.

4. column iterator: To get the current row index.

GrB_Index i = GxB_colIterator_getRowIndex (iterator) ;

Preconditions: on input, the iterator must be already successfully at-
tached to matrix as a column iterator via GxB_colIterator_attach,
and in addition, the column iterator must be positioned at a valid entry
present in the matrix. That is, the last call to GxB_colIterator_*seek*
or GxB_colIterator_*next*, must have returned GrB_SUCCESS. Re-
sults are undefined if these conditions are not met.

264

5. entry iterator: To get the current row and column index.

GrB_Index i, j ;

GxB_Matrix_Iterator_getIndex (iterator, &i, &j) ;

Returns the row and column index of the current entry.

Preconditions: on input, the entry iterator must be already attached to
a matrix via GxB_Matrix_Iterator_attach, and the position of the it-
erator must also have been defined by a prior call to GxB_Matrix_Iterator_seek
or GxB_Matrix_Iterator_next, with a return value of GrB_SUCCESS.
Results are undefined if these conditions are not met.

6. vector iterator: To get the current index.

GrB_Index i = GxB_Vector_Iterator_getIndex (iterator) ;

Returns the index of the current entry.

Preconditions: on input, the entry iterator must be already attached to
a matrix via GxB_Vector_Iterator_attach, and the position of the it-
erator must also have been defined by a prior call to GxB_Vector_Iterator_seek
or GxB_Vector_Iterator_next, with a return value of GrB_SUCCESS.
Results are undefined if these conditions are not met.

12.6 Accessing the value of the current entry

So far, all methods that create or use an iterator have been split into four
sets of methods, for the row, column, or entry iterators attached to a matrix,
or for a vector iterator. Accessing the value is different. All four iterators
use the same set of methods to access the value of their current entry. These
methods return the value of the current entry at the position determined by
the iterator. The return value can of course be typecasted using standard C
syntax once the value is returned to the caller.

Preconditions: on input, the prior call to GxB_*Iterator_*seek*, or
GxB_*Iterator_*next* must have returned GrB_SUCCESS, indicating that
the iterator is at a valid current entry for either a matrix or vector. No
typecasting is permitted, in the sense that the method name must match the
type of the matrix or vector. Results are undefined if these conditions are
not met.

265

// for built-in types:

bool value = GxB_Iterator_get_BOOL (iterator) ;

int8_t value = GxB_Iterator_get_INT8 (iterator) ;

int16_t value = GxB_Iterator_get_INT16 (iterator) ;

int32_t value = GxB_Iterator_get_INT32 (iterator) ;

int64_t value = GxB_Iterator_get_INT64 (iterator) ;

uint8_t value = GxB_Iterator_get_UINT8 (iterator) ;

uint16_t value = GxB_Iterator_get_UINT16 (iterator) ;

uint32_t value = GxB_Iterator_get_UINT32 (iterator) ;

uint64_t value = GxB_Iterator_get_UINT64 (iterator) ;

float value = GxB_Iterator_get_FP32 (iterator) ;

double value = GxB_Iterator_get_FP64 (iterator) ;

GxB_FC32_t value = GxB_Iterator_get_FC32 (iterator) ;

GxB_FC64_t value = GxB_Iterator_get_FC64 (iterator) ;

// for user-defined types:

<type> value ;

GxB_Iterator_get_UDT (iterator, (void *) &value) ;

266

12.7 Example: row iterator for a matrix

The following example uses a row iterator to access all of the entries in a
matrix A of type GrB_FP64. Note the inner and outer loops. The outer loop
iterates over all rows of the matrix. The inner loop iterates over all entries
in the row i. This access pattern requires the matrix to be held by-row, but
otherwise it works for any matrix. If the matrix is held by-column, then use
the column iterator methods instead.

// create an iterator

GxB_Iterator iterator ;

GxB_Iterator_new (&iterator) ;

// attach it to the matrix A, known to be type GrB_FP64

GrB_Info info = GxB_rowIterator_attach (iterator, A, NULL) ;

if (info < 0) { handle the failure ... }

// seek to A(0,:)

info = GxB_rowIterator_seekRow (iterator, 0) ;

while (info != GxB_EXHAUSTED)

{

// iterate over entries in A(i,:)

GrB_Index i = GxB_rowIterator_getRowIndex (iterator) ;

while (info == GrB_SUCCESS)

{

// get the entry A(i,j)

GrB_Index j = GxB_rowIterator_getColIndex (iterator) ;

double aij = GxB_Iterator_get_FP64 (iterator) ;

// move to the next entry in A(i,:)

info = GxB_rowIterator_nextCol (iterator) ;

}

// move to the next row, A(i+1,:), or a subsequent one if i+1 is implicit

info = GxB_rowIterator_nextRow (iterator) ;

}

GrB_free (&iterator) ;

267

12.8 Example: column iterator for a matrix

The column iterator is analgous to the row iterator.
The following example uses a column iterator to access all of the entries

in a matrix A of type GrB_FP64. The outer loop iterates over all columns of
the matrix. The inner loop iterates over all entries in the column j. This
access pattern requires the matrix to be held by-column, but otherwise it
works for any matrix. If the matrix is held by-row, then use the row iterator
methods instead.

// create an iterator

GxB_Iterator iterator ;

GxB_Iterator_new (&iterator) ;

// attach it to the matrix A, known to be type GrB_FP64

GrB_Info info = GxB_colIterator_attach (iterator, A, NULL) ;

// seek to A(:,0)

info = GxB_colIterator_seekCol (iterator, 0) ;

while (info != GxB_EXHAUSTED)

{

// iterate over entries in A(:,j)

GrB_Index j = GxB_colIterator_getColIndex (iterator) ;

while (info == GrB_SUCCESS)

{

// get the entry A(i,j)

GrB_Index i = GxB_colIterator_getRowIndex (iterator) ;

double aij = GxB_Iterator_get_FP64 (iterator) ;

// move to the next entry in A(:,j)

info = GxB_colIterator_nextRow (iterator) ;

OK (info) ;

}

// move to the next column, A(:,j+1), or a subsequent one if j+1 is implicit

info = GxB_colIterator_nextCol (iterator) ;

}

GrB_free (&iterator) ;

268

12.9 Example: entry iterator for a matrix

The entry iterator allows for a simpler access pattern, with a single loop, but
using a row or column iterator is faster. The method works for any matrix.

// create an iterator

GxB_Iterator iterator ;

GxB_Iterator_new (&iterator) ;

// attach it to the matrix A, known to be type GrB_FP64

GrB_Info info = GxB_Matrix_Iterator_attach (iterator, A, NULL) ;

if (info < 0) { handle the failure ... }

// seek to the first entry

info = GxB_Matrix_Iterator_seek (iterator, 0) ;

while (info != GxB_EXHAUSTED)

{

// get the entry A(i,j)

GrB_Index i, j ;

GxB_Matrix_Iterator_getIndex (iterator, &i, &j) ;

double aij = GxB_Iterator_get_FP64 (iterator) ;

// move to the next entry in A

info = GxB_Matrix_Iterator_next (iterator) ;

}

GrB_free (&iterator) ;

12.10 Example: vector iterator

A vector iterator is used much like an entry iterator for a matrix.

// create an iterator

GxB_Iterator iterator ;

GxB_Iterator_new (&iterator) ;

// attach it to the vector v, known to be type GrB_FP64

GrB_Info info = GxB_Vector_Iterator_attach (iterator, v, NULL) ;

if (info < 0) { handle the failure ... }

// seek to the first entry

info = GxB_Vector_Iterator_seek (iterator, 0) ;

while (info != GxB_EXHAUSTED)

{

// get the entry v(i)

GrB_Index i = GxB_Vector_Iterator_getIndex (iterator) ;

double vi = GxB_Iterator_get_FP64 (iterator) ;

// move to the next entry in v

info = GxB_Vector_Iterator_next (iterator) ;

}

GrB_free (&iterator) ;

269

12.11 Performance

I have benchmarked the performance of the row and column iterators to
compute y=0 and then y+=A*x where y is a dense vector and A is a sparse
matrix, using a single thread. The row and column iterators are very fast,
sometimes only 1% slower than calling GrB_mxv to compute the same thing
(also assuming a single thread), for large problems. For sparse matrices that
average just 1 or 2 entries per row, the row iterator can be about 30% slower
than GrB_mxv, likely because of the slightly higher complexity of moving from
one row to the next using these methods.

It is possible to split up the problem for multiple user threads, each with
its own iterator. Given the low overhead of the row and column iterator for a
single thread, this should be very fast. Care must be taken to ensure a good
load balance. Simply spliting up the rows of a matrix and giving the same
number of rows to each user thread can result in imbalanced work. This is
handled internally in GrB_* methods, but enabling parallelism when using
iterators is the responsibility of the user application.

The entry iterators are easier to use but harder to implement. The meth-
ods must internally fuse both inner and outer loops so that the user applica-
tion can use a single loop. As a result, the computation y+=A*x can be up to
4x slower (about 2x typical) than when using GrB_mxv with a single thread.

To obtain the best performace possible, many of the iterator methods are
implemented as macros in GraphBLAS.h. Using macros is the default, giving
typical C and C++ applications access to the fastest methods possible.

To ensure access to these methods when not using the macros, these
methods are also defined as regular functions that appear in the compiled
libgraphblas.so library with the same name as the macros. Applica-
tions that cannot use the macro versions can #undef the macros after the
#include <GraphBLAS.h> statement, and then they would access the reg-
ular compiled functions in libgraphblas.so. This non-macro approach is
not the default, and the iterator methods may be slightly slower.

270

13 Iso-Valued Matrices and Vectors

The GraphBLAS C API states that the entries in all GrB_Matrix and GrB_Vector
objects have a numerical value, with either a built-in or user-defined type.
Representing an unweighted graph requires a value to be placed on each edge,
typically aij = 1. Adding a structure-only data type would not mix well with
the rest of GraphBLAS, where all operators, monoids, and semirings need to
operate on a value, of some data type. And yet unweighted graphs are very
important in graph algorithms.

The solution is simple, and exploiting it in SuiteSparse:GraphBLAS re-
quires nearly no extensions to the GraphBLAS C API. SuiteSparse:GraphBLAS
can often detect when the user application is creating a matrix or vector
where all entries in the sparsity pattern take on the same numerical value.

For example, C⟨C⟩ = 1, when the mask is structural, sets all entries in
C to the value 1. SuiteSparse:GraphBLAS detects this, and performs this
assignment in O(1) time. It stores a single copy of this “iso-value” and sets
an internal flag in the opaque data structure for C, which states that all
entries in the pattern of C are equal to 1. This saves both time and memory
and allows for the efficient representation of sparse adjacency matrices of
unweighted graphs, yet does not change the C API. To the user application,
it still appears that C has nvals(C) entries, all equal to 1.

Creating and operating on iso-valued matrices (or just iso matrices for
short) is significantly faster than creating matrices with different data values.
A matrix that is iso requires only O(1) space for its numerical values. The
sparse and hypersparse formats require an additional O(n+e) or O(e) integer
space to hold the pattern of an n-by-n matrix C, respectively, and a matrix C

in bitmap format requires O(n2) space for the bitmap. A full matrix requires
no integer storage, so a matrix that is both iso and full requires only O(1)
space, regardless of its dimension.

The sections below a describe the methods that can be used to create iso
matrices and vectors. Let a, b, and c denote the iso values of A, B, and C,
respectively.

13.1 Using iso matrices and vectors in a graph algo-
rithm

There are two primary useful ways to use iso-valued matrices and vectors:
(1) as iso sparse/hypersparse adjacency matrices for unweighted graphs, and

271

(2) as iso full matrices or vectors used with operations that do not need to
access all of the content of the iso full matrix or vector.

In the first use case, simply create a GrB_Matrix with values that are all
the same (those in the sparsity pattern). The GxB_Matrix_build_Scalar

method can be used for this, since it guarantees that the time and work
spent on the numerical part of the array is only O(1). The method still
must spend O(e) or O(e log e) time on the integer arrays that represent the
sparsity pattern, but the reduction in time and work on the numerical part
of the matrix will improve performance.

The use of GxB_Matrix_build_Scalar is optional. Matrices can also be
constructed with GrB* methods. In particular, GrB_Matrix_build_* can be
used. It first builds a non-iso matrix and then checks if all of the values are
the same, after assembling any duplicate entries. This does not save time or
memory for the construction of the matrix itself, but it will lead to savings
in time and memory later on, when the matrix is used.

To ensure a matrix C is iso-valued, simply use GrB_assign to compute
C<C,struct>=1, or assign whatever value of scalar you wish. It is essential
to use a structural mask. Otherwise, it is not clear that all entries in C will
be assigned the same value. The following code takes O(1) time, and it resets
the size of the numerical part of the C matrix to be O(1) in size:

bool scalar = true ;

GrB_Matrix_assign (C, C, NULL, scalar, GrB_ALL, nrows, GrB_ALL, ncols,

GrB_DESC_S) ;

The MATLAB/Octave analog of the code above is C=spones(C).
The second case for where iso matrices and vectors are useful is to use

them with operations that do not necessarily access all of their content. Sup-
pose you have a matrix A of arbitrarily large dimension (say n-by-n where
n=2^60, of type GrB_FP64). A matrix this large can be represented by Suite-
Sparse:GraphBLAS, but only in a hypersparse form.

Now, suppose you wish to compute the maximum value in each row,
reducing the matrix to a vector. This can be done with GrB_reduce:

GrB_Vector_new (&v, GrB_FP64, n) ;

GrB_reduce (v, NULL, GrB_MAX_MONOID_FP64, A, NULL) ;

It can also be done with GrB_mxv, by creating an iso full vector x. The
creation of x takes O(1) time and memory, and the GrB_mxv computation
takes O(e) time (with modest assumptions; if A needs to be transposed the
time would be O(e log e)).

272

GrB_Vector_new (&v, GrB_FP64, n) ;

GrB_Vector_new (&x, GrB_FP64, n) ;

GrB_assign (x, NULL, NULL, 1, GrB_ALL, n, NULL) ;

GrB_mxv (v, NULL, NULL, GrB_MAX_FIRST_SEMIRING_FP64, A, x, NULL) ;

The above computations are identical in SuiteSparse:GraphBLAS. Inter-
nally, GrB_reduce creates x and calls GrB_mxv. Using GrB_mxm directly gives
the user application additional flexibility in creating new computations that
exploit the multiplicative operator in the semiring. GrB_reduce always uses
the FIRST operator in its semiring, but any other binary operator can be
used instead when using GrB_mxv.

Below is a method for computing the argmax of each row of a square ma-
trix A of dimension n and type GrB_FP64. The vector x contains the maximum
value in each row, and the vector p contains the zero-based column index of
the maximum value in each row. If there are duplicate maximum values in
each row, any one of them is selected arbitrarily using the ANY monoid. To
select the minimum column index of the duplicate maximum values, use the
GxB_MIN_SECONDI_INT64 semiring instead (this will be slightly slower than
the ANY monoid if there are many duplicates).

To compute the argmax of each column, use the GrB_DESC_T0 descriptor
in GrB_mxv, and compute G=A*D instead of G=D*A with GrB_mxm. See the
GrB.argmin and GrB.argmax functions in the MATLAB/Octave interface
for details.

GrB_Vector_new (&x, GrB_FP64, n) ;

GrB_Vector_new (&y, GrB_FP64, n) ;

GrB_Vector_new (&p, GrB_INT64, n) ;

// y (:) = 1, an iso full vector

GrB_assign (y, NULL, NULL, 1, GrB_ALL, n, NULL) ;

// x = max (A) where x(i) = max (A (i,:))

GrB_mxv (x, NULL, NULL, GrB_MAX_FIRST_SEMIRING_FP64, A, y, NULL) ;

// D = diag (x)

GrB_Matrix_diag (&D, x, 0) ;

// G = D*A using the ANY_EQ semiring

GrB_Matrix_new (&G, GrB_BOOL, n, n) ;

GrB_mxm (G, NULL, NULL, GxB_ANY_EQ_FP64, D, A, NULL) ;

// drop explicit zeros from G

GrB_select (G, NULL, NULL, GrB_VALUENE_BOOL, G, 0, NULL) ;

// find the position of any max entry in each row: p = G*y,

// so that p(i) = j if x(i) = A(i,j) = max (A (i,:))

GrB_mxv (p, NULL, NULL, GxB_ANY_SECONDI_INT64, G, y, NULL) ;

273

No part of the above code takes Ω(n) time or memory. The data type of
the iso full vector y can be anything, and its iso value can be anything. It
is operated on by the FIRST operator in the first GrB_mxv, and the SECONDI
positional operator in the second GrB_mxv, and both operators are oblivious
to the content and even the type of y. The semirings simply note that y is
a full vector and compute their result according, by accessing the matrices
only (A and G, respectively).

For floating-point values, NaN values are ignored, and treated as if they
were not present in the input matrix, unless all entries in a given row are
equal to NaN. In that case, if all entries in A(i,:) are equal to NaN, then x(i)

is NaN and the entry p(i) is not present.

13.2 Iso matrices from matrix multiplication

Consider GrB_mxm, GrB_mxv, and GrB_vxm, and let C=A*B, where no mask is
present, or C<M>=A*B where C is initially empty. If C is not initially empty,
then these rules apply to a temporary matrix T<M>=A*B, which is initially
empty and is then assigned to C via C<M>=T.

The iso property of C is determined with the following rules, where the
first rule that fits defines the property and value of C.

• If the semiring includes a positional multiplicative operator (GxB_FIRSTI,
GrB_SECONDI, and related operators), then C is never iso.

• Define an iso-monoid as a built-in monoid with the property that re-
ducing a set of n > 1 identical values x returns the same value x.
These are the MIN MAX LOR LAND BOR BAND and ANY monoids. All other
monoids are not iso monoids: PLUS, TIMES, LXNOR, EQ, BXOR, BXNOR, and
all user-defined monoids. Currently, there is no mechanism for telling
SuiteSparse:GraphBLAS that a user-defined monoid is an iso-monoid.

• If the multiplicative op is PAIR (same as ONEB), and the monoid is an
iso-monoid, or the EQ or TIMES monoids, then C is iso with a value of
1.

• If both B and the monoid are iso, and the multiplicative op is SECOND
or ANY, then C is iso with a value of b.

• If both A and the monoid are iso, and the multiplicative op is FIRST or
ANY, then C is iso with a value of a.

274

• If A, B, and the monoid are all iso, then C is iso, with a value c = f(a, b),
where f is any multiplicative op (including user-defined, which assumes
that a user-defined f has no side effects).

• If A and B are both iso and full (all entries present, regardless of the
format of the matrices), then C is iso and full. Its iso value is computed
in O(log(n)) time, via a reduction of n copies of the value t = f(a, b)
to a scalar. The storage required to represent C is just O(1), regardless
of its dimension. Technically, the PLUS monoid could be computed as
c = nt in O(1) time, but the log-time reduction works for any monoid,
including user-defined ones.

• Otherwise, C is not iso.

13.3 Iso matrices from eWiseMult and kronecker

Consider GrB_eWiseMult. Let C=A.*B, or C<M>=A.*B with any mask and
where C is initially empty, where .* denotes a binary operator f(x, y) applied
with eWiseMult. These rules also apply to GrB_kronecker.

• If the operator is positional (GxB_FIRSTI and related) then C is not iso.

• If the op is PAIR (same as ONEB), then C is iso with c = 1.

• If B is iso and the op is SECOND or ANY, then C is iso with c = b.

• If A is iso and the op is FIRST or ANY, then C is iso with c = a.

• If both A and B are iso, then C is iso with c = f(a, b).

• Otherwise, C is not iso.

13.4 Iso matrices from eWiseAdd

Consider GrB_eWiseAdd, and also the accumulator phase of C<M>+=T when
an accumulator operator is present. Let C=A+B, or C<M>=A+B with any mask
and where C is initially empty.

• If both A and B are full (all entries present), then the rules for eWiseMult
in Section 13.3 are used instead.

275

• If the operator is positional (GxB_FIRSTI and related) then C is not iso.

• If a and b differ (when typecasted to the type of C), then C is not iso.

• If c = f(a, b) = a = b holds, then C is iso, where f(a, b) is the operator.

• Otherwise, C is not iso.

13.5 Iso matrices from eWiseUnion

GxB_eWiseUnion is very similar to GrB_eWiseAdd, but the rules for when the
result is iso-valued are very different.

• If both A and B are full (all entries present), then the rules for eWiseMult
in Section 13.3 are used instead.

• If the operator is positional (GxB_FIRSTI and related) then C is not iso.

• If the op is PAIR (same as ONEB), then C is iso with c = 1.

• If B is iso and the op is SECOND or ANY, and the input scalar beta

matches b (the iso-value of B), then C is iso with c = b.

• If A is iso and the op is FIRST or ANY, and the input scalar alpha

matches a (the iso-value of A), then C is iso with c = a.

• If both A and B are iso, and f(a, b) = f(α, b) = f(a, β), then C is iso
with c = f(a, b).

• Otherwise, C is not iso.

13.6 Reducing iso matrices to a scalar or vector

If A is iso with e entries, reducing it to a scalar takes O(log(e)) time, regardless
of the monoid used to reduce the matrix to a scalar. Reducing A to a vector
c is the same as the matrix-vector multiply c=A*x or c=A’*x, depending on
the descriptor, where x is an iso full vector (refer to Section 13.2).

276

13.7 Iso matrices from apply

Let C=f(A) denote the application of a unary operator f, and let C=f(A,s)
and C=f(s,A) denote the application of a binary operator with s a scalar.

• If the operator is positional (GxB_POSITION*, GxB_FIRSTI, and related)
then C is not iso.

• If the operator is ONE or PAIR (same as ONEB), then C iso with c = 1.

• If the operator is FIRST or ANY with C=f(s,A), then C iso with c = s.

• If the operator is SECOND or ANY with C=f(A,s), then C iso with c = s.

• If A is iso then C is iso, with the following value of c:

– If the op is IDENTITY, then c = a.

– If the op is unary with C=f(A), then c = f(a).

– If the op is binary with C=f(s,A), then c = f(s, a).

– If the op is binary with C=f(A,s), then c = f(a, s).

• Otherwise, C is not iso.

13.8 Iso matrices from select

Let C=select(A) denote the application of a GrB_IndexUnaryOp operator in
GrB_select.

• If A is iso, then C is iso with c = a.

• If the operator is any GrB_VALUE*_BOOL operator, with no typecasting,
and the test is true only for a single boolean value, then C is iso.

• If the operator is GrB_VALUEEQ_*, with no typecasting, then C is iso,
with c = t where t is the value of the scalar y.

• If the operator is GrB_VALUELE_UINT*, with no typecasting, and the
scalar y is zero, then C is iso with c = 0.

• Otherwise, C is not iso.

277

13.9 Iso matrices from assign and subassign

These rules are somewhat complex. Consider the assignment C<M>(I,J)=...
with GrB_assign. Internally, this assignment is converted into C(I,J)<M(I,J)>=...
and then GxB_subassign is used. Thus, all of the rules below assume the
form C(I,J)<M>=... where M has the same size as the submatrix C(I,J).

13.9.1 Assignment with no accumulator operator

If no accumulator operator is present, the following rules are used.

• For matrix assignment, A must be iso. For scalar assignment, the single
scalar is implicitly expanded into an iso matrix A of the right size. If
these rules do not hold, C is not iso.

• If A is not iso, or if C is not iso on input, then C is not iso on output.

• If C is iso or empty on input, and A is iso (or scalar assignment is begin
performed) and the iso values c and a (or the scalar s) match, then the
following forms of assignment result in an iso matrix C on output:

– C(I,J) = scalar

– C(I,J)<M> = scalar

– C(I,J)<!M> = scalar

– C(I,J)<M,replace> = scalar

– C(I,J)<!M,replace> = scalar

– C(I,J) = A

– C(I,J)<M> = A

– C(I,J)<!M> = A

– C(I,J)<M,replace> = A

– C(I,J)<!M,replace> = A

• For these forms of assignment, C is always iso on output, regardless of
its iso property on input:

– C = scalar

278

– C<M,struct>=scalar; C empty on input.

– C<C,struct>=scalar

• For these forms of assignment, C is always iso on output if A is iso:

– C = A

– C<M,str> = A; C empty on input.

13.9.2 Assignment with an accumulator operator

If an accumulator operator is present, the following rules are used. Posi-
tional operators (GxB_FIRSTI and related) cannot be used as accumulator
operators, so these rules do not consider that case.

• For matrix assignment, A must be iso. For scalar assignment, the single
scalar is implicitly expanded into an iso matrix A of the right size. If
these rules do not hold, C is not iso.

• For these forms of assignment C is iso if C is empty on input, or if
c = c+ a for the where a is the iso value of A or the value of the scalar
for scalar assignment.

– C(I,J) += scalar

– C(I,J)<M> += scalar

– C(I,J)<!M> += scalar

– C(I,J)<M,replace> += scalar

– C(I,J)<!M,replace> += scalar

– C(I,J)<M,replace> += A

– C(I,J)<!M,replace> += A

– C(I,J) += A

– C(I,J)<M> += A

– C(I,J)<!M> += A

– C += A

279

13.10 Iso matrices from build methods

GxB_Matrix_build_Scalar and GxB_Vector_build_Scalar always construct
an iso matrix/vector.

GrB_Matrix_build and GrB_Vector_build can also construct iso matri-
ces and vectors. A non-iso matrix/vector is constructed first, and then the
entries are checked to see if they are all equal. The resulting iso-valued ma-
trix/vector will be efficient to use and will use less memory than a non-iso ma-
trix/vector. However, constructing an iso matrix/vector with GrB_Matrix_build
and GrB_Vector_build will take more time and memory than constructing
the matrix/vector with GxB_Matrix_build_Scalar or GxB_Vector_build_Scalar.

13.11 Iso matrices from other methods

• For GrB_Matrix_dup and GrB_Vector_dup, the output matrix/vector
has the same iso property as the input matrix/vector.

• GrB_*_setElement_* preserves the iso property of the matrix/vector
it modifies, if the input scalar is equal to the iso value of the ma-
trix/vector. If the matrix or vector has no entries, the first call to
setElement makes it iso. This allows a sequence of setElement calls
with the same scalar value to create an entire iso matrix or vector, if
starting from an empty matrix or vector.

• GxB_Matrix_concat constructs an iso matrix as its result if all input
tiles are either empty or iso.

• GxB_Matrix_split constructs its output tiles as iso if its input matrix
is iso.

• GxB_Matrix_diag and GrB_Matrix_diag construct an iso matrix if its
input vector is iso.

• GxB_Vector_diag constructs an iso vector if its input matrix is iso.

• GrB_*extract constructs an iso matrix/vector if its input matrix/vector
is iso.

• GrB_transpose constructs an iso matrix if its input is iso.

• The GxB_import/export/pack/unpack methods preserve the iso prop-
erty of their matrices/vectors.

280

13.12 Iso matrices not exploited

There are many cases where an matrix may have the iso property but it is not
detected by SuiteSparse:GraphBLAS. For example, if A is non-iso, C=A(I,J)
from GrB_extract may be iso, if all entries in the extracted submatrix have
the same value. Future versions of SuiteSparse:GraphBLAS may extend the
rules described in this section to detect these cases.

281

14 Performance

Getting the best performance out of an algorithm that relies on GraphBLAS
can depend on many factors. This section describes some of the possible
performance pitfalls you can hit when using SuiteSparse:GraphBLAS, and
how to avoid them (or at least know when you’ve encountered them).

14.1 The burble is your friend

Turn on the burble with GxB_set (GxB_BURBLE, true). You will get a
single line of output from each (significant) call to GraphBLAS. The burble
output can help you detect when you are likely using sub-optimal methods,
as described in the next sections.

14.2 Data types and typecasting

Avoid mixing data types and relying on typecasting as much as possible.
SuiteSparse:GraphBLAS has a set of highly-tuned kernels for each data
type, and many operators and semirings, but there are too many combi-
nations to generate ahead of time. If typecasting is required, or if Suite-
Sparse:GraphBLAS does not have a kernel for the specific operator or semir-
ing, the word generic will appear in the burble. The generic methods rely
on function pointers for each operation on every scalar, so they are slow. A
future JIT will avoid this problem.

The only time that typecasting is fast is when computing C=A via GrB_assign
or GrB_apply, where the data types of C and A can differ. In this case, one of
132 = 169 kernels are called, each of which performs the specific typecasting
requested, without relying on function pointers.

14.3 Matrix data structures: sparse, hypersparse, bitmap,
or full

SuiteSparse:GraphBLAS tries to automatically determine the best data struc-
ture for your matrices and vectors, selecting between sparse, hypersparse,
bitmap, and full formats. By default, all 4 formats can be used. A matrix
typically starts out hypersparse when it is created by GrB_Matrix_new, and
then changes during its lifetime, possibly taking on all four different formats

282

at different times. This can be modified via GxB_set. For example, this line
of code:

GxB_set (A, GxB_SPARSITY_CONTROL, GxB_SPARSE + GxB_BITMAP) ;

tells SuiteSparse that the matrix A can be held in either sparse or bitmap
format (at its discretion), but not hypersparse or full. The bitmap format
will be used if the matrix has enough entries, or sparse otherwise. Sometimes
this selection is best controlled by the user algorithm, so a single format can
be requested:

GxB_set (A, GxB_SPARSITY_CONTROL, GxB_SPARSE) ;

This ensures that SuiteSparse will primarily use the sparse format. This is
still just a hint, however. The data structure is opaque and SuiteSparse is free
to choose otherwise. In particular, if you insist on using only the GxB_FULL

format, then that format is used when all entries are present. However, if the
matrix is not actually full with all entries present, then the bitmap format
is used instead. The full format does not preserve the sparsity structure in
this case. Any GraphBLAS library must preserve the proper structure, per
the C Specification. This is critical in a graph algorithm, since an edge (i, j)
of weight zero, say, is not the same as no edge (i, j) at all.

14.4 Matrix formats: by row or by column, or using
the transpose of a matrix

By default, SuiteSparse uses a simple rule: all matrices are held by row,
unless the consist of a single column, in which case they are held by col-
umn. All vectors are treated as if they are n-by-1 matrices with a single
column. Changing formats from row-oriented to column-oriented can have
significant performance implications, so SuiteSparse never tries to outguess
the application. It just uses this simple rule.

However, there are cases where changing the format can greatly improve
performance. There are two ways to handle this, which in the end are equiva-
lent in the SuiteSparse internals. You can change the format (row to column
oriented, or visa versa), or work with the explicit transpose of a matrix in
the same storage orientation.

There are cases where SuiteSparse must explicitly transpose an input
matrix, or the output matrix, in order to perform a computation. For ex-
ample, if all matrices are held in row-oriented fashion, SuiteSparse does not

283

have a method for computing C=A’*B, where A is transposed. Thus, Suite-
Sparse either computes a temporary transpose of its input matrix AT=A and
then C=AT*B, or it swaps the computations, performing C=(B’*A)’, which
requires an explicit transpose of BT=B, and a transpose of the final result to
obtain C.

These temporary transposes are costly to compute, taking time and mem-
ory. They are not kept, but are discarded when the method returns to the
user application. If you see the term transpose in the burble output, and
if you need to perform this computation many times, try constructing your
own explicit transpose, say AT=A’, via GrB_transpose, or create a copy of
A but held in another orientation via GxB_set. For example, assuming the
default matrix format is by-row, and that A is m-by-n of type GrB_FP32:

// method 1: AT = A’

GrB_Matrix_new (AT, GrB_FP32, n, m) ;

GrB_transpose (AT, NULL, NULL, A, NULL) ;

// method 2: A2 = A but held by column instead of by row

// note: doing the set before the assign is faster than the reverse

GrB_Matrix_new (A2, GrB_FP32, m, n) ;

GxB_set (A2, GxB_FORMAT, GxB_BY_COL) ;

GrB_assign (A2, NULL, NULL, A, GrB_ALL, m, GrB_ALL, n, NULL) ;

Internally, the data structure for AT and A2 are nearly identical (that
is, the tranpose of A held in row format is the same as A held in column
format). Using either of them in subsequent calls to GraphBLAS will allow
SuiteSparse to avoid computing an explicit transpose. The two matrices AT
and A2 do differ in one very significant way: their dimensions are different,
and they behave differement mathematically. Computing C=A’*B using these
matrices would differ:

// method 1: C=A’*B using AT

GrB_mxm (C, NULL, NULL, semiring, AT, B, NULL) ;

// method 2: C=A’*B using A2

GrB_mxm (C, NULL, NULL, semiring, A2, B, GrB_DESC_T0) ;

The first method computes C=AT*B. The second method computes C=A2’*B,
but the result of both computations is the same, and internally the same ker-
nels will be used.

284

14.5 Push/pull optimization

Closely related to the discussion above on when to use a matrix or its trans-
pose is the exploitation of “push/pull” direction optimization. In linear al-
gebraic terms, this is simply deciding whether to multiply by the matrix or
its transpose. Examples can be see in the BFS and Betweeness-Centrality
methods of LAGraph. Here is the BFS kernel:

int sparsity = do_push ? GxB_SPARSE : GxB_BITMAP ;

GxB_set (q, GxB_SPARSITY_CONTROL, sparsity) ;

if (do_push)

{

// q’{!pi} = q’*A

GrB_vxm (q, pi, NULL, semiring, q, A, GrB_DESC_RSC) ;

}

else

{

// q{!pi} = AT*q

GrB_mxv (q, pi, NULL, semiring, AT, q, GrB_DESC_RSC) ;

}

The call to GxB_set is optional, since SuiteSparse will likely already de-
termine that a bitmap format will work best when the frontier q has many
entries, which is also when the pull step is fastest. The push step relies on a
sparse vector times sparse matrix method originally due to Gustavson. The
output is computed as a set union of all rows A(i,:) where q(i) is present
on input. This set union is very fast when q is very sparse. The pull step
relies on a sequence of dot product computations, one per possible entry in
the output q, and it uses the matrix AT which is a row-oriented copy of the
explicit transpose of the adjacency matrix A.

Mathematically, the results of the two methods are identical, but inter-
nally, the data format of the input matrices is very different (using A held
by row, or AT held by row which is the same as a copy of A that is held by
column), and the algorithms used are very different.

14.6 Computing with full matrices and vectors

Sometimes the best approach to getting the highest performance is to use
dense vectors, and occassionaly dense matrices are tall-and-thin or short-
and-fat. Packages such as Julia, Octave, or MATLAB, when dealing with the
conventional plus-times semirings, assume that multiplying a sparse matrix
A times a dense vector x, y=A*x, will result in a dense vector y. This is
not always the case, however. GraphBLAS must always return a result that

285

respects the sparsity structure of the output matrix or vector. If the ith row
of A has no entries then y(i) must not appear as an entry in the vector y,
so it cannot be held as a full vector. As a result, the following computation
can be slower than it could be:

GrB_mxv (y, NULL, NULL, semiring, A, x, NULL) ;

SuiteSparse must do extra work to compute the sparsity of this vector y,
but if this is not needed, and y can be padded with zeros (or the identity
value of the monoid, to be precise), a faster method can be used, by relying
on the accumulator. Instead of computing y=A*x, set all entries of y to zero
first, and then compute y+=A*x where the accumulator operator and type
matches the monoid of the semiring. SuiteSparse has special kernels for this
case; you can see them in the burble as F+=S*F for example.

// y = 0

GrB_assign (y, NULL, NULL, 0, GrB_ALL, n, NULL) ;

// y += A*x

GrB_mxv (y, NULL, GrB_PLUS_FP32, GrB_PLUS_TIMES_SEMIRING_FP32, A, x, NULL) ;

You can see this computation in the LAGraph PageRank method, where
all entries of r are set to the teleport scalar first.

for (iters = 0 ; iters < itermax && rdiff > tol ; iters++)

{

// swap t and r ; now t is the old score

GrB_Vector temp = t ; t = r ; r = temp ;

// w = t ./ d

GrB_eWiseMult (w, NULL, NULL, GrB_DIV_FP32, t, d, NULL) ;

// r = teleport

GrB_assign (r, NULL, NULL, teleport, GrB_ALL, n, NULL) ;

// r += A’*w

GrB_mxv (r, NULL, GrB_PLUS_FP32, LAGraph_plus_second_fp32, AT, w, NULL) ;

// t -= r

GrB_assign (t, NULL, GrB_MINUS_FP32, r, GrB_ALL, n, NULL) ;

// t = abs (t)

GrB_apply (t, NULL, NULL, GrB_ABS_FP32, t, NULL) ;

// rdiff = sum (t)

GrB_reduce (&rdiff, NULL, GrB_PLUS_MONOID_FP32, t, NULL) ;

}

SuiteSparse exploits the iso-valued property of the scalar-to-vector assign-
ment of y=0, or r=teleport, and performs these assignments in O(1) time
and space. Because the r vector start out as full on input to GrB_mxv, and
because there is an accumulatr with no mask, no entries in the input/output
vector r will be deleted, even if A has empty rows. The call to GrB_mxv ex-
ploits this, and is able to use a fast kernel for this computation. SuiteSparse
does not need to compute the sparsity pattern of the vector r.

286

14.7 Iso-valued matrices and vectors

Using iso-valued matrices and vectors is always faster than using matrices
and vectors whose entries can have different values. Iso-valued matrices are
very important in graph algorithms. For example, an unweighted graph is
best represented as an iso-valued sparse matrix, and unweighted graphs are
very common. The burble output, or the GxB_print, GxB_Matrix_iso, or
GxB_Vector_iso can all be used to report whether or not your matrix or
vector is iso-valued.

Sometimes a matrix or vector may have values that are all the same, but
SuiteSparse hasn’t detected this. If this occurs, you can force a matrix or
vector to be iso-valued by assigning a single scalar to all its entries.

// C<s(C)> = 3.14159

GrB_assign (C, C, NULL, 3.14159, GrB_ALL, m, GrB_ALL, n, GrB_DESC_S) ;

The matrix C is used as its own mask. The descriptor is essential here,
telling the mask to be used in a structural sense, without regard to the values
of the entries in the mask. This assignment sets all entries that already exist
in C to be equal to a single value, 3.14159. The sparsity structure of C does
not change. Of course, any scalar can be used; the value 1 is common for
unweighted graphs. SuiteSparse:GraphBLAS performs the above assignment
in O(1) time and space, independent of the dimension of C or the number of
entries in contains.

14.8 User-defined types and operators

These are currently slow. Once SuiteSparse:GraphBLAS employs a JIT ac-
celerator, these data types and operators will be just as fast as built-in types
and operators. This work is in progress for the GPU, in CUDA, in collabo-
ration with Joe Eaton and Corey Nolet.

14.9 About NUMA systems

I have tested this package extensively on multicore single-socket systems, but
have not yet optimized it for multi-socket systems with a NUMA architecture.
That will be done in a future release. If you publish benchmarks with this
package, please state the SuiteSparse:GraphBLAS version, and a caveat if
appropriate. If you see significant performance issues when going from a

287

single-socket to multi-socket system, I would like to hear from you so I can
look into it.

288

15 Examples

Several examples of how to use GraphBLAS are listed below. They all ap-
pear in the Demo folder of SuiteSparse:GraphBLAS. Programs in the Demo

folder are meant as simple examples; for the fastest methods, see LAgraph
(Section 15.1).

1. creating a random matrix

2. creating a finite-element matrix

3. reading a matrix from a file

4. complex numbers as a user-defined type

5. matrix import/export

Additional examples appear in the newly created LAGraph project, cur-
rently in progress.

15.1 LAGraph

The LAGraph project is a community-wide effort to create graph algorithms
based on GraphBLAS (any implementation of the API, not just SuiteSparse:
GraphBLAS). Some of the algorithms and utilities in LAGraph are listed
in the table below. Many additional algorithms are planned. Refer to
https://github.com/GraphBLAS/LAGraph for a current list of algorithms. All
functions in the Demo/ folder in SuiteSparse:GraphBLAS will eventually be
translated into algorithms or utilities for LAGraph, and then removed from
GraphBLAS/Demo.

To use LAGraph with SuiteSparse:GraphBLAS, place the two folders
LAGraph and GraphBLAS in the same parent directory. This allows the cmake
script in LAGraph to find the copy of GraphBLAS. Alternatively, the Graph-
BLAS source could be placed anywhere, as long as sudo make install is
performed.

15.2 Creating a random matrix

The random_matrix function in the Demo folder generates a random matrix
with a specified dimension and number of entries, either symmetric or un-
symmetric, and with or without self-edges (diagonal entries in the matrix).

289

https://github.com/GraphBLAS/LAGraph

It relies on simple_rand* functions in the Demo folder to provide a portable
random number generator that creates the same sequence on any computer
and operating system.

random_matrix can use one of two methods: GrB_Matrix_setElement

and GrB_Matrix_build. The former method is very simple to use:

GrB_Matrix_new (&A, GrB_FP64, nrows, ncols) ;

for (int64_t k = 0 ; k < ntuples ; k++)

{

GrB_Index i = simple_rand_i () % nrows ;

GrB_Index j = simple_rand_i () % ncols ;

if (no_self_edges && (i == j)) continue ;

double x = simple_rand_x () ;

// A (i,j) = x

GrB_Matrix_setElement (A, x, i, j) ;

if (make_symmetric)

{

// A (j,i) = x

GrB_Matrix_setElement (A, x, j, i) ;

}

}

The above code can generate a million-by-million sparse double matrix
with 200 million entries in 66 seconds (6 seconds of which is the time to
generate the random i, j, and x), including the time to finish all pending
computations. The user application does not need to create a list of all
the tuples, nor does it need to know how many entries will appear in the
matrix. It just starts from an empty matrix and adds them one at a time in
arbitrary order. GraphBLAS handles the rest. This method is not feasible
in MATLAB.

The next method uses GrB_Matrix_build. It is more complex to use
than setElement since it requires the user application to allocate and fill the
tuple lists, and it requires knowledge of how many entries will appear in the
matrix, or at least a good upper bound, before the matrix is constructed. It
is slightly faster, creating the same matrix in 60 seconds, 51 seconds of which
is spent in GrB_Matrix_build.

GrB_Index *I, *J ;

double *X ;

int64_t s = ((make_symmetric) ? 2 : 1) * nedges + 1 ;

I = malloc (s * sizeof (GrB_Index)) ;

J = malloc (s * sizeof (GrB_Index)) ;

290

X = malloc (s * sizeof (double)) ;

if (I == NULL || J == NULL || X == NULL)

{

// out of memory

if (I != NULL) free (I) ;

if (J != NULL) free (J) ;

if (X != NULL) free (X) ;

return (GrB_OUT_OF_MEMORY) ;

}

int64_t ntuples = 0 ;

for (int64_t k = 0 ; k < nedges ; k++)

{

GrB_Index i = simple_rand_i () % nrows ;

GrB_Index j = simple_rand_i () % ncols ;

if (no_self_edges && (i == j)) continue ;

double x = simple_rand_x () ;

// A (i,j) = x

I [ntuples] = i ;

J [ntuples] = j ;

X [ntuples] = x ;

ntuples++ ;

if (make_symmetric)

{

// A (j,i) = x

I [ntuples] = j ;

J [ntuples] = i ;

X [ntuples] = x ;

ntuples++ ;

}

}

GrB_Matrix_build (A, I, J, X, ntuples, GrB_SECOND_FP64) ;

The equivalent sprandsym function in MATLAB takes 150 seconds, but
sprandsym uses a much higher-quality random number generator to cre-
ate the tuples [I,J,X]. Considering just the time for sparse(I,J,X,n,n)

in sprandsym (equivalent to GrB_Matrix_build), the time is 70 seconds.
That is, each of these three methods, setElement and build in Suite-
Sparse:GraphBLAS, and sparse in MATLAB, are equally fast.

15.3 Creating a finite-element matrix

Suppose a finite-element matrix is being constructed, with k=40,000 finite-
element matrices, each of size 8-by-8. The following operations (in pseudo-

291

MATLAB notation) are very efficient in SuiteSparse:GraphBLAS.

A = sparse (m,n) ; % create an empty n-by-n sparse GraphBLAS matrix

for i = 1:k

construct a 8-by-8 sparse or dense finite-element F

I and J define where the matrix F is to be added:

I = a list of 8 row indices

J = a list of 8 column indices

% using GrB_assign, with the ’plus’ accum operator:

A (I,J) = A (I,J) + F

end

If this were done in MATLAB or in GraphBLAS with blocking mode
enabled, the computations would be extremely slow. A far better approach
is to construct a list of tuples [I,J,X] and to use sparse(I,J,X,n,n). This
is identical to creating the same list of tuples in GraphBLAS and using the
GrB_Matrix_build, which is equally fast.

In SuiteSparse:GraphBLAS, the performance of both methods is essen-
tially identical, and roughly as fast as sparse in MATLAB. Inside Suite-
Sparse:GraphBLAS, GrB_assign is doing the same thing. When performing
A(I,J)=A(I,J)+F, if it finds that it cannot quickly insert an update into the
A matrix, it creates a list of pending tuples to be assembled later on. When
the matrix is ready for use in a subsequent GraphBLAS operation (one that
normally cannot use a matrix with pending computations), the tuples are
assembled all at once via GrB_Matrix_build.

GraphBLAS operations on other matrices have no effect on when the
pending updates of a matrix are completed. Thus, any GraphBLAS method
or operation can be used to construct the F matrix in the example above,
without affecting when the pending updates to A are completed.

The MATLAB wathen.m script is part of Higham’s gallery of matrices
[Hig02]. It creates a finite-element matrix with random coefficients for a 2D
mesh of size nx-by-ny, a matrix formulation by Wathen [Wat87]. The pat-
tern of the matrix is fixed; just the values are randomized. The GraphBLAS
equivalent can use either GrB_Matrix_build, or GrB_assign. Both meth-
ods have good performance. The GrB_Matrix_build version below is about
15% to 20% faster than the MATLAB wathen.m function, regardless of the
problem size. It uses the identical algorithm as wathen.m.

int64_t ntriplets = nx*ny*64 ;

I = malloc (ntriplets * sizeof (int64_t)) ;

292

J = malloc (ntriplets * sizeof (int64_t)) ;

X = malloc (ntriplets * sizeof (double)) ;

if (I == NULL || J == NULL || X == NULL)

{

FREE_ALL ;

return (GrB_OUT_OF_MEMORY) ;

}

ntriplets = 0 ;

for (int j = 1 ; j <= ny ; j++)

{

for (int i = 1 ; i <= nx ; i++)

{

nn [0] = 3*j*nx + 2*i + 2*j + 1 ;

nn [1] = nn [0] - 1 ;

nn [2] = nn [1] - 1 ;

nn [3] = (3*j-1)*nx + 2*j + i - 1 ;

nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;

nn [5] = nn [4] + 1 ;

nn [6] = nn [5] + 1 ;

nn [7] = nn [3] + 1 ;

for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;

for (int krow = 0 ; krow < 8 ; krow++)

{

for (int kcol = 0 ; kcol < 8 ; kcol++)

{

I [ntriplets] = nn [krow] ;

J [ntriplets] = nn [kcol] ;

X [ntriplets] = em (krow,kcol) ;

ntriplets++ ;

}

}

}

}

// A = sparse (I,J,X,n,n) ;

GrB_Matrix_build (A, I, J, X, ntriplets, GrB_PLUS_FP64) ;

The GrB_assign version has the advantage of not requiring the user appli-
cation to construct the tuple list, and is almost as fast as using GrB_Matrix_build.
The code is more elegant than either the MATLAB wathen.m function or its
GraphBLAS equivalent above. Its performance is comparable with the other
two methods, but slightly slower, being about 5% slower than the MATLAB
wathen, and 20% slower than the GraphBLAS method above.

GrB_Matrix_new (&F, GrB_FP64, 8, 8) ;

293

for (int j = 1 ; j <= ny ; j++)

{

for (int i = 1 ; i <= nx ; i++)

{

nn [0] = 3*j*nx + 2*i + 2*j + 1 ;

nn [1] = nn [0] - 1 ;

nn [2] = nn [1] - 1 ;

nn [3] = (3*j-1)*nx + 2*j + i - 1 ;

nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;

nn [5] = nn [4] + 1 ;

nn [6] = nn [5] + 1 ;

nn [7] = nn [3] + 1 ;

for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;

for (int krow = 0 ; krow < 8 ; krow++)

{

for (int kcol = 0 ; kcol < 8 ; kcol++)

{

// F (krow,kcol) = em (krow, kcol)

GrB_Matrix_setElement (F, em (krow,kcol), krow, kcol) ;

}

}

// A (nn,nn) += F

GrB_assign (A, NULL, GrB_PLUS_FP64, F, nn, 8, nn, 8, NULL) ;

}

}

Since there is no Mask, and since GrB_REPLACE is not used, the call to
GrB_assign in the example above is identical to GxB_subassign. Either one
can be used, and their performance would be identical.

Refer to the wathen.c function in the Demo folder, which uses GraphBLAS
to implement the two methods above, and two additional ones.

15.4 Reading a matrix from a file

See also LAGraph_mmread and LAGraph_mmwrite, which can read and write
any matrix in Matrix Market format, and LAGraph_binread and LAGraph_binwrite,
which read/write a matrix from a binary file. The binary file I/O functions
are much faster than the read_matrix function described here, and also
much faster than LAGraph_mmread and LAGraph_mmwrite.

The read_matrix function in the Demo reads in a triplet matrix from
a file, one line per entry, and then uses GrB_Matrix_build to create the
matrix. It creates a second copy with GrB_Matrix_setElement, just to test

294

that method and compare the run times. Section 15.2 has already compared
build versus setElement.

The function can return the matrix as-is, which may be rectangular or
unsymmetric. If an input parameter is set to make the matrix symmetric,
read_matrix computes A=(A+A’)/2 if A is square (turning all directed edges
into undirected ones). If A is rectangular, it creates a bipartite graph, which
is the same as the augmented matrix, A = [0 A ; A’ 0]. If C is an n-by-n
matrix, then C=(C+C’)/2 can be computed as follows in GraphBLAS, (the
scale2 function divides an entry by 2):

GrB_Descriptor_new (&dt2) ;

GrB_Descriptor_set (dt2, GrB_INP1, GrB_TRAN) ;

GrB_Matrix_new (&A, GrB_FP64, n, n) ;

GrB_eWiseAdd (A, NULL, NULL, GrB_PLUS_FP64, C, C, dt2) ; // A=C+C’

GrB_free (&C) ;

GrB_Matrix_new (&C, GrB_FP64, n, n) ;

GrB_UnaryOp_new (&scale2_op, scale2, GrB_FP64, GrB_FP64) ;

GrB_apply (C, NULL, NULL, scale2_op, A, NULL) ; // C=A/2

GrB_free (&A) ;

GrB_free (&scale2_op) ;

This is of course not nearly as elegant as A=(A+A’)/2 in MATLAB, but
with minor changes it can work on any type and use any built-in operators in-
stead of PLUS, or it can use any user-defined operators and types. The above
code in SuiteSparse:GraphBLAS takes 0.60 seconds for the Freescale2 ma-
trix, slightly slower than MATLAB (0.55 seconds).

Constructing the augmented system is more complicated using the Graph-
BLAS C API Specification since it does not yet have a simple way of speci-
fying a range of row and column indices, as in A(10:20,30:50) in MATLAB
(GxB_RANGE is a SuiteSparse:GraphBLAS extension that is not in the Speci-
fication). Using the C API in the Specification, the application must instead
build a list of indices first, I=[10, 11 ... 20].

Thus, to compute the MATLAB equivalent of A = [0 A ; A’ 0], index
lists I and J must first be constructed:

int64_t n = nrows + ncols ;

I = malloc (nrows * sizeof (int64_t)) ;

J = malloc (ncols * sizeof (int64_t)) ;

// I = 0:nrows-1

// J = nrows:n-1

if (I == NULL || J == NULL)

{

295

if (I != NULL) free (I) ;

if (J != NULL) free (J) ;

return (GrB_OUT_OF_MEMORY) ;

}

for (int64_t k = 0 ; k < nrows ; k++) I [k] = k ;

for (int64_t k = 0 ; k < ncols ; k++) J [k] = k + nrows ;

Once the index lists are generated, however, the resulting GraphBLAS
operations are fairly straightforward, computing A=[0 C ; C’ 0].

GrB_Descriptor_new (&dt1) ;

GrB_Descriptor_set (dt1, GrB_INP0, GrB_TRAN) ;

GrB_Matrix_new (&A, GrB_FP64, n, n) ;

// A (nrows:n-1, 0:nrows-1) = C’

GrB_assign (A, NULL, NULL, C, J, ncols, I, nrows, dt1) ;

// A (0:nrows-1, nrows:n-1) = C

GrB_assign (A, NULL, NULL, C, I, nrows, J, ncols, NULL) ;

This takes 1.38 seconds for the Freescale2 matrix, almost as fast as
A=[sparse(m,m) C ; C’ sparse(n,n)] in MATLAB (1.25 seconds). The
GxB_Matrix_concat function would be faster still (this example was written
prior to GxB_Matrix_concat was added to SuiteSparse:GraphBLAS).

Both calls to GrB_assign use no accumulator, so the second one causes
the partial matrix A=[0 0 ; C’ 0] to be built first, followed by the final
build of A=[0 C ; C’ 0]. A better method, but not an obvious one, is to
use the GrB_FIRST_FP64 accumulator for both assignments. An accumulator
enables SuiteSparse:GraphBLAS to determine that that entries created by
the first assignment cannot be deleted by the second, and thus it need not
force completion of the pending updates prior to the second assignment.

SuiteSparse:GraphBLAS also adds a GxB_RANGE mechanism that mimics
the MATLAB colon notation. This speeds up the method and simplifies the
code the user needs to write to compute A=[0 C ; C’ 0]:

int64_t n = nrows + ncols ;

GrB_Matrix_new (&A, xtype, n, n) ;

GrB_Index I_range [3], J_range [3] ;

I_range [GxB_BEGIN] = 0 ;

I_range [GxB_END] = nrows-1 ;

J_range [GxB_BEGIN] = nrows ;

J_range [GxB_END] = ncols+nrows-1 ;

// A (nrows:n-1, 0:nrows-1) += C’

GrB_assign (A, NULL, GrB_FIRST_FP64, // or NULL,

C, J_range, GxB_RANGE, I_range, GxB_RANGE, dt1) ;

296

// A (0:nrows-1, nrows:n-1) += C

GrB_assign (A, NULL, GrB_FIRST_FP64, // or NULL,

C, I_range, GxB_RANGE, J_range, GxB_RANGE, NULL) ;

Any operator will suffice because it is not actually applied. An operator is
only applied to the set intersection, and the two assignments do not overlap.
If an accum operator is used, only the final matrix is built, and the time in
GraphBLAS drops slightly to 1.25 seconds. This is a very small improvement
because in this particular case, SuiteSparse:GraphBLAS is able to detect that
no sorting is required for the first build, and the second one is a simple con-
catenation. In general, however, allowing GraphBLAS to postpone pending
updates can lead to significant reductions in run time.

15.5 User-defined types and operators

The Demo folder contains two working examples of user-defined types, first
discussed in Section 6.1.1: double complex, and a user-defined typedef

called wildtype with a struct containing a string and a 4-by-4 floatmatrix.
Double Complex: Prior to v3.3, GraphBLAS did not have a native

complex type. It now appears as the GxB_FC64 predefined type, but a com-
plex type can also easily added as a user-defined type. The Complex_init

function in the usercomplex.c file in the Demo folder creates the Complex

type based on the ANSI C11 double complex type. It creates a full suite
of operators that correspond to every built-in GraphBLAS operator, both
binary and unary. In addition, it creates the operators listed in the following
table, where D is double and C is Complex.

name types MATLAB/Octave description
equivalent

Complex_complex D ×D → C z=complex(x,y) complex from real and imag.
Complex_conj C → C z=conj(x) complex conjugate
Complex_real C → D z=real(x) real part
Complex_imag C → D z=imag(x) imaginary part
Complex_angle C → D z=angle(x) phase angle
Complex_complex_real D → C z=complex(x,0) real to complex real
Complex_complex_imag D → C z=complex(0,x) real to complex imag.

The Complex_init function creates two monoids (Complex_add_monoid
and Complex_times_monoid) and a semiring Complex_plus_times that cor-
responds to the conventional linear algebra for complex matrices. The in-
clude file usercomplex.h in the Demo folder is available so that this user-

297

defined Complex type can easily be imported into any other user application.
When the user application is done, the Complex_finalize function frees the
Complex type and its operators, monoids, and semiring. NOTE: the Complex
type is not supported in this Demo in Microsoft Visual Studio.

Struct-based: In addition, the wildtype.c program creates a user-
defined typedef of a struct containing a dense 4-by-4 float matrix, and a
64-character string. It constructs an additive monoid that adds two 4-by-4
dense matrices, and a multiplier operator that multiplies two 4-by-4 matrices.
Each of these 4-by-4 matrices is treated by GraphBLAS as a “scalar” value,
and they can be manipulated in the same way any other GraphBLAS type can
be manipulated. The purpose of this type is illustrate the endless possibilities
of user-defined types and their use in GraphBLAS.

15.6 User applications using OpenMP or other thread-
ing models

An example demo program (openmp_demo) is included that illustrates how a
multi-threaded user application can use GraphBLAS.

The results from the openmp_demo program may appear out of order.
This is by design, simply to show that the user application is running in
parallel. The output of each thread should be the same. In particular, each
thread generates an intentional error, and later on prints it with GrB_error.
It will print its own error, not an error from another thread. When all the
threads finish, the leader thread prints out each matrix generated by each
thread.

GraphBLAS can also be combined with user applications that rely on
MPI, the Intel TBB threading library, POSIX pthreads, Microsoft Windows
threads, or any other threading library. If GraphBLAS itself is compiled
with OpenMP, it will be thread safe when combined with other libraries. See
Section 8.1 for thread-safety issues that can occur if GraphBLAS is compiled
without OpenMP.

298

16 Compiling and Installing SuiteSparse:GraphBLAS

16.1 On Linux and Mac

GraphBLAS makes extensive use of features in the ANSI C11 standard, and
thus a C compiler supporting this version of the C standard is required to
use all features of GraphBLAS.

Any version of the Intel icx compiler is highly recommended.
In most cases, the Intel icx and the Intel OpenMP library (libiomp) result
in the best performance. The gcc and the GNU OpenMP library (libgomp)
generally gives good performance: typically on par with icx but in a few
special cases significantly slower. The Intel icc compiler is not recommended;
it results in poor performance for #pragma omp atomic.

On the Mac (OS X), clang 8.0.0 in Xcode version 8.2.1 is sufficient,
although earlier versions of Xcode may work as well. For the GNU gcc

compiler, version 4.9 or later is required, but best performance is obtained
in 9.3 or later. Version 3.13 or later of cmake is required; version 3.17 is
preferred.

If you are using a pre-C11 ANSI C compiler, such as Microsoft Visual
Studio, then the _Generic keyword is not available. SuiteSparse:GraphBLAS
will still compile, but you will not have access to polymorphic functions such
as GrB_assign. You will need to use the non-polymorphic functions instead.

To compile SuiteSparse:GraphBLAS, simply type make in the main Graph-
BLAS folder, which compiles the library with your default system compiler.
This compile GraphBLAS using 8 threads, which will take a long time. To
compile with more threads (40, for this example), use:

make JOBS=40

To use a non-default compiler with 4 threads:

make CC=icx CXX=icpx JOBS=4

GraphBLAS v6.1.3 and later use the cpu_features package by Google
to determine if the target architecture supports AVX2 and/or AVX512F
(on Intel x86 64 architectures only). In case you have build issues with
this package, you can compile without it (and then AVX2 and AVX512F
acceleration will not be used):

make CMAKE_OPTIONS=’-DGBNCPUFEAT=1’

299

Without cpu_features, it is still possible to enable AVX2 and AVX512F.
Rather than relying on run-time tests, you can use these flags to enable both
AVX2 and AVX512F, without relying on cpu_features:

make CMAKE_OPTIONS=’-DGBNCPUFEAT=1 -DGBAVX2=1 -DGBAVX512F=1’

To use multiple options, separate them by a space. For example, to
build just the library but not cpu_features, and to enable AVX2 but not
AVX512F, and use 40 threads to compile:

make CMAKE_OPTIONS=’-DGBNCPUFEAT=1 -DGBAVX2=1’ JOBS=40

After compiling the library, you can compile the demos with make all

and then make demos while in the top-level GraphBLAS folder.
If cmake or make fail, it might be that your default compiler does not

support ANSI C11. Try another compiler. For example, try one of these
options. Go into the build directory and type one of these:

CC=gcc cmake ..

CC=gcc-11 cmake ..

CC=xlc cmake ..

CC=icx cmake ..

You can also do the following in the top-level GraphBLAS folder instead:

CC=gcc make

CC=gcc-11 make

CC=xlc make

CC=icx make

For faster compilation, you can specify a parallel make. For example, to
use 32 parallel jobs and the gcc compiler, do the following:

JOBS=32 CC=gcc make

If you do not have cmake, refer to Section 16.8.

300

16.2 More details on the Mac

SuiteSparse:GraphBLAS requires OpenMP for its internal parallelism, but
OpenMP is not on the Mac by default.

If you have the Intel compiler and OpenMP library, then use the following
in the top-level GraphBLAS folder. OpenMP will be found automatically:

make CC=icc CXX=icpc

The following instructions work on MacOS Big Sur (v11.3) and MacOS
Monterey (12.1), using cmake 3.13 or later:

First install Xcode (see https://developer.apple.com/xcode), and then in-
stall the command line tools for Xcode:

cd /Applications/Utilities

xcode-select |install

Next, install brew, at https://brew.sh.
If not used for the MATLAB mexFunction interface, a recent update of

the Apple Clang compiler now works with libomp and the GraphBLAS/CMakeLists.txt.
To use the MATLAB mexFunction, however, you must use gcc (gcc-11 is
recommended). Using Clang will result in a segfault when you attempt to
use the @GrB interface in MATLAB.

With MacOS Big Sur install gcc-11, cmake, and OpenMP, and then
compile GraphBLAS. cmake 3.13 or later is required. For the MATLAB
mexFunctions, you must use gcc-11; the libomp from brew will allow you
to compile the mexFunctions but they will not work properly.

brew install cmake

brew install libomp

brew install gcc

cd GraphBLAS/GraphBLAS

make CC=gcc-11 CXX=g++-11 JOBS=8

The above instructions assume MATLAB, using libgraphblas_matlab.dylib,
since MATLAB includes its own copy of SuiteSparse:GraphBLAS (libmwgraphblas.dylib)
but at version v3.3.3, not the latest version.

Next, compile the MATLAB mexFunctions. I had to edit this file first:

/Users/davis/Library/Application Support/MathWorks/MATLAB/R2021a/mex_C_maci64.xml

301

https://developer.apple.com/xcode
https://brew.sh

where you would replace davis with your MacOS user name. Change
lines 4 and 18, where both cases of MACOSX_DEPLOYMENT_TARGET=10.14 must
become MACOSX_DEPLOYMENT_TARGET=11.3. Otherwise, MATLAB complains
that the libgraphblas_matlab.dylib was built for 11.3 but linked for 10.14.

Next, type the following in the MATLAB Command Window:

cd GraphBLAS/GraphBLAS/@GrB/private

gbmake

Then add the paths to your startup.m file (usually in ~/Documents/MATLAB/startup.m).
For example, my path is:

addpath (’/Users/davis/GraphBLAS/GraphBLAS’) ;

addpath (’/Users/davis/GraphBLAS/GraphBLAS/build’) ;

Finally, you can run the tests to see if your installation works:

cd ../../test

gbtest

16.3 On the ARM64 architecture

You may encounter a compiler error on the ARM64 architecture when using
the gcc compiler, versions 6.x and earlier. This error was encountered on
ARM64 Linux with gcc 6.x:

‘In function GrB_Matrix_apply_BinaryOp1st_Scalar.part.1’:

GrB_Matrix_apply.c:(.text+0x210): relocation truncated to

fit: R_AARCH64_CALL26 against ‘.text.unlikely’

For the ARM64, this error is silenced with gcc v7.x and later, at least on
Linux.

16.4 On Microsoft Windows

SuiteSparse:GraphBLAS is now ported to Microsoft Visual Studio. However,
that compiler is not ANSI C11 compliant. As a result, GraphBLAS on
Windows will have a few minor limitations.

302

• The MS Visual Studio compiler does not support the _Generic key-
word, required for the polymorphic GraphBLAS functions. So for ex-
ample, you will need to use GrB_Matrix_free instead of just GrB_free.

• Variable-length arrays are not supported, so user-defined types are lim-
ited to 128 bytes in size. This can be changed by editing GB_VLA_MAXSIZE
in Source/GB_compiler.h, and recompiling SuiteSparse:GraphBLAS.

• AVX acceleration is not enabled.

If you use a recent gcc or icx compiler on Windows other than the
Microsoft Compiler (cl), these limitations can be avoided.

The following instructions apply to Windows 10, CMake 3.16, and Visual
Studio 2019, but may work for earlier versions.

1. Install CMake 3.16 or later, if not already installed. See https://cmake.
org/ for details.

2. Install Microsoft Visual Studio, if not already installed. See https:
//visualstudio.microsoft.com/ for details. Version 2019 is preferred, but
earlier versions may also work.

3. Open a terminal window and type this in the SuiteSparse/GraphBLAS/build
folder:

cmake ..

4. The cmake command generates many files in SuiteSparse/GraphBLAS/build,
and the file graphblas.sln in particular. Open the generated graphblas.sln
file in Visual Studio.

5. Optionally: right-click graphblas in the left panel (Solution Explorer)
and select properties; then navigate to Configuration Properties,
C/C++, General and change the parameter Multiprocessor Compilation

to Yes (/MP). Click OK. This will significantly speed up the compilation
of GraphBLAS.

6. Select the Buildmenu item at the top of the window and select Build Solution.
This should create a folder called Release and place the compiled
graphblas.dll, graphblas.lib, and graphblas.exp files there. Please
be patient; some files may take a while to compile and sometimes may
appear to be stalled. Just wait.

303

https://cmake.org/
https://cmake.org/
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/

7. Add the GraphBLAS/build/Release folder to the Windows System
path:

• Open the Start Menu and type Control Panel.

• Select the Control Panel app.

• When the app opens, select System and Security.

• Under System and Security, select System.

• From the top left side of the System window, select Advanced System Settings.
You may have to authenticate at this step.

• The Systems Properties window should appear with the Advanced
tab selected; select Environment Variables.

• The Environment Variables window displays 2 sections, one for
User variables and the other for System variables. Under the
Systems variable section, scroll to and select Path, then select
Edit. A editor window appears allowing to add, modify, delete or
re-order the parts of the Path.

• Add the full path of the GraphBLAS\build\Release folder (typi-
cally starting with C:\Users\you\..., where you is your Windows
username) to the Path.

• If the above steps do not work, you can instead copy the graphblas.*
files from GraphBLAS\build\Release into any existing folder listed
in your Path.

8. The GraphBLAS/Include/GraphBLAS.h file must be included in user
applications via #include "GraphBLAS.h". This is already done for
you in the MATLAB/Octave interface discussed in the next section.

16.5 Compiling the MATLAB/Octave interface (for
Octave)

I’m working closely with John Eaton (the primary developer of Octave) to
enable SuiteSparse:GraphBLAS to work with Octave, and thus Octave 7 is
required. The latest version of Octave is 6.4.0, so you need to download and
install the development version of Octave 7 to use SuiteSparse:GraphBLAS
within Octave.

304

First, compile the SuiteSparse:GraphBLAS dynamic library (libgraphblas.so
for Linux, libgraphblas.dylib for Mac, or graphblas.dll for Windows),
as described in the prior two subsections.

On the Mac, SuiteSparse:GraphBLAS v6.1.4 and Octave 7 will work Ap-
ple Silicon (thanks to Gábor Szárnyas). Here are his instructions (repli-
cated from https://github.com/DrTimothyAldenDavis/GraphBLAS/issues/90);
do these in your Mac Terminal:

• Building Octave. Grab the brew formula:

wget https://raw.githubusercontent.com/Homebrew/homebrew-core/master/Formula/octave.rb

• Edit octave.rb.

Add "disable-docs" to args (or ensure that you have a working tex-
info installation). Edit Mercurial (hg) repository: switch from the
default branch (containing code for Octave v8.0) to stable (v7.0).
Then do:

brew install --head ./octave.rb

• Building the tests (gbmake). Grab the OpenMP binaries as described
at https://mac.r-project.org/openmp/

curl -O https://mac.r-project.org/openmp/openmp-13.0.0-darwin21-Release.tar.gz

sudo tar fvxz openmp-13.0.0-darwin21-Release.tar.gz -C /

• Do the following to edit gbmake.m:

sed -i.bkp ’s/-fopenmp/-Xclang -fopenmp/g’ @GrB/private/gbmake.m

Once Octave 7 and SuiteSparse:GraphBLAS are compiled and installed,
and gbmake.m is modified if needed for Octave 7 on the Mac, (or if using
MATLAB) continue with the following instructions:

1. In the MATLAB/Octave command window:

305

https://github.com/DrTimothyAldenDavis/GraphBLAS/issues/90
https://mac.r-project.org/openmp/

cd GraphBLAS/GraphBLAS/@GrB/private

gbmake

2. Follow the remaining instructions in the GraphBLAS/GraphBLAS/README.md
file, to revise your MATLAB/Octave path and startup.m file.

3. As a quick test, try the command GrB(1), which creates and displays
a 1-by-1 GraphBLAS matrix. For a longer test, do the following:

cd GraphBLAS/GraphBLAS/test

gbtest

4. In Windows, if the tests fail with an error stating that the mex file is
invalid because the module could not be found, it means that MAT-
LAB could not find the compiled graphblas.lib, *.dll or *.exp files
in the build/Release folder. This can happen if your Windows Sys-
tem path is not set properly, or if Windows is not recognizing the
GraphBLAS/build/Release folder (see Section 16.4) Or, you might not
have permission to change your Windows System path. In this case,
do the following in the MATLAB Command Window:

cd GraphBLAS/build/Release

GrB(1)

After this step, the GraphBLAS library will be loaded into MATLAB.
You may need to add the above lines in your Documents/MATLAB/startup.m
file, so that they are done each time MATLAB starts. You will also
need to do this after clear all or clear mex, since those MATLAB
commands remove all loaded libraries from MATLAB.

You might also get an error “the specified procedure cannot be found.”
This can occur if you have upgraded your GraphBLAS library from
a prior version, and some of the compiled files @GrB/private/*.mex*
are stale. Try the command gbmake all in the MATLAB Command
Window, which forces all of the MATLAB interface to be recompiled.
Or, try deleting all @GrB/private/*.mex* files and running gbmake

again.

306

5. On Windows, the casin, casinf, casinh, and casinhf functions pro-
vided by Microsoft do not return the correct imaginary part. As a re-
sult, GxB_ASIN_FC32, GxB_ASIN_FC64 GxB_ASINH_FC32, and GxB_ASINH_FC64
do not work properly onWindows. This affects the GrB/asin, GrB/acsc,
GrB/asinh, and GrB/acsch, functions in the MATLAB interface. See
the MATLAB tests bypassed in gbtest76.m for details, in the
GraphBLAS/GraphBLAS/test folder.

16.6 Compiling the MATLAB/Octave interface (for
MATLAB)

MATLAB R2021a includes its own copy of SuiteSparse:GraphBLAS v3.3.3,
as the file libmwgraphblas.so, which is used for the built-in C=A*B when
both A and B are sparse (see the Release Notes of MATLAB R2021a, which
discusses the performance gained in MATLAB by using GraphBLAS).

That’s great news for the impact of GraphBLAS on MATLAB itself, and
the domain of high performance computing in general, but it causes a linking
problem when using this MATLAB interface for GraphBLAS. The two use
different versions of the same library, and a segfault arises if the MATLAB
interface for v4.x (or later) tries to link with the older GraphBLAS v3.3.3
library. Likewise, the built-in C=A*B causes a segfault if it tries to use the
newer GraphBLAS v4.x (or later) libraries.

To resolve this issue, a second GraphBLAS library must be compiled,
libgraphblas_matlab, where the internal symbols are all renamed so they
do not conflict with the libmwgraphblas library. Then both libraries can
co-exist in the same instance of MATLAB.

To do this, go to the GraphBLAS/GraphBLAS folder, containing the MAT-
LAB interface. That folder contains a CMakeLists.txt file to compile the
libgraphblas_matlab library. See the instructions for how to compile the
C library libgraphblas, and repeat them but using the folder
SuiteSparse/GraphBLAS/GraphBLAS/build instead of
SuiteSparse/GraphBLAS/build.

This will compile the renamed SuiteSparse:GraphBLAS dynamic library
(libgraphblas_matlab.so for Linux, libgraphblas_matlab.dylib for Mac,
or graphblas_matlab.dll for Windows). These can be placed in the same
system-wide location as the standard libgraphblas libraries, such as /usr/local/lib
for Linux. The two pairs of libraries share the identical GraphBLAS.h include

307

file.
If you do not have system privileges to install the GraphBLAS compiled li-

braries via sudo make install, then augment your LD_LIBRARY_PATH (Linux)
or DYLD_LIBRARY_PATH (MacOS) to point to your personal copy SuiteSparse/GraphBLAS/GraphBLAS/build
folder. See https://www.mathworks.com/help/matlab/matlab external/building-on-unix-operating-systems.
html for details.

Next, compile the MATLAB interface as described in Section 16.5. For
any instructions in that Section that refer to the GraphBLAS/build folder
(Linux and Mac) or GraphBLAS/build/Release (Windows), use
GraphBLAS/GraphBLAS/build (Linux and Mac) or
GraphBLAS/GraphBLAS/build/Release (Windows) instead.

The resulting functions for your @GrB object will now work just fine; no
other changes are needed.

16.7 Setting the C flags and using CMake

Next, do make in the build directory. If this still fails, see the CMakeLists.txt
file. You can edit that file to pass compiler-specific options to your compiler.
Locate this section in the CMakeLists.txt file. Use the set command in
cmake, as in the example below, to set the compiler flags you need.

check which compiler is being used. If you need to make

compiler-specific modifications, here is the place to do it.

if ("${CMAKE_C_COMPILER_ID}" STREQUAL "GNU")

cmake 2.8 workaround: gcc needs to be told to do ANSI C11.

cmake 3.0 doesn’t have this problem.

set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -std=c11 -lm ")

...

elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "Intel")

...

elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "Clang")

...

elseif ("${CMAKE_C_COMPILER_ID}" STREQUAL "MSVC")

...

endif ()

To compile SuiteSparse:GraphBLAS without running the demos, use
make library in the top-level directory, or make in the build directory.

308

https://www.mathworks.com/help/matlab/matlab_external/building-on-unix-operating-systems.html
https://www.mathworks.com/help/matlab/matlab_external/building-on-unix-operating-systems.html

Several compile-time options can be selected by editing the Source/GB.h
file, but these are meant only for code development of SuiteSparse:GraphBLAS
itself, not for end-users of SuiteSparse:GraphBLAS.

16.8 Using a plain makefile

The GraphBLAS/alternative directory contains a simple Makefile that can
be used to compile SuiteSparse:GraphBLAS. This is a useful option if you
do not have the required version of cmake. This Makefile can even compile
the entire library with a C++ compiler, which cannot be done with CMake.

This alternative Makefile does not build the libgraphblas_matlab.so
library required for MATLAB (see Section 16.6). This can be done by revising
the Makefile, however: add the -DGBRENAME=1 flag, and changing the library
name from libgraphblas to libgraphbas_matlab.

16.9 Running the Demos

After make in the top-level directory to compile the library, type make demo

to run the demos (also in the top-level directory). You can also run the
demos after compiling with make all:

make all

cd Demo

./demo

The ./demo command is a script that runs the demos with various in-
put matrices in the Demo/Matrix folder. The output of the demos will be
compared with expected output files in Demo/Output.

NOTE: DO NOT publish benchmarks of these demos, and do not link
against the demo library in any user application. These codes are sometimes
slow, and are meant as simple illustrations only, not for performance. The
fastest methods are in LAGraph, not in SuiteSparse/GraphBLAS/Demo.
Benchmark LAGraph instead. Eventually, all GraphBLAS/Demos methods
will be removed, and LAGraph will serve all uses: for illustration, bench-
marking, and production uses.

309

16.10 Installing SuiteSparse:GraphBLAS

To install the library (typically in /usr/local/lib and /usr/local/include
for Linux systems), go to the top-level GraphBLAS folder and type:

sudo make install

16.11 Linking issues after installation

My Linux distro (Ubuntu 18.04) includes a copy of libgraphblas.so.1,
which is SuiteSparse:GraphBLAS v1.1.2. After installing SuiteSparse:GraphBLAS
in /usr/local/lib (with sudo make install), compiling a simple stand-
alone program links against libgraphblas.so.1 instead of the latest ver-
sion, while at the same time accessing the latest version of the include file as
/usr/local/include/GraphBLAS.h. This command fails:

gcc prog.c -lgraphblas

Revising my LD_LIBRARY_PATH to put /usr/local/lib first in the library
directory order didn’t help. If you encounter this problem, try one of the
following options (all four work for me, and link against the proper version,
/usr/local/lib/libgraphblas.so.6.1.4 for example):

gcc prog.c -l:libgraphblas.so.6

gcc prog.c -l:libgraphblas.so.6.1.4

gcc prog.c /usr/local/lib/libgraphblas.so

gcc prog.c -Wl,-v -L/usr/local/lib -lgraphblas

This prog.c test program is a trivial one, which works in v1.0 and later:

#include <GraphBLAS.h>

int main (void)

{

GrB_init (GrB_NONBLOCKING) ;

GrB_finalize () ;

}

Compile the program above, then use this command to ensure libgraphblas.so.6
appears:

ldd a.out

310

16.12 Running the tests

To run a short test, type make demo at the top-level GraphBLAS folder. This
will run all the demos in GraphBLAS/Demos. MATLAB is not required.

To perform the extensive tests in the Test folder, and the statement cover-
age tests in Tcov, MATLAB R2018a or later is required. See the README.txt
files in those two folders for instructions on how to run the tests. The tests in
the Test folder have been ported to MATLAB on Linux, MacOS, and Win-
dows. The Tcov tests do not work on Windows. The MATLAB interface
test (gbtest) works on all platforms; see the GraphBLAS/GraphBLAS folder
for more details.

16.13 Cleaning up

To remove all compiled files, type make distclean in the top-level Graph-
BLAS folder.

17 Release Notes

• Version 7.3.2 (Nov 12, 2022)

– cmake_modules: minor revision to build system, to sync with
SuiteSparse v6.0.0

– Added option -DNOPENMP=1 to disable OpenMP parallelism.

• Version 7.3.1 (Oct 21, 2022)

– workaround for a bug in the Microsoft Visual Studio Compiler,
MSC 19.2x (in vs2019).

• Version 7.3.0 (Oct 14, 2022)

– GrB_Matrix: changes to the internal data structure

– minor internal changes: A->nvals for sparse/hypersparse

– more significant changes: added hyper-hash for hypersparse case,
speeds up many operations on hypersparse matrices. Based on
[Gre21].

311

– GxB_unpack_HyperHash and GxB_pack_HyperHash: to pack/unpack
the hyper-hash

– @GrB MATLAB/Octave interface: changed license to Apache-2.0.

– MATLAB library: renamed to libgraphblas_matlab.so

– performance: faster C=A*B when using a single thread and B is a
sparse vector with many entries.

• Version 7.2.0 (Aug 8, 2022)

– added ZSTD as a compression option for serialize/deserialize: Ver-
sion 1.5.3 by Yann Collet, https://github.com/facebook/zstd.git.
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
Included in SuiteSparse:GraphBLAS via its BSD-3-clause license.
The default method is now ZSTD, level 1.

– GxB_Matrix_reshape* added.

– MATLAB interface: reshape, C(:)=A, C=A(:) are faster. Better
error messages.

• Version 7.1.2 (July 8, 2022)

– MATLAB interface: linear indexing added for C(:)=A, C=A(:),
and single-output I=find(C). Faster bandwidth, istriu, istril, is-
banded, isdiag. C(I,J)=A can now grow the size of A.

• Version 7.1.1 (June 3, 2022)

– minor updates to documentation and error messages

– MATLAB interface: minor revision of GrB.deserialize

• Version 7.1.0 (May 20, 2022)

– added cube root: GxB_CBRT_FP32 and GxB_CBRT_FP64 unary op-
erators

– added GxB_Matrix_isStoredElement and GxB_Vector_isStoredElement

• Version 7.0.4 (Apr 25, 2022)

– (46) bug fix: user-defined type size was incorrectly limited to 128
bytes. Caught by Erik Welch.

312

https://github.com/facebook/zstd.git

• Version 7.0.3 (Apr 8, 2022)

– faster transpose when using 2 threads

• Version 7.0.2 (Apr 5, 2022)

– (45) bug fix: vector iterator was broken for iterating across a
vector in bitmap format. Caught by Erik Welch.

• Version 7.0.1 (Apr 3, 2022)

– added revised ACM TOMS submission to the Doc folder

• Version 7.0.0 (Apr 2, 2022)

– (44) spec bug: GrB_Matrix_diag was implemented in v5.2.x and
v6.x with the wrong signature. This fix requires the major release
to change, from v6.x to v7.x.

– (43) performance bug fix for GrB_mxm: auto selection for saxpy
method (Hash vs Gustavson) revised.

– GrB_assign: better performance for C(i,j)=scalar and C(i,j)+=scalar
when i and j have length 1 (scalar assigment with no scalar ex-
pansion).

• Version 6.2.5 (Mar 14, 2022)

– For SuiteSparse v5.11.0.

• Version 6.2.4 (Mar 8, 2022)

– (42) bug fix: GrB_mxm with 0-by-0 iso full matrices. Caught by
Henry Amuasi in the Python grblas interface, then triaged and
isolated by Erik Welch.

• Version 6.2.3 (Mar 5, 2022)

– minor update to documentation in GrB.build: no change to any
code

• Version 6.2.2 (Feb 28, 2022)

313

– revised output of GxB_*_sort to return newly created matrices
C and P as full or bitmap matrices, as appropriate, instead of
sparse/hypersparse, following their sparsity control settings.

• Version 6.2.1 (Feb 14, 2022)

– (41) bug fix: GxB_Iterator_get used (void *) + size arith-
metic

• Version 6.2.0 (Feb 14, 2022)

– added the GxB_Iterator object and its methods. See Section 12.

– @GrB interface: revised sparse-times-full rule for the conventional
semiring (the syntax C=A*B), so that sparse-times-full results in C

as full, but hypersparse-times-sparse is not full (typically sparse
or hypersparse).

• Version 6.1.4 (Jan 12, 2022)

– added Section 14 to User Guide: how to get the best performance
out of algorithms based on GraphBLAS.

– cpu_features: no longer built as a separate library, but built di-
rectly into libgraphblas.so and libgraphblas.a. Added compile-
time flags to optionally disable the use of cpu_features com-
pletely.

– Octave 7: port to Apple Silicon (thanks to Gábor Szárnyas).

– min/max monoids: real case (FP32 and FP64) no longer terminal

– @GrB interface: overloaded C=A*B syntax where one matrix is full
always results in a full matrix C.

– Faster C=A*B for sparse-times-full and full-times-sparse for @GrB

interface.

• Version 6.1.3 (Jan 1, 2022)

– performance: task creation for GrB_mxm had a minor flaw (results
were correct but parallelism suffered). Performance improvement
of up to 10x when nnz(A)¡¡nnz(B).

• Version 6.1.2 (Dec 31, 2021)

314

– performance: revised swap_rule in GrB_mxm, which decides whether
to compute C=A*B or C=(B’*A’)’, and variants, resulting in up to
3x performance gain over v6.1.1 for GrB_mxm (observed; could be
higher in other cases).

• Version 6.1.1 (Dec 28, 2021)

– minor revision to AVX2 and AVX512f selection

– cpu_features/Makefile: remove test of list_cpu_features so
that the package can be built when cross-compiling

• Versions 6.1.0 (Dec 26, 2021)

– added GxB_get options: compiler name and version.

– added package: https://github.com/google/cpu features, Nov 30,
2021 version.

– performance: faster C+=A*B when C is full, A is bitmap/full, and
B is sparse/hyper. Faster C+=A’*B when A is sparse/hyper, and B

is bitmap/full.

– (40) bug fix: deserialization of iso and empty matrices/vectors was
incorrect

• Versions 6.0.2 and 5.2.2 (Nov 30, 2021)

– (39) bug fix: GrB_Matrix_export: numerical values not properly
exported

• Versions 6.0.1 and 5.2.1 (Nov 27, 2021)

– v6.0.x and v5.2.x (for the same x): differ only in GrB_wait, GrB_Info,
GrB_SCMP, and GxB_init.

– (38) bug fix: C+=A’*B when the accum operator is the same as
the monoid and C is iso-full, and A or B are hypersparse. (dot4
method).

– performance: GrB_select with user-defined GrB_IndexUnaryOp

about 2x faster.

– performance: faster (MIN,MAX)_(FIRSTJ,SECONDI) semirings

• Version 6.0.0 (Nov 15, 2021)

315

https://github.com/google/cpu_features

– this release contains only a few changes that cause a break with
backward compatibility. It is otherwise identical to v5.2.0.

– v6.0.0 is fully compliant with the v2.0 C API Specification. Three
changes from the v2.0 C API Spec are not backward compatible
(GrB_*wait, GrB_Info, GrB_SCMP). GxB_init has also changed.

∗ GrB_wait (object, mode): was GrB_wait (&object).

∗ GrB_Info: changed enum values

∗ GrB_SCMP: removed

∗ GxB_init (mode, malloc, calloc, realloc, free, is_thread_safe):
the last parameter, is_thread_safe, is deleted. The malloc,
calloc, realloc, and free functions must be thread-safe.

• Version 5.2.0 (Nov 15, 2021)

– Added for the v2.0 C API Specification: only features that are
backward compatible with SuiteSparse:GraphBLAS v5.x have been
added to v5.2.0:

∗ GrB_Scalar: replaces GxB_Scalar, GxB_Scalar_* functions
renamed GrB

∗ GrB_IndexUnaryOp: new, free, fprint, wait

∗ GrB_select: selection via GrB_IndexUnaryOp

∗ GrB_apply: with GrB_IndexUnaryOp

∗ GrB_reduce: reduce matrix or vector to GrB_Scalar

∗ GrB_assign, GrB_subassion: with GrB_Scalar input

∗ GrB_*_extractElement_Scalar: get GrB_Scalar from a ma-
trix or vector

∗ GrB*build: when dup is NULL, duplicates result in an error.

∗ GrB import/export: import/export from/to user-provided
arrays

∗ GrB_EMPTY_OBJECT, GrB_NOT_IMPLEMENTED: error codes added

∗ GrB_*_setElement_Scalar: set an entry in a matrix or vec-
tor, from a GrB_Scalar

∗ GrB_Matrix_diag: same as GxB_Matrix_diag (C,v,k,NULL)

∗ GrB_*_serialize/deserialize: with compression

∗ GrB_ONEB_T: binary operator, f(x, y) = 1, the same as GxB_PAIR_T.

– GxB*import* and GxB*export*: now historical; use GxB*pack/unpack*

316

– GxB_select: is now historical; use GrB_select instead.

– GxB_IGNORE_DUP: special operator for build methods only; if dup
is this operator, then duplicates are ignored (not an error)

– GxB_IndexUnaryOp_new: create a named index-unary operator

– GxB_BinaryOp_new: create a named binary operator

– GxB_UnaryOp_new: create a named unary operator

– GxB_Type_new: to create a named type

– GxB_Type_name: to query the name of a type

– added GxB_*type_name methods to query the name of a type as
a string.

– GxB methods that query an object return a GrB_type such as
GxB_Matrix_type are declared historical; will be kept but not
recommended (use GxB_*type_name methods).

– GxB_Matrix_serialize/deserialize: with compression; optional
descriptor.

– GxB_Matrix_sort, GxB_Vector_sort: sort a matrix or vector

– GxB_eWiseUnion: like GrB_eWiseAdd except for how entries in
A \B and B \A are computed.

– added LZ4/LZ4HC: compression library, http://www.lz4.org (BSD
2), v1.9.3, Copyright (c) 2011-2016, Yann Collet.

– MIS and pagerank demos: removed; MIS added to LAGraph/experimental

– disabled free memory pool if OpenMP not available

– (37) bug fix: ewise C=A+B when all matrices are full, GBCOMPACT
not used, but GB_control.h disabled the operator or type. Caught
by Roi Lipman, Redis.

– (36) bug fix: C<M>=Z not returning C as iso if Z iso and C initially
empty. Caught by Erik Welch, Anaconda.

– performance improvements: C=A*B: sparse/hyper times bitmap/full,
and visa versa, including C += A*B when C is full.

• Version 5.1.10 (Oct 27, 2021)

– (35) bug fix: GB_selector; A->plen and C->plen not updated
correctly. Caught by Jeffry Lovitz, Redis.

• Version 5.1.9 (Oct 26, 2021)

– (34) bug fix: in-place test incorrect for C+=A’*B using dot4

317

http://www.lz4.org

– (33) bug fix: disable free pool if OpenMP not available

• Version 5.1.8 (Oct 5, 2021)

– (32) bug fix: C=A*B when A is sparse and B is iso and bitmap.
Caught by Mark Blanco, CMU.

• Version 5.1.7 (Aug 23, 2021)

– (31) bug fix: GrB_apply, when done in-place and matrix starts
non-iso and becomes iso, gave the wrong iso result. Caught by
Fabian Murariu.

• Version 5.1.6 (Aug 16, 2021)

– one-line change to C=A*B: faster symbolic analysis when a vector
C(:,j) is dense (for CSC) or C(i,:) for CSR.

• Version 5.1.5 (July 15, 2021)

– submission to ACM Transactions on Mathematical Software as a
Collected Algorithm of the ACM.

• Version 5.1.4 (July 6, 2021)

– faster Octave interface. Octave v7 or later is required.

– (30) bug fix: 1-based printing not enabled for pending tuples.
Caught by Will Kimmerer, while working on the Julia interface.

• Version 5.1.3 (July 3, 2021)

– added GxB_Matrix_iso and GxB_Vector_iso: to query if a ma-
trix or vector is held as iso-valued

– (29) bug fix: Matrix_pack_*R into a matrix previously held by
column, or Matrix_pack*C into a matrix by row, would flip the
dimensions. Caught by Erik Welch, Anaconda.

– (28) bug fix: kron(A,B) with iso input matrices A and B fixed.
Caught by Michel Pelletier, Graphegon.

318

– (27) bug fix: v5.1.0 had a wrong version of a file; posted by mis-
take. Caught by Michel Pelletier, Graphegon.

• Version 5.1.2 (June 30, 2021)

– iso matrices added: these are matrices and vectors whose values
in the sparsity pattern are all the same. This is an internal change
to the opaque data structures of the GrB_Matrix and GrB_Vector

with very little change to the API.

– added GxB_Matrix_build_Scalar and GxB_Vector_build_Scalar,
which always build iso matrices and vectors.

– import/export methods can now import/export iso matrices and
vectors.

– added GrB.argmin/argmax to MATLAB/Octave interface

– added GxB_*_pack/unpackmethods as alternatives to import/export.

– added GxB_PRINT_1BASED to the global settings.

– added GxB_*_memoryUsage

– port to Octave: gbmake and gbtest work in Octave7 to build and
test the @GrB interface to GraphBLAS. Octave 7.0.0 is required.

• Version 5.0.6 (May 24, 2021)

– BFS and triangle counting demos removed from GraphBLAS/Demo:
see LAGraph for these algorithms. Eventually, all of Graph-
BLAS/Demo will be deleted, once LAGraph includes all the meth-
ods included there.

• Version 5.0.5 (May 17, 2021)

– (26) performance bug fix: reduce-to-vector where A is hypersparse
CSR with a transposed descriptor (or CSC with no transpose),
and some cases for GrB_mxm/mxv/vxm when computing C=A*B with
A hypersparse CSC and B bitmap/full (or A bitmap/full and B

hypersparse CSR), the wrong internal method was being selected
via the auto-selection strategy, resulting in a significant slowdown
in some cases.

• Version 5.0.4 (May 13, 2021)

319

– @GrB MATLAB/Octave interface: changed license to GNU Gen-
eral Public License v3.0 or later. It was licensed under Apache-2.0
in Version 5.0.3 and earlier. Changed back to Apache-2.0 for Ver-
sion 7.3.0; see above.

• Version 5.0.3 (May 12, 2021)

– (25) bug fix: disabling ANY_PAIR semirings by editing Source/GB_control.h
would cause a segfault if those disabled semirings were used.

– demos are no longer built by default

– (24) bug fix: new functions in v5.0.2 not declared as extern in
GraphBLAS.h.

– GrB_Matrix_reduce_BinaryOp reinstated from v4.0.3; same limit
on built-in ops that correspond to known monoids.

• Version 5.0.2 (May 5, 2021)

– (23) bug fix: GrB_Matrix_apply_BinaryOp1st and 2nd were us-
ing the wrong descriptors for GrB_INP0 and GrB_INP1. Caught by
Erik Welch, Anaconda.

– memory pool added for faster allocation/free of small blocks

– @GrB interface ported to MATLAB R2021a.

– GxB_PRINTF and GxB_FLUSH global options added.

– GxB_Matrix_diag: construct a diagonal matrix from a vector

– GxB_Vector_diag: extract a diagonal from a matrix

– concat/split: methods to concatenate and split matrices.

– import/export: size of arrays now in bytes, not entries. This
change is required for better internal memory management, and
it is not backward compatible with the GxB*import/export func-
tions in v4.0. A new parameter, is_uniform, has been added to
all import/export methods, which indicates that the matrix values
are all the same.

– (22) bug fix: SIMD vectorization was missing reduction(+,task_cnvals)
in GB_dense_subassign_06d_template.c. Caught by Jeff Huang,
Texas A&M, with his software package for race-condition detec-
tion.

– GrB_Matrix_reduce_BinaryOp: removed. Use a monoid instead,
with GrB_reduce or GrB_Matrix_reduce_Monoid.

320

• Version 4.0.3 (Jan 19, 2021)

– faster min/max monoids

– G=GrB(G) converts G from v3 object to v4

• Version 4.0.2 (Jan 13, 2021)

– ability to load *.mat files saved with the v3 GrB

• Version 4.0.1 (Jan 4, 2021)

– significant performance improvements: compared with v3.3.3, up
to 5x faster in breadth-first-search (using LAGraph_bfs_parent2),
and 2x faster in Betweenness-Centrality (using LAGraph_bc_batch5).

– GrB_wait(void), with no inputs: removed

– GrB_wait(&object): polymorphic function added

– GrB_*_nvals: no longer guarantees completion; use GrB_wait(&object)
or non-polymorphic GrB_*_wait (&object) instead

– GrB_error: now has two parameters: a string (char **) and an
object.

– GrB_Matrix_reduce_BinaryOp limited to built-in operators that
correspond to known monoids.

– GrB_*_extractTuples: may return indices out of order

– removed internal features: GBI iterator, slice and hyperslice ma-
trices

– bitmap/full matrices and vectors added

– positional operators and semirings: GxB_FIRSTI_INT32 and re-
lated ops

– jumbled matrices: sort left pending, like zombies and pending
tuples

– GxB_get/set: added GxB_SPARSITY_* (hyper, sparse, bitmap, or
full) and GxB_BITMAP_SWITCH.

– GxB_HYPER: enum renamed to GxB_HYPER_SWITCH

– GxB*import/export: API modified

– GxB_SelectOp: nrows and ncols removed from function signa-
ture.

321

– OpenMP tasking removed from mergesort and replaced with par-
allel for loops. Just as fast on Linux/Mac; now the performance
ports to Windows.

– GxB_BURBLE added as a supported feature. This was an undocu-
mented feature of prior versions.

– bug fix: A({lo,hi})=scalar A(lo:hi)=scalar was OK

• Version 3.3.3 (July 14, 2020). Bug fix: w<m>=A*u with mask non-empty
and u empty.

• Version 3.3.2 (July 3, 2020). Minor changes to build system.

• Version 3.3.1 (June 30, 2020). Bug fix to GrB_assign and GxB_subassign
when the assignment is simple (C=A) but with typecasting.

• Version 3.3.0 (June 26, 2020). Compliant with V1.3 of the C API
(except that the polymorphic GrB_wait(&object) doesn’t appear yet;
it will appear in V4.0).

Added complex types (GxB_FC32 and GxB_FC64), many unary opera-
tors, binary operators, monoids, and semirings. Added bitwise opera-
tors, and their monoids and semirings. Added the predefined monoids
and semirings from the v1.3 specification. @GrB interface: added com-
plex matrices and operators, and changed behavior of integer operations
to more closely match the behavior on built-in integer matrices. The
rules for typecasting large floating point values to integers has changed.
The specific object-based GrB_Matrix_wait, GrB_Vector_wait, etc,
functions have been added. The no-argument GrB_wait() is depre-
cated. Added GrB_getVersion, GrB_Matrix_resize, GrB_Vector_resize,
GrB_kronecker, GrB_*_wait, scalar binding with binary operators for
GrB_apply,
GrB_Matrix_removeElement, and GrB_Vector_removeElement.

• Version 3.2.0 (Feb 20, 2020). Faster GrB_mxm, GrB_mxv, and GrB_vxm,
and faster operations on dense matrices/vectors. Removed compile-
time user objects (GxB_*_define), since these were not compatible
with the faster matrix operations. Added the ANY and PAIR operators.
Added the predefined descriptors, GrB_DESC_*. Added the structural
mask option. Changed default chunk size to 65,536. @GrB interface
modified: GrB.init is now optional.

322

• Version 3.1.2 (Dec, 2019). Changes to allow SuiteSparse:GraphBLAS
to be compiled with the Microsoft Visual Studio compiler. This com-
piler does not support the _Generic keyword, so the polymorphic func-
tions are not available. Use the equivalent non-polymorphic functions
instead, when compiling GraphBLAS with MS Visual Studio. In ad-
dition, variable-length arrays are not supported, so user-defined types
are limited to 128 bytes in size. These changes have no effect if you
have an ANSI C11 compliant compiler.

@GrB interface modified: GrB.init is now required.

• Version 3.1.0 (Oct 1, 2019). @GrB interface added. See the
GraphBLAS/GraphBLAS folder for details and documentation, and Sec-
tion 3.1.

• Version 3.0 (July 26, 2019), with OpenMP parallelism.

The version number is increased to 3.0, since this version is not back-
ward compatible with V2.x. The GxB_select operation changes; the
Thunk parameter was formerly a const void * pointer, and is now
a GxB_Scalar. A new parameter is added to GxB_SelectOp_new, to
define the expected type of Thunk. A new parameter is added to
GxB_init, to specify whether or not the user-provided memory man-
agement functions are thread safe.

The remaining changes add new features, and are upward compati-
ble with V2.x. The major change is the addition of OpenMP paral-
lelism. This addition has no effect on the API, except that round-off
errors can differ with the number of threads used, for floating-point
types. GxB_set can optionally define the number of threads to use
(the default is omp_get_max_threads). The number of threads can
also defined globally, and/or in the GrB_Descriptor. The RDIV and
RMINUS operators are added, which are defined as f(x, y) = y/x and
f(x, y) = y−x, respectively. Additional options are added to GxB_get.

• Version 2.3.3 (May 2019): Collected Algorithm of the ACM. No changes
from V2.3.2 other than the documentation.

• Version 2.3 (Feb 2019) improves the performance of many GraphBLAS
operations, including an early-exit for monoids. These changes have
a significant impact on breadth-first-search (a performance bug was

323

also fixed in the two BFS Demo codes). The matrix and vector im-
port/export functions were added (Section 6.11), in support of the
new LAGraph project (https://github.com/GraphBLAS/LAGraph, see
also Section 15.1). LAGraph includes a push-pull BFS in GraphBLAS
that is faster than two versions in the Demo folder. GxB_init was added
to allow the memory manager functions (malloc, etc) to be specified.

• Version 2.2 (Nov 2018) adds user-defined objects at compile-time, via
user *.m4 files placed in GraphBLAS/User, which use the GxB_*_define
macros (NOTE: feature removed in v3.2). The default matrix format is
now GxB_BY_ROW. Also added are the GxB_*print methods for printing
the contents of each GraphBLAS object (Section 11). PageRank demos
have been added to the Demos folder.

• Version 2.1 (Oct 2018) was a major update with support for new ma-
trix formats (by row or column, and hypersparse matrices), and colon
notation (I=begin:end or I=begin:inc:end). Some graph algorithms
are more naturally expressed with matrices stored by row, and this
version includes the new GxB_BY_ROW format. The default format in
Version 2.1 and prior versions is by column. New extensions to Graph-
BLAS in this version include GxB_get, GxB_set, and GxB_AxB_METHOD,
GxB_RANGE, GxB_STRIDE, and GxB_BACKWARDS, and their related defini-
tions, described in Sections 6.14, 8, and 9.

• Version 2.0 (March 2018) addressed changes in the GraphBLAS C API
Specification and added GxB_kron and GxB_resize.

• Version 1.1 (Dec 2017) primarily improved the performance.

• Version 1.0 was released on Nov 25, 2017.

17.1 Regarding historical and deprecated functions and
symbols

When a GxB* function or symbol is added to the C API Specification with a
GrB* name, the new GrB* name should be used instead, if possible. However,
the old GxB* name will be kept as long as possible for historical reasons.
Historical functions and symbols will not always be documented here in the
SuiteSparse:GraphBLAS User Guide, but they will be kept in GraphbBLAS.h

324

https://github.com/GraphBLAS/LAGraph

and kept in good working order in the library. Historical functions and
symbols would only be removed in the very unlikely case that they cause a
serious conflict with future methods.

The only methods that have been fully deprecated and removed are the
older versions of GrB_wait and GrB_error methods, which are incompatible
with the latest versions.

18 Acknowledgments

I would like to thank Jeremy Kepner (MIT Lincoln Laboratory Supercomput-
ing Center), and the GraphBLAS API Committee: Aydın Buluç (Lawrence
Berkeley National Laboratory), Timothy G. Mattson (Intel Corporation)
Scott McMillan (Software Engineering Institute at Carnegie Mellon Univer-
sity), José Moreira (IBM Corporation), Carl Yang (UC Davis), and Benjamin
Brock (UC Berkeley), for creating the GraphBLAS specification and for pa-
tiently answering my many questions while I was implementing it.

I would like to thank Tim Mattson and Henry Gabb, Intel, Inc., for their
collaboration and for the support of Intel.

I would like to thank Joe Eaton and Corey Nolet for their collaboration
on the CUDA kernels (still in progress), and for the support of NVIDIA.

I would like to thank Pat Quillen for his collaboration and for the support
of MathWorks.

I would like to thank John Eaton for his collaboration on the integration
with Octave 7.

I would like to thank Michel Pelletier for his collaboration and work on
the pygraphblas interface, and Jim Kitchen and Erik Welch for their work
on Anaconda’s python interface.

I would like to thank Will Kimmerer for his collaboration and work on
the Julia interface.

I would like to thank John Gilbert (UC Santa Barbara) for our many
discussions on GraphBLAS, and for our decades-long conversation and col-
laboration on sparse matrix computations.

I would like to thank Sébastien Villemot (Debian Developer, http://
sebastien.villemot.name) for helping me with various build issues and other
code issues with GraphBLAS (and all of SuiteSparse) for its packaging in
Debian Linux.

325

http://sebastien.villemot.name
http://sebastien.villemot.name

I would like to thank Gábor Szárnyas for porting the @GrB interface to
Octave 7 on Apple Silicon.

I would like to thank Roi Lipman, Redis (https://redislabs.com), for our
many discussions on GraphBLAS and for enabling its use in RedisGraph
(https://redislabs.com/redis-enterprise/technology/redisgraph/), a graph database
module for Redis. Based on SuiteSparse:GraphBLAS, RedisGraph is up 600x
faster than the fastest graph databases (https://youtu.be/9h3Qco x0QE

https://redislabs.com/blog/new-redisgraph-1-0-achieves-600x-faster-performance-graph-databases/).
SuiteSparse:GraphBLAS was developed with support from NVIDIA, In-

tel, MIT Lincoln Lab, MathWorks, Redis, IBM, the National Science Foun-
dation (1514406, 1835499), and Julia Computing.

19 Additional Resources

See http://graphblas.org for the GraphBLAS community page. See https:
//github.com/GraphBLAS/GraphBLAS-Pointers for an up-to-date list of addi-
tional resources on GraphBLAS, maintained by Gábor Szárnyas.

References

[ACD+20] Mohsen Aznaveh, Jinhao Chen, Timothy A. Davis, Bálint
Hegyi, Scott P. Kolodziej, Timothy G. Mattson, and Gábor
Szárnyas. Parallel GraphBLAS with OpenMP. In CSC20, SIAM
Workshop on Combinatorial Scientific Computing. SIAM, 2020.
https://www.siam.org/conferences/cm/conference/csc20.

[BBM+21] B. Brock, A. Buluç, T. Mattson, S. McMillan, and J. Moreira.
The GraphBLAS C API specification (v2.0). Technical report, 2021.
http://graphblas.org/.

[BG08] A. Buluç and J. Gilbert. On the representation and multipli-
cation of hypersparse matrices. In IPDPS’80: 2008 IEEE Intl.
Symp. on Parallel and Distributed Processing, pages 1–11, April 2008.
https://dx.doi.org/10.1109/IPDPS.2008.4536313.

[BG12] A. Buluç and J. Gilbert. Parallel sparse matrix-matrix multiplication and
indexing: Implementation and experiments. SIAM Journal on Scientific
Computing, 34(4):C170–C191, 2012. https://dx.doi.org/10.1137/110848244.

[BMM+17a] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang. Design of the
GraphBLAS API for C. In 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 643–652, May 2017.
https://dx.doi.org/10.1109/IPDPSW.2017.117.

326

https://redislabs.com
https://redislabs.com/redis-enterprise/technology/redisgraph/
https://youtu.be/9h3Qco_x0QE
https://redislabs.com/blog/new-redisgraph-1-0-achieves-600x-faster-performance-graph-databases/
http://graphblas.org
https://github.com/GraphBLAS/GraphBLAS-Pointers
https://github.com/GraphBLAS/GraphBLAS-Pointers
https://www.siam.org/conferences/cm/conference/csc20
http://graphblas.org/
https://dx.doi.org/10.1109/IPDPS.2008.4536313
https://dx.doi.org/10.1137/110848244
https://dx.doi.org/10.1109/IPDPSW.2017.117

[BMM+17b] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang. The Graph-
BLAS C API specification. Technical report, 2017. http://graphblas.org/.

[DAK19] T. A. Davis, M. Aznaveh, and S. Kolodziej. Write quick, run fast:
Sparse deep neural network in 20 minutes of development time via Suite-
Sparse:GraphBLAS. In IEEE HPEC’19. IEEE, 2019. Grand Challenge
Champion, for high performance. See http://www.ieee-hpec.org/.

[Dav06] T. A. Davis. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia,
PA, 2006. https://dx.doi.org/10.1137/1.9780898718881.

[Dav18] T. A. Davis. Graph algorithms via SuiteSparse:GraphBLAS: triangle count-
ing and K-truss. In IEEE HPEC’18. IEEE, 2018. Grand Challenge Innova-
tion Award. See http://www.ieee-hpec.org/.

[Dav19] Timothy A. Davis. Algorithm 1000: SuiteSparse:GraphBLAS: Graph algo-
rithms in the language of sparse linear algebra. ACM Trans. Math. Softw.,
45(4), December 2019. https://doi.org/10.1145/3322125.

[Dav22] Timothy A. Davis. Algorithm 10xx: SuiteSparse:GraphBLAS: Parallel graph
algorithms in the language of sparse linear algebra. ACM Trans. Math.
Softw., 2022. (submitted, revised Apr 3, 2022).

[DRSL16] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar. A survey of di-
rect methods for sparse linear systems. Acta Numerica, 25:383–566, 2016.
https://dx.doi.org/10.1017/S0962492916000076.

[Gre21] Oded Green. HashGraph – scalable hash tables using a sparse graph
data structure. ACM Trans. Parallel Comput., 8(2), July 2021.
https://doi.org/10.1145/3460872.

[Gus78] F. G. Gustavson. Two fast algorithms for sparse matrices: Multiplication
and permuted transposition. ACM Transactions on Mathematical Software,
4(3):250–269, 1978. https://dx.doi.org/10.1145/355791.355796.

[Hig02] N. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2nd
edition, 2002. https://dx.doi.org/10.1137/1.9780898718027.

[Kep17] J. Kepner. GraphBLAS mathematics. Technical report, 2017.
http://www.mit.edu/∼kepner/GraphBLAS/GraphBLAS-Math-release.pdf.

[KG11] J. Kepner and J. Gilbert. Graph Algorithms in the Language of Linear
Algebra. SIAM, Philadelphia, PA, 2011.

From the preface: Graphs are among the most important ab-
stract data types in computer science, and the algorithms that
operate on them are critical to modern life. Graphs have been
shown to be powerful tools for modeling complex problems be-
cause of their simplicity and generality. Graph algorithms are
one of the pillars of mathematics, informing research in such
diverse areas as combinatorial optimization, complexity theory,

327

http://graphblas.org/
http://www.ieee-hpec.org/
https://dx.doi.org/10.1137/1.9780898718881
http://www.ieee-hpec.org/
https://doi.org/10.1145/3322125
https://dx.doi.org/10.1017/S0962492916000076
https://doi.org/10.1145/3460872
https://dx.doi.org/10.1145/355791.355796
https://dx.doi.org/10.1137/1.9780898718027
http://www.mit.edu/~kepner/GraphBLAS/GraphBLAS-Math-release.pdf

and topology. Algorithms on graphs are applied in many ways in
today’s world – from Web rankings to metabolic networks, from
finite element meshes to semantic graphs. The current exponen-
tial growth in graph data has forced a shift to parallel computing
for executing graph algorithms. Implementing parallel graph al-
gorithms and achieving good parallel performance have proven
difficult. This book addresses these challenges by exploiting the
well-known duality between a canonical representation of graphs
as abstract collections of vertices and edges and a sparse adja-
cency matrix representation. This linear algebraic approach is
widely accessible to scientists and engineers who may not be
formally trained in computer science. The authors show how to
leverage existing parallel matrix computation techniques and the
large amount of software infrastructure that exists for these com-
putations to implement efficient and scalable parallel graph al-
gorithms. The benefits of this approach are reduced algorithmic
complexity, ease of implementation, and improved performance.
DOI: https://dx.doi.org/10.1137/1.9780898719918

[MDK+19] T. Mattson, T. A. Davis, M. Kumar, A. Buluç, S. McMillan, J. Mor-
eira, and C. Yang. LAGraph: a community effort to collect graph
algorithms built on top of the GraphBLAS. In GrAPL’19: Work-
shop on Graphs, Architectures, Programming, and Learning. IEEE, May
2019. https://hpc.pnl.gov/grapl/previous/2019, part of IPDPS’19, at
http://www.ipdps.org/ipdps2019.

[NMAB18] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydın Buluç. High-
performance sparse matrix-matrix products on Intel KNL and multicore ar-
chitectures. In Proceedings of the 47th International Conference on Parallel
Processing Companion, ICPP ’18, New York, NY, USA, 2018. Association
for Computing Machinery. https://doi.org/10.1145/3229710.3229720.

[Wat87] A. J. Wathen. Realistic eigenvalue bounds for the Galerkin
mass matrix. IMA J. Numer. Anal., 7:449–457, 1987.
https://dx.doi.org/10.1093/imanum/7.4.449.

328

https://dx.doi.org/10.1137/1.9780898719918
https://hpc.pnl.gov/grapl/previous/2019
http://www.ipdps.org/ipdps2019
https://doi.org/10.1145/3229710.3229720
https://dx.doi.org/10.1093/imanum/7.4.449

	Introduction
	Basic Concepts
	Graphs and sparse matrices
	Overview of GraphBLAS methods and operations
	The accumulator and the mask
	Typecasting
	Notation and list of GraphBLAS operations

	Interfaces to MATLAB, Octave, Python, Julia, Java
	MATLAB/Octave Interface
	Python Interface
	Julia Interface
	Java Interface

	Performance of MATLAB versus GraphBLAS
	GraphBLAS Context and Sequence
	GrB_Index: the GraphBLAS integer
	GrB_init: initialize GraphBLAS
	GrB_getVersion: determine the C API Version
	GxB_init: initialize with alternate malloc
	GrB_Info: status code returned by GraphBLAS
	GrB_error: get more details on the last error
	GrB_finalize: finish GraphBLAS

	GraphBLAS Objects and their Methods
	The GraphBLAS type: GrB_Type
	GrB_Type_new: create a user-defined type
	GxB_Type_new: create a user-defined type (with name and definition)
	GrB_Type_wait: wait for a type
	GxB_Type_size: return the size of a type
	GxB_Type_name: return the name of a type
	GxB_Type_from_name: return the type from its name
	GrB_Type_free: free a user-defined type

	GraphBLAS unary operators: GrB_UnaryOp, z=f(x)
	GrB_UnaryOp_new: create a user-defined unary operator
	GxB_UnaryOp_new: create a named user-defined unary operator
	GrB_UnaryOp_wait: wait for a unary operator
	GxB_UnaryOp_ztype_name: return the name of the type of z
	GxB_UnaryOp_xtype_name: return the name of the type of x
	GrB_UnaryOp_free: free a user-defined unary operator

	GraphBLAS binary operators: GrB_BinaryOp, z=f(x,y)
	GrB_BinaryOp_new: create a user-defined binary operator
	GxB_BinaryOp_new: create a named user-defined binary operator
	GrB_BinaryOp_wait: wait for a binary operator
	GxB_BinaryOp_ztype_name: return the name of the type of z
	GxB_BinaryOp_xtype_name: return the name of the type of x
	GxB_BinaryOp_ytype_name: return the name of the type of y
	GrB_BinaryOp_free: free a user-defined binary operator
	ANY and PAIR (ONEB) operators

	GraphBLAS IndexUnaryOp operators: GrB_IndexUnaryOp
	GrB_IndexUnaryOp_new: create a user-defined index-unary operator
	GxB_IndexUnaryOp_new: create a named user-defined index-unary operator
	GrB_IndexUnaryOp_wait: wait for an index-unary operator
	GxB_IndexUnaryOp_ztype_name: return the name of the type of z
	GxB_IndexUnaryOp_xtype_name: return the name of the type of x
	GxB_IndexUnaryOp_ytype_name: return the name of the type of scalar y
	GrB_IndexUnaryOp_free: free a user-defined index-unary operator

	GraphBLAS monoids: GrB_Monoid
	GrB_Monoid_new: create a monoid
	GrB_Monoid_wait: wait for a monoid
	GxB_Monoid_terminal_new: create a monoid with terminal
	GxB_Monoid_operator: return the monoid operator
	GxB_Monoid_identity: return the monoid identity
	GxB_Monoid_terminal: return the monoid terminal value
	GrB_Monoid_free: free a monoid

	GraphBLAS semirings: GrB_Semiring
	GrB_Semiring_new: create a semiring
	GrB_Semiring_wait: wait for a semiring
	GxB_Semiring_add: return the additive monoid of a semiring
	GxB_Semiring_multiply: return multiply operator of a semiring
	GrB_Semiring_free: free a semiring

	GraphBLAS scalars: GrB_Scalar
	GrB_Scalar_new: create a scalar
	GrB_Scalar_wait: wait for a scalar
	GrB_Scalar_dup: copy a scalar
	GrB_Scalar_clear: clear a scalar of its entry
	GrB_Scalar_nvals: return the number of entries in a scalar
	GxB_Scalar_type_name: return name of the type of a scalar
	GrB_Scalar_setElement: set the single entry of a scalar
	GrB_Scalar_extractElement: get the single entry from a scalar
	GxB_Scalar_memoryUsage: memory used by a scalar
	GrB_Scalar_free: free a scalar

	GraphBLAS vectors: GrB_Vector
	GrB_Vector_new: create a vector
	GrB_Vector_wait: wait for a vector
	GrB_Vector_dup: copy a vector
	GrB_Vector_clear: clear a vector of all entries
	GrB_Vector_size: return the size of a vector
	GrB_Vector_nvals: return the number of entries in a vector
	GxB_Vector_type_name: return name of the type of a vector
	GrB_Vector_build: build a vector from a set of tuples
	GxB_Vector_build_Scalar: build a vector from a set of tuples
	GrB_Vector_setElement: add an entry to a vector
	GrB_Vector_extractElement: get an entry from a vector
	GxB_Vector_isStoredElement: check if entry present in vector
	GrB_Vector_removeElement: remove an entry from a vector
	GrB_Vector_extractTuples: get all entries from a vector
	GrB_Vector_resize: resize a vector
	GxB_Vector_diag: extract a diagonal from a matrix
	GxB_Vector_iso: query iso status of a vector
	GxB_Vector_memoryUsage: memory used by a vector
	GrB_Vector_free: free a vector

	GraphBLAS matrices: GrB_Matrix
	GrB_Matrix_new: create a matrix
	GrB_Matrix_wait: wait for a matrix
	GrB_Matrix_dup: copy a matrix
	GrB_Matrix_clear: clear a matrix of all entries
	GrB_Matrix_nrows: return the number of rows of a matrix
	GrB_Matrix_ncols: return the number of columns of a matrix
	GrB_Matrix_nvals: return the number of entries in a matrix
	GxB_Matrix_type_name: return name of the type of a matrix
	GrB_Matrix_build: build a matrix from a set of tuples
	GxB_Matrix_build_Scalar: build a matrix from a set of tuples
	GrB_Matrix_setElement: add an entry to a matrix
	GrB_Matrix_extractElement: get an entry from a matrix
	GxB_Matrix_isStoredElement: check if entry present in matrix
	GrB_Matrix_removeElement: remove an entry from a matrix
	GrB_Matrix_extractTuples: get all entries from a matrix
	GrB_Matrix_resize: resize a matrix
	GxB_Matrix_reshape: reshape a matrix
	GxB_Matrix_reshapeDup: reshape a matrix
	GxB_Matrix_concat: concatenate matrices
	GxB_Matrix_split: split a matrix
	GrB_Matrix_diag: construct a diagonal matrix
	GxB_Matrix_diag: build a diagonal matrix
	GxB_Matrix_iso: query iso status of a matrix
	GxB_Matrix_memoryUsage: memory used by a matrix
	GrB_Matrix_free: free a matrix

	Serialize/deserialize methods
	GxB_Vector_serialize: serialize a vector
	GxB_Vector_deserialize: deserialize a vector
	GrB_Matrix_serializeSize: return size of serialized matrix
	GrB_Matrix_serialize: serialize a matrix
	GxB_Matrix_serialize: serialize a matrix
	GrB_Matrix_deserialize: deserialize a matrix
	GxB_Matrix_deserialize: deserialize a matrix
	GxB_deserialize_type_name: name of the type of a blob

	GraphBLAS pack/unpack: using move semantics
	GxB_Vector_pack_CSC pack a vector in CSC form
	GxB_Vector_unpack_CSC: unpack a vector in CSC form
	GxB_Vector_pack_Bitmap pack a vector in bitmap form
	GxB_Vector_unpack_Bitmap: unpack a vector in bitmap form
	GxB_Vector_pack_Full pack a vector in full form
	GxB_Vector_unpack_Full: unpack a vector in full form
	GxB_Matrix_pack_CSR: pack a CSR matrix
	GxB_Matrix_unpack_CSR: unpack a CSR matrix
	GxB_Matrix_pack_CSC: pack a CSC matrix
	GxB_Matrix_unpack_CSC: unpack a CSC matrix
	GxB_Matrix_pack_HyperCSR: pack a HyperCSR matrix
	GxB_Matrix_unpack_HyperCSR: unpack a HyperCSR matrix
	GxB_Matrix_pack_HyperCSC: pack a HyperCSC matrix
	GxB_Matrix_unpack_HyperCSC: unpack a HyperCSC matrix
	GxB_unpack_HyperHash: unpack the hypersparse hash
	GxB_pack_HyperHash: pack the hypersparse hash
	GxB_Matrix_pack_BitmapR: pack a BitmapR matrix
	GxB_Matrix_unpack_BitmapR: unpack a BitmapR matrix
	GxB_Matrix_pack_BitmapC: pack a BitmapC matrix
	GxB_Matrix_unpack_BitmapC: unpack a BitmapC matrix
	GxB_Matrix_pack_FullR: pack a FullR matrix
	GxB_Matrix_unpack_FullR: unpack a FullR matrix
	GxB_Matrix_pack_FullC: pack a FullC matrix
	GxB_Matrix_unpack_FullC: unpack a FullC matrix

	GraphBLAS import/export: using copy semantics
	GrB_Matrix_import: import a matrix
	GrB_Matrix_export: export a matrix
	GrB_Matrix_exportSize: determine size of export
	GrB_Matrix_exportHint: determine best export format

	Sorting methods
	GxB_Vector_sort: sort a vector
	GxB_Matrix_sort: sort the rows/columns of a matrix

	GraphBLAS descriptors: GrB_Descriptor
	GrB_Descriptor_new: create a new descriptor
	GrB_Descriptor_wait: wait for a descriptor
	GrB_Descriptor_set: set a parameter in a descriptor
	GxB_Desc_set: set a parameter in a descriptor
	GxB_Desc_get: get a parameter from a descriptor
	GrB_Descriptor_free: free a descriptor
	GrB_DESC_*: built-in descriptors

	GrB_free: free any GraphBLAS object

	The mask, accumulator, and replace option
	SuiteSparse:GraphBLAS Options
	OpenMP parallelism
	Storing a matrix by row or by column
	Hypersparse matrices
	Bitmap matrices
	Parameter types
	GxB_BURBLE, GxB_PRINTF, GxB_FLUSH: diagnostics
	Other global options
	GxB_Global_Option_set: set a global option
	GxB_Matrix_Option_set: set a matrix option
	GxB_Desc_set: set a GrB_Descriptor value
	GxB_Global_Option_get: retrieve a global option
	GxB_Matrix_Option_get: retrieve a matrix option
	GxB_Desc_get: retrieve a GrB_Descriptor value
	Summary of usage of GxB_set and GxB_get

	SuiteSparse:GraphBLAS Colon and Index Notation
	GraphBLAS Operations
	GrB_mxm: matrix-matrix multiply
	GrB_vxm: vector-matrix multiply
	GrB_mxv: matrix-vector multiply
	GrB_eWiseMult: element-wise operations, set intersection
	GrB_Vector_eWiseMult: element-wise vector multiply
	GrB_Matrix_eWiseMult: element-wise matrix multiply

	GrB_eWiseAdd: element-wise operations, set union
	GrB_Vector_eWiseAdd: element-wise vector addition
	GrB_Matrix_eWiseAdd: element-wise matrix addition

	GxB_eWiseUnion: element-wise operations, set union
	GxB_Vector_eWiseUnion: element-wise vector addition
	GxB_Matrix_eWiseUnion: element-wise matrix addition

	GrB_extract: submatrix extraction
	GrB_Vector_extract: extract subvector from vector
	GrB_Matrix_extract: extract submatrix from matrix
	GrB_Col_extract: extract column vector from matrix

	GxB_subassign: submatrix assignment
	GxB_Vector_subassign: assign to a subvector
	GxB_Matrix_subassign: assign to a submatrix
	GxB_Col_subassign: assign to a sub-column of a matrix
	GxB_Row_subassign: assign to a sub-row of a matrix
	GxB_Vector_subassign_<type>: assign a scalar to a subvector
	GxB_Matrix_subassign_<type>: assign a scalar to a submatrix

	GrB_assign: submatrix assignment
	GrB_Vector_assign: assign to a subvector
	GrB_Matrix_assign: assign to a submatrix
	GrB_Col_assign: assign to a sub-column of a matrix
	GrB_Row_assign: assign to a sub-row of a matrix
	GrB_Vector_assign_<type>: assign a scalar to a subvector
	GrB_Matrix_assign_<type>: assign a scalar to a submatrix

	Duplicate indices in GrB_assign and GxB_subassign
	Comparing GrB_assign and GxB_subassign
	Example
	Performance of GxB_subassign, GrB_assign and GrB_*_setElement

	GrB_apply: apply a unary, binary, or index-unary operator
	GrB_Vector_apply: apply a unary operator to a vector
	GrB_Matrix_apply: apply a unary operator to a matrix
	GrB_Vector_apply_BinaryOp1st: apply a binary operator to a vector; 1st scalar binding
	GrB_Vector_apply_BinaryOp2nd: apply a binary operator to a vector; 2nd scalar binding
	GrB_Vector_apply_IndexOp: apply an index-unary operator to a vector
	GrB_Matrix_apply_BinaryOp1st: apply a binary operator to a matrix; 1st scalar binding
	GrB_Matrix_apply_BinaryOp2nd: apply a binary operator to a matrix; 2nd scalar binding
	GrB_Matrix_apply_IndexOp: apply an index-unary operator to a matrix

	GrB_select: select entries based on an index-unary operator
	GrB_Vector_select: select entries from a vector
	GrB_Matrix_select: apply a select operator to a matrix

	GrB_reduce: reduce to a vector or scalar
	GrB_Matrix_reduce_Monoid reduce a matrix to a vector
	GrB_Vector_reduce_<type>: reduce a vector to a scalar
	GrB_Matrix_reduce_<type>: reduce a matrix to a scalar

	GrB_transpose: transpose a matrix
	GrB_kronecker: Kronecker product

	Printing GraphBLAS objects
	GxB_fprint: Print a GraphBLAS object to a file
	GxB_print: Print a GraphBLAS object to stdout
	GxB_Type_fprint: Print a GrB_Type
	GxB_UnaryOp_fprint: Print a GrB_UnaryOp
	GxB_BinaryOp_fprint: Print a GrB_BinaryOp
	GxB_IndexUnaryOp_fprint: Print a GrB_IndexUnaryOp
	GxB_Monoid_fprint: Print a GrB_Monoid
	GxB_Semiring_fprint: Print a GrB_Semiring
	GxB_Descriptor_fprint: Print a GrB_Descriptor
	GxB_Matrix_fprint: Print a GrB_Matrix
	GxB_Vector_fprint: Print a GrB_Vector
	GxB_Scalar_fprint: Print a GrB_Scalar
	Performance and portability considerations

	Matrix and Vector iterators
	Creating and destroying an iterator
	Attaching an iterator to a matrix or vector
	Seeking to an arbitrary position
	Advancing to the next position
	Accessing the indices of the current entry
	Accessing the value of the current entry
	Example: row iterator for a matrix
	Example: column iterator for a matrix
	Example: entry iterator for a matrix
	Example: vector iterator
	Performance

	Iso-Valued Matrices and Vectors
	Using iso matrices and vectors in a graph algorithm
	Iso matrices from matrix multiplication
	Iso matrices from eWiseMult and kronecker
	Iso matrices from eWiseAdd
	Iso matrices from eWiseUnion
	Reducing iso matrices to a scalar or vector
	Iso matrices from apply
	Iso matrices from select
	Iso matrices from assign and subassign
	Assignment with no accumulator operator
	Assignment with an accumulator operator

	Iso matrices from build methods
	Iso matrices from other methods
	Iso matrices not exploited

	Performance
	The burble is your friend
	Data types and typecasting
	Matrix data structures: sparse, hypersparse, bitmap, or full
	Matrix formats: by row or by column, or using the transpose of a matrix
	Push/pull optimization
	Computing with full matrices and vectors
	Iso-valued matrices and vectors
	User-defined types and operators
	About NUMA systems

	Examples
	LAGraph
	Creating a random matrix
	Creating a finite-element matrix
	Reading a matrix from a file
	User-defined types and operators
	User applications using OpenMP or other threading models

	Compiling and Installing SuiteSparse:GraphBLAS
	On Linux and Mac
	More details on the Mac
	On the ARM64 architecture
	On Microsoft Windows
	Compiling the MATLAB/Octave interface (for Octave)
	Compiling the MATLAB/Octave interface (for MATLAB)
	Setting the C flags and using CMake
	Using a plain makefile
	Running the Demos
	Installing SuiteSparse:GraphBLAS
	Linking issues after installation
	Running the tests
	Cleaning up

	Release Notes
	Regarding historical and deprecated functions and symbols

	Acknowledgments
	Additional Resources
	References

