
KLU–A HIGH PERFORMANCE SPARSE LINEAR SOLVER
FOR CIRCUIT SIMULATION PROBLEMS

By

EKANATHAN PALAMADAI NATARAJAN

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2005

Copyright 2005

by

Ekanathan Palamadai Natarajan

I dedicate this work to my mother Savitri who has been a source of inspiration

and support to me.

ACKNOWLEDGMENTS

I would like to thank Dr. Timothy Davis, my advisor for introducing me

to the area of sparse matrix algorithms and linear solvers. I started only with

my background in numerical analysis and algorithms, a year and half back. The

insights and knowledge I have gained since then in the area and in implementing

a sparse linear solver like KLU would not have been possible but for Dr. Davis’

guidance and help. I thank him for giving me an opportunity to work on KLU. I

would like to thank Dr. Jose Fortes and Dr. Arunava Banerjee for their support

and help and for serving on my committee.

I would like to thank CISE administrative staff for helping me at different

times during my master’s research work.

iv

TABLE OF CONTENTS
page

ACKNOWLEDGMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . ix

CHAPTER

1 INTRODUCTION . 1

2 THEORY: SPARSE LU . 5

2.1 Dense LU . 5
2.2 Sparse LU . 7
2.3 Left Looking Gaussian Elimination 8
2.4 Gilbert-Peierls’ Algorithm . 10

2.4.1 Symbolic Analysis . 11
2.4.2 Numerical Factorization . 13

2.5 Maximum Transversal . 14
2.6 Block Triangular Form . 16
2.7 Symmetric Pruning . 18
2.8 Ordering . 19
2.9 Pivoting . 22
2.10 Scaling . 23
2.11 Growth Factor . 25
2.12 Condition Number . 27
2.13 Depth First Search . 30
2.14 Memory Fragmentation . 31
2.15 Complex Number Support . 33
2.16 Parallelism in KLU . 33

3 CIRCUIT SIMULATION: APPLICATION OF KLU 35

3.1 Characteristics of Circuit Matrices 37
3.2 Linear Systems in Circuit Simulation 38
3.3 Performance Benchmarks . 39
3.4 Analyses and Findings . 41
3.5 Alternate Ordering Experiments 42

v

3.6 Experiments with UF Sparse Matrix Collection 44
3.6.1 Different Ordering Schemes in KLU 44
3.6.2 Timing Different Phases in KLU 45
3.6.3 Ordering Quality among KLU, UMFPACK and Gilbert-

Peierls . 45
3.6.4 Performance Comparison between KLU and UMFPACK . . 48

4 USER GUIDE FOR KLU . 51

4.1 The Primary KLU Structures . 51
4.1.1 klu common . 51
4.1.2 klu symbolic . 53
4.1.3 klu numeric . 55

4.2 KLU Routines . 58
4.2.1 klu analyze . 58
4.2.2 klu analyze given . 59
4.2.3 klu *factor . 59
4.2.4 klu *solve . 60
4.2.5 klu *tsolve . 61
4.2.6 klu *refactor . 62
4.2.7 klu defaults . 63
4.2.8 klu *rec pivot growth . 63
4.2.9 klu *estimate cond number 64
4.2.10 klu free symbolic . 65
4.2.11 klu free numeric . 66

REFERENCES . 67

BIOGRAPHICAL SKETCH . 69

vi

LIST OF TABLES
Table page

3–1 Comparison between KLU and SuperLU on overall time and fill-in . . 39

3–2 Comparison between KLU and SuperLU on factor time and solve time 40

3–3 Ordering results using BTF+AMD in KLU on circuit matrices 41

3–4 Comparison of ordering results produced by BTF+AMD, AMD, MMD 43

3–5 Fill-in with four different schemes in KLU 46

3–6 Time in seconds, spent in different phases in KLU 47

3–7 Fill-in among KLU, UMFPACK and Gilbert-Peierls 49

3–8 Performance comparison between KLU and UMFPACK 50

vii

LIST OF FIGURES
Figure page

2–1 Nonzero pattern of x when solving Lx = b 13

2–2 A matrix permuted to BTF form . 16

2–3 A symmetric pruning scenario . 18

2–4 A symmetric matrix and its graph representation 21

2–5 The matrix and its graph representation after one step of Gaussian
elimination . 21

2–6 A doubly bordered block diagonal matrix and its corresponding ver-
tex separator tree . 34

viii

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Master of Science

KLU–A HIGH PERFORMANCE SPARSE LINEAR SOLVER
FOR CIRCUIT SIMULATION PROBLEMS

By

Ekanathan Palamadai Natarajan

August 2005

Chair: Dr. Timothy A. Davis
Major Department: Computer and Information Science and Engineering

The thesis work focuses on KLU, a sparse high performance linear solver for

circuit simulation matrices. During the circuit simulation process, one of the key

steps is to solve sparse systems of linear equations of very high order. KLU targets

solving these systems with efficient ordering mechanisms and high performance

factorization and solve algorithms. KLU uses a hybrid ordering strategy that

comprises an unsymmetric permutation to ensure zero free diagonal, a symmetric

permutation to block upper triangular form and a fill reducing ordering such as

approximate minimum degree.

The factorization is based on Gilbert-Peierls’ left-looking algorithm with

partial pivoting. KLU also includes features like symmetric pruning to cut down

symbolic analysis costs. It offers to solve up to four right hand sides in a single

solve step. In addition, it offers transpose and conjugate transpose solve capabili-

ties and important diagnostic features to estimate the reciprocal pivot growth of

the factorization and condition number of the input matrix.

The algorithm is implemented in the C language with MATLAB interfaces as

well. The MATLAB interfaces enable a user to invoke KLU routines from within

ix

the MATLAB environment. The implementation was tested on circuit matrices

and the results determined. KLU achieves superior fill-in quality with its hybrid

ordering strategy and achieves a good performance speed-up when compared with

existing sparse linear solvers for circuit problems. The thesis highlights the work

being done on exploiting parallelism in KLU as well.

x

CHAPTER 1
INTRODUCTION

Sparse is beautiful. Solving systems of linear equations of the form Ax = b

is a fundamental and important area of high performance computing. The matrix

A is called the coefficient matrix and b the right hand side vector. The vector x is

the solution to the equation. There are a number of methods available for solving

such systems. Some of the popular ones are Gaussian elimination, QR factorization

using Householder transformations or Givens rotations and Cholesky factorization.

Gaussian elimination with partial pivoting is the most widely used algorithm for

solving linear systems because of its stability and better time complexity. Cholesky

can be used only when A is symmetric positive definite.

Some systems that are solved comprise a dense coefficient matrix A. By dense,

we mean most of the elements in A are nonzero. There are high performance

subroutines such as the BLAS [1, 2, 3, 4, 5] that can maximize flop count for

such dense matrices. The interesting systems are those where the coefficient

matrix A happens to be sparse. By sparse, we mean the matrix has few nonzero

entries(hereafter referred to simply as ’nonzeros’). The adjective ’few’ is not well-

defined as we will see in chapter two. When matrices tend to be sparse, we need

to find out effective ways to store the matrix in memory since we want to avoid

storing zeros of the matrix. When we store only the nonzeros in the matrix, it has

consequences in the factorization algorithm as well. One typical example would be

we do not know before hand how nonzeros would appear in the L and U factors

when we factorize the matrix. While we avoid storing the zeros, we also want to

achieve good time complexity when solving sparse systems. If the time spent to

1

2

solve sparse systems remains same as for dense systems, we have not done any

better.

KLU stands for Clark Kent LU, since it is based on Gilbert-Peierls’ algorithm,

a non-supernodal algorithm, which is the predecessor to SuperLU, a supernodal

algorithm. KLU is a sparse high performance linear solver that employs hybrid

ordering mechanisms and elegant factorization and solve algorithms. It achieves

high quality fill-in rate and beats many existing solvers in run time, when used for

matrices arising in circuit simulation.

There are several flavours of Gaussian elimination. A left-looking Gaussian

elimination algorithm factorizes the matrix left to right computing columns of L

and U. A right-looking version factorizes the matrix from top-left to bottom-right

computing column of L and row of U. Both have their advantages and disad-

vantages. KLU uses a left looking algorithm called Gilbert-Peierls’ algorithm.

Gilbert-Peierls’ comprises a graph theoretical symbolic analysis phase that iden-

tifies the nonzero pattern of each column of L and U factors and a left-looking

numerical factorization phase with partial pivoting that calculates the numerical

values of the factors. KLU uses Symmetric Pruning to cut down symbolic analysis

cost. We shall look in detail on these features in chapter two.

A critical issue in linear solvers is Ordering. Ordering means permuting the

rows and columns of a matrix, so that the fill-in in the L and U factors is reduced

to a minimum. A fill-in is defined as a nonzero appearing in either of the matrices

L or U, while the element in the corresponding position in A is a zero. Lij or Uij

is a fill-in if Aij is a zero. Fill-in has obvious consequences in memory in that

the factorization algorithm could create dense L and U factors that can exhaust

available memory. A good ordering algorithm yields a low fill-in in the factors.

Finding the ordering that gives minimal fill-in is an NP complete problem. So

3

ordering algorithms use heuristics. KLU accomodates multiple ordering schemes

like AMD, COLAMD and any user generated permutation.

There are other orderings for different purposes. For example, one could order

a matrix to ensure that it has no zeros on the diagonal. Otherwise, the Gaussian

elimination would fail. Another ordering scheme could reduce the factorization

work. KLU employs two such orderings namely an unsymmetric ordering that

ensures a zero free diagonal and a symmetric ordering that permutes the matrix

into a block upper triangular form (BTF) that restricts factorization to only the

diagonal blocks.

One of the key steps in the circuit simulation process is solving sparse linear

systems. These systems originate from solving large systems of non linear equations

using Newton’s method and integrating large stiff systems of ordinary differential

equations. These systems are of very high dimensions and a considerable fraction of

simulation time is spent on solving these systems. Often the solve phase tends to

be a bottleneck in the simulation process. Hence high performance sparse solvers

that optimize memory usage and solution time are critical components of circuit

simulation software. Some of the popular solvers in use in circuit simulation tools

are Sparse1.3 and SuperLU. Sparse1.3 is used in SPICE circuit simulation package

and SuperLU uses a supernodal factorization algorithm. Experimental results of

KLU indicate that it is 1000 times faster than Sparse1.3 and 1.5 to 3 times faster

than SuperLU.

Circuit matrices show some unique properties. They have a nearly zero free

diagonal. They have a roughly symmetric pattern but have unsymmetric values.

They are highly sparse and often have a few dense rows and columns. These dense

rows/columns arise from voltage sources and current sources in the circuit. Circuit

matrices show good amenability to BTF ordering. Though the nonzero pattern of

original matrix is unsymmetric, the nonzero pattern of blocks produced by BTF

4

ordering tend to be symmetric. Since circuit matrices are extremely sparse, sparse

matrix algorithms such as SuperLU [6] and UMFPACK [7, 8] that employ dense

BLAS kernels are often inappropriate. Another unique characteristic of circuit

matrices is that employing a good ordering strategy keeps the L and U factors

sparse. However as we will see in experimental results, typical ordering strategies

can lead to high fill-in.

In circuit simulation problems, typically the circuit matrix template is gen-

erated once and the numerical values of the matrix alone change. In other words,

the nonzero pattern of the matrix does not change. This implies that we need

to order and factor the matrix once to generate the ordering permutations and

the nonzero patterns of L and U factors. For all subsequent matrices, we can use

the same information and need only to recompute the numerical values of the

L and U factors. This process of skipping analysis and factor phases is called

refactorization.Refactorization leads to a significant reduction in run time.

Because of the unique characteristics of circuit matrices and their amenability

to BTF ordering, KLU is a method well-suited to circuit simulation problems. KLU

has been implemented in the C language. It offers a set of API for the analysis

phase, factor phase, solve phase and refactor phase. It also offers the ability to

solve upto four right hand sides in a single solve step. In addition, it offers trans-

pose solve, conjugate transpose solve features and diagnostic tools like pivot growth

estimator and condition number estimator. It also offers a MATLAB interface for

the API so that KLU can be used from within the MATLAB environment.

CHAPTER 2
THEORY: SPARSE LU

2.1 Dense LU

Consider the problem of solving the linear system of n equations in n un-

knowns:

a11x1 + a12x2 + ...+ a1nxn = b1

a21x1 + a22x2 + ...+ a2nxn = b2

... (2–1)

an1x1 + an2x2 + ...+ annxn = bn

or, in matrix notation,




a11 a12 · · · a1n

a21 a22 · · · a2n

...

an1 an2 · · · ann



∗




x1

x2

...

xn




=




b1

b2

...

bn




(2–2)

Ax = b

where A = (aij), x = (x1, x2, ..., xn)T and b = (b1, ..., bn)T . A well-known approach

to solving this equation is Gaussian elimination. Gaussian elimination consists of a

series of eliminations of unknowns xi from the original system. Let us briefly review

the elimination process. In the first step, the first equation of 2–1 is multiplied

by −a21

a11
,−a31

a11
, ... − an1

a11
and added with the second through nth equation of 2–1

respectively. This would eliminate x1 from second through the nth equations. After

5

6

the first step, the 2–2 would become




a11 a12 · · · a1n

0 a
(1)
22 · · · a

(1)
2n

...

0 a
(1)
n2 · · · a

(1)
nn



∗




x1

x2

...

xn




=




b1

b
(1)
2

...

b
(1)
n




(2–3)

where a
(1)
22 = a22 − a21

a11
∗ a12, a32(1) = a32 − a31

a11
∗ a12 and so on. In the second

step, x2 will be eliminated by a similar process of computing multipliers and adding

the multiplied second equation with the third through nth equations. After n-1

eliminations, the matrix A is transformed to an upper triangular matrix U . The

upper triangular system is then solved by back-substitution.

An equivalent interpretation of this elimination process is that we have

factorized A into a lower triangular matrix L and an upper triangular matrix U

where

L =




1 0 0 · · · 0

a21

a11
1 0 · · · 0

a31

a11

a
(1)
32

a
(1)
22

1 · · · 0

...

an1

a11

a
(1)
n2

a
(1)
22

a
(2)
n3

a
(2)
33

· · · 1




(2–4)

and

U =




a11 a12 a13 · · · a1n

0 a
(1)
22 a23(1) · · · a

(1)
2n

0 0 a33(2) · · · a
(2)
3n

...

0 0 0 · · · a
(n−1)
nn




(2–5)

The column k of the lower triangular matrix L consists of the multipliers

obtained during step k of the elimination process, with their sign negated.

7

Mathematically, Ax = b can be rewritten as

(LU)x = b

L(Ux) = b (2–6)

Substituting Ux = y in 2–6, we have

Ly = b (2–7)

Ux = y (2–8)

By solving these two lower triangular systems, we find the solution to the actual

system.

The reason for triangularizing the system is to avoid finding the inverse of

the original coefficient matrix A. Inverse finding is atleast thrice as expensive as

Gaussian elimination in the dense case and often leads to more inaccuracies.

2.2 Sparse LU

A sparse matrix is defined as one that has few nonzeros in it. The quan-

tification of the adjective ’few’ is not specified. The decision as to what kind of

algorithm to use (sparse or dense) depends on the fill-in properties of the matrices.

However, sparse matrices typically have O(n) nonzero entries. Dense matrices

are typically represented by a two dimensional array.The zeros of a sparse matrix

should not be stored if we want to save memory. This fact makes a two dimensional

array unsuitable for representing sparse matrices. Sparse matrices are represented

with a different kind of data structure. They can be represented in two different

data structures viz.column compressed form or row compressed form.

A column compressed form consists of three vectors Ap, Ai and Ax. Ap

consists of column pointers. It is of length n+1. The start of column k of the input

matrix is given by Ap [k].

8

Ai consists of row indices of the elements. This is a zero based data structure

with row indices in the interval [0,n). Ax consists of the actual numerical values of

the elements.

Thus the elements of a column k of the matrix are held in

Ax [Ap [k]...Ap [k+1]). The corresponding row indices are held in

Ai [Ap [k]...Ap[k+1]).

Equivalently, a row compressed format stores a row pointer vector Ap, a

column indices vector Ai and a value vector Ax. For example, the matrix




5 0 0

4 2 0

3 1 8




when represented in column compressed format will be

Ap: 0 3 5 6

Ai: 0 1 2 1 2 2

Ax: 5 4 3 2 1 8

and when represented in row compressed format will be

Ap: 0 1 3 6

Ai: 0 0 1 0 1 2

Ax: 5 4 2 3 1 8

Let nnz represent the number of nonzeros in a matrix of dimension n ∗ n.

Then in a dense matrix representation, we will need n2 memory to represent the

matrix. In sparse matrix representation, we reduce it to O(n + nnz) and typically

nnz � n2.

2.3 Left Looking Gaussian Elimination

Let us derive a left looking version of Gaussian elimination. Let an input

matrix A of order n ∗ n be represented as a product of two triangular matrices L

and U.

9

Let




A11 a12 A13

a21 a22 a23

A31 a32 A33




=




L11 0 0

l21 1 0

L31 l32 L33



∗




U11 u12 U13

0 u22 u23

0 0 U33




(2–9)

where Aij is a block, aij is a vector and aij is a scalar. The dimensions of

different elements in the matrices are as follows:

A11, L11, U11 are k ∗ k blocks

a12,u12 are k ∗ 1 vectors

A13, U13 are k ∗ n− (k + 1) blocks

a21, l21 are 1 ∗ k row vectors

a22, u22 are scalars

a23,u23 are 1 ∗ n− (k + 1) row vectors

A31, L31 are n− (k + 1) ∗ k blocks

a32, l32 are n− (k + 1) ∗ 1 vectors

A33, L33, U33 are n− (k + 1) ∗ n− (k + 1) blocks.

From (2–9), we can arrive at the following set of equations.

L11 ∗ U11 = A11 (2–10)

L11 ∗ u12 = a12 (2–11)

L11 ∗ U13 = A13 (2–12)

l21 ∗ U11 = a21 (2–13)

l21 ∗ u12 + u22 = a22 (2–14)

l21 ∗ U13 + u23 = a23 (2–15)

L31 ∗ U11 = A31 (2–16)

L31 ∗ u12 + l32 ∗ u22 = a32 (2–17)

L31 ∗ U13 + l32 ∗ u23 + L33 ∗ U33 = A33 (2–18)

10

From (2–11), (2–14) and (2–17), we can compute the 2nd column of L

and U, assuming we have already computed L11, l21 and L31. We first solve the

lower triangular system (2–11) for u12. Then, we solve for u22 using (2–14) by

computing the sparse dot product

u22 = a22 − l21 ∗ u12 (2–19)

Finally we solve (2–17) for l32 as

l32 =
1

u22

(a32 − L31 ∗ u12) (2–20)

This step of computing the 2nd column of L and U can be considered equiva-

lent to solving a lower triangular system as follows:




L11 0 0

l21 1 0

L31 0 1



∗




u12

u22

l32 ∗ u22




=




a12

a22

a32




(2–21)

This mechanism of computing column k of L and U by solving a lower

triangular system L ∗ x = b is the key step in a left-looking factorization algorithm.

As we will see later, Gilbert-Peierls’ algorithm revolves around solving this lower

triangular system. The algorithm is called a left-looking algorithm since column

k of L and U are computed by using the already computed columns 1...k-1 of L.

In other words, to compute column k of L and U, one looks only at the already

computed columns 1...k-1 in L, that are to the left of the currently computed

column k.

2.4 Gilbert-Peierls’ Algorithm

Gilbert-Peierls’ [9] proposed an algorithm for Gaussian elimination with partial

pivoting in time proportional to the flop count of the elimination to factor an

arbitrary non singular sparse matrix A as PA = LU . If flops(LU) is the number

11

of nonzero multiplications performed when multiplying two matrices L and U , then

Gaussian elimination uses exactly flops(LU) multiplications and divisions to factor

a matrix A into L and U . Given an input matrix and assuming no partial pivoting,

it is possible to predict the nonzero pattern of its factors. However with partial

pivoting, it is not possible to predict the exact nonzero pattern of the factors

before hand. Finding an upper bound is possible, but the bound can be very loose

[10]. Note that computing the nonzero pattern of L and U is a necessary part of

Gaussian elimination involving sparse matrices since we do not use two dimensional

arrays for representing them but sparse data structures. Gilbert-Peierls’ algorithm

aims at computing the nonzero pattern of the factors and the numerical values in a

total time proportional to O(flops(LU)).

It consists of two stages for determining every column of L and U . The first

stage is a symbolic analysis stage that computes the nonzero pattern of the column

k of the factors. The second stage is the numerical factorization stage that involves

solving the lower triangular system Lx = b, that we discussed in the section above.

2.4.1 Symbolic Analysis

A sparse Gaussian elimination algorithm with partial pivoting cannot know

the exact nonzero structure of the factors ahead of all numerical computation,

simply because partial pivoting at column k can introduce new nonzeros in columns

k+1 · · ·n. Solving Lx = b must be done in time proportional to the number of flops

performed. Consider a simple column-oriented algorithm in MATLAB notation for

solving Lx = b as follows:

x = b

for j = 1:n

if x(j) ~= 0

x(j+1:n) = x(j+1:n) - L(j+1:n,j) * x(j)

end

12

end

The above algorithm takes time O(n + number of flops performed). The O(n)

term looks harmless, but Lx = b is solved n times in the factorization of A = LU ,

leading to an unacceptable O(n2) term in the work to factorize A into L times U .

To remove the O(n) term, we must replace the algorithm with

x = b

for each j for which x(j) ~= 0

x(j+1:n) = x(j+1:n) - L(j+1:n, j) * x(j)

end

This would reduce the O(n) term to O(η(b)), where η(b) is the number of nonzeros

in b. Note that b is a column of the input matrix A. Thus to solve Lx = b, we need

to know the nonzero pattern of x before we compute x itself. Symbolic analysis

helps us determine the nonzero pattern of x.

Let us say we are computing column k of L and U . Let G = G(Lk) be

the directed graph of L with k − 1 vertices representing the already computed

k − 1 columns. G(Lk) has an edge j → i iff lij 6= 0. Let β = {i|bi 6= 0} and

X = {i|xi 6= 0} Now the elements of X is given by

X = ReachG(L)(β) (2–22)

The nonzero pattern of X is computed by the determining the vertices that

are reachable from the vertices of the set β. The reachability problem can be solved

using a classical depth first search in G(Lk) from the vertices of the set β. If bj 6= 0,

then xj 6= 0. In addition if Lij 6= 0, then xi 6= 0 even if bi = 0. This is because

a Lij ∗ xj contributes to a nonzero in the equation when we solve for xi. During

the depth first search, Gilbert-Peierls’ algorithm computes the topological order of

X. This topological ordering is useful for eliminating unknowns in the Numerical

factorization step.

13

L

xj

xi
lij

Figure 2–1: Nonzero pattern of x when solving Lx = b

The row indices vector Li of columns 1 · · · k − 1 of L represents the adjacency

list of the graph G(Lk). The depth first search takes time proportional to the

number of vertices examined plus the number of edges traversed.

2.4.2 Numerical Factorization

Numerical factorization consists of solving the system (2–21) for each col-

umn k of L and U . Normally we would solve for the unknowns in (2–21) in the

increasing order of the row index. The row indices/nonzero pattern computed by

depth first search are not necessarily in increasing order. Sorting the indices would

increase the time complexity above our O(flops(LU)) goal. However, the require-

ment of eliminating unknowns in increasing order can be relaxed to a topological

order of the row indices. An unknown xi can be computed, once all the unknowns

xj of which it is dependent on are computed. This is obvious when we write the

equations comprising a lower triangular solve. Theoretically, the unknowns can be

solved in any topological order. The depth first search algorithm gives one such

topological order which is sufficient for our case. In our example, the depth first

search would have finished exploring vertex i before it finishes exploring vertices j.

14

Hence a topological order given by depth first search would have j appearing before

i. This is exactly what we need.

Gilbert-Peierls’ algorithm starts with an identity L matrix. The entire left

looking algorithm can be summarized in MATLAB notation as follows:

L = I

for k = 1:n

x = L \ A(:,k)

%(partial pivoting on x can be done here)

U(1:k,k) = x(1:k)

L(k:n,k) = x(k:n) / U(k,k)

end

where x = L\b denotes the solution of a sparse lower triangular system. In

this case, b is the kth column of A. The total time complexity of Gilbert-Peierls’

algorithm is O(η(A) + flops(LU)). η(A) is the number of nonzeros in the matrix A

and flops(LU) is the flop count of the product of the matrices L and U. Typically

flops(LU) dominates the complexity and hence the claim of factorizing in time

proportional to the flop count.

2.5 Maximum Transversal

Duff [11, 12] proposed an algorithm for determining the maximum transversal

of a directed graph.The purpose of the algorithm is to find a row permutation that

minimizes the zeros on the diagonal of the matrix. For non singular matrices, the

algorithm ensures a zero free diagonal. KLU employs Duff’s [11, 12] algorithm

to find an unsymmetric permutation of the input matrix to determine a zero-

free diagonal. A matrix cannot be permuted to have a zero free diagonal if and

only if it is structurally singular. A matrix is structurally singular if there is no

permutation of its nonzero pattern that makes it numerically nonsingular.

15

A transversal is defined as a set of nonzeros, no two of which lie in the same

row or column, on the diagonal of the permuted matrix. A transversal of maximum

length is the maximum transversal.

Duff’s maximum transversal algorithm consists of representing the matrix as

a graph with each vertex corresponding to a row in the matrix. An edge ik → ik+1

exists in the graph if A(ik, jk+1) is a nonzero and A(ik+1, jk+1) is an element in the

transversal set. A path between vertices i0 and ik would consist of a sequence of

nonzeros (i0, j1), (i1, j2), · · · (ik−1, jk) where the current transversal would include

(i1, j1), (i2, j2), · · · (ik, jk). If there is a nonzero in position (ik, jk+1) and no nonzero

in row i0 or column jk+1 is currently on the travseral, it increases the transerval

by one by adding the nonzeros (ir, jr+1), r = 0, 1, · · · , k to the transversal and

removing the nonzeros (ir, jr), r = 1, 2, · · · , k from the transversal. This adding and

removing of nonzeros to and from the transversal is called reassignment chain or

augmenting path.

A vertex or row is said to be assigned if a nonzero in the row is chosen for

the transversal. The process of constructing augmenting paths is done by doing

a depth first search from an unassigned row i0 of the matrix and continue till a

vertex ik is reached where the path terminates because A(ik, jk+1) is a nonzero and

column jK+1 is unassigned. Then the search backtracks to i0 adding and removing

transversal elements thus constructing an augmenting path.

Duff’s maximum transversal transversal algorithm has a worst case time

complexity of O(nτ) where τ is the number of nonzeros in the matrix and n is the

order of the matrix. However in practice, the time complexity is close to O(n+ τ).

The maximum transversal problem can be cast as a maximal matching

problem on bipartite graphs. This is only to make a comparison. The maximal

matching problem is stated as follows.

16

0

=

A11 A13 A14

A34

A22 A23 A24

A33

A44

x1

x2

x3

x4

b1

b2

b3

b4

A12

Figure 2–2: A matrix permuted to BTF form

Given an undirected graph G = (V,E), a matching is a subset of the edges

M ⊆ E such that for all vertices v ∈ V , at most one edge of M is incident on

v. A vertex v ∈ V is matched if some edge in M is incident on v, otherwise, v is

unmatched. A maximal matching is a matching of maximum cardinality, that is a

matching M such that for any matching M ′, we have |M | ≥ |M ′|.

A maximal matching can be built incrementally, by picking an arbitraty edge e

in the graph, deleting any edge that is sharing a vertex with e and repeating until

the graph is out of edges.

2.6 Block Triangular Form

A block (upper) triangular matrix is similar to a upper triangular matrix

except that the diagonals in the former are square blocks instead of scalars. Figure

2–2 shows a matrix permuted to the BTF form.

Converting the input matrix to block triangular form is important in that,

1. The part of the matrix below the block diagonal requires no factorization

effort.

17

2. The diagonal blocks are independent of each other.Only the blocks need to

be factorized. For example, in figure 2–2, the subsystem A44x4 = b4 can be

solved independently for x4 and x4 can be eliminated from the overall system.

The system A33x3 = b3 − A34x4 is then solved for x3 and so on.

3. The off diagonal nonzeros do not contribute to any fill-in.

Finding a symmetric permutation of a matrix to its BTF form is equivalent

to finding the strongly connected components of a graph. A strongly connected

component of a directed graph G = (V,E) is a maximal set of vertices C ⊆ V such

that for every pair of vertices u and v in C, we have both u → v and v → u. The

vertices u and v are reachable from each other.

The Algorithm employed in KLU for symmetric permutation of a matrix to a

BTF form, is based on Duff and Reid’s [13, 14] algorithm. Duff and Reid provide

an implementation for Tarjan’s [15] algorithm to determine the strongly connected

components of a directed graph. The algorithm has a time complexity of O(n + τ)

where n is the order of the matrix and τ is the number of off diagonal nonzeros in

the matrix.

The algorithm essentially consists of doing a depth first search from unvisited

nodes in the graph. It uses a stack to keep track of nodes being visited and uses a

path of the nodes. When all edges in the path are explored, it generates Strongly

connected components from the top of stack.

Duff’s algorithm is different from the method proposed by Cormen, Leiserson,

Rivest and Stein [16]. They suggest doing a depth first search on G , computing GT

and then running a depth first search on GT on vertices in the decreasing order of

their finish times from the first depth first search (the topological order from the

first depth first search).

18

���
�

���
�

���
�

j i k

j

i

s

= Pruned, = Fill in= Nonzero,

Figure 2–3: A symmetric pruning scenario

2.7 Symmetric Pruning

Eisenstat and Liu [17] proposed a method called Symmetric Pruning to exploit

structural symmetry for cutting down the symbolic analysis time. The cost of

depth first search can be cut down by pruning unnecessary edges in the graph of

L,G(L). The idea is to replace G(L) by a reduced graph of L. Any graph H can be

used in place of G(L), provided that i→ j exists in H iff i→ j exists in G(L). If A

is symmetric, then the symmetric reduction is just the elimination tree.

The symmetric reduction is a subgraph of G(L). It has fewer edges than G(L)

and is easier to compute by taking advantage of symmetry in the structure of

the factors L and U. Even though the symmetric reduction removes edges, it still

preserves the paths between vertices of the original graph.

Figure 2–3 shows a symmetric pruning example.

If lij 6= 0, uji 6= 0, then we can prune edges j → s, where s > i. The reason

behind this is that for any ajk 6= 0, ask will fill in from column j of L for s > k.

19

The just computed column i of L is used to prune earlier columns. Any future

depth first search from vertex j will not visit vertex s, since s would have been

visited via i already.

Note that every column is pruned only once. KLU employs symmetric pruning

to speed up the depth first search in the symbolic analysis stage.

2.8 Ordering

It is a widely used practice to precede the factorization step of a sparse

linear system by an ordering phase. The purpose of the ordering is to generate a

permutation P , that reduces the fill-in in the factorization phase of PAP T . A fill-in

is defined as a nonzero in a position (i, j) of the factor that was zero in the original

matrix. In other words, we have a fill-in if Lij 6= 0, where Aij = 0.

The permuted matrix created by the ordering PAP T creates much less fill-in

in factorization phase than the unpermuted matrix A. The ordering mechanism

typically takes into account only the structure of the input matrix, without

considering the numerical values stored in the matrix. Partial pivoting during

factorization changes the row permutation P and hence could potentially increase

fill-in as opposed to what was estimated by the ordering scheme. We shall see more

about pivoting in the following sections.

If the input matrix A is unsymmetric, then the permutation of the matrix

A + AT can be used. Various minimum degree algorithms can be used for ordering.

Some of the popular ordering schemes include approximate minimum degree(AMD)

[18, 19], column approximate minimum degree(COLAMD) [20, 21] among others.

COLAMD orders the matrix AAT without forming it explicitly.

After permuting an input matrix A into BTF form using the maximum

transversal and BTF orderings, KLU attempts to factorize each of the diagonal

blocks. It applies the fill reducing ordering algorithm on the block before factoriz-

ing it. KLU supports both approximate minimum degree and column approximate

20

minimum degree. Besides, any given ordering algorithm can be plugged into

KLU without much effort. Work is being done on integrating a Nested Dissection

ordering strategy into KLU as well.

Of the various ordering schemes, AMD gives best results on circuit matrices.

AMD finds a permutation P to reduce fill-in for the Cholesky factorization of

PAP T (of P (A + AT)P T , if A is unsymmetric). AMD assumes no numerical

pivoting. AMD attempts to reduce an optimistic estimate of fill-in.

COLAMD is an unsymmetric ordering scheme, that computes a column

permutation Q to reduce fill-in for Cholesky factorization of (AQ)TAQ. COLAMD

attempts to reduce a ”pessimitic” estimate (upper bound) of fill-in.

Nested Dissection is another ordering scheme that creates permutation

such that the input matrix is transformed into block diagonal form with vertex

separators. This is a popular ordering scheme. However, it is unsuitable for

circuit matrices when applied to the matrix as such. It can be used on the blocks

generated by BTF pre-ordering.

The idea behind a minimum degree algorithm is as follows: A structurally

symmetric matrix A can be represented by an equivalent undirected graph G(V,E)

with vertices corresponding to row/column indices. An edge i → j exists in G if

Aij 6= 0.

Consider the figure 2–4. If the matrix is factorized with vertex 1 as the pivot,

then after the first Gaussian elimination step, the matrix would be transformed as

in figure 2–5.

This first step of elimination can be considered equivalent to removing node

1 and all its edges from the graph and adding edges to connect all nodes adjacent

to 1. In other words, the elimination has created a clique of the nodes adjacent

to the eliminated node. Note that there are as many fill-ins in the reduced matrix

as there are edges added in the clique formation. In the above example, we have

21

*
*
*
*
*

* * * *
* *

**
*

*

1

2 3

54

Figure 2–4: A symmetric matrix and its graph representation

* * * * *
* *

**
*

*

2 3

54

*
* *

*
* * *

*
*
*

Figure 2–5: The matrix and its graph representation after one step of Gaussian
elimination

22

chosen the wrong node as pivot, since node 1 has the maximum degree. Instead if

we had chosen a node with minimum degree say 3 or 5 as pivot, then there would

have been zero fill-in after the elimination since both 3 and 5 have degree 1.

This is the key idea in a minimum degree algorithm. It generates a permuta-

tion such that a node with minimum degree is eliminated in each step of Gaussian

elimination, thus ensuring a minimal fill-in. The algorithm does not examine the

numerical values in the node selection process. It could happen that during partial

pivoting, a node other than the one suggested by the minimum degree algorithm

must be chosen as pivot because of its numerical magnitude. That’s exactly the

reason why the fill-in estimate produced by the ordering algorithm could be less

than that experienced in the factorization phase.

2.9 Pivoting

Gaussian elimination fails when the diagonal element in the input matrix

happens to be zero. Consider a simple 2 ∗ 2 system,

A =




0 a12

a21 a22


 ∗



x1

x2


 =



b1

b2


 (2–23)

When solving the above system, Gaussian elimination computes the multiplier

−a21/a11 [and multiplies row 1 with this multiplier and adds it to row 2] thus

eliminating the coefficient element a21 from the matrix. This step obviously would

fail, since a11 is zero. Now let’s see a classical case when the diagonal element is

nonzero but close to zero.

A =




0.0001 1

1 1


 (2–24)

The multiplier is −1/0.0001 = −104. The factors L and U are

23

L =




1 0

104 1


U =




0.0001 1

0 −104


 (2–25)

The element u22 has the actual value 1 − 104. However assuming a four digit

arithmetic, it would be rounded off to −104. Note that the product of L and U is

L ∗ U =




0.0001 1

1 0


 (2–26)

which is different from the original matrix. The reason for this problem is that the

multiplier computed is so large that when added with the small element a22 with

value 1, it obscured the tiny value present in a22.

We can solve these problems with pivoting. In the above two examples,

we could interchange rows 1 and 2, to solve the problem. This mechanism of

interchanging rows(and columns) and picking a large element as the diagonal, to

avoid numerical failures or inaccuracies is called pivoting. To pick a numerically

large element as pivot, we could look at the elements in the current column or we

could look at the entire submatrix (across both rows and columns). The former is

called partial pivoting and the latter is called complete pivoting.

For dense matrices, partial pivoting adds a time complexity of O(n2) com-

parisons to Gaussian elimination and complete pivoting adds O(n3) comparisons.

Complete pivoting is expensive and hence is generally avoided, except for special

cases. KLU employs partial pivoting with diagonal preference. As long as the

diagonal element is atleast a constant threshold times the largest element in the

column, we choose the diagonal as the pivot. This constant threshold is called pivot

tolerance.

2.10 Scaling

The case where small elements in the matrix get obscured during the elimina-

tion process and accuracy of the results gets skewed because of numerical addition

24

is not completely overcome by the pivoting process. Let us see an example of this

case.

Consider the 2 ∗ 2 system

A =




10 105

1 1


 ∗



x1

x2


 =




105

2


 (2–27)

When we apply Gaussian elimination with partial pivoting to the above

system, the entry a11 is largest in the first column and hence would continue to be

the pivot.After the first step of elimination assuming a four digit arithmetic, we

would have

A =




10 105

0 −104


 ∗



x1

x2


 =




105

−104


 (2–28)

The solution from the above elimination is x1 = 1, x2 = 0. However the correct

solution is close to x1 = 1, x2 = 1.

If we divide each row of the matrix by the largest element in that row(and the

corresponding element in the right hand side as well), prior to Gaussian elimination

we would have

A =




10−4 1

1 1


 ∗



x1

x2


 =




1

2


 (2–29)

Now if we apply partial pivoting we would have,

A =




1 1

10−4 1


 ∗



x1

x2


 =




2

1


 (2–30)

And after an elimination step, the result would be

25

A =




1 1

0 1− 10−4


 ∗



x1

x2


 =




2

1− 10−4


 (2–31)

which yields the correct solution x1 = 1, x2 = 1. The process of balancing out

the numerical enormity or obscurity on each row or column is termed as scaling.

In the above example, we have scaled with respect to the maximum value in a row

which is row scaling. Another variant would be to scale with respect to the sum of

absolute values of all elements across a row.

In column scaling, we would scale with respect to the maximum value in a

column or the sum of absolute values of all elements in a cloumn.

Row scaling can be considered equivalent to finding an invertible diagonal

matrix D1 such that all the rows in the matrix D−1A have equally large numerical

values.

Once we have such a D1, the solution of the original system Ax = b is

equivalent to solving the system Ãx = b̃ where Ã = D−1A and b̃ = D−1b.

Equilibration is another popular term used for scaling.

In KLU, the diagonal elements of the diagonal matrix D1 are either the largest

elements in the rows of the original matrix or the sum of the absolute values of the

elements in the rows. Besides scaling can be turned off as well, if the simulation

environment does not need scaling. Scaling though it offers better numerical results

when solving systems, is not mandatory. Its usage depends on the data values that

constitute the system and if the values are already balanced, scaling might not be

necessary.

2.11 Growth Factor

Pivot growth factor is a key diagnostic estimate in determining the stability

of Gaussian elimination. Stability of Numerical Algorithms is an important factor

in determining the accuracy of the solution. Study of stability is done by a process

26

called Roundoff Error analysis. Roundoff error analysis comprises two sub types

called Forward error analysis and Backward error analysis. If the computed

solution x̃ is close to the exact solution x, then the algorithm is said to be Forward

stable. If the algorithm computes an exact solution to a nearby problem, then the

algorithm is said to be Backward stable.Backward stability is the most widely used

technique in studying stability of systems. Often the data generated for solving

systems have impurity in them or they are distorted by a small amount. Under

such circumstances we are interested that the algorithm produce an exact solution

to this nearby problem and hence the relevance of backward stability assumes

significance.

Pivot growth factor is formally defined as

ρ =

max

k
max

ij |a(k)
ij |

max

ij |aij|
(2–32)

where a
(k)
ij is an entry in the reduced matrix A(k) after the kth elimination step.

From (2–32), we find that if the entries of the reduced matrix grow arbitrarily,

we would have a high growth factor. This arbitrary growth would again lead to

inaccuracies in the results. Consider the following 2 ∗ 2 system.

A =




10−4 1

1 1


 ∗



x1

x2


 =




1

2


 (2–33)

After one step of Gaussian elimination assuming four digit arithmetic, we

would have the reduced system

A =




10−4 1

0 1− 104


 ∗



x1

x2


 =




1

2− 104


 (2–34)

Solving the system yields x1 = 0, x2 = 1 which is different from the actual

solution x1 = 1, x2 = 1.The pivot growth factor of the above system is

27

ρ = max(1,104)
1

= 104

Thus a large pivot growth clearly indicates the inaccuracy in the result. Partial

pivoting generally avoids large growth factors. In the above example, if we had

applying partial pivoting, we would have got the correct results. But this is not

assured and there are cases where partial pivoting might not result in an acceptable

growth factor. This necessitates the estimation of the growth factor as a diagnostic

tool to detect cases where Gaussian elimination could be unstable.

Pivot growth factor is calculated usually in terms of its reciprocal, to avoid

numerical overflow problems when the value is very large. (2–32) is a harder to

compute equation since it involves calculating the maximum of reduced matrix

after every step of elimination. The other definitions of reciprocal growth factor

that are easy to compute are as follows:

1

ρ
=
min

j
(
max

i |aij|)
(
max

i |uij|)
(2–35)

1

ρ
=

(
max

ij |aij|)
(
max

ij |uij|)
(2–36)

Equation (2–35) is the definition implemented in KLU and it is a column

scaling invariant. It helps unmask a large pivot growth that could be totally

masked because of column scaling.

2.12 Condition Number

Growth factor is a key estimate in determining the stability of the algorithm.

Condition number is a key estimate in determining the amenability or conditioning

of a given problem. It is not guaranteed that a highly stable algorithm can yield

accurate results for all problems it can solve. The conditioning of the problem has

a dominant effect on the accuracy of the solution.

Note that while stability deals with the algorithm, conditioning deals with

the problem itself. In practical applications like circuit simulation, the data of

28

a problem come from experimental observations. Typically such data have a

factor of error or impurities or noise associated with them. Roundoff errors and

discretization errors also contribute to impurities in the data. Conditioning of a

problem deals with determining how the solution of the problem changes in the

presence of impurities.

The preceding discussion shows that one often deals with solving problems

not with the original data but that with perturbed data. The analysis of effect

of perturbation of the problem on the solution is called Perturbation analysis. It

helps in determining whether a given problem produces a little or huge variation

in solution when perturbed. Let us see what we mean by well or ill conditioned

problems.

A problem is said to be ill conditioned if a small relative error in data leads

to a large relative error in solution irrespective of the algorithm employed. A

problem is said to be well conditioned if a small relative error in data does not

lead to a large relative error in solution.

Accuracy of the computed solution is of primary importance in numerical

analysis. Stability of the algorithm and the Conditioning of the given problem are

the two factors that directly determine accuracy.A highly stable algorithm well

armored with scaling, partial pivoting and other concepts cannot be guaranteed to

yield an accurate solution to an ill-conditioned problem.

A backward stable algorithm applied to a well-conditioned problem should

yield a solution close to the exact solution. This follows from the definitions of

backward stability and well-conditioning, where backward stability assures exact

solution to a nearby problem and well-conditioned problem assures that the

computed solution to perturbed data is relatively close to the exact solution of the

actual problem.

29

Mathematically, let X be some problem. Let X(d) be the solution to the

problem for some input d. Let δd denote a small perturbation in the input d. Now

if the relative error in the solution

|X(d+ δd)−X(d)|
|X(d)|

exceeds the relative error in the input

|δd|
|d|

then the problem is ill conditioned and well conditioned otherwise.

Condition number is a measure of the conditioning of the problem. It shows

whether a problem is well or ill conditioned.For the linear system problems of the

form Ax = b, the condition number is defined as

Cond(A) = ‖A‖‖A−1‖ (2–37)

Equation (2–37) is arrived at by theory that deals with perturbations either

in the input matrix A or the right hand side b or both the matrix and right hand

side. Equation (2–37) can be defined with respect to any norm viz. 1, 2 or ∞. The

system Ax = b is said to be ill-conditioned if the condition number from (2–37) is

quite large. Otherwise it is said to be well-conditioned.

A naive way to compute the condition number would be to compute the

inverse of the matrix, compute the norm of the matrix and its inverse and compute

the product. However, computing the inverse is atleast thrice as expensive as

solving the linear system Ax = b and hence should be avoided.

Hager [22] developed a method for estimating the 1-norm of ‖A−1‖ and the

corresponding 1-norm condition number. Hager proposed an optimization approach

for estimating ‖A−1‖1. The 1-norm of a matrix is formally defined as

30

‖A‖1 = max
‖Ax‖1

‖x‖1

(2–38)

Hager’s algorithm can be briefly described as follows: For A ∈ Rn∗n, a convex

function is defined as

F (x) = ‖Ax‖1 (2–39)

over the convex set

S = {x ∈ Rn : ‖x‖1 ≤ 1}

Then ‖A‖1 is the global maximum of (2–39).

The algorithm involves computing Ax and ATx or computing matrix-vector

products. When we want to compute ‖A−1‖1, it involves computing A−1x and

(A−1)Tx which is equivalent to solving Ax = b and ATx = b. We can use KLU to

efficiently solve these systems.

Higham [23] presents refinements to Hager’s algorithm and restricts the

number of iterations to five. Higham further presents a simple device and using

the higher of the estimates from this device and Hager’s algorithm to ensure the

esimate is large enough. This device involves solving the linear system Ax = b

where

bi = (−1)i+1(1 +
i− 1

n− 1
), i = 1, 2, ...n

The final estimate is chosen as the maximum from Hager’s algorithm and

2‖x‖1
3n

.

KLU’s condition number estimator is based on Higham’s refinement of Hager’s

algorithm.

2.13 Depth First Search

As we discussed earlier, the nonzero pattern of the kth column of L is deter-

mined by the Reachability of the row-indices of kth column of A in the graph of L.

31

The reachability is determined by a depth-first search traversal of the graph of L.

The topological order for elimination of variables when solving the lower triangular

system Lx = b is also determined by the depth-first search traversal. A classical

depth first search algorithm is a recursive one. One of the major problems in a

recursive implementation of depth-first search is Stack overflow. Each process is

allocated a stack space upon execution. When there is a high number of recursive

calls, the stack space is exhausted and the process terminates abruptly. This is a

definite possibility in the context of our depth-first search algorithm when we have

a dense column of a matrix of a very high dimension.

The solution to stack overflow caused by recursion is to replace recursion

by iteration. With an iterative or non-recursive function, the entire depth first

search happens in a single function stack. The iterative solution uses an array

of row indices called pstack. When descending to an adjacent node during the

search, the row index of the next adjacent node is stored in the pstack at the

position(row/column index) corresponding to the current node. When the search

returns to the current node, we know that we next need to descend into the node

stored in the pstack at the position corresponding to the current node. Using this

extra O(n) memory, the iterative version completes the depth first search in a

single function stack.

This is an important improvement from the recursive version since it avoids

the stack overflow problem that would have been a bottleneck when solving high

dimension systems.

2.14 Memory Fragmentation

The data structures for L and U are the ones used to represent sparse matri-

ces. These comprise 3 vectors.

1. Vector of column pointers

2. Vector of row indices

32

3. Vector of numerical values

There are overall, six vectors needed for the two matrices L and U. Of these, the

two vectors of column pointers are of pre-known size namely the size of a block.

The remaining four vectors of row indices and numerical values depend on the fill-

in estimated by AMD. However AMD gives an optimistic estimate of fill-in.Hence

we need to dynamically grow memory for these vectors during the factorization

phase if we determine that the fill-in is higher than estimated. The partial pivoting

strategy can alter the row ordering determined by AMD and hence is another

source of higher fill-in than the estimate from AMD.

Dynamically growing these four vectors suffers from the problem of external

memory fragmentation. In external fragmentation, free memory is scattered in

the memory space. A call for more memory fails because of non-availability of

contiguous free memory space. If the scattered free memory areas were contiguous,

the memory request would have succeeded. In the context of our problem, the

memory request to grow the four vectors could either fail if we run into external

fragmentation or succeed when there is enough free space available.

When we reallocate or grow memory, there are two types of success cases. In

the first case called cheap reallocation, there is enough free memory space abutting

the four vectors. Here the memory occupied by a vector is just extended or its end

boundary is increased. The start boundary remains the same. In the second case

called costly reallocation, there is not enough free memory space abutting a vector.

Hence a fresh memory is allocated in another region for the new size of vector and

the contents are copied from old location. Finally the old location is freed.

With four vectors to grow, there is a failure case because of external fragmen-

tation and a costly success case because of costly reallocation. To reduce the failure

case and avoid the costly success case, we have coalesced the four vectors into a

single vector. This new data structure is byte aligned on double boundary. For

33

every column of L and U, the vector contains the row indices and numerical values

of L , followed by the row indices and numerical values of U. Multiple integer row

indices are stored in a single double location . The actual number of integers that

can be stored in a double location varies with platform and is determined dynam-

ically. The common technique of using integer pointer to point to location aligned

on double boundary, is employed to retrieve or save the row indices.

In addition to this coalesced data structure containing the row indices and

numerical values, two more length vectors of size n are needed to contain the length

of each column of L and U . These length vectors are preallocated once and need

not be grown dynamically.

Some Memory management schemes never do cheap reallocation. In such

schemes, the new data structure serves to reduce external fragmentation only.

2.15 Complex Number Support

KLU supports complex matrices and complex right hand sides. KLU also

supports solving the transpose system ATx = b for real matrices and solving the

conjugate transpose system AHx = b for complex matrices. Initially it relied on the

C99 language support for complex numbers. However the C99 specification is not

supported across operating systems. For example, earlier versions of Sun Solaris do

not support C99. To avoid these compatibility issues, KLU no longer relies on C99

and has its own complex arithmetic implementation.

2.16 Parallelism in KLU

When solving a system Ax = b using KLU, we use BTF pre-ordering to

convert A into a block upper triangular form. We apply AMD on each block and

factorize each block one after the other serially. Alternatively, nested dissection can

be applied to each block. Nested dissection ordering converts a block to a doubly

bordered block diagonal form. A doubly bordered block diagonal form is similar to

a block upper triangular form but has nonzeros on the sub diagonal region. These

34

1

2

4

5

3

A Doubly Bordered Block diagonal Matrix Separator Tree

2 1

4

5

3

Figure 2–6: A doubly bordered block diagonal matrix and its corresponding vertex
separator tree

nonzeros form a horizontal strip resembling a border. Similarly the nonzeros in the

region above the diagonal form a corresponding vertical strip.

The doubly bordered block diagonal form can be thought of as a separator

tree. Factorization of the block then involves a post-order traversal of the separator

tree. The nodes in the separator tree can be factorized in parallel. The factor-

ization of a node would additionally involve computing the schur complement of

its parent and of its ancestors in the tree. Once all the children of a node have

updated its schur complement, the node is ready to be factorized and it inturn

computes the schur complement of its parent and its ancestors. The factorization

and computation of schur complement is done in a post-order traversal fashion and

the process stops at the root.

Parallelism can help in reducing the factorization time. It gains importance in

the context of multi processor systems. Work is being done to enable parallelism in

KLU.

CHAPTER 3
CIRCUIT SIMULATION: APPLICATION OF KLU

The KLU algorithm comprises the following steps:

1. Unsymmetric Permutation to block upper triangular form. This consists of

two steps.

(a) unsymmetric permutation to ensure a zero free diagonal using maximum

transversal.

(b) symmetric permutation to block upper triangular form by finding the

strongly connected components of the graph.

2. Symmetric permutation of each block(say A) using AMD on A + AT or an

unsymmetric permutation of each block using COLAMD on AAT . These

permutations are fill-in reducing orderings on each block.

3. Factorization of each scaled block using Gilbert-Peierls’ left looking algorithm

with partial pivoting.

4. Solve the system using block-back substitution and account for the off-

diagonal entries. The solution is re-permuted to bring it back to original

order.

Let us first derive the final system that we need to solve taking into account,

the different permutations, scaling and pivoting. The original system to solve is

Ax = b (3–1)

Let R be the diagonal matrix with the scale factors for each row. Applying scaling,

we have

RAx = Rb (3–2)

35

36

Let P’ and Q’ be the row and column permutation matrices that combine the

permutations for maximum transversal and the block upper triangular form

together. Applying these permutations together, we have

P ′RAQ′Q′Tx = P ′Rb. [Q′Q′T = I, the identity matrix] (3–3)

Let P and Q be row and column permutation matrices that club the P’ and Q’

mentioned above with the symmetric permutation produced by AMD and the

partial pivoting row permutation produced by factorization. Now,

PRAQQTx = PRb

or

(PRAQ)QTx = PRb (3–4)

The matrix (PRAQ) consists of two parts viz. the diagonal blocks that are factor-

ized and the off-diagonal elements that are not factorized.

(PRAQ) = LU + F where LU represents the factors of all the blocks

collectively and F represents the entire off diagonal region. Equation (3–4) now

becomes

(LU + F)QTx = PRb (3–5)

x = Q(LU + F)−1(PRb) (3–6)

Equation (3–6) consists of two steps. A block back-substitution i.e. computing

(LU + F)−1(PRb) followed by applying the column permutation Q.

The block-back substitution in (LU + F)−1(PRb) looks cryptic and can be

better explained as follows: Consider a simple 3 ∗ 3 block system

37




L11U11 F12 F13

0 L22U22 F23

0 0 L33U33



∗




X1

X2

X3




=




B1

B2

B3




(3–7)

The equations corresponding to the above system are:

L11U11 ∗X1 + F12 ∗X2 + F13 ∗X3 = B1 (3–8)

L22U22 ∗X2 + F23 ∗X3 = B2 (3–9)

L33U33 ∗X3 = B3 (3–10)

In block back substitution, we first solve (3–10) for X3, and then eliminate X3

from (3–9) and (3–8) using the off-diagonal entries.

Next, we solve (3–9) for X2 and eliminate X2 from (3–8).

Finally we solve (3–8) for X1

3.1 Characteristics of Circuit Matrices

Circuit matrices exhibit certain unique characteristics that makes KLU more

relevant to them. They are very sparse. Because of their high sparsity, BLAS

kernels are not applicable. Circuit matrices often have a few dense rows/columns

that originate from voltage or current sources. These dense rows/columns are

effectively removed by BTF permutation.

Circuit matrices are asymmetric, but the nonzero pattern is roughly symmet-

ric. They are easily permutable to block upper triangular form. Besides, they have

zero-free or nearly zero-free diagonal. Another peculiar feature of circuit matrices is

that the nonzero pattern of each block after permutation to block upper triangular

form, is more symmetric than the original matrix. Typical ordering strategies

applied to the original matrix cause high fill-in whereas when applied to the blocks,

leads to less fill-in.

38

The efficiency of the permutation to block upper triangular form shows in the

fact the entire sub-diagonal region in the matrix has zero work and the off-diagonal

elements do not cause any fill-in since they are not factorized.

3.2 Linear Systems in Circuit Simulation

The linear systems in circuit simulation process originate from solving large

systems of non linear equations using Newton’s method and integrating large stiff

systems of ordinary differential equations. These linear systems consist of the

coefficients matrix A, the unknowns vector x and the right hand side b.

During the course of simulation, the matrix A retains the same nonzero

pattern(structurally unchanged) and only undergoes changes in numerical val-

ues. Thus the initial analysis phase (permutation to ensure zero-free diagonal,

block triangular form and minimum degree ordering on blocks) and factorization

phase(that involves symbolic analysis, partial pivoting and symmetric pruning) can

be restricted to the initial system alone.

Subsequent systems A′x = b where only the numerical values of A′ are different

from A, can be solved using a mechanism called refactorization. Refactorization

simply means to use the same row and column permutations (comprising entire

analysis phase and partial pivoting) computed for the initial system, for solving the

subsequent systems that have changes only in numerical values. Refactorization

substantially reduces run time since the analysis time and factorization time spent

on symbolic analysis, partial pivoting, pruning are avoided. The nonzero pattern

of the factors L and U are the same as for the initial system. Only Numerical

factorization using the pre-computed nonzero pattern and partial pivoting order, is

required.

The solve step follows the factorization/refactorization step. KLU accomodates

solving multiple right hand sides in a single solve step. Upto four right hand sides

can be solved in a single step.

39

3.3 Performance Benchmarks

During my internship at a circuit simulation company, I did performance

benchmarking of KLU vs SuperLU in the simulation environment. The perfor-

mance benchmarks were run on a representative set of examples. The results

of these benchmarks are tabulated as follows. (the size of the matrix created in

simulation is shown in parenthesis).

Table 3–1: Comparison between KLU and SuperLU on overall time and fill-in

Overall time Nonzeros(L+U)
Netlist KLU SuperLU Speedup KLU SuperLU
Problem1 (301) 1.67 1.24 0.74 1808 1968
Problem2 (1879) 734.96 688.52 0.94 13594 13770
Problem3 (2076) 56.46 53.38 0.95 16403 16551
Problem4 (7598) 89.63 81.85 0.91 52056 54997
Problem5 (745) 18.13 16.84 0.93 4156 4231
Problem6 (1041) 1336.50 1317.30 0.99 13198 13995
Problem7 (33) 0.40 0.32 0.80 157 176
Problem8 (10) 4.46 1.570 0.35 40 41
Problem9 (180) 222.26 202.29 0.91 1845 1922
Problem10(6833) 6222.20 6410.40 1.03 56322 58651
Problem11 (1960) 181.78 179.50 0.99 13527 13963
Problem12 (200004) 6.25 8.47 1.35 500011 600011
Problem13 (20004) 0.47 0.57 1.22 50011 60011
Problem14 (40004) 0.97 1.31 1.35 100011 120011
Problem15 (100000) 1.76 2.08 1.18 299998 499932
Problem16 (7602) 217.80 255.88 1.17 156311 184362
Problem17(10922) 671.10 770.58 1.15 267237 299937
Problem18 (14842) 1017.00 1238.10 1.22 326811 425661
Problem19 (19362) 1099.00 1284.40 1.17 550409 581277
Problem20 (24482) 3029.00 3116.90 1.03 684139 788047
Problem21 (30202) 2904.00 3507.40 1.21 933131 1049463

The circuits Problem16–Problem21 are TFT LCD arrays similar to memory

circuits. These examples were run atleast twice with each algorithm employed viz.

KLU or SuperLU to get consistent results. The results are tabulated in tables 3–1,

3–2 and 3–3. The ”overall time” in table 3–1 comprises of analysis, factorization

and solve time.

40

Table 3–2: Comparison between KLU and SuperLU on factor time and solve time

Factor time Factor Solve time Solve
per iteration speedup per iteration speedup

Netlist KLU SuperLU KLU SuperLU
Problem1 (301) 0.000067 0.000084 1.26 0.000020 0.000019 0.92
Problem2 (1879) 0.000409 0.000377 0.92 0.000162 0.000100 0.61
Problem3 (2076) 0.000352 0.000317 0.90 0.000122 0.000083 0.68
Problem4 (7598) 0.001336 0.001318 0.99 0.000677 0.000326 0.48
Problem5 (745) 0.000083 0.000063 0.76 0.000035 0.000022 0.62
Problem6 (1041) 0.000321 0.000406 1.26 0.000079 0.000075 0.95
Problem7 (33) 0.000004 0.000004 0.96 0.000003 0.000002 0.73
Problem8 (10) 0.000001 0.000001 0.89 0.000001 0.000001 0.80
Problem9 (180) 0.000036 0.000042 1.16 0.000014 0.000011 0.76
Problem10(6833) 0.001556 0.001530 0.98 0.000674 0.000365 0.54
Problem11 (1960) 0.000663 0.000753 1.14 0.000136 0.000122 0.90
Problem12 (200004) 0.103900 0.345500 3.33 0.030640 0.041220 1.35
Problem13 (20004) 0.005672 0.020110 3.55 0.001633 0.002735 1.67
Problem14 (40004) 0.014430 0.056080 3.89 0.004806 0.006864 1.43
Problem15 (100000) 0.168700 0.283700 1.68 0.018600 0.033610 1.81
Problem16 (7602) 0.009996 0.017620 1.76 0.001654 0.001439 0.87
Problem17(10922) 0.018380 0.030010 1.63 0.002542 0.001783 0.70
Problem18 (14842) 0.024020 0.046130 1.92 0.003187 0.002492 0.78
Problem19 (19362) 0.054730 0.080280 1.47 0.005321 0.003620 0.68
Problem20 (24482) 0.121400 0.122600 1.01 0.006009 0.004705 0.78
Problem21 (30202) 0.124000 0.188700 1.52 0.009268 0.006778 0.73

41

3.4 Analyses and Findings

The following are my inferences based on the results: Most of the matrices in

these experiments are small matrices of the order of a few thousands.

Fill in is much better with KLU. The ’BTF’ ordering combined with the

’AMD’ ordering on each of the blocks does a good job in reducing the fill in

count to a good extent. The improvement in fill in averages around 6% for many

examples.

Table 3–3: Ordering results using BTF+AMD in KLU on circuit matrices

Nonzeros Nonzeros No of Max Block Nonzeros
Netlist Size in A in L+U Blocks size off diagonal
Problem1 301 1484 1808 7 295 89
Problem2 1879 12926 13594 19 1861 4307
Problem3 2076 15821 16403 13 2064 6689
Problem4 7598 48922 52056 13 7586 19018
Problem5 745 3966 4156 128 426 1719
Problem6 1041 9654 13198 67 975 2608
Problem7 33 153 157 7 27 50
Problem8 10 39 40 5 6 16
Problem9 180 1503 1845 19 162 661
Problem10 6833 43250 56322 507 6282 12594
Problem11 1960 11187 13527 58 1715 2959
Problem12 200004 500011 500011 200003 2 300005
Problem13 20004 50011 50011 20003 2 30005
Problem14 40004 100011 100011 40003 2 60005
Problem15 100000 299998 299998 1 100000 0
Problem16 7602 32653 156311 103 7500 251
Problem17 10922 46983 267237 123 10800 301
Problem18 14842 63913 326811 143 14700 351
Problem19 19362 83443 550409 163 19200 401
Problem20 24482 105573 684139 183 24300 451
Problem21 30202 130303 933131 203 30000 501

There is no ’fill in’ in the Problem12, Problem13, Problem14 and Problem15

netlists with KLU. This is quite significant in that there is no memory overhead

in these examples. In the case of circuits Problem16–Problem21, the gain in fill

42

in with KLU ranges from 6% in the Problem19 example to 24% in Problem18

example.

The gain in fill in translates into faster factorization because few nonzeros

imply less work. The factorization time thus is expected to be low. It turns out

to be true in most of the cases (factorization speedup of 1.6x in Problem16–

Problem21 examples and 3x for Problem12–Problem14 examples). For some cases

like Problem2 and Problem10, the factorization time remains same for both KLU

and SuperLU.

Solve phase turns out to be slow in KLU. Probably, the off diagonal nonzero

handling part tends to account for the extra time spent in the solve phase.

One way of reducing the solve overhead in KLU would be solving multiple

RHS at the same time. In a single solve iteration, 4 equations are solved.

On the whole, the overall time speedup is 1.2 for Problem16–Problem21

examples and Problem12–Problem14 examples. For others, the overall time is

almost the same between the two algorithms.

BTF is not able to find out many blocks for most of the matrices and there

happens to be a single large block and the remaining are singletons. But the AMD

ordering does a good job in getting the fill in count reduced. The off-diagonal

nonzero count is not high.

3.5 Alternate Ordering Experiments

Different ordering strategies were employed to analyze the fill in behaviour.

The statistics using different ordering schemes are listed in table 3–4. ’COLAMD’

is not listed in the table. It typically gives poor ordering and causes more fill

in than AMD, MMD and AMD+BTF. AMD alone gives relatively higher fill in

compared to AMD+BTF in most of the matrices. However AMD alone gives mixed

results in comparison with MMD. It matches or outperforms MMD in fill in on

Problem12–Problem14 and Problem16–Problem21 matrices. However it gives

43

Table 3–4: Comparison of ordering results produced by BTF+AMD, AMD, MMD

Nonzeros Fill-in Fill-in Fill-in
Netlist in A BTF+AMD AMD MMD
Problem1 (301) 1484 1808 1928 1968
Problem2 (1879) 12926 13594 13857 13770
Problem3 (2076) 15821 16403 18041 16551
Problem4 (7598) 48922 52056 57975 54997
Problem5 (745) 3966 4156 5562 4231
Problem6 (1041) 9654 13198 14020 13995
Problem7 (33) 153 157 178 176
Problem8 (10) 39 40 41 41
Problem9 (180) 1503 1845 1968 1922
Problem10(6833) 43250 56322 133739 58651
Problem11 (1960) 11187 13527 14800 13963
Problem12 (200004) 500011 500011 600011 600011
Problem13 (20004) 50011 50011 60011 60011
Problem14 (40004) 100011 100011 120011 120011
Problem15 (100000) 299998 299998 299998 499932
Problem16 (7602) 32653 156311 165264 184362
Problem17(10922) 46983 267237 255228 299937
Problem18 (14842) 63913 326811 387668 425661
Problem19 (19362) 83443 550409 451397 581277
Problem20 (24482) 105573 684139 718891 788047
Problem21 (30202) 130303 933131 839226 1049463

44

poor fill in for rest of the circuits when compared with MMD. AMD alone beats

AMD+BTF in fill-in for some of the examples viz. Problem17, Problem19 and

Problem21. Overall, to sum it up, BTF+AMD is the best ordering strategy to use.

3.6 Experiments with UF Sparse Matrix Collection

There are a number of circuit matrices in the UF sparse matrix collection.

Different experiments were done with these matrices as well on different parameters

like

1. ordering quality with different ordering schemes in KLU

2. timing of different phases of KLU

3. ordering quality among KLU, UMFPACK and Gilbert-Peierls’ Algorithm

4. performance comparison between KLU and UMFPACK.

UMFPACK is a unsymmetric multifrontal sparse solver and uses an unsymmetric

COLAMD ordering or an AMD ordering, automatically selecting which method

to use based on the matrix characteristics. Gilbert-Peierls’ algorithm is available

in MATLAB as an LU factorization scheme. These experiments were done on a

Mandrake 10.0 linux OS, Intel Pentium M Processor with clock frequency of 1400

MHz and RAM 768 kB.

3.6.1 Different Ordering Schemes in KLU

There are six different ordering schemes possible in KLU. The three fill

reducing schemes are AMD, COLAMD and User Specified Ordering. These

three fill reducing orderings can be combined with a BTF preordering or no

preordering.Hence six different schemes. However in this experiment user specified

ordering is not considered. That leaves us with four different schemes.The table

3–5 lists the fill (number of nonzeros in L+U plus the number of off-diagonal

elements) for each of these ordering schemes.

From table 3–5, we find that BTF+AMD gives consistently better fill-in

across different circuit matrices. However there are observable aberrations. For

45

example, with the circuit Bomhof/circuit 2, AMD and COLAMD give better fill-in

than BTF+AMD. These results determine again that BTF+AMD is the best

ordering scheme to use for circuit matrices.

3.6.2 Timing Different Phases in KLU

These experiments show the time spent in different phases of the algorithm.

BTF pre-ordering followed by a AMD fill-reducing ordering is employed. As

mentioned earlier, there are four different phases.

1. Analysis phase: This comprises the pre-ordering and fill reducing ordering.

2. Factor phase: This comprises the factorization part of the algorithm. It

includes the symbolic analysis phase, partial pivoting, symmetric pruning

steps.

3. Refactor phase: This comprises the part where we do a factorization using the

already pre-computed partial pivoting permutation and the nonzero pattern

of the L and U matrices. There is no symbolic analysis, partial pivoting and

symmetric pruning in refactor phase.

4. Solve phase: This comprises the solve phase of the algorithm. Solving a single

right hand side was experimented.

When given a set of matrices with the same nonzero pattern, the analysis

and factor phases are done only once. The refactor phase is then repeated for the

remaining matrices. Solve phase is repeated as many times as there are systems

to solve. Table 3–6 consists of the timing results. Analysis phase consumes most

of the time spent in the algorithm. Refactor time is typically 3 or 4 times smaller

than factor time and 8 times smaller than analysis time plus factor time put

together. Solve phase consumes the least fraction of time spent.

3.6.3 Ordering Quality among KLU, UMFPACK and Gilbert-Peierls

The table 3–7 compares the ordering quality among KLU using BTF+AMD,

UMFPACK using COLAMD or AMD and Gilbert-Peierls’ using AMD. We can

46

Table 3–5: Fill-in with four different schemes in KLU

Nonzeros BTF + BTF +
Matrix in A AMD COLAMD AMD COLAMD
Sandia/adder dcop 01 (1813) 11156 13525 13895 18848 21799
Sandia/adder trans 01 (1814) 14579 20769 36711 24365 119519
Sandia/fpga dcop 01 (1220) 5892 7891 8118 8869 12016
Sandia/fpga trans 01 (1220) 7382 10152 12776 10669 21051
Sandia/init adder1 (1813) 11156 13525 13895 18848 21799
Sandia/mult dcop 01 (25187) 193276 226673 228301 2176328 1460322
Sandia/oscil dcop 01 (430) 1544 2934 3086 3078 3295
Sandia/oscil trans 01 (430) 1614 2842 3247 2897 3259
Bomhof/circuit 1 (2624) 35823 44879 775363 44815 775720
Bomhof/circuit 2 (4510) 21199 40434 89315 36197 36196
Bomhof/circuit 3 (12127) 48137 86718 98911 245336 744245
Grund/b2 ss (1089) 3895 9994 9212 26971 9334
Grund/b dyn (1089) 4144 11806 10597 33057 10544
Grund/bayer02 (13935) 63307 889914 245259 1365142 307979
Grund/d dyn (87) 230 481 461 619 494
Grund/d ss (53) 144 302 292 382 298
Grund/meg1 (2904) 58142 232042 184471 1526780 378904
Grund/meg4 (5860) 25258 42398 310126 43250 328144
Grund/poli (4008) 8188 12200 12208 12238 12453
Grund/poli large (15575) 33033 48718 48817 49806 51970
Hamm/add20 (2395) 13151 19554 34636 19554 34636
Hamm/add32 (4960) 19848 28754 36030 28754 36030
Hamm/bcircuit (68902) 375558 1033240 1692668 1033240 1692668
Hamm/hcircuit (105676) 513072 731634 2623852 736080 4425310
Hamm/memplus (17758) 99147 137030 3282586 137030 3282586
Hamm/scircuit (170998) 958936 2481122 6410286 2481832 6427526
Rajat/rajat03 (7602) 32653 163913 235111 172666 236938
Rajat/rajat04 (1041) 8725 12863 80518 18618 158000
Rajat/rajat05 (301) 1250 1926 2053 2101 3131
Rajat/rajat11 (135) 665 890 978 944 1129
Rajat/rajat12 (1879) 12818 15308 273667 15571 128317
Rajat/rajat13 (7598) 48762 58856 90368 64791 5234287
Rajat/rajat14 (180) 1475 1994 2249 2105 2345

47

Table 3–6: Time in seconds, spent in different phases in KLU

Analysis Factor Refactor Solve
Matrix time time time time
Sandia/adder dcop 01 (1813) 0.0028 0.0028 0.0007 0.0003
Sandia/adder trans 01 (1814) 0.0045 0.0038 0.0013 0.0003
Sandia/fpga dcop 01 (1220) 0.0018 0.0015 0.0004 0.0002
Sandia/fpga trans 01 (1220) 0.0022 0.0017 0.0005 0.0002
Sandia/init adder1 (1813) 0.0028 0.0028 0.0007 0.0003
Sandia/mult dcop 01 (25187) 0.2922 0.0522 0.0196 0.0069
Sandia/oscil dcop 01 (430) 0.0008 0.0006 0.0002 0.0001
Sandia/oscil trans 01 (430) 0.0008 0.0006 0.0002 0.0001
Bomhof/circuit 1 (2624) 0.0098 0.0085 0.0053 0.0006
Bomhof/circuit 2 (4510) 0.0082 0.0064 0.0034 0.0006
Bomhof/circuit 3 (12127) 0.0231 0.0174 0.0056 0.0020
Grund/b2 ss (1089) 0.0031 0.0018 0.0005 0.0001
Grund/b dyn (1089) 0.0033 0.0021 0.0007 0.0002
Grund/bayer02 (13935) 0.0584 0.2541 0.2070 0.0090
Grund/d dyn (87) 0.0002 0.0001 0.0000 0.0000
Grund/d ss (53) 0.0001 0.0001 0.0000 0.0000
Grund/meg1 (2904) 0.0178 0.0853 0.0590 0.0033
Grund/meg4 (5860) 0.0157 0.0094 0.0028 0.0009
Grund/poli (4008) 0.0017 0.0010 0.0004 0.0003
Grund/poli large (15575) 0.0064 0.0045 0.0018 0.0014
Hamm/add20 (2395) 0.0056 0.0044 0.0014 0.0003
Hamm/add32 (4960) 0.0084 0.0074 0.0019 0.0006
Hamm/bcircuit (68902) 0.3120 0.2318 0.1011 0.0257
Hamm/hcircuit (105676) 0.2553 0.1920 0.0658 0.0235
Hamm/memplus (17758) 0.0576 0.0358 0.0157 0.0036
Hamm/scircuit (170998) 0.8491 0.6364 0.3311 0.0622
Rajat/rajat03 (7602) 0.0152 0.0440 0.0306 0.0034
Rajat/rajat04 (1041) 0.0029 0.0023 0.0008 0.0002
Rajat/rajat05 (301) 0.0005 0.0005 0.0001 0.0000
Rajat/rajat11 (135) 0.0002 0.0002 0.0001 0.0000
Rajat/rajat12 (1879) 0.0038 0.0027 0.0008 0.0002
Rajat/rajat13 (7598) 0.0122 0.0105 0.0033 0.0011
Rajat/rajat14 (180) 0.0004 0.0003 0.0001 0.0000

48

infer from the results that KLU produces better ordering than UMFPACK and

Gilbert-Peierls’ algorithm. For KLU, the following MATLAB code determines the

fill.

opts = [0.1 1.2 1.2 10 1 0 0 0] ;

[x info] = klus(A,b,opts, []) ;

fill = info (31) + info (32) + info(8) ;

For UMFPACK, the snippet is

[L U P Q] = lu(A) ;

fill = nnz(L) + nnz(U) ;

For Gilbert-Peierls’ the code is

Q = amd(A) ;

[L U P] = lu(A(Q,Q), 0.1) ;

fill = nnz(L) + nnz(U) ;

3.6.4 Performance Comparison between KLU and UMFPACK

This experiment compares the total time spent in the analysis, factor and solve

phases by the algorithms. The results are listed in table 3–8. KLU outperforms

UMFPACK in time. For KLU, the following snippet in MATLAB is used:

tic

[x info] = klus(A,b,opts) ;

t1 = toc ;

For UMFPACK, the following code in MATLAB is used to find the total time:

tic

x = A \ b ;

t2 = toc ;

49

Table 3–7: Fill-in among KLU, UMFPACK and Gilbert-Peierls

Matrix nnz KLU UMFPACK Gilbert-Peierls
Sandia/adder dcop 01 (1813) 11156 13525 14658 18825
Sandia/adder trans 01 (1814) 14579 20769 20769 24365
Sandia/fpga dcop 01 (1220) 5892 7891 8106 8869
Sandia/fpga trans 01 (1220) 7382 10152 10152 10669
Sandia/init adder1 (1813) 11156 13525 14658 18825
Sandia/mult dcop 01 (25187) 193276 226673 556746 1300902
Sandia/oscil dcop 01 (430) 1544 2934 2852 3198
Sandia/oscil trans 01 (430) 1614 2842 3069 2897
Bomhof/circuit 1 (2624) 35823 44879 44879 44815
Bomhof/circuit 2 (4510) 21199 40434 35107 38618
Bomhof/circuit 3 (12127) 48137 86718 84117 245323
Grund/b2 ss (1089) 3895 9994 8309 22444
Grund/b dyn (1089) 4144 11806 9642 41092
Grund/bayer02 (13935) 63307 889914 259329 973093
Grund/d dyn (87) 230 481 442 523
Grund/d ss (53) 144 302 268 395
Grund/meg1 (2904) 58142 232042 151740 1212904
Grund/meg4 (5860) 25258 42398 42398 43250
Grund/poli (4008) 8188 12200 12200 12239
Grund/poli large (15575) 33033 48718 48745 49803
Hamm/add20 (2395) 13151 19554 19554 19554
Hamm/add32 (4960) 19848 28754 28754 28754
Hamm/bcircuit (68902) 375558 1033240 1033240 1033240
Hamm/hcircuit (105676) 513072 731634 730906 736080
Hamm/memplus (17758) 99147 137030 137030 137030
Hamm/scircuit (170998) 958936 2481122 2481122 2481832
Rajat/rajat03 (7602) 32653 163913 163913 172666
Rajat/rajat04 (1041) 8725 12863 12860 18613
Rajat/rajat05 (301) 1250 1926 1944 2101
Rajat/rajat11 (135) 665 890 890 944
Rajat/rajat12 (1879) 12818 15308 15308 15571
Rajat/rajat13 (7598) 48762 58856 58856 64791
Rajat/rajat14 (180) 1475 1994 1994 2105

50

Table 3–8: Performance comparison between KLU and UMFPACK

Matrix KLU UMFPACK
Sandia/adder dcop 01 (1813) 0.0116 0.0344
Sandia/adder trans 01 (1814) 0.0112 0.0401
Sandia/fpga dcop 01 (1220) 0.0050 0.0257
Sandia/fpga trans 01 (1220) 0.0054 0.0203
Sandia/init adder1 (1813) 0.0109 0.0323
Sandia/mult dcop 01 (25187) 1.2383 1.1615
Sandia/oscil dcop 01 (430) 0.0022 0.0070
Sandia/oscil trans 01 (430) 0.0019 0.0074
Bomhof/circuit 1 (2624) 0.0232 0.1223
Bomhof/circuit 2 (4510) 0.0201 0.0522
Bomhof/circuit 3 (12127) 0.0579 0.1713
Grund/b2 ss (1089) 0.0066 0.0168
Grund/b dyn (1089) 0.0072 0.0175
Grund/bayer02 (13935) 0.6089 0.3565
Grund/d dyn (87) 0.0005 0.0014
Grund/d ss (53) 0.0003 0.0010
Grund/meg1 (2904) 0.1326 0.1018
Grund/meg4 (5860) 0.0571 0.1111
Grund/poli (4008) 0.0050 0.0121
Grund/poli large (15575) 0.0208 0.0497
Hamm/add20 (2395) 0.0123 0.0506
Hamm/add32 (4960) 0.0201 0.0738
Hamm/bcircuit (68902) 0.7213 1.8823
Hamm/hcircuit (105676) 0.7313 2.7764
Hamm/memplus (17758) 0.1232 0.8140
Hamm/scircuit (170998) 1.9812 7.3448
Rajat/rajat03 (7602) 0.0793 0.1883
Rajat/rajat04 (1041) 0.0068 0.0284
Rajat/rajat05 (301) 0.0014 0.0046
Rajat/rajat11 (135) 0.0007 0.0023
Rajat/rajat12 (1879) 0.0087 0.0355
Rajat/rajat13 (7598) 0.0330 0.1229
Rajat/rajat14 (180) 0.0010 0.0032

CHAPTER 4
USER GUIDE FOR KLU

4.1 The Primary KLU Structures

4.1.1 klu common

This is a control structure that contains both input control parameters for

KLU as well as output statistics computed by the algorithm. It is a mandatory

parameter for all the KLU routines. Its contents are listed as follows:

• tol

Type: double

Input parameter for pivot tolerance for diagonal preference.Default value is

0.001

• growth

Type: double

Input parameter for reallocation growth size of LU factors. Default value is

1.2

• initmem amd

Type: double

Input parameter for initial memory size with AMD.

Initial memory size = initmem amd * nnz(L) + n. Default value is 1.2

• initmem

Type: double

Input parameter for initial memory size with COLAMD.

Initial memory size = initmem * nnz(A) + n. Default value is 10

• btf

Type: int

51

52

Input parameter to use BTF pre-ordering, or not. Default value is 1 (to use

BTF)

• ordering

Type: int

Input parameter to specify which fill reducing ordering to use.

0= AMD,1= COLAMD, 2= user P and Q. Default is 0.

• scale

Type: int

Input parameter to specify which scaling strategy to use. 0= none, 1= sum,

2= max. Default is 0

• singular proc

Type: int

Input parameter to specify whether to stop on singularity or continue.

0= stop, 1= continue. Default is 0.

• status

Type: int

Output parameter that indicates the result of the KLU function call. Values

are KLU OK(0) if OK and < 0 if error. Error values are KLU SINGULAR

(-1), KLU OUT OF MEMORY (-2), KLU INVALID (-3)

• nrealloc

Type: int

Output parameter.Contains number of reallocations of L and U

• singular col

Type: int

Output parameter.Contains the column no of singular column if any

• noffdiag

Type: int

53

Output parameter.Contains the number of off-diagonal pivots chosen

4.1.2 klu symbolic

This structure encapsulates the information related to the analysis phase. The

members of the structure are listed as follows:

• symmetry

Type: double

Contains the symmetry of largest block

• est flops

Type: double

Contains the estimated factorization flop count

• lnz

Type: double

Contains the estimated nonzeros in L including diagonals

• unz

Type: double

Contains the estimated nonzeros in U including diagonals

• Lnz

Type: double *

Array of size n, but only Lnz [0..nblocks-1] is used. Contains the estimated

number of nonzeros in each block

• n

Type: int

Contains the size of input matrix A where A is n-by-n

• nz

Type: int

Contains the number of entries in input matrix

• P

54

Type: int *

Array of size n. Contains the row permutation from ordering

• Q

Type: int *

Array of size n. Contains the column permutation from ordering

• R

Type: int *

Array of size n+1, but only R [0..nblocks] is used. Contains the start and end

column/row index for each block. Block k goes from R[k] to R[k+1] - 1

• nzoff

Type: int

Contains the number of nonzeros in off-diagonal blocks

• nblocks Type: int

Contains the number of blocks

• maxblock

Type: int

Contains the size of largest block

• ordering

Type: int

Contains the ordering used (0 = AMD, 1 = COLAMD, 2 = GIVEN)

• do btf

Type: int

Indicates whether or not BTF preordering was requested

The members symmetry, est flops, lnz, unz, Lnz are computed only when AMD is

used. The remaining members are computed for all orderings.

55

4.1.3 klu numeric

This structure encapsulates information related to the factor phase. It contains

the LU factors of each block, pivot row permutation, and the entries in the off-

diagonal blocks among others. Its contents are listed as follows:

• umin

Type: double

Contains the minimum absolute diagonal entry in U

• umax

Type: double

Contains the maximum absolute diagonal entry in U

• nblocks

Type: int

Contains the number of blocks

• lnz

Type: int

Contains actual number of nonzeros in L excluding diagonals

• unz

Type: int

Contains actual number of nonzeros in U excluding diagonals

• Pnum

Type: int *

Array of size n.Contains the final pivot permutation

• Pinv

Type: int *

Array of size n.Contains the inverse of final pivot permutation

• Lbip

Type: int **

56

Array of size nblocks. Each element is an array of size block size + 1. Each

element contains the column pointers for L factor of the corresponding block

• Ubip

Type: int **

Array of size nblocks. Each element is an array of size block size + 1. Each

element contains the column pointers for U factor of the corresponding block

• Lblen

Type: int **

Array of size nblocks. Each element is an array of size block size. Each

element contains the column lengths for L factor of the corresponding block

• Ublen

Type: int **

Array of size nblocks. Each element is an array of size block size. Each

element contains the column lengths for U factor of the corresponding block

• LUbx

Type: void **

Array of size nblocks. Each element is an array containing the row indices

and numerical values of LU factors of the corresponding block. The diagonals

of LU factors are not stored here

• Udiag

Type: void **

Array of size nblocks.Each element is an array of size block size. Each

element contains the diagonal values of U factor of the corresponding block

• Singleton

Type: void *

Array of size nblocks.Contains the singleton values

• Rs

57

Type: double *

Array of size n. Contains the row scaling factors

• scale

Type: int

Indicates the scaling strategy used.

(0 = none, 1 = sum, 2 = max)

• Work

Type: void *

Permanent workspace used for factorization and solve. It is of size

MAX (4n numerical values, n numerical values + 6*maxblock int’s)

• worksize

Type: size t

Contains the size (in bytes) of Work allocated above

• Xwork

Type: void *

This is an alias into Numeric-¿Work

• Iwork

Type: int *

An integer alias into Xwork + n

• Offp

Type: int *

Array of size n+1. Contains the column pointers for off-diagonal elements.

• Offi

Type: int *

Array of size number of off-diagonal entries. Contains the row indices of

off-diagonal elements

• Offx

58

Type: void *

Array of size number of off-diagonal entries. Contains the numerical values of

off-diagonal elements

4.2 KLU Routines

The user callable KLU routines in the C language are explained in this section.

The following guidelines are applicable to all routines except when explicitly stated

otherwise in the description of a routine.

1. : All the arguments are required except when explicitly stated as optional. If

optional, a user can pass NULL for the corresponding argument.

2. : The control input/output argument ”Common” of type ”klu common *” is

a required argument for all routines.

3. : All arguments other than the above mentioned control argument ”Com-

mon”, are input arguments and are not modified.

4.2.1 klu analyze

klu_symbolic *klu_analyze

(

int n,

int Ap [],

int Ai [],

klu_common *Common

) ;

This routine orders the matrix using BTF if specified and the fill reducing

ordering specified.

• Returns a pointer to klu symbolic structure that contains the ordering

information.

• All arguments are required

– n: Size of the input matrix A where A is n*n.

– Ap: Array of column pointers for the input matrix. Size n+1.

59

– Ai: Array of row indices. Size number of nonzeros in A.

– Common: The control input/output structure.

4.2.2 klu analyze given

klu_symbolic *klu_analyze_given

(

int n,

int Ap [],

int Ai [],

int Puser [],

int Quser [],

klu_common *Common

) ;

This routine orders the matrix using BTF if specified and the given Puser and

QUser as fill reducing ordering. If Puser and Quser are NULL, then the natural

ordering is used.

• Returns a pointer to klu symbolic structure that contains the ordering

information.

• Arguments

– n: Size of the input matrix A where A is n*n. Required.

– Ap: Array of column pointers for the input matrix. Size n+1. Required.

– Ai: Array of row indices. Size number of nonzeros in A. Required.

– Puser: Optional row permutation to use.

– Quser: Optional column permutation to use.

– Common: The control input/output structure.

4.2.3 klu *factor

klu_numeric *Numeric klu_factor

(

int Ap [],

int Ai [],

60

double Ax [],

klu_symbolic *Symbolic,

klu_common *Common

) ;

This routine factors a real matrix. There is a complex version of this routine

klu z factor that factors a complex matrix and has same function declaration as

klu factor. Both use the results of a call to klu analyze.

• Returns a pointer to klu numeric if successful. NULL otherwise.

• All the arguments are required.

– Ap: Array of column pointers for the input matrix. Size n+1.

– Ai: Array of row indices. Size number of nonzeros in A.

– Ax: Array of numerical values. Size number of nonzeros in A. In the

complex case, the array should consist of real and imaginary parts of

each numerical value as adjacent pairs.

– Symbolic: The structure that contains the results from a call to

klu analyze.

– Common: The control input/output structure. The status field in

Common is set to indicate if the routine was successful or not.

4.2.4 klu *solve

void klu_solve

(

klu_symbolic *Symbolic,

klu_numeric *Numeric,

int ldim,

int nrhs,

double B [],

klu_common *Common

) ;

61

This routine solves a real system. There is a complex version of this routine

klu z solve, that solves a complex system and has the same function declaration as

klu solve. Both use the results of a call to klu analyze and klu *factor.

• Return type is void. The rhs vector B is overwritten with the solution.

• All Arguments are required.

– Symbolic: The structure that contains the results from a call to

klu analyze.

– Numeric: The structure that contains the results from a call to

klu *factor.

– ldim: The leading dimension of the right hand side B.

– nrhs: The number of right hand sides being solved.

– B: The right hand side. It is a vector of length ldim * nrhs. It can

be real or complex depending on whether a real or complex system

is being solved. If complex, the real and imaginary parts of the rhs

numerical value must be stored as adjacent pairs. It is overwritten with

the solution.

– Common: The control input/output structure.

4.2.5 klu *tsolve

void klu_tsolve

(

klu_symbolic *Symbolic,

klu_numeric *Numeric,

int ldim,

int nrhs,

int conj_solve,

double B [],

klu_common *Common

) ;

62

This routine is similar to klu solve except that it solves a transpose system

A′x = b. This routine solves a real system. Again there is a complex version of

this routine klu z tsolve for solving complex systems and has the same function

declaration as klu tsolve. It also offers to do a conjugate transpose solve for the

complex system AHx = b.

• Return type is void. The rhs vector B is overwritten with the solution.

• All arguments are required. The descriptions for all arguments except

conj solve are same as those for klu *solve. The argument conj solve is

relevant only for complex case. It takes two values 1 = CONJUGATE

TRANSPOSE SOLVE, 0 = TRANSPOSE SOLVE.

4.2.6 klu *refactor

void klu_refactor

(

int Ap [],

int Ai [],

double Ax [],

klu_symbolic *Symbolic,

klu_numeric *Numeric,

klu_common *Common

) ;

This routine does a refactor of the matrix using the previously computed

ordering information in Symbolic and the nonzero pattern of the LU factors in

Numeric objects. It assumes same partial pivoting order computed in Numeric. It

changes only the numerical values of the LU factors stored in Numeric object. It

has a complex version klu z refactor with the same function prototype to handle

complex cases.

• Return type is void. The numerical values of LU factors in Numeric parame-

ter are updated.

• All arguments are required.

63

– Ap: Array of column pointers for the input matrix. Size n+1.

– Ai: Array of row indices. Size number of nonzeros in A.

– Ax: Array of numerical values. Size number of nonzeros in A. In the

complex case, the array should consist of real and imaginary parts of

each numerical value as adjacent pairs.

– Symbolic: The structure that contains the results from a call to

klu analyze.

– Numeric: Input/output argument. The structure contains the results

from a call to klu *factor. The numerical values of LU factors are

overwritten with the ones for the current matrix being factorized.

– Common: The control input/output structure. The status field in

Common is set to indicate if the routine was successful or not.

4.2.7 klu defaults

void klu_defaults

(

klu_common *Common

) ;

This routine sets the default values for the control input parameters of

the klu common object. The default values are listed in the description of the

klu common structure. A call to this routine is required unless the user sets the

control input parameters explicitly.

• Return type is void.

• The argument Common is required. The control input parameters in Com-

mon are set to default values.

4.2.8 klu *rec pivot growth

double klu_rec_pivot_growth

(

int Ap [],

64

int Ai [],

double Ax [],

klu_symbolic *Symbolic,

klu_numeric *Numeric,

klu_common *Common

) ;

This routine computes the reciprocal pivot growth of the factorization algo-

rithm. The complex version of this routine klu z rec pivot growth handles complex

matrices and has the same function declaration.

• The pivot growth estimate is returned.

• All arguments are required.

– Ap: Array of column pointers for the input matrix. Size n+1.

– Ai: Array of row indices. Size number of nonzeros in A.

– Ax: Array of numerical values. Size number of nonzeros in A. In the

complex case, the array should consist of real and imaginary parts of

each numerical value as adjacent pairs.

– Symbolic: The structure that contains the results from a call to

klu analyze.

– Numeric: The structure that contains the results from a call to

klu *factor.

– Common: The control input/output structure. The status field in

Common is set to indicate if the routine was successful or not.

4.2.9 klu *estimate cond number

double klu_estimate_cond_number

(

int Ap [],

double Ax [],

klu_symbolic *Symbolic,

klu_numeric *Numeric,

65

klu_common *Common

);

This routine computes the condition number estimate of the input matrix. As

before, the complex version of this routine klu z estimate cond number has the

same function declaration and handles complex matrices.

• The condition number estimate is returned.

• All arguments are required.

– Ap: Array of column pointers for the input matrix. Size n+1.

– Ax: Array of numerical values. Size number of nonzeros in A. In the

complex case, the array should consist of real and imaginary parts of

each numerical value as adjacent pairs.

– Symbolic: The structure that contains the results from a call to

klu analyze.

– Numeric: The structure that contains the results from a call to

klu *factor.

– Common: The control input/output structure. The status field in

Common is set to indicate if the routine was successful or not.

4.2.10 klu free symbolic

void klu_free_symbolic

(

klu_symbolic **Symbolic,

klu_common *Common

) ;

This routine deallocates or frees the contents of the klu symbolic object. The

Symbolic parameter must be a valid object computed by a call to klu analyze or

klu analyze given.

• Return type is void.

• All arguments are required.

66

– Symbolic: Input/Output argument. Must be a valid object computed

by a call to klu analyze or klu analyze given. If NULL, the routine just

returns.

– Common: The control input/output structure.

4.2.11 klu free numeric

void klu_free_numeric

(

klu_numeric **Numeric,

klu_common *Common

) ;

This routine frees the klu numeric object computed by a call to klu factor

or klu z factor routines. It resets the pointer to klu numeric to NULL. There is a

complex version of this routine called klu z free numeric with the same function

declaration to handle the complex case.

• Return type is void.

• All arguments are required.

– Numeric. Input/Output argument. The contents of the klu numeric

object are freed. The pointer to klu numeric object is set to NULL.

– Common: The control input/output structure.

REFERENCES

[1] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh, Basic linear
algebra subprograms for FORTRAN usage, ACM Trans. Math. Soft., 5:
308–323, 1979.

[2] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, An extended
set of FORTRAN basic linear algebra subprograms, ACM Trans. Math. Soft.,
14: 1–17, 1988.

[3] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, Algorithm
656: An extended set of FORTRAN basic linear algebra subprograms, ACM
Trans. Math. Soft., 14: 18–32, 1988.

[4] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, A set of level 3
basic linear algebra subprograms, ACM Trans. Math. Soft., 16: 1–17, 1990.

[5] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, Algorithm 679: A
set of level 3 basic linear algebra subprograms, ACM Trans. Math. Soft., 16:
18–28, 1990.

[6] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li and
Joseph W. H. Liu, A supernodal approach to sparse partial pivoting, SIAM J.
Matrix Analysis and Applications, 20(3): 720–755, 1999.

[7] Timothy A. Davis, I.S.Duff, An unsymmetric-pattern multifrontal method
for sparse LU factorization, SIAM J. Matrix Analysis and Applic., 18(1):
140–158, 1997.

[8] Timothy A. Davis, Algorithm 832: UMFPACK, an unsymmetric-pattern
multifrontal method with a column pre-ordering strategy, ACM Trans. Math.
Software, 30(2): 196–199, 2004.

[9] John R.Gilbert and Tim Peierls, Sparse partial pivoting in time proportional
to arithmetic operations, SIAM J. Sci. Stat. Comput., 9(5): 862–873, 1988.

[10] A. George and E. Ng, An implementation of Gaussian elimination with
partial pivoting for sparse systems. SIAM J. Sci. Statist. Comput., 6(2):
390–409, 1985.

[11] Iain S. Duff, On algorithms for obtaining a maximum transversal, ACM
Transactions on Mathematical Software, 7(3): 315–330, 1981.

67

68

[12] Iain S. Duff, Algorithm 575 permutations for a zero-free diagonal, ACM
Transactions on Mathematical Software, 7(3): 387–390, 1981.

[13] Iain S. Duff and John K. Reid, Algorithm 529: permutations to block
triangular form, ACM Trans. on Mathematical Software, 4(2): 189–192, 1978.

[14] Iain S. Duff and John K. Reid, An implementation of Tarjan’s algorithm
for the block triangular form of a matrix, ACM Trans. on Mathematical
Software, 4(2): 137–147, 1978.

[15] R.E. Tarjan, Depth first search and linear graph algorithms, SIAM J.
Computing., 1: 146–160, 1972.

[16] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein,
Introduction to Algorithms, Second Edition 2001, MIT Press, Cambridge.

[17] S.C. Eisenstat and J.W.H. Liu, Exploiting structural symmetry in a sparse
partial pivoting code, SIAM J.Sci.Comput., 14(1): 253–257, 1993.

[18] P. R. Amestoy, T. A. Davis, and I. S. Duff,An approximate minimum degree
ordering algorithm, SIAM J. Matrix Anal. Applic., 17(4): 886–905, 1996.

[19] P.R. Amestoy, T.A. Davis, and I.S. Duff, Algorithm 837: AMD, an ap-
proximate minimum degree ordering algorithm, ACM Transactions on
Mathematical Software, 30(3): 381–388, 2004.

[20] Timothy A. Davis, John R. Gilbert, Stefan I. Larimore, and Esmond G.
Ng. A column approximate minimum degree ordering algorithm, ACM
Transactions on Mathematical Software, 30(3): 353–376, 2004.

[21] Timothy A. Davis , John R. Gilbert , Stefan I. Larimore , Esmond G. Ng,
Algorithm 836: COLAMD, a column approximate minimum degree ordering
algorithm, ACM Transactions on Mathematical Software, 30(3): 377–380,
2004.

[22] W.W. Hager, Condition estimates, SIAM J. Sci. Stat. Comput., 5,2: 311–316,
1984.

[23] Nicholas J. Higham, Fortran codes for estimating the one-norm of a real or
complex matrix, with applications to condition estimation, ACM Trans. on
Mathematical Software., 14(4): 381–396, 1988.

BIOGRAPHICAL SKETCH

Ekanathan was born in Tirunelveli, India, on October 2, 1977. He received

his Bachelor of Technology degree in chemical engineering from Anna University,

Chennai, India, in May 1998. He worked with Infosys Technologies at Brussels, Bel-

gium, as programmer/analyst from 1998 till 2001 and with SAP AG at Walldorf,

Germany, as software developer from 2001 till 2003. Currently he is pursuing his

Master of Science degree in computer science at University of Florida. His interests

and hobbies include travel, reading novels and magazines, music and movies.

69

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	CHAPTER
	INTRODUCTION
	THEORY: SPARSE LU
	Dense LU
	Sparse LU
	Left Looking Gaussian Elimination
	Gilbert-Peierls' Algorithm
	Symbolic Analysis
	Numerical Factorization

	Maximum Transversal
	Block Triangular Form
	Symmetric Pruning
	Ordering
	Pivoting
	Scaling
	Growth Factor
	Condition Number
	Depth First Search
	Memory Fragmentation
	Complex Number Support
	Parallelism in KLU

	CIRCUIT SIMULATION: APPLICATION OF KLU
	Characteristics of Circuit Matrices
	Linear Systems in Circuit Simulation
	Performance Benchmarks
	Analyses and Findings
	Alternate Ordering Experiments
	Experiments with UF Sparse Matrix Collection
	Different Ordering Schemes in KLU
	Timing Different Phases in KLU
	Ordering Quality among KLU, UMFPACK and Gilbert-Peierls
	Performance Comparison between KLU and UMFPACK

	USER GUIDE FOR KLU
	The Primary KLU Structures
	klu_common
	klu_symbolic
	klu_numeric

	KLU Routines
	klu_analyze
	klu_analyze_given
	klu_*factor
	klu_*solve
	klu_*tsolve
	klu_*refactor
	klu_defaults
	klu_*rec_pivot_growth
	klu_*estimate_cond_number
	klu_free_symbolic
	klu_free_numeric

	REFERENCES
	BIOGRAPHICAL SKETCH

