
User Guide for SLIP LU, A Sparse Left-Looking Integer
Preserving LU Factorization

Version 1.0.1, July 2020

Christopher Lourenco, Jinhao Chen,
Erick Moreno-Centeno, Timothy A. Davis

Texas A&M University

Contact Information: Contact Chris Lourenco,
chrisjlourenco@gmail.com, or Tim Davis, timdavis@aldenmath.com,

davis@tamu.edu, DrTimothyAldenDavis@gmail.com

1

mailto:chrisjlourenco@gmail.com
mailto:timdavis@aldenmath.com
mailto:davis@tamu.edu
DrTimothyAldenDavis@gmail.com

Contents

1 Overview 4

2 Availability 6

3 Installation 7

4 Managing the SLIP LU environment 7
4.1 SLIP_LU_VERSION: the software package version 7
4.2 SLIP_info: status code returned by SLIP LU 7
4.3 SLIP_initialize: initialize the working environment 8
4.4 SLIP_initialize_expert: initialize environment (expert version) . 8
4.5 SLIP_finalize: free the working environment 9

5 Memory Management 9
5.1 SLIP_calloc: allocate initialized memory 10
5.2 SLIP_malloc: allocate uninitialized memory 10
5.3 SLIP_realloc: resize allocated memory 10
5.4 SLIP_free: free allocated memory 11

6 The SLIP_options object: parameter settings for SLIP LU 12
6.1 SLIP_pivot: enum for pivoting schemes 12
6.2 SLIP_col_order: enum for column ordering schemes 13
6.3 SLIP_options structure . 13
6.4 SLIP_create_default_options: create default SLIP_options object 14

7 The SLIP_matrix object 15
7.1 SLIP_kind: enum for matrix formats 15
7.2 SLIP_type: enum for data types of matrix entry 15
7.3 SLIP_matrix structure . 16
7.4 SLIP_matrix_allocate: allocate a m-by-n SLIP_matrix 19
7.5 SLIP_matrix_free: free a SLIP_matrix 19
7.6 SLIP_matrix_copy: make a copy of a SLIP_matrix 20
7.7 SLIP_matrix_nnz: get the number of entries in a SLIP_matrix . . . 20
7.8 SLIP_matrix_check: check and print a SLIP_matrix 21

2

8 Primary Computational Routines 21
8.1 SLIP_LU_analysis structure . 21
8.2 SLIP_LU_analyze: perform symbolic analysis 22
8.3 SLIP_LU_analysis_free: free SLIP_LU_analysis structure 22
8.4 SLIP_LU_factorize: perform LU factorization 23
8.5 SLIP_LU_solve: solve the linear system Ax = b 24
8.6 SLIP_backslash: solve Ax = b . 25

9 SLIP LU wrapper functions for GMP and MPFR 25

10 Using SLIP LU in C 29
10.1 SLIP LU initialization and population of data structures 29

10.1.1 Initializing the environment 29
10.1.2 Initializing data structures . 30
10.1.3 Populating data structures . 30

10.2 Simple SLIP LU routines for solving linear systems 31
10.3 Expert SLIP LU routines . 31

10.3.1 Declare workspace . 32
10.3.2 SLIP LU symbolic analysis . 32
10.3.3 Computing the factorization 32
10.3.4 Solving the linear system . 32
10.3.5 Converting the solution vector to the final desired form 33

10.4 Freeing memory . 33
10.5 Examples of using SLIP LU in a C program 34

11 Using SLIP LU in MATLAB 35
11.1 Optional parameter settings . 35
11.2 SLIP_backslash.m . 36

3

1 Overview

SLIP LU is a software package designed to exactly solve unsymmetric sparse linear
systems, Ax = b, where A ∈ Qn×n, b ∈ Qn×r, and x ∈ Qn×r. This package performs
a left-looking, roundoff-error-free (REF) LU factorization PAQ = LDU , where L
and U are integer, D is diagonal, and P and Q are row and column permutations,
respectively. Note that the matrix D is never explicitly computed nor needed; thus
this package uses only the matrices L and U . The theory associated with this code is
the Sparse Left-looking Integer-Preserving (SLIP) LU factorization [8]. Aside from
solving sparse linear systems exactly, one of the key goals of this package is to provide
a framework for other solvers to benchmark the reliability and stability of their linear
solvers, as our final solution vector x is guaranteed to be exact. In addition, SLIP
LU provides a wrapper class for the GNU Multiple Precision Arithmetic (GMP) [7]
and GNU Multiple Precision Floating Point Reliable (MPFR) [6] libraries in order
to prevent memory leaks and improve the overall stability of these external libraries.
SLIP LU is written in ANSI C and is accompanied by a MATLAB interface.

For all primary computational routines in Section 8, the input argument A must
be stored in a compressed sparse column (CSC) matrix with entries in mpz_t type
(referred to as CSC mpz_t matrix henceforth), while b must be stored as a dense
mpz_t matrix (i.e., a dense matrix with entries in mpz_t type). However, the original
data type of entries in the input matrix A and right hand side (RHS) vectors b can
be any one of: double, int64_t, mpq_t, mpz_t, or mpfr_t, and their format(s) are
allowed to be CSC, sparse triplet or dense. A discussion of how to use these matrix
formats and data types in the SLIP_matrix, and to perform conversions between
matrix types and formats in Section 10.1.3.

The matrices L and U are computed using integer-preserving routines with the
big integer (mpz_t) data types from the GMP Library [7]. The matrices L and
U are computed one column at a time, where each column is computed via the
sparse REF triangular solve detailed in [8]. All divisions performed in the algorithm
are guaranteed to be exact (i.e., integer); therefore, no greatest common divisor
algorithms are needed to reduce the size of entries.

The permutation matrices P and Q define the pivot ordering; Q is the fill-reducing
column ordering, and P is determined dynamically during the factorization. For the
matrix P , the default option is to use a partial pivoting scheme in which the diagonal
entry in column k is selected if it is the same magnitude as the smallest entry of k-th
column, otherwise the smallest entry is selected as the k-th pivot. In addition to
this approach, the code allows diagonal pivoting, partial pivoting which selects the
largest pivot, or various tolerance based diagonal pivoting schemes. For the matrix

4

Q, the default ordering is the Column Approximate Minimum Degree (COLAMD)
algorithm [4, 5]. Other approaches include using the Approximate Minimum Degree
(AMD) ordering [1, 2], or no ordering (Q = I). A discussion of how to select these
permutations prior to factorization is given in Section 8.

Once the factorization LDU = PAQ is computed, the solution vector x is com-
puted via sparse REF forward and backward substitution. The forward substitution
is a variant of the sparse REF triangular solve discussed above. The backward sub-
stitution is a typical column oriented sparse backward substitution. Both of these
routines require b stored as a dense mpz_t matrix. At the conclusion of the forward
and backward substitution routines, the final solution vector(s) x are guaranteed to
be exact. The solution x is returned as a dense mpq_t matrix.

Using the SLIP matrix copy function, any matrix in any of the 15 combinations
of the set (CSC, triplet, dense) × (mpz_t, mpq_t , mpfr_t, int64_t, or double), can
be copied and converted into any one of the 15 combinations.

One key advantage of utilizing SLIP LU with floating-point output is that the
solution is guaranteed to be exact until this final conversion; meaning that roundoff
errors are only introduced in the final conversion from rational numbers. Thus, the
solution x output in double precision are accurate to machine roundoff (approxi-
mately 10−16) and SLIP LU utilizes higher precision for the MPFR output; thus it
is also accurate to user-specified precision.

Most routines expect the input sparse matrix A to be stored in CSC format. This
data structure stores the matrix A as a sequence of three arrays:

• A->p: Column pointers; an array of size n+1. The row indices of column j are
located in positions A->p[j] to A->p[j+1]-1 of the array A->i. Data type:
int64_t.

• A->i: Row indices; an array of size equal to the number of entries in the matrix.
The entry A->i[k] is the row index of the kth nonzero in the matrix. Data
type: int64_t.

• A->x: Numeric entries. The entry A->x[k] is the numeric value of the kth
nonzero in the matrix. The array A->x has a union type, and must be accessed
via a suffix according to the type of A. For details, see Section 7.

An example matrix A with mpz_t type is stored as follows (notice that via C

5

convention, the indexing is zero based).

A =

1 0 0 1
2 0 4 12
7 1 1 1
0 2 3 0

A->p = [0, 3, 5, 8, 11]

A->i = [0, 1, 2, 2, 3, 1, 2, 3, 0, 1, 2]

A->x.mpz = [1, 2, 7, 1, 2, 4, 1, 3, 1, 12, 1]

For example, the last column appears in positions 8 to 10 of A->i and A->x.mpz,
with row indices 0, 1, and 2, and values a03 = 1, a13 = 12, and a23 = 1.

2 Availability

Copyright: This software is copyright by Christopher Lourenco, Jinhao Chen, Erick
Moreno-Centeno, and Timothy Davis.
Contact Info: Contact Chris Lourenco, chrisjlourenco@gmail.com, or Tim Davis,
timdavis@aldenmath.com, davis@tamu.edu, or DrTimothyAldenDavis@gmail.com
License: This software package is dual licensed under the GNU General Public
License version 2 or the GNU Lesser General Public License version 3. Details of
this license are in SLIP_LU/License/license.txt. For alternative licenses, please
contact the authors.
Location: https://github.com/clouren/SLIP_LU and www.suitesparse.com

Required Packages: SLIP LU requires the installation of AMD [1, 2], COLAMD [5,
4], SuiteSparse_config [3], the GNU GMP [7] and GNU MPFR [6] libraries. AMD
and COLAMD are available under a BSD 3-clause license, and no license restrictions
apply to SuiteSparse_config. Notice that AMD, COLAMD, and SuiteSparse_config

are included in this distribution for convenience. The GNU GMP and GNU MPFR
library can be acquired and installed from https://gmplib.org/ and http://www.

mpfr.org/ respectively.
With a Debian/Ubuntu based Linux system, a compatible version of GMP and

MPFR can be installed with the following terminal commands:

sudo apt-get install libgmp3-dev

sudo apt-get install libmpfr-dev libmpfr-doc libmpfr4 libmpfr4-dbg

6

mailto:chrisjlourenco@gmail.com
mailto:timdavis@aldenmath.com
mailto:davis@tamu.edu
DrTimothyAldenDavis@gmail.com
https://github.com/clouren/SLIP_LU
www.suitesparse.com
https://gmplib.org/
http://www.mpfr.org/
http://www.mpfr.org/

3 Installation

Installation of SLIP LU requires the make utility in Linux/MacOS, or Cygwin make in
Windows. With the proper compiler, typing make under the main directory will com-
pile AMD, COLAMD and SLIP LU to the respective SLIP_LU/Lib folder. To further
install the libraries onto your computer, simply type make install. Thereafter, to
use the code inside of your program, precede your code with #include "SLIP_LU.h".

To run the statement coverage tests, go to the Tcov folder and type make. The
last line of output should read:

statments not yet tested: 0

If you want to use SLIP LU within MATLAB, from your installation of MATLAB,
cd to the folder SLIP_LU/SLIP_LU/MATLAB then type SLIP_install. This should
compile the necessary code so that you can use the SLIP_backslash function from
within MATLAB. Note that SLIP_install does not add the correct directory to
your path; therefore, if you want to use SLIP_backslash in future sessions, type
pathtool and save your path for future MATLAB sessions. If you cannot save your
path because of file permissions, edit your startup.m by adding addpath commands
(type doc startup and doc addpath for more information).

4 Managing the SLIP LU environment

4.1 SLIP_LU_VERSION: the software package version

SLIP LU defines the following strings with #define. Refer to the SLIP_LU.h file for
details.

Macro purpose
SLIP_LU_VERSION current version of the code (as a string)
SLIP_LU_VERSION_MAJOR major version of the code
SLIP_LU_VERSION_MINOR minor version of the code
SLIP_LU_VERSION_SUB sub version of the code

4.2 SLIP_info: status code returned by SLIP LU

Most SLIP LU functions return their status to the caller as their return value, an
enumerated type called SLIP_info. All current possible values for SLIP_info are
listed as follows:

7

0 SLIP_OK The function was successfully executed.
-1 SLIP_OUT_OF_MEMORY out of memory
-2 SLIP_SINGULAR The input matrix A is exactly singular.
-3 SLIP_INCORRECT_INPUT One or more input arguments are incorrect.
-4 SLIP_INCORRECT The solution is incorrect.
-5 SLIP_PANIC SLIP LU environment error

Either SLIP_initialize or SLIP_initialize_expert (but not both) must be
called prior to using any other SLIP LU function. SLIP_finalize must be called as
the last SLIP LU function.

Subsequent SLIP LU sessions can be restarted after a call to SLIP_finalize,
by calling either SLIP_initialize or SLIP_initialize_expert (but not both),
followed by a final call to SLIP_finalize when finished.

4.3 SLIP_initialize: initialize the working environment

SLIP_info SLIP_initialize

(

void

) ;

SLIP_initialize initializes the working environment for SLIP LU functions.
SLIP LU utilizes a specialized memory management scheme in order to prevent
potential memory failures caused by GMP and MPFR libraries. Either this function
or SLIP_initialize_expert must be called prior to using any other function in the
library. Returns SLIP_PANIC if SLIP LU has already been initialized, or SLIP_OK if
successful.

4.4 SLIP_initialize_expert: initialize environment (expert
version)

SLIP_info SLIP_initialize_expert

(

void* (*MyMalloc) (size_t), // user-defined malloc

void* (*MyCalloc) (size_t, size_t), // user-defined calloc

void* (*MyRealloc) (void *, size_t), // user-defined realloc

void (*MyFree) (void *) // user-defined free

) ;

8

SLIP_initialize_expert is the same as SLIP_initialize except that it allows
for a redefinition of custom memory functions that are used for SLIP LU and GM-
P/MPFR. The four inputs to this function are pointers to four functions with the
same signatures as the ANSI C malloc, calloc, realloc, and free functions. That
is:

#include <stdlib.h>

void *malloc (size_t size) ;

void *calloc (size_t nmemb, size_t size) ;

void *realloc (void *ptr, size_t size) ;

void free (void *ptr) ;

Returns SLIP_PANIC if SLIP LU has already been initialized, or SLIP_OK if suc-
cessful.

4.5 SLIP_finalize: free the working environment

SLIP_info SLIP_finalize

(

void

) ;

SLIP_finalize finalizes the working environment for SLIP LU library, and frees
any internal workspace created by SLIP LU. It must be called as the last SLIP_*

function called, except that a subsequent call to SLIP_initialize* may be used
to start another SLIP LU session. Returns SLIP_PANIC if SLIP LU has not been
initialized, or SLIP_OK if successful.

5 Memory Management

The routines in this section are used to allocate and free memory for the data struc-
tures used in SLIP LU. By default, SLIP LU relies on the SuiteSparse memory man-
agement functions, SuiteSparse_malloc, SuiteSparse_calloc, SuiteSparse_realloc,
and SuiteSparse_free. By default, those functions rely on the ANSI C malloc,
calloc, realloc, and free, but this may be changed by initializing the SLIP LU
environment with SLIP_initialize_expert.

9

5.1 SLIP_calloc: allocate initialized memory

void *SLIP_calloc

(

size_t nitems, // number of items to allocate

size_t size // size of each item

) ;

SLIP_calloc allocates a block of memory for an array of nitems elements, each
of them size bytes long, and initializes all its bits to zero. If any input is less than
1, it is treated as if equal to 1. If the function failed to allocate the requested block
of memory, then a NULL pointer is returned. Returns NULL if SLIP LU has not been
initialized.

5.2 SLIP_malloc: allocate uninitialized memory

void *SLIP_malloc

(

size_t size // size of memory space to allocate

) ;

SLIP_malloc allocates a block of size bytes of memory, returning a pointer to
the beginning of the block. The content of the newly allocated block of memory is not
initialized, remaining with indeterminate values. If size is less than 1, it is treated
as if equal to 1. If the function fails to allocate the requested block of memory, then
a NULL pointer is returned. Returns NULL if SLIP LU has not been initialized.

5.3 SLIP_realloc: resize allocated memory

void *SLIP_realloc // pointer to reallocated block, or original block

// if the realloc failed

(

int64_t nitems_new, // new number of items in the object

int64_t nitems_old, // old number of items in the object

size_t size_of_item, // sizeof each item

void *p, // old object to reallocate

bool *ok // true if success, false on failure

) ;

SLIP_realloc is a wrapper for realloc. If p is non-NULL on input, it points to
a previously allocated object of size nitems_old × size_of_item. The object is
reallocated to be of size nitems_new × size_of_item. If p is NULL on input, then

10

a new object of that size is allocated. On success, a pointer to the new object is
returned. Returns ok as false if SLIP LU has not been initialized.

If the reallocation fails, p is not modified, and ok is returned as false to indicate
that the reallocation failed. If the size decreases or remains the same, then the
method always succeeds (ok is returned as true), unless SLIP LU has not been
initialized.

Typical usage: the following code fragment allocates an array of 10 int’s, and
then increases the size of the array to 20 int’s. If the SLIP_malloc succeeds but the
SLIP_realloc fails, then the array remains unmodified, of size 10.

int *p ;

p = SLIP_malloc (10 * sizeof (int)) ;

if (p == NULL) { error here ... }

printf ("p points to an array of size 10 * sizeof (int)\n") ;

bool ok ;

p = SLIP_realloc (20, 10, sizeof (int), p, &ok) ;

if (ok) printf ("p has size 20 * sizeof (int)\n") ;

else printf ("realloc failed; p still has size 10 * sizeof (int)\n") ;

SLIP_free (p) ;

5.4 SLIP_free: free allocated memory

void SLIP_free

(

void *p // Pointer to memory space to free

) ;

SLIP_free deallocates the memory previously allocated by a call to SLIP_calloc,
SLIP_malloc, or SLIP_realloc. If p is NULL on input, then no action is taken (this
is not an error condition). To guard against freeing the same memory space twice,
the following macro SLIP_FREE is provided, which calls SLIP_free and then sets the
freed pointer to NULL.

#define SLIP_FREE(p) \

{ \

SLIP_free (p) ; \

(p) = NULL ; \

}

No action is taken if SLIP LU has not been initialized.

11

6 The SLIP_options object: parameter settings for

SLIP LU

The SLIP_options object contains numerous parameters that may be modified to
change the behavior of the SLIP LU functions. Default values of these parameters
will lead to good performance in most cases. Modifying this struct provides control
of column orderings, pivoting schemes, and other components of the factorization.

6.1 SLIP_pivot: enum for pivoting schemes

There are six available pivoting schemes provided in SLIP LU that can be selected
with the SLIP_options structure. If the matrix is non-singular (in an exact sense),
then the pivot is always nonzero, and is chosen as the smallest nonzero entry, with the
smallest magnitude. This may seem counter-intuitive, but selecting a small nonzero
pivot leads to smaller growth in the number of digits in the entries of L and U. This
choice does not lead to any kind of numerical inaccuracy, since SLIP LU is guaranteed
to find an exact roundoff-error free factorization of a non-singular matrix (unless it
runs out of memory), for any nonzero pivot choice.

The pivot tolerance for two of the pivoting schemes is specified by the tol com-
ponent in SLIP_options. The pivoting schemes are as follows:

0 SLIP_SMALLEST The k-th pivot is selected as the smallest entry in the k-th
column.

1 SLIP_DIAGONAL The k-th pivot is selected as the diagonal entry. If the di-
agonal entry is zero, this method instead selects the smallest
pivot in the column.

2 SLIP_FIRST_NONZERO The k-th pivot is selected as the first eligible nonzero in the
column.

3 SLIP_TOL_SMALLEST The k-th pivot is selected as the diagonal entry if the diagonal
is within a specified tolerance of the smallest entry in the
column. Otherwise, the smallest entry in the k-th column is
selected. This is the default pivot selection strategy.

4 SLIP_TOL_LARGEST The k-th pivot is selected as the diagonal entry if the diago-
nal is within a specified tolerance of the largest entry in the
column. Otherwise, the largest entry in the k-th column is
selected.

5 SLIP_LARGEST The k-th pivot is selected as the largest entry in the k-th
column.

12

6.2 SLIP_col_order: enum for column ordering schemes

The SLIP LU library provides three column ordering schemes: no pre-ordering, CO-
LAMD, and AMD, selected via the order component in the SLIP_options structure
described in Section 6.3.

0 SLIP_NO_ORDERING No pre-ordering is performed on the matrix A, that is Q = I.

1 SLIP_COLAMD The columns of A are permuted prior to factorization using
the COLAMD [4] ordering. This is the default ordering.

2 SLIP_AMD The nonzero pattern of A + AT is analyzed and the columns
of A are permuted prior to factorization based on the AMD
[2] ordering of A + AT . This works well if A has a mostly
symmetric pattern, but tends to be worse than COLAMD on
matrices with unsymmetric pattern. [5].

6.3 SLIP_options structure

The SLIP_options struct stores key command parameters for various functions used
in the SLIP LU package. The SLIP_options* option struct contains the following
components:

• option->pivot: An enum SLIP_pivot type (discussed in Section 6.1) which
controls the type of pivoting used. Default value: SLIP_TOL_SMALLEST (3).

• option->order: An enum SLIP_col_order type (discussed in Section 6.2)
which controls what column ordering is used. Default value: SLIP_COLAMD (1).

• option->tol: A double tolerance for the tolerance-based pivoting scheme, i.e.,
SLIP_TOL_SMALLEST or SLIP_TOL_LARGEST. option->tol must be in the range
of (0, 1]. Default value: 1 meaning that the diagonal entry will be selected if it
has the same magnitude as the smallest entry in the k the column.

• option->print_level: An int which controls the amount of output: 0: print
nothing, 1: just errors, 2: terse, with basic stats from COLAMD/AMD and
SLIP, 3: all, with matrices and results. Default value: 0.

• option->prec: An int32_t which specifies the precision used for multiple
precision floating point numbers, (i.e., MPFR). This can be any integer larger
than MPFR_PREC_MIN (value of 1 in MPFR 4.0.2 and 2 in some legacy versions)
and smaller than MPFR_PREC_MAX (usually the largest possible integer available
in your system). Default value: 128 (quad precision).

13

• option->round: A mpfr_rnd_t which determines the type of MPFR rounding
to be used by SLIP LU. This is a parameter of the MPFR library. The options
for this parameter are:

– MPFR_RNDN: round to nearest (roundTiesToEven in IEEE 754-2008)

– MPFR_RNDZ: round toward zero (roundTowardZero in IEEE 754-2008)

– MPFR_RNDU: round toward plus infinity (roundTowardPositive in IEEE
754-2008)

– MPFR_RNDD: round toward minus infinity (roundTowardNegative in IEEE
754-2008)

– MPFR_RNDA: round away from zero

– MPFR_RNDF: faithful rounding. This is not stable.

Refer to the MPFR User Guide available at https://www.mpfr.org/mpfr-current/
mpfr.pdf for details on the MPFR rounding style and any other utilized MPFR
convention. Default value: MPFR_RNDN.

• option->check: A bool which indicates whether the solution to the system
should be checked. Intended for debugging only; the SLIP LU library is guar-
anteed to return the exact solution. Default value: false.

All SLIP LU routines except basic memory management routines in Sections 4.5-
5.1 and SLIP_options allocation routine in 6.4 require option as an input argument.
The construction of the option struct can be avoided by passing NULL for the default
settings. Otherwise, the following functions create and destroy a SLIP_options

object:

function/macro name description section
SLIP_create_default_options create and return SLIP_options

pointer with default parameters
upon successful allocation

6.4

SLIP_FREE destroy SLIP_options object 5.4

6.4 SLIP_create_default_options: create default SLIP_options
object

14

https://www.mpfr.org/mpfr-current/mpfr.pdf
https://www.mpfr.org/mpfr-current/mpfr.pdf

SLIP_options* SLIP_create_default_options

(

void

) ;

SLIP_create_default_options creates and returns a pointer to a SLIP_options

struct with default parameters upon successful allocation, which are discussed in
Section 6.3. To safely free the SLIP_options* option structure, simply use
SLIP_FREE(option). All functions that require SLIP_options *option as an input
argument can have a NULL pointer passed instead. In this case, the default value
of the corresponding command option is used. For example, if a NULL pointer is
passed to the symbolic analysis routines, COLAMD is used. As a result, defaults are
desired, the SLIP_options struct need not be allocated. Returns NULL if SLIP LU
has not been initialized.

7 The SLIP_matrix object

All matrices for SLIP LU are stored as a SLIP_matrix object (a pointer to a struct).
The matrix can be held in three formats: CSC, triplet or dense matrix (as discussed in
Section 7.1) with entries stored as 5 different types: mpz_t, mpq_t, mpfr_t, int64_t
and double (as discussed in Section 7.2). This gives a total of 15 different combi-
nations of matrix format and entry type. Note that not all functions accept all 15
matrix types. Indeed, most functions expect the input matrix A to be a CSC mpz_t

matrix while vectors (such as x and b) are in dense format.

7.1 SLIP_kind: enum for matrix formats

The SLIP LU library provides three available matrix formats: sparse CSC (com-
pressed sparse column), sparse triplet and dense.

0 SLIP_CSC Matrix is in compressed sparse column format.

1 SLIP_TRIPLET Matrix is in sparse triplet format.

2 SLIP_DENSE Matrix is in dense format.

7.2 SLIP_type: enum for data types of matrix entry

The SLIP LU library provides five data types for matrix entries: mpz_t, mpq_t,
mpfr_t, int64_t and double.

15

0 SLIP_MPZ Matrix entries are in mpz_t type: an integer of arbitrary size.

1 SLIP_MPQ Matrix entries are in mpq_t type: a rational number with
arbitrary-sized integer numerator and denominator.

2 SLIP_MPFR Matrix entries are in mpfr_t type: a floating-point number
of arbitrary precision.

3 SLIP_INT64 Matrix entries are in int64_t type.

4 SLIP_FP64 Matrix entries are in double type.

7.3 SLIP_matrix structure

A matrix SLIP_matrix *A has the following components:

• A->m: Number of rows in the matrix. Data Type: int64_t.

• A->n: Number of columns in the matrix. Data Type: int64_t.

• A->nz: The number of nonzeros in the matrix A, if A is a triplet matrix (ignored
for matrices in CSC or dense formats). Data Type: int64_t.

• A->nzmax: The allocated size of the vectors A->i, A->j and A->x. Note that
A->nzmax≥ nnz(A), where nnz(A) is the return value of SLIP_matrix_nnz(A,option).
Data Type: int64_t.

• A->kind: Indicating the kind of matrix A: CSC, triplet or dense. Data Type:
SLIP_kind.

• A->type: Indicating the type of entries in matrix A: mpz_t, mpq_t, mpfr_t,
int64_t or double. Data Type: SLIP_type.

• A->p: An array of size A->n+1 which contains column pointers of A, if A is
a CSC matrix (NULL for matrices in triplet or dense formats). Data Type:
int64_t*.

• A->p_shallow: A boolean indicating whether A->p is shallow. Data Type:
bool.

• A->i: An array of size A->nzmax which contains the row indices of the nonzeros
in A, if A is a CSC or triplet matrix (NULL for dense matrices). The matrix
is zero-based, so row indices are in the range of [0, A->m−1]. Data Type:
int64_t*.

• A->i_shallow: A boolean indicating whether A->i is shallow. Data Type:
bool.

16

• A->j: An array of size A->nzmax which contains the column indices of the
nonzeros in A, if A is a triplet matrix (NULL for matrices in CSC or dense
formats). The matrix is zero-based, so column indices are in the range of [0,
A->n−1]. Data Type: int64_t*.

• A->j_shallow: A boolean indicating whether A->j is shallow. Data Type:
bool.

• A->x: An array of size A->nzmax which contains the numeric values of the
matrix. This array is a union, and must be accessed via one of: A->x.mpz,
A->x.mpq, A->x.mpfr, A->x.int64, or A->x.fp64, depending on the A->type

parameter. Data Type: union.

• A->x_shallow: A boolean indicating whether A->x is shallow. Data Type:
bool.

• A->scale: A scaling parameter for matrix of mpz_t type. For all matrices
whose entries are stored in data type other than mpz_t, A->scale = 1. This is
used to ensure that entry can be represented as an integer in an mpz_t matrix if
these entries are converted from non-integer type data (such as double, variable
precision floating point, or rational). Data Type: mpq_t.

Specifically, for different kinds of A of size A->m × A->n with nz nonzero entries,
its components are defined as:

• (0) SLIP_CSC: A sparse matrix in CSC (compressed sparse column) format.
A->p is an int64_t array of size A->n+1, A->i is an int64_t array of size
A->nzmax (with nz ≤ A->nzmax), and A->x.TYPE is an array of size A->nzmax

of matrix entries (TYPE is one of mpz, mpq, mpfr, int64, or fp64). The row
indices of column j appear in A->i [A->p [j] ... A->p [j+1]-1], and the
values appear in the same locations in A->x.TYPE. The A->j array is NULL.
A->nz is ignored; the number of entries in A is given by A->p [A->n]. Row
indices need not be sorted in each column, but duplicates cannot appear.

• (1) SLIP_TRIPLET: A sparse matrix in triplet format. A->i and A->j are both
int64_t arrays of size A->nzmax, and A->x.TYPE is an array of values of the
same size. The kth tuple has row index A->i [k], column index A->j [k]

, and value A->x.TYPE [k], with 0 ≤ k < A->nz. The A->p array is NULL.
Triplets can be unsorted, but duplicates cannot appear.

17

• (2) SLIP_DENSE: A dense matrix. The integer arrays A->p, A->i, and A->j

are all NULL. A->x.TYPE is a pointer to an array of size A->m*A->n, stored
in column-oriented format. The value of A(i, j) is A->x.TYPE [p] with p =
i + j∗A->m. A->nz is ignored; the number of entries in A is A->m × A->n.

A may contain shallow components, A->p, A->i, A->j, and A->x. For example, if
A->p_shallow is true, then a non-NULL A->p is a pointer to a read-only array, and
the A->p array is not freed by SLIP_matrix_free. If A->p is NULL (for a triplet or
dense matrix), then A->p_shallow has no effect.

To simplify the access the entries in A, SLIP LU package provides the following
macros (Note that the TYPE parameter in the macros is one of: mpz, mpq, mpfr, int64
or fp64):

• SLIP_1D(A,k,TYPE): used to access the kth entry in SLIP_matrix *A using
1D linear addressing for any matrix kind (CSC, triplet or dense), in any type
with TYPE specified corresponding

• SLIP_2D(A,i,j,TYPE): used to access the (i, j)th entry in a dense SLIP_matrix *A.

The SLIP LU package has a set of functions to allocate, copy(convert), query and
destroy a SLIP LU matrix, SLIP_matrix, as shown in the following table.

function name description section

SLIP_matrix_allocate allocate a m-by-n SLIP_matrix 7.4

SLIP_matrix_free destroy a SLIP_matrix and free its al-
located memory

7.5

SLIP_matrix_copy make a copy of a matrix, into another
kind and/or type

7.6

SLIP_matrix_nnz get the number of entries in a matrix 7.7

18

7.4 SLIP_matrix_allocate: allocate a m-by-n SLIP_matrix

SLIP_info SLIP_matrix_allocate

(

SLIP_matrix **A_handle, // matrix to allocate

SLIP_kind kind, // CSC, triplet, or dense

SLIP_type type, // mpz, mpq, mpfr, int64, or double (fp64)

int64_t m, // # of rows

int64_t n, // # of columns

int64_t nzmax, // max # of entries

bool shallow, // if true, matrix is shallow. A->p, A->i,

// A->j, A->x are all returned as NULL and must

// be set by the caller. All A->*_shallow are

// returned as true.

bool init, // If true, and the data types are mpz, mpq, or

// mpfr, the entries are initialized (using the

// appropriate SLIP_mp*_init function). If

// false, the mpz, mpq, and mpfr arrays are

// allocated but not initialized.

const SLIP_options *option

) ;

SLIP_matrix_allocate allocates memory space for a m-by-n SLIP_matrix whose
kind (CSC, triplet or dense) and data type (mpz, mpq, mpfr, int64 or fp64) is spec-
ified. If shallow is true, all components (A->p, A->i, A->j, A->x) are returned as
NULL, and their shallow flags are all true. The pointers A->p, A->i, A->j, and/or
A->x can then be assigned from arrays in the calling application.

If shallow is false, the appropriate individual arrays are allocated (via SLIP_calloc).
The second boolean parameter is used if the entries are mpz_t, mpq_t, or mpfr_t.
Specifically, if init is true, the individual entries within A->x.TYPE are initialized
using the appropriate SLIP_mp*_init) function. Otherwise, if init is false, the
A->x.TYPE array is allocated (via SLIP_calloc) and left that way. They are not
otherwise initialized, and attempting to access the values of these uninitialized en-
tries will lead to undefined behavior. Returns SLIP_PANIC if SLIP LU has not been
initialized.

7.5 SLIP_matrix_free: free a SLIP_matrix

SLIP_info SLIP_matrix_free

(

SLIP_matrix **A_handle, // matrix to free

const SLIP_options *option

19

) ;

SLIP_matrix_free frees the SLIP_matrix *A. Note that the input of the func-
tion is the pointer to the pointer of a SLIP_matrix structure. This is because this
function internally sets the pointer of a SLIP_matrix to be NULL to prevent poten-
tial segmentation fault that could be caused by double free. If default settings are
desired, option can be input as NULL.

7.6 SLIP_matrix_copy: make a copy of a SLIP_matrix

SLIP_info SLIP_matrix_copy

(

SLIP_matrix **C, // matrix to create (never shallow)

// inputs, not modified:

SLIP_kind kind, // CSC, triplet, or dense

SLIP_type type, // mpz_t, mpq_t, mpfr_t, int64_t, or fp64

SLIP_matrix *A, // matrix to make a copy of (may be shallow)

const SLIP_options *option

) ;

SLIP_matrix_copy creates a SLIP_matrix *C which is a modified copy of a
SLIP_matrix *A. This function can convert between any pair of the 15 kinds of
matrices, so the new matrix C can be of any type or kind different than A. On input
C must be non-NULL, and the value of *C is ignored; it is overwritten, output with
the matrix C, which is a copy of A of kind kind and type type.

The input matrix is assumed to be valid. It can be checked first with SLIP_matrix_check

(Section 7.8), if desired. Results are undefined for an invalid input matrix A. Returns
SLIP_PANIC if SLIP LU has not been initialized.

7.7 SLIP_matrix_nnz: get the number of entries in a SLIP_matrix

int64_t SLIP_matrix_nnz // return # of entries in A, or -1 on error

(

const SLIP_matrix *A, // matrix to query

const SLIP_options *option

) ;

SLIP_matrix_nnz returns the number of entries in a SLIP_matrix *A. For details
regarding how the number of entries is obtained for different kinds of matrices, refer
to Section 7. For any matrix with invalid dimension(s), this function returns -1. If
default settings are desired, option can be input as NULL. Returns -1 if SLIP LU has
not been initialized.

20

7.8 SLIP_matrix_check: check and print a SLIP_matrix

SLIP_info SLIP_matrix_check // returns a SLIP_LU status code

(

const SLIP_matrix *A, // matrix to check

const SLIP_options* option // defines the print level

) ;

SLIP_matrix_check checks the validity of a SLIP_matrix *A in any of the 15 dif-
ferent matrix types (CSC, triplet, dense) × (mpz, mpq, mpfr, int64, fp64). The print
level can be changed via option->print_level (refer to Section 6 for more details).
If default settings are desired, option can be input as NULL. Returns SLIP_PANIC if
SLIP LU has not been initialized.

8 Primary Computational Routines

These routines perform symbolic analysis, compute the LU factorization of the matrix
A, and solve Ax = b using the factorization of A.

8.1 SLIP_LU_analysis structure

The SLIP_LU_analysis data structure is used for storing the column permutation
for LU and the estimate of the number of nonzeros that may appear in L and U .
This need not be modified or accessed in the user application; it simply needs to
be passed in directly to the other functions that take it as in input parameter. A
SLIP_LU_analysis structure has the following components:

• S->q: The column permutation stored as a dense int64_t vector of size n+ 1,
where n is the number of columns of the analyzed matrix. Currently this vector
is obtained via COLAMD, AMD, or is set to no ordering (i.e., [0, 1, . . . , n−1]).

• S->lnz: An int64_t which is an estimate of the number of nonzeros in L.
S->lnz must be in the range of [n, n2]. If S->lnz is too small, the program
may waste time performing extra memory reallocations. This is set during the
symbolic analysis.

• S->unz: An int64_t which is an estimate of the number of nonzeros in U .
S->unz must be in the range of [n, n2]. If S->unz is too small, the program
may waste time performing extra memory reallocations. This is set during the
symbolic analysis.

21

The SLIP LU package provides the following functions to create and destroy a
SLIP_LU_analysis object:

function/macro name description section

SLIP_LU_analyze create SLIP_LU_analysis object 8.2

SLIP_LU_analysis_free destroy SLIP_LU_analysis object 8.3

8.2 SLIP_LU_analyze: perform symbolic analysis

SLIP_info SLIP_LU_analyze

(

SLIP_LU_analysis **S, // symbolic analysis (column permutation

// and nnz L,U)

const SLIP_matrix *A, // Input matrix

const SLIP_options *option // Control parameters

) ;

SLIP_LU_analyze performs the symbolic ordering for SLIP LU. Currently, there
are three options: no ordering, COLAMD, or AMD, which are passed in by SLIP_options

*option. For more details, refer to Section 6.
The SLIP_LU_analysis *S is created by calling SLIP_LU_analyze(&S, A, option)

with SLIP_matrix *A properly initialized as CSC matrix and option be NULL if de-
fault ordering (COLAMD) is desired. The value of S is ignored on input. On output,
S is a pointer to the newly created symbolic analysis object and SLIP_OK is returned
upon successful completion, or S = NULL with error status returned if a failure oc-
curred. Returns SLIP_PANIC if SLIP LU has not been initialized.

The analysis S is freed by SLIP_LU_analysis_free.

8.3 SLIP_LU_analysis_free: free SLIP_LU_analysis structure

SLIP_info SLIP_LU_analysis_free

(

SLIP_LU_analysis **S, // Structure to be deleted

const SLIP_options *option

) ;

SLIP_LU_analysis_free frees a SLIP_LU_analysis structure. Note that the
input of the function is the pointer to the pointer of a SLIP_LU_analysis structure.
This is because this function internally sets the pointer of a SLIP_LU_analysis to be
NULL to prevent potential segmentation fault that could be caused by double free.
If default settings are desired, option can be input as NULL. Returns SLIP_PANIC if
SLIP LU has not been initialized.

22

8.4 SLIP_LU_factorize: perform LU factorization

SLIP_info SLIP_LU_factorize

(

// output:

SLIP_matrix **L_handle, // lower triangular matrix

SLIP_matrix **U_handle, // upper triangular matrix

SLIP_matrix **rhos_handle, // sequence of pivots

int64_t **pinv_handle, // inverse row permutation

// input:

const SLIP_matrix *A, // matrix to be factored

const SLIP_LU_analysis *S, // column permutation and estimates

// of nnz in L and U

const SLIP_options* option

) ;

SLIP_LU_factorize performs the SLIP LU factorization. This factorization is
done via n (number of rows or columns of the square matrix A) iterations of the
sparse REF triangular solve function. The overall factorization is PAQ = LDU .
This routine allows the factorization and solve to be split into separate phases. For
example codes, refer to either SLIP_LU/Demos/SLIPLU.c or Section 10.3.

On input, L, U, rhos, and pinv are undefined and ignored. A must be a CSC mpz

matrix. Default settings are used if option is input as NULL.
Upon successful completion, the function returns SLIP_OK, and L and U are lower

and upper triangular matrices, respectively, which are CSC matrices of type mpz.
rhos contains the sequence of pivots as an n-by-1 dense vector of type mpz.

After factorizing the matrix, the determinant of A can be obtained from rhos[n-1]

and A->scale as follows:

mpq_t determinant ;

SLIP_mpq_init (determinant) ;

SLIP_mpq_set_z (determinant, rhos->x.mpz[rhos->n-1]) ;

SLIP_mpq_div (determinant, determinant, A->scale) ;

The output array pinv contains the inverse row permutation (that is, the row
index in the permuted matrix PA. For the ith row in A, pinv[i] gives the row
index in PA).

Returns SLIP_PANIC if SLIP LU has not been initialized. Otherwise, if another
error occurs, L, U, rhos, and pinv are all returned as NULL, and an error code will
be returned correspondingly.

23

8.5 SLIP_LU_solve: solve the linear system Ax = b

SLIP_info SLIP_LU_solve // solves the linear system LD^(-1)U x = b

(

// Output

SLIP_matrix **X_handle, // rational solution to the system

// input:

const SLIP_matrix *b, // right hand side vector

const SLIP_matrix *A, // Input matrix

const SLIP_matrix *L, // lower triangular matrix

const SLIP_matrix *U, // upper triangular matrix

const SLIP_matrix *rhos, // sequence of pivots

const SLIP_LU_analysis *S, // symbolic analysis struct

const int64_t *pinv, // inverse row permutation

const SLIP_options* option

) ;

SLIP_LU_solve obtains the solution of mpq_t type to the linear system Ax = b
upon a successful factorization. This function may be called after a successful return
from SLIP_LU_factorize, which computes L, U, rhos, and pinv.

On input, SLIP_matrix *x is undefined. A, L and U must be CSC mpz_t matrices
while b and rhos must be dense mpz_t matrices. All matrices must have matched
dimensions: the matrices L and U must be square lower and upper triangular matrices
the same size as A, and rhos must be a dense n-by-1 vector. The input matrix b

must have same number of rows as A. Default settings are used if option is input as
NULL.

Upon successful completion, the function returns SLIP_OK, and x contains the
solution of mpq_t type with dense format to the linear system Ax = b. If desired,
option->check can be set to true to enable a post-check of the solution of this
function. However, this is intended for debugging only; the SLIP LU library is
guaranteed to return the exact solution. Otherwise (in case of error occurred), the
function returns corresponding error code.

This function is primarily for applications that require intermediate results. For
additional information, refer to either SLIP_LU/Demos/SLIPLU.c or Section 10.3.
Returns SLIP_PANIC if SLIP LU has not been initialized.

24

8.6 SLIP_backslash: solve Ax = b

SLIP_info SLIP_backslash

(

// Output

SLIP_matrix **X_handle, // Final solution vector

// Input

SLIP_type type, // Type of output desired:

// Must be SLIP_MPQ, SLIP_MPFR,

// or SLIP_FP64

const SLIP_matrix *A, // Input matrix

const SLIP_matrix *b, // Right hand side vector(s)

const SLIP_options* option

) ;

SLIP_backslash solves the linear system Ax = b and returns the solution as a
dense matrix of mpq_t, mpfr_t or double numbers. This function performs symbolic
analysis, factorization, and solving all in one line. It can be thought of as an exact
version of MATLAB sparse backslash.

On input, SLIP_matrix *x is undefined. type must be one of: SLIP_MPQ,
SLIP_MPFR or SLIP_FP64 to specify the data type of the solution entries. A should
be a square CSC mpz_t matrix while b should be a dense mpz_t matrix. In addition,
A->m should be equal to b->m. Default settings are used if option is input as NULL.

Upon successful completion, the function returns SLIP_OK, and x contains the
solution of data type specified by type to the linear system Ax = b. If desired,
option->check can be set to true to enable solution checking process in this func-
tion. However, this is intended for debugging only; SLIP LU library is guaranteed to
return the exact solution. Otherwise (in case of error occurred), the function returns
corresponding error code.

Returns SLIP_PANIC if SLIP LU has not been initialized.
For a complete example, refer to SLIP_LU/Demos/example.c,

SLIP_LU/Demos/example2.c, or Section 10.2.

9 SLIP LU wrapper functions for GMP and MPFR

SLIP LU provides a wrapper class for all GMP and MPFR functions used by SLIP
LU. The wrapper class provides error-handling for out-of-memory conditions that
are not handled by the GMP and MPFR libraries. These wrapper functions are
used inside all SLIP LU functions, wherever any GMP or MPFR functions are used.
These functions may also be called by the end-user application.

25

Each wrapped function has the same name as its corresponding GMP/MPFR
function with the added prefix SLIP_. For example, the default GMP function
mpz_mul is changed to SLIP_mpz_mul. Each SLIP GMP/MPFR function returns
SLIP_OK if successful or the correct error code if not. The following table gives
a brief list of each currently covered SLIP GMP/MPFR function. For a detailed
description of each function, refer to SLIP_LU/Source/SLIP_gmp.c.

If additional GMP and MPFR functions are needed in the end-user application,
this wrapper mechanism can be extended to those functions. Below are instructions
on how to do this.

Given a GMP function void gmpfunc(TYPEa a, TYPEb b, ...), where TYPEa

and TYPEb can be GMP type data (mpz_t, mpq_t and mpfr_t, for example) or non-
GMP type data (int, double, for example), and they need not to be the same. A
wrapper for a new GMP or MPFR function can be created by following this outline:

SLIP_info SLIP_gmpfunc

(

TYPEa a,

TYPEb b,

...

)

{

// Start the GMP Wrappter

// uncomment one of the following:

// If this function is not modifying any GMP/MPFR type variable, then use

//SLIP_GMP_WRAPPER_START;

// If this function is modifying mpz_t type (say TYPEa = mpz_t), then use

//SLIP_GMPZ_WRAPPER_START(a) ;

// If this function is modifying mpq_t type (say TYPEa = mpq_t), then use

//SLIP_GMPQ_WRAPPER_START(a) ;

// If this function is modifying mpfr_t type (say TYPEa = mpfr_t), then use

//SLIP_GMPFR_WRAPPER_START(a) ;

// Call the GMP function

gmpfunc(a,b,...) ;

//Finish the wrapper and return ok if successful.

SLIP_GMP_WRAPPER_FINISH;

return SLIP_OK;

}

Note that, other than SLIP_mpfr_fprintf, SLIP_gmp_fprintf, SLIP_gmp_printf
and SLIP_gmp_fscanf, all of the wrapped GMP/MPFR functions always return
SLIP_info to the caller. Therefore, for some GMP/MPFR functions that have their

26

own return value. For example, for int mpq_cmp(const mpq_t a, const mpq_t b),
the return value becomes a parameter of the wrapped function. In general, a GM-
P/MPFR function in the form of TYPEr gmpfunc(TYPEa a, TYPEb b, ...), the
wrapped function can be constructed as follows:

SLIP_info SLIP_gmpfunc

(

TYPEr *r, // return value of the GMP/MPFR function

TYPEa a,

TYPEb b,

...

)

{

// Start the GMP Wrappter

//SLIP_GMP_WRAPPER_START;

// Call the GMP function

*r = gmpfunc(a,b,...) ;

//Finish the wrapper and return ok if successful.

SLIP_GMP_WRAPPER_FINISH;

return SLIP_OK;

}

MPFR Function SLIP_MPFR Function Description

n = mpfr_asprintf(&buff, fmt, ...) n = SLIP_mpfr_asprintf(&buff, fmt, ...) Print format to allocated string
mpfr_free_str(buff) SLIP_mpfr_free_str(buff) Free string allocated by MPFR
mpfr_init2(x, size) SLIP_mpfr_init2(x, size) Initialize x with size bits
mpfr_set(x, y, rnd) SLIP_mpfr_set(x, y, rnd) x = y
mpfr_set_d(x, y, rnd) SLIP_mpfr_set_d(x, y, rnd) x = y (double)
mpfr_set_q(x, y, rnd) SLIP_mpfr_set_q(x, y, rnd) x = y (mpq_t)
mpfr_set_z(x, y, rnd) SLIP_mpfr_set_z(x, y, rnd) x = y (mpz_t)
mpfr_get_z(x, y, rnd) SLIP_mpfr_get_z(x, y, rnd) (mpz_t) x = y
x = mpfr_get_d(y, rnd) SLIP_mpfr_get_d(x, y, rnd) (double) x = y
mpfr_mul(x, y, z, rnd) SLIP_mpfr_mul(x, y, z, rnd) x = y ∗ z
mpfr_mul_d(x, y, z, rnd) SLIP_mpfr_mul_d(x, y, z, rnd) x = y ∗ z
mpfr_div_d(x, y, z, rnd) SLIP_mpfr_div_d(x, y, z, rnd) x = y/z
mpfr_ui_pow_ui(x, y, z, rnd) SLIP_mpfr_ui_pow_ui(x, y, z, rnd) x = yz

mpfr_log2(x, y, rnd) SLIP_mpfr_log2(x, y, rnd) x = log2(y)
mpfr_free_cache() SLIP_mpfr_free_cache() Free cache after log2

GMP Function SLIP_GMP Function Description

n = gmp_fscanf(fp, fmt, ...) n = SLIP_gmp_fscanf(fp, fmt, ...) Read from file fp
mpz_init(x) SLIP_mpz_init(x) Initialize x
mpz_init2(x, size) SLIP_mpz_init2(x, size) Initialize x to size bits
mpz_set(x, y) SLIP_mpz_set(x, y) x = y (mpz_t)
mpz_set_ui(x, y) SLIP_mpz_set_ui(x, y) x = y (signed int)
mpz_set_si(x, y) SLIP_mpz_set_si(x, y) x = y (unsigned int)
mpz_set_d(x, y) SLIP_mpz_set_d(x, y) x = y (double)
x = mpz_get_d(y) SLIP_mpz_get_d(x, y) x = y (double out)
mpz_set_q(x, y) SLIP_mpz_set_q(x, y) x = y (mpz_t)
mpz_mul(x, y, z) SLIP_mpz_mul(x, y, z) x = y ∗ z
mpz_add(x, y, z) SLIP_mpz_add(x, y, z) x = y + z
mpz_addmul(x, y, z) SLIP_mpz_addmul(x, y, z) x = x + y ∗ z
mpz_submul(x, y, z) SLIP_mpz_submul(x, y, z) x = x− y ∗ z
mpz_divexact(x, y, z) SLIP_mpz_divexact(x, y, z) x = y/z
gcd = mpz_gcd(x, y) SLIP_mpz_gcd(gcd, x, y) gcd = gcd(x, y)
lcm = mpz_lcm(x, y) SLIP_mpz_lcm(lcm, x, y) lcm = lcm(x, y)
mpz_abs(x, y) SLIP_mpz_abs(x, y) x = |y|
r = mpz_cmp(x, y) SLIP_mpz_cmp(r, x, y) r = 0 if x = y, r 6= 0 if x 6= y
r = mpz_cmpabs(x, y) SLIP_mpz_cmpabs(r, x, y) r = 0 if |x| = |y|, r 6= 0 if |x| 6= |y|
r = mpz_cmp_ui(x, y) SLIP_mpz_cmp_ui(r, x, y) r = 0 if x = y, r 6= 0 if x 6= y
sgn = mpz_sgn(x) SLIP_mpz_sgn(sgn, x) sgn = 0 if x = 0
size = mpz_sizeinbase(x, base) SLIP_mpz_sizeinbase(size, x, base) size of x in base
mpq_init(x) SLIP_mpq_init(x) Initialize x
mpq_set(x, y) SLIP_mpq_set(x, y) x = y
mpq_set_z(x, y) SLIP_mpq_set_z(x, y) x = y (mpz)
mpq_set_d(x, y) SLIP_mpq_set_d(x, y) x = y (double)
mpq_set_ui(x, y, z) SLIP_mpq_set_ui(x, y, z) x = y/z (unsigned int)
mpq_set_num(x, y) SLIP_mpq_set_num(x, y) num(x) = y
mpq_set_den(x, y) SLIP_mpq_set_den(x, y) den(x) = y
mpq_get_den(x, y) SLIP_mpq_get_den(x, y) x = den(y)
x = mpq_get_d(y) SLIP_mpq_get_d(x, y) (double) x = y
mpq_abs(x, y) SLIP_mpq_abs(x, y) x = |y|
mpq_add(x, y, z) SLIP_mpq_add(x, y, z) x = y + z
mpq_mul(x, y, z) SLIP_mpq_mul(x, y, z) x = y ∗ z
mpq_div(x, y, z) SLIP_mpq_div(x, y, z) x = y/z
r = mpq_cmp(x, y) SLIP_mpq_cmp(r, x, y) r = 0 if x = y, r 6= 0 if x 6= y
r = mpq_cmp_ui(x, n, d) SLIP_mpq_cmp_ui(r, x, n, d) r = 0 if x = n/d, r 6= 0 if x 6= n/d
r = mpq_equal(x, y) SLIP_mpq_equal(r, x, y) r = 0 if x = y, r 6= 0 if x 6= y

28

10 Using SLIP LU in C

Using SLIP LU in C has three steps:

1. initialize and populate data structures,

2. perform symbolic analysis, factorize the matrix A and solve the linear system
for each b vector, and

3. free all used memory and finalize.

Step 1 is discussed in Section 10.1. For Step 2, performing symbolic analysis and
factorizing A and solving the linear Ax = b can be done in one of two ways. If
only the solution vector x is required, SLIP LU provides a simple interface for this
purpose which is discussed in Section 10.2. Alternatively, if the L and U factors are
required, refer to Section 10.3. Finally, step 3 is discussed in Section 10.4. For the
remainder of this section, n will indicate the dimension of A (that is, A ∈ Zn×n) and
numRHS will indicate the number of right hand side vectors being solved (that is, if
numRHS= r, then b ∈ Zn×r).

10.1 SLIP LU initialization and population of data struc-
tures

This section discusses how to initialize and populate the global data structures re-
quired for SLIP LU.

10.1.1 Initializing the environment

SLIP LU is built upon the GNU Multiple Precision Arithmetic (GMP) [7] and GNU
Multiple Precision Floating Point Reliable (MPFR) [6] libraries and provides wrap-
pers to all GMP/MPFR functions it uses. This allows SLIP LU to properly handle
memory management failures, which GMP/MPFR does not handle. To enable this
mechanism, SLIP LU requires initialization. The following must be done before using
any other SLIP LU function:

SLIP_initialize () ;

// or SLIP_initialize_expert (...); if custom memory functions are desired

29

10.1.2 Initializing data structures

SLIP LU assumes three specific input options for all functions. These are:

• SLIP_matrix* A and SLIP_matrix *b: A contains the input coefficient matrix,
while b contains the right hand side vector(s) of the linear system Ax = b.

• SLIP_LU_analysis* S: S contains the column permutation used for A as well
as estimates of the number of nonzeros in L and U .

• SLIP_options* option: option contains various control options for the fac-
torization including column ordering used, pivot selection scheme, and others.
For a full list of the contents of the SLIP_options structure, refer to Section
6. If default settings are desired, option can be set to NULL.

10.1.3 Populating data structures

Of the three data structures discussed in Section 10.1.2, S is constructed during
symbolic analysis (Section 8.2), and option is an optional parameter for selecting
non-default parameters. Refer to Section 6 for the contents of option.

SLIP LU allows the input numerical data for A and b to come in one of 5 types:
int64_t, double, mpfr_t, mpq_t, and mpz_t. Moreover, both A and b can be stored
in CSC form, sparse triplet form or dense form. CSC form is discussed in Section
1. The triplet form stores the contents of the matrix A in three arrays i, j, and
x where the kth nonzero entry is stored as A(i[k], j[k]) = x[k]. SLIP LU stores
its dense matrices in in column-oriented format, that is, the (i, j)th entry in A is
A->x.TYPE[p] with p = i + j*A->m.

If the data for matrices are in file format to be read, refer to SLIP_LU/Demo

/example2.c on how to read in data and construct A and b. If the data for matrices
are already stored in vectors corresponding to CSC form, sparse triplet form or
dense form, allocate a shallow SLIP_matrix and assign vectors accordingly, then
use SLIP_matrix_copy to get a SLIP_matrix in the desired kind and type. For
more details, refer to SLIP_LU/Demo/example.c. In a case when A is available in
format other than CSC mpz, and/or b is available in format other than dense mpz,
the following code snippet shows how to get A and b in a required format.

/* Get the matrix A. Assume that A1 is stored in CSC form

with mpfr_t entries, while b1 is stored in triplet form

with mpq_t entries. (for A1 and b1 in any other form,

30

the exact same code will work) */

SLIP_matrix *A, *b;

// A is a copy of the A1. A is a CSC matrix with mpz_t entries

SLIP_matrix_copy(&A, SLIP_CSC, SLIP_MPZ, A1, option);

// b is a copy of the b1. b is a dense matrix with mpz_t entries.

SLIP_matrix_copy(&b, SLIP_DENSE, SLIP_MPZ, b1, option);

10.2 Simple SLIP LU routines for solving linear systems

After initializing the necessary data structures, SLIP LU obtains the solution to Ax =
b using the simple interface of SLIP LU, SLIP_backslash. The SLIP_backslash

function can return x as double, mpq_t, or mpfr_t with an associated precision. See
Section 8.6 for more details. The following code snippet shows how to get solution
as a dense mpq_t matrix.

SLIP_matrix *x;

SLIP_type my_type = SLIP_MPQ; // SLIP_MPQ, SLIP_MPFR, SLIP_FP64

SLIP_backslash(&x, my_type, A, b, option) ;

On successful return, this function returns SLIP_OK (see Section 4.2).

10.3 Expert SLIP LU routines

If the L and U factors from the SLIP LU factorization of the matrix A are required,
the steps performed by SLIP_backslash can be done with a sequence of calls to
SLIP LU functions:

1. declare L, U, the solution matrix x, and others,

2. perform symbolic analysis,

3. compute the factorization PAQ = LDU ,

4. solve the linear system Ax = b, and

5. convert the final solution into the final desired form.

These steps are discussed below, along with examples.

31

10.3.1 Declare workspace

Using SLIP LU in this form requires the intermediate variables be declared, such as
L, U, etc. The following code snippet shows the detailed list.

// A and b are in required type and ready to use

SLIP_matrix *L = NULL;

SLIP_matrix *U = NULL;

SLIP_matrix *x = NULL;

SLIP_matrix *rhos = NULL;

int64_t* pinv = NULL;

SLIP_LU_analysis* S = NULL;

// option needs no declaration if default setting is desired

// only declare option for further modification on default setting

SLIP_options *option = SLIP_create_default_options();

10.3.2 SLIP LU symbolic analysis

The symbolic analysis phase of SLIP LU computes the column permutation and
estimates of the number of nonzeros in L and U . This function is called as:

SLIP_LU_analyze (&S, A, option) ;

10.3.3 Computing the factorization

The matrices L and U, the pivot sequence rhos, and the row permutation pinv

are computed via the SLIP_LU_factorize function (Section 8.4). Upon successful
completion, this function returns SLIP_OK.

10.3.4 Solving the linear system

After factorization, the next step is to solve the linear system and store the solution
as a dense matrix x with entries of rational number mpq_t. This solution is done via
the SLIP_LU_solve function (Section 8.5). Upon successful completion, this function
returns SLIP_OK.

In this step, option->check can be set to true to enable the solution check
process as discussed in Section 8.5. The process can verify that the solution vector x
satisfies Ax = b in perfect precision intended for debugging. This step is not needed,
since the solution returned is guaranteed to be exact. It appears here simply as

32

debugging tool, and as a verification that SLIP LU is computing its expected result.
This test can fail only if it runs out of memory, or if there is a bug in the code (in
which case, please notify the authors). Also, note that this process can be quite time
consuming; thus it is not recommended to be used in general.

10.3.5 Converting the solution vector to the final desired form

Upon completion of the above routines, the solution to the linear system is in a dense
mpq_t matrix. SLIP LU allows this to be converted into any form of matrix in the set
of (CSC, sparse triplet, dense) × (mpfr_t, mpq_t, double) using SLIP_matrix_copy.
The following code snippet shows how to get solution as a dense double matrix; since
this involves a floating-point representation, the solution my_x will no longer be exact,
even though x is the exact solution.

SLIP_kind my_kind = SLIP_DENSE; // SLIP_CSC, SLIP_TRIPLET or SLIP_DENSE

SLIP_type my_type = SLIP_FP64; // SLIP_MPQ, SLIP_MPFR, or SLIP_FP64

SLIP_matrix* my_x = NULL; // New output

// Create copy which is stored as my_kind and my_type:

SLIP_matrix_copy(&my_x, my_kind, my_type, x, option);

10.4 Freeing memory

As described in Section 5, SLIP LU provides a number of functions/macros to free
SLIP LU objects:

• SLIP_matrix*: A SLIP_matrix* A data structure can be freed with a call to
SLIP_matrix_free(&A, NULL) ;

• SLIP_LU_analysis*: A SLIP_LU_analysis* S data structure can be freed
with a call to SLIP_LU_analysis_free(&S, NULL) ;

• All others including SLIP_options*: These data structures can be freed with
a call to the macro SLIP_FREE(), for example, SLIP_FREE(option) for
SLIP_options* option.

After all usage of the SLIP LU routines is finished, SLIP_finalize() must be
called (Section 4.5) to finalize usage of the library.

33

10.5 Examples of using SLIP LU in a C program

The SLIP_LU/Demo folder contains three sample C codes which utilize SLIP LU.
These files demonstrate the usage of SLIP LU as follows:

• example.c: This example generates a random dense 50 × 50 matrix and a
random dense 50× 1 right hand side vector b and solves the linear system. In
this function, the SLIP_backslash function is used; and the output is given as
a double matrix.

• example2.c: This example reads in a matrix stored in triplet format from the
ExampleMats folder. Additionally, it reads in a right hand side vector from
this folder and solves the associated linear system via the SLIP_backslash

function, and, the solution is given as a matrix of rational numbers.

• SLIPLU.c: This example reads in a matrix and right hand side vector from a file
and solves the linear system Ax = b using the techniques discussed in Section
10.3. This file also allows command line arguments (discussed in README.md)
and can be used to replicate the results from [8].

34

11 Using SLIP LU in MATLAB

After following the installation steps discussed in Section 3, using the SLIP LU fac-
torization within MATLAB can be done via the SLIP_backslash.m function. First,
this section describes the option struct in Section 11.1. The use of the factorization
is discussed in Section 11.2. The SLIP_LU/MATLAB folder must be in your MATLAB
path.

11.1 Optional parameter settings

The SLIP LU MATLAB interface includes an option struct as in optional input pa-
rameter that modifies behavior. If this parameter is not provided, default parameter
settings are used. The elements of the option struct are listed below. Any fields not
present in the struct are treated as their default values.

• option.pivot: This parameter is a string that controls the pivoting scheme
used. When selecting a pivot entry in a given column, the factorization method
uses one of the following pivoting strategies:

– ’smallest’: smallest pivot,

– ’diagonal’: diagonal pivot if possible, otherwise smallest pivot,

– ’first’: first nonzero pivot in each column,

– ’tol smallest’: (default) diagonal pivot with a tolerance (option.tol)
for the smallest pivot,

– ’tol largest’: diagonal pivot with a tolerance (option.tol) for the
largest pivot,

– ’largest’: largest pivot.

• option.order: This parameter is a string controls the fill-reducing column
preordering used.

– ’none’: no column ordering; factorize A as-is.

– ’colamd’: COLAMD ordering (default)

– ’amd’: AMD ordering

The ’colamd’ is recommended for most cases. The ’AMD’ ordering is suitable if
the nonzero pattern of A is mostly symmetric. In this case, option.pivot = ’diagonal’

is a useful option.

35

• option.tol: This parameter determines the tolerance used if one of the thresh-
old pivoting schemes is chosen. The default value is 1 and this parameter can
take any value in the range (0, 1].

• option.solution: a string determining how x is to be returned:

– ’double’: x is converted to a 64-bit floating-point approximate solution.
This is the default.

– ’vpa’: x is returned as a vpa array with option.digits digits (default
is given by the MATLAB digits function). The result may be inexact,
if an entry in x cannot be represented in the specified number of digits.
To convert this x to double, use x=double(x).

– ’char’: x is returned as a cell array of strings, where x {i} =

’numerator/denominator’ and both numerator and denominator are
arbitrary-length strings of decimal digits. The result is always exact,
although x cannot be directly used in MATLAB for numerical calcula-
tions. It can be inspected or analyzed using MATLAB string manipula-
tion. To convert x to vpa, use x=vpa(x). To convert x to double, use
x=double(vpa(x)).

• option.digits: the number of decimal digits to use for x, if option.solution
is ’vpa’. Must be in range 2 to 229.

• option.print: display the inputs and outputs (0: nothing (default), 1: just
errors, 2: terse, 3: all).

11.2 SLIP_backslash.m

The SLIP_backslash.m function solves the linear system Ax = b where A ∈ Rn×n,
x ∈ Rn×m and b ∈ Rn×m. The final solution vector(s) obtained via this function are
exact prior to their conversion to double precision.

The SLIP LU function expects as input a sparse matrix A and dense set of right
hand side vectors b. Optionally, option struct can be passed in. Currently, there
are 2 ways to use this function outlined below:

• x = SLIP_backslash(A,b) returns the solution to Ax = b using default set-
tings. The solution vectors are more accurate than the solution obtained via
x = A \ b. The solution x is returned as a MATLAB double matrix.

36

• x = SLIP_backslash(A,b,option) returns the solution to Ax = b using non-
default settings from the option struct.

If the result x is held as a MATLAB double matrix, in conventional floating-point
representation (double), it is guaranteed to be exact only if the exact solution can
be held in double without modification.

The solution x may also be returned as a MATLAB vpa array, or as a cell array
of strings; See Section 11.1 for details.

37

References

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum
degree ordering algorithm, SIAM Journal on Matrix Analysis and Applications,
17 (1996), pp. 886–905.

[2] , Algorithm 837: AMD, an approximate minimum degree ordering algorithm,
ACM Transactions on Mathematical Software (TOMS), 30 (2004), pp. 381–388.

[3] T. Davis, SuiteSparse, 2020. http://faculty.cse.tamu.edu/davis/suitesparse.html.

[4] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng, Algorithm 836:
COLAMD, a column approximate minimum degree ordering algorithm, ACM
Transactions on Mathematical Software (TOMS), 30 (2004), pp. 377–380.

[5] , A column approximate minimum degree ordering algorithm, ACM Trans-
actions on Mathematical Software (TOMS), 30 (2004), pp. 353–376.

[6] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
MPFR: a multiple-precision binary floating-point library with correct rounding,
ACM Transactions on Mathematical Software (TOMS), 33 (2007), p. 13.

[7] T. Granlund et al., GNU MP 6.0 Multiple Precision Arithmetic Library,
Samurai Media Limited, 2015.

[8] C. Lourenco, A. R. Escobedo, E. Moreno-Centeno, and T. A. Davis,
Exact solution of sparse linear systems via left-looking roundoff-error-free LU
factorization in time proportional to arithmetic work, SIAM Journal on Matrix
Analysis and Applications, 40 (2019), pp. 609–638.

38

	Overview
	Availability
	Installation
	Managing the SLIP LU environment
	SLIP_LU_UserGuide-1.cpt
	SLIP_LU_UserGuide-2.cpt
	SLIP_LU_UserGuide-3.cpt
	SLIP_LU_UserGuide-4.cpt
	SLIP_LU_UserGuide-5.cpt

	Memory Management
	SLIP_LU_UserGuide-6.cpt
	SLIP_LU_UserGuide-7.cpt
	SLIP_LU_UserGuide-8.cpt
	SLIP_LU_UserGuide-9.cpt

	SLIP_LU_UserGuide-10.cpt
	SLIP_LU_UserGuide-11.cpt
	SLIP_LU_UserGuide-12.cpt
	SLIP_LU_UserGuide-13.cpt
	SLIP_LU_UserGuide-14.cpt

	SLIP_LU_UserGuide-15.cpt
	SLIP_LU_UserGuide-16.cpt
	SLIP_LU_UserGuide-17.cpt
	SLIP_LU_UserGuide-18.cpt
	SLIP_LU_UserGuide-19.cpt
	SLIP_LU_UserGuide-20.cpt
	SLIP_LU_UserGuide-21.cpt
	SLIP_LU_UserGuide-22.cpt
	SLIP_LU_UserGuide-23.cpt

	Primary Computational Routines
	SLIP_LU_UserGuide-24.cpt
	SLIP_LU_UserGuide-25.cpt
	SLIP_LU_UserGuide-26.cpt
	SLIP_LU_UserGuide-27.cpt
	SLIP_LU_UserGuide-28.cpt
	SLIP_LU_UserGuide-29.cpt

	SLIP LU wrapper functions for GMP and MPFR
	SLIP_LU_UserGuide-30.cpt
	SLIP_LU_UserGuide-31.cpt
	Initializing the environment
	Initializing data structures
	Populating data structures

	SLIP_LU_UserGuide-32.cpt
	SLIP_LU_UserGuide-33.cpt
	Declare workspace
	SLIP LU symbolic analysis
	Computing the factorization
	Solving the linear system
	Converting the solution vector to the final desired form

	SLIP_LU_UserGuide-34.cpt
	SLIP_LU_UserGuide-35.cpt

	SLIP_LU_UserGuide-36.cpt
	SLIP_LU_UserGuide-37.cpt
	SLIP_LU_UserGuide-38.cpt

