
Python Tkinter By Example

David Love

May 27, 2017

Contents

0.1 Introduction . 5
0.2 Who this book is aimed at . 5
0.3 How to get the most out of this book . 5
0.4 About tkinter . 5

0.4.1 Installing . 5
0.4.2 What is it anyway? . 6
0.4.3 Why write about tkinter? . 6
0.4.4 I heard tkinter is ugly . 6

1 Hello World 7
1.1 Basic Example . 7
1.2 Using Classes . 8

2 A To-Do List 9
2.1 A Basic List App . 9

2.1.1 __init__ . 10
2.1.2 add_item . 11
2.1.3 Next Iteration . 12

2.2 Scrolling and Deleting . 13
2.2.1 Canvases and Frames . 15
2.2.2 __init__ . 15
2.2.3 Handling Tasks . 15
2.2.4 Adjusting the canvas . 15
2.2.5 Mouse scrolling . 16
2.2.6 Next Iteration . 16

2.3 Permanent Storage . 17
2.3.1 runQuery . 19
2.3.2 firstTimeDb . 19
2.3.3 __init__ . 19
2.3.4 add_task and remove_task . 19
2.3.5 save_task and load_tasks . 19
2.3.6 The final app . 19
2.3.7 Further Development . 19

3 A Multi-Language Translation Tool 21
3.1 A Single-Translation Interface . 21

3.1.1 requests . 23
3.1.2 __init__ . 23
3.1.3 translate . 24
3.1.4 copy_to_clipboard . 24
3.1.5 Next Iteration . 24

3.2 Three Tabs and a Menu . 25
3.2.1 __init__ . 27
3.2.2 translate . 27

2

CONTENTS 3

3.2.3 add_portuguese_tab . 27
3.2.4 Next Iteration . 28

3.3 A Truly Dynamic App . 29
3.3.1 The LanguageTab . 29
3.3.2 The TranslateBook . 30
3.3.3 NewLanguageForm . 32
3.3.4 Running this version . 33
3.3.5 Further Development . 33

4 A Point-and-Click Game 34
4.1 The Initial Concept . 34

4.1.1 GameScreen . 37
4.1.2 Game . 37
4.1.3 Playing the Game . 38
4.1.4 Next Iteration . 38

4.2 Our Refined Point-and-Click game . 39
4.2.1 GameScreen . 41
4.2.2 Game . 42
4.2.3 Further Development . 43

5 Ini File Editor 44
5.1 Basic View and Edit Functionality . 44

5.1.1 __init__ . 47
5.1.2 file_open . 47
5.1.3 parse_ini_file . 47
5.1.4 display_section_contents . 48
5.1.5 file_save . 48
5.1.6 Next Iteration . 48

5.2 Now With Caching and Resizing . 49
5.2.1 __init__ and frame_height . 50
5.2.2 parse_ini_file . 50
5.2.3 display_section_contents . 50
5.2.4 file_save . 51
5.2.5 Running . 51
5.2.6 Next Iteration . 51

5.3 Our finished Ini Editor . 52
5.3.1 CentralForm . 54
5.3.2 AddSectionForm and AddItemForm . 55
5.3.3 IniEditor . 55
5.3.4 Further Development . 55

6 A Python Text Editor With Autocomplete and Syntax Highlighting 57
6.1 Basic Functionality and Autocompletion . 57

6.1.1 __init__ . 60
6.1.2 Handling Files . 60
6.1.3 Autocompletion . 61
6.1.4 Spaces over Tabs!? . 62
6.1.5 Next Iteration . 62

6.2 Syntax Highlighting . 63
6.2.1 __init__ . 65
6.2.2 Regexes Explained . 65
6.2.3 file_open . 66
6.2.4 tag_keywords . 66
6.2.5 display_autocomplete_menu, number_of_leading_spaces, and on_key_release 67

4 CONTENTS

6.2.6 Next Iteration . 67
6.3 Our Finished Editor . 68

6.3.1 FindPopup . 72
6.3.2 Editor . 73
6.3.3 The Finished Product . 75
6.3.4 Further Development . 75

7 A Pomodoro Timer 76
7.1 A Basic Timer . 76

7.1.1 Timer . 79
7.1.2 CountingThread . 80
7.1.3 Next Iteration . 80

7.2 Keeping a Log . 82
7.2.1 Timer . 84
7.2.2 LogWindow . 84
7.2.3 Next Iteration . 85

7.3 Our Finished Timer . 86
7.3.1 Timer . 88
7.3.2 LogWindow . 89
7.3.3 Further Development . 90

8 Miscellaneous 91
8.1 Alternate Geometry Managers . 91

8.1.1 Grid . 91
8.1.2 Place . 92

8.2 Tk Widgets . 92
8.2.1 Checkbutton . 92
8.2.2 Radiobutton . 92
8.2.3 Checkbuttons and Radiobuttons in a Menu . 92
8.2.4 OptionMenu . 93

8.3 Ttk Widgets . 93
8.3.1 Combobox . 93
8.3.2 Progressbar . 93

8.4 Final Words . 94

0.1. INTRODUCTION 5

0.1 Introduction

Thank you for taking an interest in my book. Its purpose is to teach you everything you should need
to know to begin using Tkinter in Python 3. Examples in this book cover Tkinter 8.6 in Python 3.6.
If you wish to follow along using Python 2, there shouldn’t be too many differences, but keep in mind
I haven’t tested the code for compatability. The main thing to note is that the module is likely called
Tkinter (capital T), but in Python 3 it is t k i n t e r (small t).

Each chapter of this book is written in the form of an image of the target application with the app’s
entire source code, followed by a breakdown and explanation of the code. Each example is included
to teach a specific topic (or a bunch of related ones). Apps are developed iteratively, with each step
adding a new feature and teaching a key part. Code which has not changed from the previous iteration
will be condensed with ellipses (...) for brevity. I have also included some exercises at the end of each
chapter for anyone who wishes to practice development by themselves.

0.2 Who this book is aimed at

This book is written for anyone who knows python and wants to learn a bit about developing GUI
applications. Whether you’ve got a command line application you want to make friendlier with a GUI
or you have a great idea for a GUI app which you want to get started on, this book will hopefully give
you the tools you need to begin writing your own tkinter apps from scratch.

I will assume that you have basic knowledge of python programming already, and will not explain
things like installing python, running programs, or basic syntax (things like i f , f o r loops and such).
At the same time, you will not need to be an expert to follow along either. I would suggest learning
about Classes if you aren’t already aware of them, as all of the examples are written using a class.

I hope you are able to learn something interesting from this book. Should you have any questions,
feel free to contact me. I’m @Dvlv292 on Twitter and Dvlv on Reddit.

All source code from this book is freely available on my Github at http://github.com/Dvlv/tkinter-
book.

0.3 How to get the most out of this book

The best way to ensure that the knowledge from any programming book really sticks in your mind
is to write out the code for yourself. You can do this whilst reading the section or after finishing the
explanation; it doesn’t really matter. The important thing is that you code along with the book.
Reading the code can only get you so far - you need to practise, practise, practise!

Don’t just follow along either. If you wonder "what if I change this" or "couldn’t I do it like that?"
then just do it! If you mess up, just start again, or grab the code from Github and "reset" back to
where you were. You cannot go wrong.

0.4 About tkinter

0.4.1 Installing

Tkinter is probably already installed alongside python. Some Linux distros may not include it, so you
might have to look for python3−t k i n t e r in your package manager. Check by running python in a
terminal and trying to do>>> import t k i n t e r .

6 CONTENTS

0.4.2 What is it anyway?

Tkinter is a GUI library. It comes with everything you would need to begin making GUI applications
such as buttons, text inputs, radio buttons, dropdowns, and more. Thanks to its inbuilt module ttk it
also has the ability to provide some advanced features like tabbed windows, tree views, and progress
bars.

0.4.3 Why write about tkinter?

I have an unexplainable attachment to tkinter. I think it was the second python module which I began
using for a big project - after pygame - and so I just have some nostalgia towards it. Personal preference
aside, since tkinter is built into python as part of the standard library, it’s pretty much a go-to for new
users who want to try out making a GUI. There are no awkward dependencies, no licence issues, and
in my opinion it’s very easy to pick up and play with. There are lots of great StackOverflow answers
for common problems one may run into and the documentation isn’t bad either. I think tkinter is the
easiest and best library for those who are new to GUI development. Overall though, I’m writing about
tkinter because I like it, and I’m having fun writing the apps I’m developing specifically for this book.

0.4.4 I heard tkinter is ugly

It’s true that plain tkinter is not going to win any beauty awards. It’s old. The great thing is, tkinter
now comes with a module called "ttk" which provides widgets which look native on Windows and OSX
(tkinter itself looks very close to native on Linux already). Whilst this book doesn’t cover ttk until
the last project, after reading it you should be able to swap out the majority of widgets from earlier
chapters to ttk’s very easily. If you’re following along on Windows or OSX don’t be put off by the
dated styling of tkinter’s widgets; once you learn about using and styling ttk widgets in Chapter 7 you
should grasp how to make tkinter look great on all platforms.

Chapter 1

Hello World

1.1 Basic Example

As is tradition with all programming books, we’ll start with the classic Hello World example to intro-
duce a few things. This will pop up a small window with "Hello World" written inside.

1 import t k i n t e r as tk
2
3 root = tk .Tk()
4
5 l a b e l = tk . Label (root , t ex t=" He l lo World" , padx=10, pady=10)
6 l a b e l . pack ()
7
8 root . mainloop ()

Listing 1.1: Hello World

We start with root=tk .Tk() which creates the overall tk window. Then we define a tk . Label ()
which will hold our "Hello World" text. The first argument to a Tk widget is the parent in which it
will be placed. In this case, we will just put it directly within the root instance. The padx and pady
arguments add padding horizontally and vertically. l a b e l . pack () is then called as a way of placing
the label into the root. Other ways of placing widgets, such as g r id () , will be covered later. Finally
root . mainloop () is responsible for showing the window.

Save and run this code and you should see a small window appear with "Hello World" inside, as
show here:

Figure 1.1: Our first Tk window

7

8 CHAPTER 1. HELLO WORLD

1.2 Using Classes

Whilst Tkinter code can be written using only functions, it’s much better to use a class to keep track
of all individual widgets which may need to reference each other. Without doing this, you need to
rely on g l oba l or non loca l variables, which gets ugly as your app grows. It also allows for much finer
controls once your app gets more complex, allowing you to override default behaviours of Tkinter’s
own objects.

1 import t k i n t e r as tk
2
3 c l a s s Root (tk .Tk) :
4 de f __init__(s e l f) :
5 super () . __init__ ()
6
7 s e l f . l a b e l = tk . Label (s e l f , t ex t=" He l lo World" , padx=5, pady=5)
8
9 s e l f . l a b e l . pack ()

10
11 i f __name__ == "__main__" :
12 root = Root ()
13 root . mainloop ()

Listing 1.2: Hello World as a Class

The main code here is the same as above. The rest is simply creating a Root class inheriting
from Tkinter’s Tk and running its mainloop function as before. I’ve also included the standard
i f "__name__" == __main__ line for familiarity.

The label now belongs to the Root, rather than being an independent variable. This allows us to
reference it easily within methods of the Root class, such as an action we may bind to a Button, which
could otherwise be out of scope if we were not using a class.

Running this code should produce the same small window as in the first example.

Now we’ve covered the very basics of making a window appear, let’s dive in to something which
can actually be used.

Chapter 2

A To-Do List

In this chapter we’ll be creating a basic to-do list. Here we’ll learn about the following:

• Allowing the user to enter text

• Binding functions to keypresses

• Dynamically generating widgets

• Scrolling an area

• Storing data (with sqlite)

2.1 A Basic List App

Your first app should look something like this:

Figure 2.1: Our first To-Do App

9

10 CHAPTER 2. A TO-DO LIST

Let’s get right into the code for the first iteration.

1 import t k i n t e r as tk
2
3 c l a s s Todo(tk .Tk) :
4 de f __init__(s e l f , t a sk s=None) :
5 super () . __init__ ()
6
7 i f not ta sk s :
8 s e l f . t a sk s = []
9 e l s e :

10 s e l f . t a sk s = task s
11
12 s e l f . t i t l e ("To−Do App v1")
13 s e l f . geometry ("300x400")
14
15 todo1 = tk . Label (s e l f , t ex t="−−− Add Items Here −−−" , bg=" l i g h t g r e y " , f g=" black

" , pady=10)
16
17 s e l f . t a sk s . append (todo1)
18
19 f o r task in s e l f . t a sk s :
20 task . pack (s i d e=tk .TOP, f i l l =tk .X)
21
22 s e l f . task_create = tk . Text (s e l f , he ight =3, bg="white " , f g="black ")
23
24 s e l f . task_create . pack (s i d e=tk .BOTTOM, f i l l =tk .X)
25 s e l f . task_create . focus_set ()
26
27 s e l f . bind ("<Return>" , s e l f . add_task)
28
29 s e l f . colour_schemes = [{ "bg" : " l i g h t g r e y " , " f g " : " black " } , {"bg" : " grey " , " f g " :

"white " }]
30
31 de f add_task (s e l f , event=None) :
32 task_text = s e l f . task_create . get (1 . 0 , tk .END) . s t r i p ()
33
34 i f l en (task_text) > 0 :
35 new_task = tk . Label (s e l f , t ex t=task_text , pady=10)
36
37 _, task_sty le_choice = divmod (l en (s e l f . t a sk s) , 2)
38
39 my_scheme_choice = s e l f . colour_schemes [task_sty le_choice]
40
41 new_task . c on f i gu r e (bg=my_scheme_choice ["bg"])
42 new_task . c on f i gu r e (f g=my_scheme_choice [" f g "])
43
44 new_task . pack (s i d e=tk .TOP, f i l l =tk .X)
45
46 s e l f . t a sk s . append (new_task)
47
48 s e l f . task_create . d e l e t e (1 . 0 , tk .END)
49
50 i f __name__ == "__main__" :
51 todo = Todo ()
52 todo . mainloop ()

Listing 2.1: Our Initial To-Do Framework

2.1.1 __init__

We start off by defining our Todo class and initialising it with an empty list of tasks. If using a mutable
data-type, such as a list, always ensure you set the default argument to None and convert it into a list
within the __init__ method, as unexpected behaviour can occur if you try and pass an empty list in.
The reasons why are beyond the scope of this book, but you can find great explanations and examples

2.1. A BASIC LIST APP 11

online.

Next off, we set the title and size of the window. The app can be resized after creation if the user
desires, so don’t worry too much about getting the initial size perfect. The main reason for this is to
signal to the user that the app should be vertically-oriented and prefers to be taller rather than wider.

A default task is added to our list to prevent it from just being a big blank space with a text
box at the bottom, and to hint to the user what will happen when a task is added. We do this by
creating a Label , adding it to our ta sk s list and packing it. The reason we use a loop to pack this
item will become clear when we introduce persistent storage in a later section of this chapter. The f g
(foreground) and bg (background) colours are set, and some vertical padding is added for aesthetics.
The widgets are packed to the TOP of the window, and are set to fill in the X direction, i.e. horizontally,
to ensure they are all of uniform width, and the background spans the entirety of the window.

The final widget we need is our Text box, which is what the user will type into. We shorten the
default he ight to 3 to make it look a bit nicer, and specify the white background with black text to
look more like traditional text inputs. After packing it at the BOTTOM of our window spanning the full
X direction like our tasks, we call focus_set so that the cursor is inside the box when the window is
opened. Without this, the user would have to click inside the box before they could type anything. We
then bind the Return (or Enter) key to a function add_item which we will get to next. A note when
binding - do not put the parentheses at the end of the function name. We want to pass the function
itself across, but if we put the parentheses we will end up calling the function instead.

The last thing to do is define our colour schemes. This is used to better separate individual items
from the list view. I’ve gone for light grey with black text, followed by darker grey with white text.
Feel free to switch these up to suit your preferences. You may notice the default list item has the
styling of the first scheme, so as to ensure it fits the pattern. The colour_schemes variable is a list of
dictionaries containing a background and foreground colour, which we will use to alternate the styles
when adding new tasks.

2.1.2 add_item

When adding a new item, the first thing to do is get the text which the user entered into our Text
widget. The arguments here tell the widget how much of the text to grab. 1 .0 tells it to begin at the
first character, and the END constant tells it to look until the end of the box. We also call s t r i p () on
the result to remove the newline character which is entered when the user presses Return to submit
the text, as well as any trailing space characters.

We need to check if the length of the entered text is greater than 0 to avoid letting the user add
blank tasks. If this is true, then we create a new Label with the text entered by the user. The divmod
function is used to determine whether we are on an even or odd number of total tasks, allowing us
to set the correct styling to our new label. Divmod returns the quotient and remainder when the first
argument is divided by the second. In our case, we want the remainder when the size of our list is
divided by 2. The quotient is set to _, which is commonly used in python to denote a variable which we
do not plan on using. The remainder is then used as the index of our colour_schemes list to grab the
correct foreground and background colour dictionary. The c on f i gu r e method is used to set a property
of a widget, just as you would pass the values in as keyword arguments when creating them initially.
We set the foreground and background colours of our Label with the chosen dictionary’s values, and
then pack it the same way as our default item. Finally, we add this to the ta sk s variable so as to keep
count of how many items we have.

We clear everything written in the Text widget outside of our i f statement. This is to prevent the
user from adding newlines before their task name by pressing Return before typing anything. We also

12 CHAPTER 2. A TO-DO LIST

want to clear it if they have entered a task, so they do not have to delete it manually before writing
another.

2.1.3 Next Iteration

That’s it for the first iteration of our to-do list! We now have a styled list of items which can be added
to. Whilst playing with this example, you will probably notice that if you add too many items, you
need to re-size the window to see any more. You also cannot delete any items which you may have
completed. These will both be addressed next.

2.2. SCROLLING AND DELETING 13

2.2 Scrolling and Deleting

A lot has changed from the previous iteration, so I will include the full code in this section. Your new
To-do app can be written as follows:

1 import t k i n t e r as tk
2 import t k i n t e r . messagebox as msg
3
4 c l a s s Todo(tk .Tk) :
5 de f __init__(s e l f , t a sk s=None) :
6 super () . __init__ ()
7
8 i f not ta sk s :
9 s e l f . t a sk s = []

10 e l s e :
11 s e l f . t a sk s = task s
12
13 s e l f . tasks_canvas = tk . Canvas (s e l f)
14
15 s e l f . tasks_frame = tk . Frame(s e l f . tasks_canvas)
16 s e l f . text_frame = tk . Frame(s e l f)
17
18 s e l f . s c r o l l b a r = tk . S c r o l l b a r (s e l f . tasks_canvas , o r i e n t=" v e r t i c a l " , command=

s e l f . tasks_canvas . yview)
19
20 s e l f . tasks_canvas . c on f i gu r e (yscrollcommand=s e l f . s c r o l l b a r . s e t)
21
22 s e l f . t i t l e ("To−Do App v2")
23 s e l f . geometry ("300x400")
24
25 s e l f . task_create = tk . Text (s e l f . text_frame , he ight =3, bg="white " , f g=" black ")
26
27 s e l f . tasks_canvas . pack (s i d e=tk .TOP, f i l l =tk .BOTH, expand=1)
28 s e l f . s c r o l l b a r . pack (s i d e=tk .RIGHT, f i l l =tk .Y)
29
30 s e l f . canvas_frame = s e l f . tasks_canvas . create_window ((0 , 0) , window=s e l f .

tasks_frame , anchor="n")
31
32 s e l f . task_create . pack (s i d e=tk .BOTTOM, f i l l =tk .X)
33 s e l f . text_frame . pack (s i d e=tk .BOTTOM, f i l l =tk .X)
34 s e l f . task_create . focus_set ()
35
36 todo1 = tk . Label (s e l f . tasks_frame , t ext="−−− Add Items Here −−−" , bg=" l i g h t g r e y

" , f g="black " , pady=10)
37 todo1 . bind ("<Button−1>" , s e l f . remove_task)
38
39 s e l f . t a sk s . append (todo1)
40
41 f o r task in s e l f . t a sk s :
42 task . pack (s i d e=tk .TOP, f i l l =tk .X)
43
44 s e l f . bind ("<Return>" , s e l f . add_task)
45 s e l f . bind ("<Configure>" , s e l f . on_frame_configure)
46 s e l f . b ind_al l ("<MouseWheel>" , s e l f . mouse_scrol l)
47 s e l f . b ind_al l ("<Button−4>" , s e l f . mouse_scrol l)
48 s e l f . b ind_al l ("<Button−5>" , s e l f . mouse_scrol l)
49 s e l f . tasks_canvas . bind ("<Configure>" , s e l f . task_width)
50
51 s e l f . colour_schemes = [{ "bg" : " l i g h t g r e y " , " f g " : " black " } , {"bg" : " grey " , " f g " :

"white " }]
52
53 de f add_task (s e l f , event=None) :
54 task_text = s e l f . task_create . get (1 . 0 , tk .END) . s t r i p ()
55
56 i f l en (task_text) > 0 :
57 new_task = tk . Label (s e l f . tasks_frame , t ext=task_text , pady=10)

14 CHAPTER 2. A TO-DO LIST

58
59 s e l f . set_task_colour (l en (s e l f . t a sk s) , new_task)
60
61 new_task . bind ("<Button−1>" , s e l f . remove_task)
62 new_task . pack (s i d e=tk .TOP, f i l l =tk .X)
63
64 s e l f . t a sk s . append (new_task)
65
66 s e l f . task_create . d e l e t e (1 . 0 , tk .END)
67
68 de f remove_task (s e l f , event) :
69 task = event . widget
70 i f msg . askyesno (" Rea l ly Delete ?" , " Delete " + task . cget (" t ex t ") + "?") :
71 s e l f . t a sk s . remove (event . widget)
72 event . widget . des t roy ()
73 s e l f . r e co lour_tasks ()
74
75 de f r eco lour_tasks (s e l f) :
76 f o r index , task in enumerate (s e l f . t a sk s) :
77 s e l f . set_task_colour (index , task)
78
79 de f set_task_colour (s e l f , po s i t i on , task) :
80 _, task_sty le_choice = divmod (pos i t i on , 2)
81
82 my_scheme_choice = s e l f . colour_schemes [task_sty le_choice]
83
84 task . c on f i gu r e (bg=my_scheme_choice ["bg"])
85 task . c on f i gu r e (f g=my_scheme_choice [" f g "])
86
87 de f on_frame_configure (s e l f , event=None) :
88 s e l f . tasks_canvas . c on f i gu r e (s c r o l l r e g i o n=s e l f . tasks_canvas . bbox (" a l l "))
89
90 de f task_width (s e l f , event) :
91 canvas_width = event . width
92 s e l f . tasks_canvas . i t emcon f i g (s e l f . canvas_frame , width = canvas_width)
93
94 de f mouse_scrol l (s e l f , event) :
95 i f event . d e l t a :
96 s e l f . tasks_canvas . yv i ew_scro l l (−1∗(event . d e l t a /120) , " un i t s ")
97 e l s e :
98 i f event .num == 5 :
99 move = 1

100 e l s e :
101 move = −1
102
103 s e l f . tasks_canvas . yv i ew_scro l l (move , " un i t s ")
104
105 i f __name__ == "__main__" :
106 todo = Todo ()
107 todo . mainloop ()

Listing 2.2: Our Scrolling To-Do

2.2. SCROLLING AND DELETING 15

2.2.1 Canvases and Frames

With this re-write, I have introduced some new components - a Canvas and two Frames. A Canvas
is a powerful general-use widget with many capabilities (usually graphical). We are using it here for
its ability to scroll, which we need if we want to add a lot of apps to our list. A Frame is a layout
component which can be used to group together multiple other widgets. As you will see in this case,
we can actually use the Canvas to draw a Frame into our window, which is then able to bundle together
all of our to-do items, allowing them to scroll independently of the Text widget we use to add new
tasks.

2.2.2 __init__

As above, we now create a Canvas and two Frames, with one Frame parented to the canvas, and the
other to the main window. We then make a S c r o l l b a r object to allow scrolling of the page. We set the
orientation and command to tell tkinter that we want a vertical scrollbar, scrolling in the y direction.
We also configure our canvas to accept the S c r o l l b a r ’s values. We once again set the window title
and size, and create our Text widget - this time parented to one of the frames (which will be packed
to the bottom). Our Canvas is packed with instruction to fill all available space and expand as big as
it can, and our S c r o l l b a r follows, filling up the vertical space.

The next line looks a little strange. We use our Canvas to create a new window inside itself, which
is our Frame holding the tasks. We create it at the coordinates (0 , 0) and anchor it to the top of the
Canvas (the "n" here is for "north", so top-left would require "nw", and so on). One thing to note is
that we do not pack our tasks_frame, as it will not appear, and we will be left scratching our heads
as to where it is. This is something I learned the hard way!

After that, we pack our Text into its frame and then pack its frame to the BOTTOM of the window,
with both filling the X direction. The default task is created and we bind the s e l f . remove_task
function to it being clicked (this will be covered below). We pack this, and then move on to a big block
of binds. The<MouseWheel>,<Button−4> and<Button−5> binds handle scrolling, and the<Configure>
binds handle keeping the Canvas as big as possible as the window changes size. The<Configure> event
is fired when widgets change size (and on some platorms, location) and will provide the new width and
height. The <Return> bind and colour_schemes remain from the previous example.

2.2.3 Handling Tasks

The add_task method is almost the same as the previous iteration, but the code for choosing the
styling has been moved into a separate method - set_task_colour - so that it can be re-used after
deleting tasks. Speaking of which, we have a remove_task method which will handle getting rid of
the Label widget associated with the task. To avoid accidental removal, we use an askyesno pop-up
message to double-check with the user that they wanted to delete that task (make sure you don’t miss
the new import t k i n t e r . messagebox as msg statement at the top of the file). This will create a small
notice with the title "Really Delete?" and the message "Delete <task>?" (where <task> will be the
text within the Label) with the options "yes" and "no". Using the i f statement around this means
the indented code will only happen if the user presses "yes". Upon deletion, we recolour all remaining
tasks in our alternating pattern, as otherwise the pattern would be broken by the removal.

2.2.4 Adjusting the canvas

Our on_frame_configure method is bound to our root ’s <Configure> action, and will be called
whenever the window is resized. It sets the scrollable region for our canvas, and uses the bbox (bounding
box) to specify that we want the entire canvas to be scrollable. The task_width method is bound to
the Canvas’s <Configure>, and is responsible for ensuring the task Labels stay at the full width of the
canvas, even after stretching the window.

16 CHAPTER 2. A TO-DO LIST

2.2.5 Mouse scrolling

Our final method, mouse_scrol l , is how we bind scrolling to the mouse wheel as well as the scrollbar.
This is bound to <MouseWheel> for Windows and OSX, and to <Button−4> and <Button−5> for Linux.
We then simply call the Canvas’ yv iew_scro l l method based upon whether we receive a de l t a or a
num within the event. Here on Linux I get a num. The delta is usually 120 or -120, so is divided by 120
for more precise scrolling, and multiplied by -1 to adjust the direction.

2.2.6 Next Iteration

Our final iteration will handle saving and retrieving values from a s q l i t e database. I have left this
until last because it’s not strictly t k i n t e r related, and so you are free to skip this section if you have
no interest in learning about databases, or you already know enough to figure out how to do this on
your own. If you think the latter is true, please do go ahead and try as an exercise before reading this
section.

2.3. PERMANENT STORAGE 17

2.3 Permanent Storage

There are only a few small changes to our existing methods in this iteration, so I will not re-print
the whole class. If you wish to follow along, start with your code from the previous version, make
the changes listed in this section, and add any other new methods to the end of our Todo class.
As a reminder, the full code will be available on Github at http://github.com/Dvlv/tkinter-book as
Chapter2 −3.py.

1 import t k i n t e r as tk
2 import t k i n t e r . messagebox as msg
3 import os
4 import s q l i t e 3
5
6 c l a s s Todo(tk .Tk) :
7 de f __init__(s e l f , t a sk s=None) :
8 . . .
9

10 s e l f . t i t l e ("To−Do App v3")
11
12 . . .
13
14 s e l f . colour_schemes = [{ "bg" : " l i g h t g r e y " , " f g " : " black " } , {"bg" : " grey " , " f g " :

"white " }]
15
16 current_tasks = s e l f . load_tasks ()
17 f o r task in current_tasks :
18 task_text = task [0]
19 s e l f . add_task (None , task_text , True)
20
21 . . .
22
23 de f add_task (s e l f , event=None , task_text=None , from_db=False) :
24 i f not task_text :
25 task_text = s e l f . task_create . get (1 . 0 , tk .END) . s t r i p ()
26
27 i f l en (task_text) > 0 :
28 new_task = tk . Label (s e l f . tasks_frame , t ext=task_text , pady=10)
29
30 s e l f . set_task_colour (l en (s e l f . t a sk s) , new_task)
31
32 new_task . bind ("<Button−1>" , s e l f . remove_task)
33 new_task . pack (s i d e=tk .TOP, f i l l =tk .X)
34
35 s e l f . t a sk s . append (new_task)
36
37 i f not from_db :
38 s e l f . save_task (task_text)
39
40 s e l f . task_create . d e l e t e (1 . 0 , tk .END)
41
42 de f remove_task (s e l f , event) :
43 task = event . widget
44 i f msg . askyesno (" Rea l ly Delete ?" , " Delete " + task . cget (" t ex t ") + "?") :
45 s e l f . t a sk s . remove (event . widget)
46
47 delete_task_query = "DELETE FROM tasks WHERE task=?"
48 delete_task_data = (task . cget (" text ") ,)
49 s e l f . runQuery (delete_task_query , delete_task_data)
50
51 event . widget . des t roy ()
52
53 s e l f . r e co lour_tasks ()
54
55 . . .
56

18 CHAPTER 2. A TO-DO LIST

57 de f save_task (s e l f , task) :
58 insert_task_query = "INSERT INTO tasks VALUES (?) "
59 insert_task_data = (task ,)
60 s e l f . runQuery (insert_task_query , insert_task_data)
61
62 de f load_tasks (s e l f) :
63 load_tasks_query = "SELECT task FROM tasks "
64 my_tasks = s e l f . runQuery (load_tasks_query , r e c e i v e=True)
65
66 re turn my_tasks
67
68 @staticmethod
69 de f runQuery (sq l , data=None , r e c e i v e=False) :
70 conn = s q l i t e 3 . connect (" ta sk s . db")
71 cur so r = conn . cur so r ()
72 i f data :
73 cur so r . execute (sq l , data)
74 e l s e :
75 cur so r . execute (s q l)
76
77 i f r e c e i v e :
78 re turn cur so r . f e t c h a l l ()
79 e l s e :
80 conn . commit ()
81
82 conn . c l o s e ()
83
84 @staticmethod
85 de f firstTimeDB () :
86 c r ea t e_tab l e s = "CREATE TABLE task s (task TEXT)"
87 Todo . runQuery (c r ea t e_tab l e s)
88
89 default_task_query = "INSERT INTO tasks VALUES (?) "
90 default_task_data = ("−−− Add Items Here −−−" ,)
91 Todo . runQuery (default_task_query , default_task_data)
92
93
94 i f __name__ == "__main__" :
95 i f not os . path . i s f i l e (" ta sk s . db") :
96 Todo . firstTimeDB ()
97 todo = Todo ()
98 todo . mainloop ()

Listing 2.3: Database Integration

2.3. PERMANENT STORAGE 19

2.3.1 runQuery

Let’s start by explaining the database handling. Our runQuery method is a fairy generic database
handling method. It takes an sql string, some data to format into the sql string, and r e c e i v e which
indicates to the method whether or not it needs to return any data (from a SELECT statement). We
first connect to our database file, in this case ta sk s . db, and receive a cur so r . The cur so r is used to
execute queries against the database and sometimes return data. We then close off our connection at
the end to reduce resource usage. This is a static method so that it can be called by our proceeding
f i rstTimeDb method, which needs to be called before our __init__, and so is also static.

2.3.2 firstTimeDb

This function is used to create the database file, ta sk s . db, if it does not already exist. We also put
our old default task, −−− Add Tasks Here −−−, in this method so that it appears when the user first
loads the app, but is permanently deletable like other tasks.

2.3.3 __init__

We start by just updating the window’s title bar to the 3rd version. We move the existing colour_schemes
variable to above the new code which will populate our existing tasks, so that we can use it during the
initial set-up. Without doing this, we would get an error when we reference it via add_task. Instead
of the hard-coded default task, we now fetch existing tasks from the database with load_tasks , then
iterate through them, passing each to our slightly altered add_task method.

2.3.4 add_task and remove_task

To prevent re-writing most of this code in our __init__ method, we have added two new parameters
to add_task: task_text and from_db. This allows us to pass in text independent of our Text widget,
and to prevent re-saving tasks to the database which originated from there. Before destroying our
widget inside remove_task, we grab its text and remove it from the database too.

2.3.5 save_task and load_tasks

These two methods deal with database access. save_task will add a new task into our database, and
load_tasks is called in our __init__ method to retrieve all saved tasks when loading the app. These
two methods ensure that the task list displays the same when the user closes then re-opens the app.

2.3.6 The final app

That’s it for our to-do list. We now have a to-do application which can save and retrieve tasks which
remain after closing the app. We have learned how to layout multiple widgets with Frames and the
pack method, how to make a scrollable area which maintains its size when the window is resized, how
to bind methods to user inputs and t k i n t e r ’s own events, and how to dynamically add and remove
widgets based on user actions. If you read the final section, you will also know how to integrate t k i n t e r
nicely with a s q l i t e database. Next up we will create an app which utilises a tabbed interface, also
known as a Notebook.

2.3.7 Further Development

If you’d like to continue work on this project as an exercise, try the following:

• Prevent duplicate tasks by using a database look-up before adding a new task.

• Give each task a "Delete" button instead of the on-click event on the Label itself (Buttons will
be covered next chapter).

20 CHAPTER 2. A TO-DO LIST

• Instead of destroying tasks, mark them as "finished" using a column in the database and display
them as "greyed out".

• Add a "category" for each task and colour the task based on the category instead of using the
pattern (maybe separate them with a border).

Chapter 3

A Multi-Language Translation Tool

In this chapter we’ll be creating a tool which will translate english text into multiple other languages
using the Google Translate API. Here we’ll learn about the following:

• Creating a tabbed interface

• Creating a Menu

• Creating a pop-up window

• Accessing the Clipboard

• Calling APIs with r eque s t s

3.1 A Single-Translation Interface

We’ll start with a simple app which translates to one language (italian). Your first app should look
something like this:

Figure 3.1: A two-tabbed translator (English)

21

22 CHAPTER 3. A MULTI-LANGUAGE TRANSLATION TOOL

Figure 3.2: A two-tabbed translator (Italian)

1 import t k i n t e r as tk
2 from tk i n t e r import messagebox as msg
3 from tk i n t e r . t tk import Notebook
4
5 import r eque s t s
6
7 c l a s s TranslateBook (tk .Tk) :
8 de f __init__(s e l f) :
9 super () . __init__ ()

10
11 s e l f . t i t l e (" Trans la t i on Book v1")
12 s e l f . geometry ("500x300")
13
14 s e l f . notebook = Notebook (s e l f)
15
16 engl i sh_tab = tk . Frame(s e l f . notebook)
17 i t a l i an_tab = tk . Frame(s e l f . notebook)
18
19 s e l f . t rans late_button = tk . Button (engl ish_tab , t ex t=" Trans late " , command=s e l f .

t r a n s l a t e)
20 s e l f . t rans late_button . pack (s i d e=tk .BOTTOM, f i l l =tk .X)
21
22 s e l f . eng l i sh_entry = tk . Text (engl ish_tab , bg="white " , f g="black ")
23 s e l f . eng l i sh_entry . pack (s i d e=tk .TOP, expand=1)
24
25 s e l f . i ta l ian_copy_button = tk . Button (i ta l i an_tab , t ex t="Copy to Clipboard " ,

command=s e l f . copy_to_clipboard)
26 s e l f . i ta l ian_copy_button . pack (s i d e=tk .BOTTOM, f i l l =tk .X)
27
28 s e l f . i t a l i a n_ t r a n s l a t i o n = tk . Str ingVar (i t a l i an_tab)
29 s e l f . i t a l i a n_ t r a n s l a t i o n . s e t ("")
30
31 s e l f . i t a l i a n_ l a b e l = tk . Label (i ta l i an_tab , t extvar=s e l f . i t a l i a n_t r an s l a t i o n , bg

=" l i g h t g r e y " , f g=" black ")
32 s e l f . i t a l i a n_ l a b e l . pack (s i d e=tk .TOP, f i l l =tk .BOTH, expand=1)
33
34 s e l f . notebook . add (engl ish_tab , t ext=" Engl i sh ")
35 s e l f . notebook . add (i ta l i an_tab , t ex t=" I t a l i a n ")

3.1. A SINGLE-TRANSLATION INTERFACE 23

36
37 s e l f . notebook . pack (f i l l =tk .BOTH, expand=1)
38
39 de f t r a n s l a t e (s e l f , target_language=" i t " , t ex t=None) :
40 i f not t ext :
41 text = s e l f . eng l i sh_entry . get (1 . 0 , tk .END)
42
43 u r l = " https : // t r a n s l a t e . g oog l e ap i s . com/ trans late_a / s i n g l e ? c l i e n t=gtx&s l={}&t l

={}&dt=t&q={}" . format ("en" , target_language , t ex t)
44
45 try :
46 r = reque s t s . get (u r l)
47 r . ra i s e_fo r_sta tus ()
48 t r a n s l a t i o n = r . j son () [0] [0] [0]
49 s e l f . i t a l i a n_ t r a n s l a t i o n . s e t (t r a n s l a t i o n)
50 msg . showinfo (" Trans la t i on Su c c e s s f u l " , "Text s u c c e s s f u l l y t r an s l a t ed ")
51 except Exception as e :
52 msg . showerror (" Trans la t i on Fa i l ed " , s t r (e))
53
54 de f copy_to_clipboard (s e l f , t ex t=None) :
55 i f not t ext :
56 text = s e l f . i t a l i a n_ t r a n s l a t i o n . get ()
57
58 s e l f . c l i pboard_c l ea r ()
59 s e l f . cl ipboard_append (text)
60 msg . showinfo ("Copied Su c c e s s f u l l y " , "Text copied to c l i pboa rd ")
61
62
63 i f __name__ == "__main__" :
64 t rans l a t ebook = TranslateBook ()
65 t rans l a t ebook . mainloop ()

Listing 3.1: Our first translation app

3.1.1 requests

We now import and use the r eque s t s module. If you do not have this installed, you can get it with
pip (pip i n s t a l l r e que s t s).

3.1.2 __init__

Hopefully most the __init__ should look familiar to you by now. The first new bit is the creation of
a Notebook, which is what holds our tabs. The contents of each notebook tab is simply a Frame, each
of which holds two elements. Our engl i sh_frame holds a Text widget, allowing the user to enter some
text, and a Button which triggers the translation. The command argument supplied to a Button is the
function which we want to be called when it is clicked. An important thing to remember is to not put
the parentheses at the end of the function name, as this will actually call the function and bind the
result (we want to bind the function itself). This is the same potential mistake as when binding with
the bind method from chapter 1.

Our i t a l i an_frame holds an expanded Label instead of a Text input, as we don’t want to be able
to alter the translated text, as well as a Button which will copy the translated text to our computer’s
clipboard.

Another new thing here is the use of a Str ingVar . As you may be able to guess from the name, this
is like a sophisticated container for a string variable, which allows us the change the text of a Label
without needing to re-configure it. Its other great use is changing the text of multiple Labels (which
need to say the same thing) all at once, and we can also fire callbacks whenever the variable changes.
In our case, the Str ingVar is used to update the Label containing our italian translation, and to grab
the text back out to put onto our clipboard (as we’ll see later).

24 CHAPTER 3. A MULTI-LANGUAGE TRANSLATION TOOL

Instead of packing our two frames, we just add them to our notebook and pass the t ex t (i.e. the
name of the tab) along with them, before finally packing our Notebook. Hopefully you should have a
good idea of the use-cases of this app just from the __init__ method.

3.1.3 translate

Much like with our to-do app, we grab the user’s text from our Text widget, but we won’t clear it
this time in case they’ve typed something really long and want to add something after translation. We
next create the URL to access google translate’s API with the format method, passing in our original
language code ("en"), target language code (defaults to "it", but we will specify this when adding
another tab next iteration) and our text to be translated (which we grabbed from the Text widget
earlier). We visit this URL using the r eque s t s module’s get method. The ra i s e_fo r_sta tus method
will raise an Exception should we recieve an error when calling the API, such as a 404 if there’s a
typo. For this reason, we’ve put our code in a t ry / except block so that we can gracefully alert the
user via a messagebox if there’s a problem. If no Exceptions are raised, we use the j s on method of
r eque s t s to parse the json-formatted response from the API into a nice block of python lists. The
translation is in the first element of the first element of the first list (not too graceful, I know!), hence
the chaining of [0] [0] [0] . If you wish to look at the response, add a pr in t (t r a n s l a t i o n) on the
next line. We finish up by setting the translated text as the value of our Str ingVar and showing the
user a success message so that they know the other tabs have updated.

3.1.4 copy_to_clipboard

This is the function bound to the Button in our italian tab. We simply grab the Str ingVar ’s value
(which our Label holds) and use t k i n t e r to add the text into our computer’s clipboard. I originally
intended to use the pype r c l i p module to handle the clipboard, but then I found out that t k i n t e r can
handle it already - super handy!

3.1.5 Next Iteration

Now that we have a proof-of-concept for our translator, we’ll go deeper in and set up a second language
for us to translate to, as well as a menu for us to pick languages from.

3.2. THREE TABS AND A MENU 25

3.2 Three Tabs and a Menu

Figure 3.3: A portuguese translation in our notebook

Our next iteration boasts a menu bar at the top, and the ability to translate to both italian
and portuguese at once. After running this iteration, click the "Languages" menu - you should see
a "Portuguese" option. Selecting this will add a third tab to our Notebook. If we follow the same
translation process as before, we will now see both the italian and portuguese tabs are updated with
the translations. Neat. Whilst this is not yet fully dynamic, we’ve laid out some groundwork for
alternative translations. Let’s take a look at the code changes which make this possible.

26 CHAPTER 3. A MULTI-LANGUAGE TRANSLATION TOOL

1 . . .
2
3 c l a s s TranslateBook (tk .Tk) :
4 de f __init__(s e l f) :
5
6 . . .
7
8 s e l f .menu = tk .Menu(s e l f , bg=" l i g h t g r e y " , f g="black ")
9

10 s e l f . languages_menu = tk .Menu(s e l f .menu , t e a r o f f =0, bg=" l i g h t g r e y " , f g="black ")
11 s e l f . languages_menu . add_command(l a b e l="Portuguese " , command=s e l f .

add_portuguese_tab)
12
13 s e l f .menu . add_cascade (l a b e l="Languages" , menu=s e l f . languages_menu)
14
15 s e l f . c on f i g (menu=s e l f .menu)
16
17 . . .
18
19 s e l f . i t a l i a n_ t r a n s l a t i o n = tk . Str ingVar (i t a l i an_tab)
20 s e l f . i t a l i a n_ t r a n s l a t i o n . s e t ("")
21
22 s e l f . t rans late_button = tk . Button (engl ish_tab , t ex t=" Trans late " , command=lambda

langs =[" i t "] , e lems=[s e l f . i t a l i a n_ t r a n s l a t i o n] : s e l f . t r a n s l a t e (langs , None
, elems))

23
24 . . .
25
26 de f t r a n s l a t e (s e l f , target_languages=None , t ex t=None , e lements=None) :
27 i f not t ext :
28 text = s e l f . eng l i sh_entry . get (1 . 0 , tk .END) . s t r i p ()
29 i f not e lements :
30 e lements = [s e l f . i t a l i a n_ t r a n s l a t i o n]
31 i f not target_languages :
32 target_languages = [" i t "]
33
34 u r l = " https : // t r a n s l a t e . g oog l e ap i s . com/ trans late_a / s i n g l e ? c l i e n t=gtx&s l={}&t l

={}&dt=t&q={}"
35
36 try :
37 f o r code , element in z ip (target_languages , e lements) :
38 f u l l_u r l = u r l . format ("en" , code , t ex t)
39 r = reque s t s . get (f u l l_u r l)
40 r . ra i s e_fo r_sta tus ()
41 t r a n s l a t i o n = r . j son () [0] [0] [0]
42 element . s e t (t r a n s l a t i o n)
43 except Exception as e :
44 msg . showerror (" Trans la t i on Fa i l ed " , s t r (e))
45 e l s e :
46 msg . showinfo (" Trans l a t i on s Su c c e s s f u l " , "Text s u c c e s s f u l l y t r an s l a t ed ")
47
48 de f copy_to_clipboard (s e l f , t ex t=None) :
49 . . .
50
51 de f add_portuguese_tab (s e l f) :
52 portuguese_tab = tk . Frame(s e l f . notebook)
53 s e l f . po r tuguese_trans la t i on = tk . Str ingVar (portuguese_tab)
54 s e l f . po r tuguese_trans la t i on . s e t ("")
55
56 s e l f . portuguese_copy_button = tk . Button (portuguese_tab , t ext="Copy to Clipboard

" , command=lambda : s e l f . copy_to_clipboard (s e l f . po r tuguese_trans la t i on . get ()
))

57 s e l f . portuguese_copy_button . pack (s i d e=tk .BOTTOM, f i l l =tk .X)
58
59 s e l f . portuguese_labe l = tk . Label (portuguese_tab , t extvar=s e l f .

portuguese_trans la t ion , bg=" l i g h t g r e y " , f g="black ")

3.2. THREE TABS AND A MENU 27

60 s e l f . portuguese_labe l . pack (s i d e=tk .TOP, f i l l =tk .BOTH, expand=1)
61
62 s e l f . notebook . add (portuguese_tab , t ext="Portuguese ")
63
64 s e l f . languages_menu . en t r y con f i g ("Portuguese " , s t a t e=" d i s ab l ed ")
65
66 s e l f . t rans late_button . c on f i g (command=lambda langs =[" i t " , "pt"] , e lems=[s e l f .

i t a l i a n_t r an s l a t i o n , s e l f . po r tuguese_trans la t i on] : s e l f . t r a n s l a t e (langs ,
None , elems))

67
68
69 i f __name__ == "__main__" :
70 t rans l a t ebook = TranslateBook ()
71 t rans l a t ebook . mainloop ()

Listing 3.2: Our Translator with a Menu

3.2.1 __init__

We now encounter a new t k i n t e r widget - a Menu. A Menu is essentially a container for a list of
buttons. We start by declaring our "overall" menu, s e l f .menu, which will hold our submenu, s e l f .
languages_menu. We set t e a r o f f to 0 so that the user can’t drag-and-drop the languages submenu
out of the main menu. We then add a command (essentially a button) called Portuguese. We bind the
add_portuguese_tab method to this button, again making sure not to call the function. We then use
add_cascade to place our submenu into our main bar. We finish up by calling s e l f . c on f i gu r e (menu
=s e l f .menu) to set the root window’s menu to our overall menu.

The only other change to this method is the moving of the i t a l i a n_ t r a n s l a t i o n Str ingVar to
above our t rans late_button so that we can use it in the command. Speaking of which, we’ve now
changed this to a lambda which calls the new-and-improved translate method with a couple of lists as
arguments. Let’s look into t r a n s l a t e now.

3.2.2 translate

Our t r a n s l a t e now takes another argument - e lements - which is a list of Str ingVars to update with
a translation. The target_languages argument is now expected to be a list of language codes, and
the name has been pluralised to reflect this.

Our u r l is no longer formatted upon creation, but is instead left with the placeholders in. We use
z ip to combine our lists of language codes and Str ingVar elements into the correct pairs and then use
them to format our URL, parse out the translation, and update the Str ingVar as before - but this
time in a loop, allowing us to do this for any number of languages. You may not have come across an
e l s e by a t ry / except block before. The purpose of the e l s e is to execute code only if there was no
exception caught in the except . We’ve put our success messagebox in this e l s e because we only want
it to show once, so it couldn’t be left inside the f o r loop, and we don’t want it to show if, say, the first
translation worked but the second did not. Out there in the e l s e it should not be able to mislead the
user into thinking the translation was successful if it wasn’t, and will only appear once at the end of
the process.

3.2.3 add_portuguese_tab

This is the function called when we choose our "Portuguese" option from our "Languages" menu. A
lot of the code here looks just like the italian code from our __init__. Since our copy_to_clipboard
method still has all of the defaults set to the italian translations, our portuguese_copy_button instead
uses a lambda to call it with the t ex t argument as the value of its por tuguese_trans la t i on Str ingVar .

28 CHAPTER 3. A MULTI-LANGUAGE TRANSLATION TOOL

At the end of the function we disable the "Portuguese" entry in our "Languages" menu. Without
this we could create multiple Portuguese tabs, which is pointless. We finish off by changing the command
of our translate button to a new lambda which contains both the italian and portuguese language codes
and Str ingVars.

3.2.4 Next Iteration

You may notice this code feels a bit hacky. The add_portuguese_tab function knows (well, assumes)
that we have an italian tab, and directly modifies our translate button too. In order to generalise this
for re-use we’re going to look at making each translation Frame its own class - allowing us to make any
language supported by google translate and add it as a tab to our notebook. The reason we didn’t do
this all in one go was so that we could meet the Menu widget and lay the groundwork for dynamically
adding tabs before a big overhaul of the app.

3.3. A TRULY DYNAMIC APP 29

3.3 A Truly Dynamic App

Our code is now split into 3 classes which I will cover separately. The executable code for this section
is all in Chapter3-3.py for those downloading it from Github. It is best practice to keep to one class
per file, but for the sake of book simplicity I’ve combined them. We’ll start this section off by looking
at the new LanguageTab class.

3.3.1 The LanguageTab

1 c l a s s LanguageTab (tk . Frame) :
2 de f __init__(s e l f , master , lang_name , lang_code) :
3 super () . __init__(master)
4
5 s e l f . lang_name = lang_name
6 s e l f . lang_code = lang_code
7
8 s e l f . t rans l a t i on_var = tk . Str ingVar (s e l f)
9 s e l f . t rans l a t i on_var . s e t ("")

10
11 s e l f . t r an s l a t ed_ labe l = tk . Label (s e l f , t ex tvar=s e l f . t rans lat ion_var , bg="

l i g h t g r e y " , f g="black ")
12
13 s e l f . copy_button = tk . Button (s e l f , t ex t="Copy to Clipboard " , command=s e l f .

copy_to_clipboard)
14
15 s e l f . copy_button . pack (s i d e=tk .BOTTOM, f i l l =tk .X)
16 s e l f . t r an s l a t ed_ labe l . pack (s i d e=tk .TOP, f i l l =tk .BOTH, expand=1)
17
18 de f copy_to_clipboard (s e l f) :
19 root = s e l f . w in fo_top leve l ()
20 root . c l i pboard_c l ea r ()
21 root . cl ipboard_append (s e l f . t rans l a t i on_var . get ())
22 msg . showinfo ("Copied Su c c e s s f u l l y " , "Text copied to c l i pboa rd ")

Listing 3.3: An Independent Language Tab

Our LanguageTab class is built on top of a Frame, since that’s what we add into our Notebook. It
holds a reference to the full name of the language (for the tab name) and its short code for the google
translate API. It is responsible for its own Str ingVar , Label and Button, as well as the command
bound to the Button

The copy_to_clipboard method needs to access the root window, i.e. our TranslateBook instance,
because that’s what has control over the clipboard. We grab this with the winfo_top leve l method,
then use the same code as before to put our Str ingVar ’s contents onto the clipboard.

Now we’ll jump back to the main TranslateBook class which handles our root window.

30 CHAPTER 3. A MULTI-LANGUAGE TRANSLATION TOOL

3.3.2 The TranslateBook

1 c l a s s TranslateBook (tk .Tk) :
2 de f __init__(s e l f) :
3 super () . __init__ ()
4
5 s e l f . t i t l e (" Trans la t i on Book v3")
6 s e l f . geometry ("500x300")
7
8 s e l f .menu = tk .Menu(s e l f , bg=" l i g h t g r e y " , f g="black ")
9

10 s e l f . languages_menu = tk .Menu(s e l f .menu , t e a r o f f =0, bg=" l i g h t g r e y " , f g="black ")
11 s e l f . languages_menu . add_command(l a b e l="Add New" , command=s e l f .

show_new_language_popup)
12 s e l f . languages_menu . add_command(l a b e l="Portuguese " , command=lambda : s e l f .

add_new_tab(LanguageTab (s e l f , "Portuguese " , "pt")))
13
14 s e l f .menu . add_cascade (l a b e l="Languages" , menu=s e l f . languages_menu)
15
16 s e l f . c on f i g (menu=s e l f .menu)
17
18 s e l f . notebook = Notebook (s e l f)
19
20 s e l f . language_tabs = []
21
22 engl i sh_tab = tk . Frame(s e l f . notebook)
23
24 s e l f . t rans late_button = tk . Button (engl ish_tab , t ex t=" Trans late " , command=s e l f .

t r a n s l a t e)
25 s e l f . t rans late_button . pack (s i d e=tk .BOTTOM, f i l l =tk .X)
26
27 s e l f . eng l i sh_entry = tk . Text (engl ish_tab , bg="white " , f g="black ")
28 s e l f . eng l i sh_entry . pack (s i d e=tk .TOP, expand=1)
29
30 s e l f . notebook . add (engl ish_tab , t ext=" Engl i sh ")
31
32 s e l f . notebook . pack (f i l l =tk .BOTH, expand=1)
33
34 de f t r a n s l a t e (s e l f , t ex t=None) :
35 i f l en (s e l f . language_tabs) < 1 :
36 msg . showerror ("No Languages" , "No languages added . Please add some from the

menu")
37 return
38
39 i f not t ext :
40 text = s e l f . eng l i sh_entry . get (1 . 0 , tk .END) . s t r i p ()
41
42 u r l = " https : // t r a n s l a t e . g oog l e ap i s . com/ trans late_a / s i n g l e ? c l i e n t=gtx&s l={}&t l

={}&dt=t&q={}"
43
44 try :
45 f o r language in s e l f . language_tabs :
46 f u l l_u r l = u r l . format ("en" , language . lang_code , t ex t)
47 r = reque s t s . get (f u l l_u r l)
48 r . ra i s e_fo r_sta tus ()
49 t r a n s l a t i o n = r . j son () [0] [0] [0]
50 language . t rans l a t i on_var . s e t (t r a n s l a t i o n)
51 except Exception as e :
52 msg . showerror (" Trans la t i on Fa i l ed " , s t r (e))
53 e l s e :
54 msg . showinfo (" Trans l a t i on s Su c c e s s f u l " , "Text s u c c e s s f u l l y t r an s l a t ed ")
55
56 de f add_new_tab(s e l f , tab) :
57 s e l f . language_tabs . append (tab)
58 s e l f . notebook . add (tab , t ex t=tab . lang_name)
59

3.3. A TRULY DYNAMIC APP 31

60 try :
61 s e l f . languages_menu . en t r y con f i g (tab . lang_name , s t a t e=" d i s ab l ed ")
62 except :
63 # language i s n ’ t in menu .
64 pass
65
66 de f show_new_language_popup (s e l f) :
67 NewLanguageForm(s e l f)

Listing 3.4: Our Main Class

__init__

We’ve added a new item to our languages_menu - add new - which will be covered with our final class
NewLanguageForm. We’ve also re-written our portuguese entry to use a new method add_new_tab. We
no longer make everything for our italian tab since this is handled with the LanguageTab class, we
instead keep a list of tabs inside s e l f . language_tabs. Since our english tab is different, we still have
all of the set up of that here.

translate

This should still look very familiar. Instead of passing in a list of language codes and elements, we
just grab our list of language_tabs and pull the codes and elements from each instance. If we have no
language tabs a messagebox will alert the user to add one first and exit the method with re turn .

add_new_tab

We pass this method a LanguageTab object and it gets appended to our language_tabs list and added
to our Notebook. We also try to disable the menu entry if it exists. We don’t mind if this fails, as it
likely means the language was created outside of the menu and there’s no entry to disable, so we can
just pass if an Exception is thrown.

show_new_language_popup

All we need to do here is create the NewLanguageForm instance which will handle everything else. Let’s
look at this now.

32 CHAPTER 3. A MULTI-LANGUAGE TRANSLATION TOOL

3.3.3 NewLanguageForm

Figure 3.4: Our Add New Language Form

1 c l a s s NewLanguageForm(tk . Topleve l) :
2 de f __init__(s e l f , master) :
3 super () . __init__ ()
4
5 s e l f . master = master
6
7 s e l f . t i t l e ("Add new Language")
8 s e l f . geometry ("300x150")
9

10 s e l f . name_label = tk . Label (s e l f , t ex t="Language Name")
11 s e l f . name_entry = tk . Entry (s e l f , bg="white " , f g="black ")
12 s e l f . code_label = tk . Label (s e l f , t ex t="Language Code")
13 s e l f . code_entry = tk . Entry (s e l f , bg="white " , f g="black ")
14 s e l f . submit_button = tk . Button (s e l f , t ex t="Submit" , command=s e l f . submit)
15
16 s e l f . name_label . pack (f i l l =tk .BOTH, expand=1)
17 s e l f . name_entry . pack (f i l l =tk .BOTH, expand=1)
18 s e l f . code_label . pack (f i l l =tk .BOTH, expand=1)
19 s e l f . code_entry . pack (f i l l =tk .BOTH, expand=1)
20 s e l f . submit_button . pack (f i l l =tk .X)
21
22 de f submit (s e l f) :
23 lang_name = s e l f . name_entry . get ()
24 lang_code = s e l f . code_entry . get ()
25
26 i f lang_name and lang_code :
27 new_tab = LanguageTab (s e l f . master , lang_name , lang_code)
28 s e l f . master . languages_menu . add_command(l a b e l=lang_name , command=lambda :

s e l f . master . add_new_tab(new_tab))
29 msg . showinfo ("Language Option Added" , "Language opt ion " + lang_name + "

added to menu")
30 s e l f . des t roy ()
31 e l s e :
32 msg . showerror ("Miss ing Informat ion " , " Please add both a name and code")

Listing 3.5: Our Translator with a Menu

As you should be able to interpret from the code, we have a small window with 2 Labels, 2 Entr i e s
and a Button. An Entry is just a Text widget which is only one line. If you’re familiar with HTML,
think of an Entry as an input [type="text "] and a Text as a t ex ta r ea . Our __init__ just sets our
window title and size, creates the widgets, and packs them all. The master argument to here is our
TranslateBook instance, as the submit method needs to access its languages_menu

Our submit method is called by our Button. It grabs the text from our two Entr i e s and creates a

3.3. A TRULY DYNAMIC APP 33

LanguageTab instance from them. It then accesses our TranslateBook ’s languages_menu and adds the
newly created LanguageTab instance as an option. Finally it shows a success messagebox and destroys
itself (so the user doesn’t have to close it manually). If you don’t like this, you could always clear the
Entr i e s and leave the window open for the user to add another language straight after. If the user
hasn’t filled out one of the Entr i e s a messagebox will let them know that they are both needed.

3.3.4 Running this version

In our old i f __name__ == "__main__" statement we just created a TranslateBook instance and called
its mainloop. If we want tabs to appear by default, like our italian tab originally, we need to create
a LanguageTab instance and then use add_new_tab to add it to our TranslateBook before calling
mainloop. In Chapter3-3.py you will see I have done this with the italian tab as before.

If you don’t know of a language and code to test the NewLanguageForm out with, try "Spanish"
and "es". Keep in mind that we only add the new language as a menu option, so it will not appear in
your Notebook straight away, you must pick it from the menu first.

3.3.5 Further Development

If you’d like to continue work on this project as an exercise, try the following:

• Import t tk and adjust the app to use t tk ’s widgets (you will see a small attempt at this with
Chapter3-3-ttk.py on Github, as I eventually deemed it unworthy of its own section).

• Bind the relevant Button functionality to the Return key.

• Before adding a new language validate that the short code added exists for the google translate
api.

• Remember the app’s previous state with s q l i t e (i.e. which tabs were added and which languages
were available in the menu).

• Add a "Remove a Language" Menu which lists the enabled languages and lets the user remove
one.

Chapter 4

A Point-and-Click Game

In this chapter we’ll be creating one of those point-and-click puzzle games. Here we’ll learn about the
following:

• Handling images

• Drawing on and updating a Canvas

4.1 The Initial Concept

Figure 4.1: Our Point-and-Click Game

The concept I chose for our game is like a super simple version of the "escape the room" puzzle
games. You see a door and need to escape. If you are following along, give the game a try before you
begin. It’s Chapter4-1.py from Github. When writing out this code, feel free to use my (amazing)
artwork if you don’t fancy drawing anything yourself.

34

4.1. THE INITIAL CONCEPT 35

1 import t k i n t e r as tk
2 from tk i n t e r import font
3
4 c l a s s GameScreen () :
5 de f __init__(s e l f , master , image , ro i , inventory_item=None , help_text=None) :
6 s e l f . master = master
7 s e l f . r o i = r o i
8 s e l f . image = tk . PhotoImage (f i l e=image)
9 s e l f . inventory_item = inventory_item

10 s e l f . help_text = help_text
11
12 de f on_cl ick (s e l f , event) :
13 i f (s e l f . r o i [0] <= event . x <= s e l f . r o i [2]
14 and s e l f . r o i [1] <= event . y <= s e l f . r o i [3]) :
15
16 i f s e l f . inventory_item :
17 s e l f . master . add_inventory_item (s e l f . inventory_item)
18 s e l f . master . show_next_screen ()
19
20
21 c l a s s Game(tk .Tk) :
22 de f __init__(s e l f) :
23 super () . __init__ ()
24
25 s e l f . i nvento ry_s lo t s = []
26 s e l f . inventory_slots_in_use = []
27 s e l f . current_screen_number = 0
28 s e l f . succes s_font = font . Font (fami ly="ubuntu" , s i z e =50, weight=font .BOLD)
29
30 s e l f . t i t l e ("Point and Cl i ck ")
31 s e l f . geometry ("800x640")
32 s e l f . r e s i z a b l e (False , Fa l se)
33
34 s e l f . key_image = tk . PhotoImage (f i l e=" a s s e t s /key . png")
35 s e l f . question_mark_image = tk . PhotoImage (f i l e=" a s s e t s / questionmark . png")
36
37 s e l f . s c r e en = tk . Canvas (s e l f , bg="white " , width=500 , he ight =800)
38 s e l f . r ight_frame = tk . Frame(s e l f , width=300 , he ight =800)
39 s e l f . r ight_frame . pack_propagate (0)
40
41 s e l f . help_var = tk . Str ingVar (s e l f . r ight_frame)
42 s e l f . help_var . s e t ("Try C l i ck ing Something")
43
44 s e l f . help_box = tk . Label (s e l f . r ight_frame , t extvar=s e l f . help_var , background="

black " , foreground="white " , padx=10, pady=20)
45 s e l f . help_box . pack (s i d e=tk .TOP, f i l l =tk .X, padx=10, pady=10)
46
47 i nv en to ry_t i t l e = tk . Label (s e l f . r ight_frame , t ex t=" Inventory : " , background="

grey " , foreground="white ")
48
49 inventory_space = tk . Frame(s e l f . r ight_frame , background=" l i g h t g r e y " , width=300 ,

he ight =320)
50 inventory_space . pack_propagate (0)
51
52 inventory_space . pack (s i d e=tk .BOTTOM)
53 inven to ry_t i t l e . pack (s i d e=tk .BOTTOM, f i l l =tk .X)
54
55 inventory_slot_1 = tk . Button (inventory_space , image=s e l f . question_mark_image ,

width=50, he ight =50)
56 inventory_slot_2 = tk . Button (inventory_space , image=s e l f . question_mark_image ,

width=50, he ight =50)
57 inventory_slot_3 = tk . Button (inventory_space , image=s e l f . question_mark_image ,

width=50, he ight =50)
58
59 inventory_slot_1 . pack (pady=(40 ,20) , padx=20)
60 inventory_slot_2 . pack (pady=20, padx=20)

36 CHAPTER 4. A POINT-AND-CLICK GAME

61 inventory_slot_3 . pack (pady=(20 ,0) , padx=20)
62
63 s e l f . i nvento ry_s lo t s . append (inventory_slot_1)
64 s e l f . i nvento ry_s lo t s . append (inventory_slot_2)
65 s e l f . i nvento ry_s lo t s . append (inventory_slot_3)
66
67 s e l f . r ight_frame . pack (s i d e=tk .RIGHT)
68 s e l f . s c r e en . pack (s i d e=tk .LEFT)
69
70 s e l f . s c r e en . bind ("<Button−1>" , s e l f . handle_cl i ck)
71
72 de f handle_c l i ck (s e l f , event) :
73 s e l f . ac t ive_screen . on_cl ick (event)
74
75 de f set_game_screens (s e l f , game_screens) :
76 s e l f . game_screens = game_screens
77
78 de f d i sp lay_screen (s e l f , game_screen_number) :
79 s e l f . ac t ive_screen = s e l f . game_screens [game_screen_number]
80 s e l f . s c r e en . d e l e t e (" a l l ")
81 s e l f . s c r e en . create_image ((250 ,400) , image=s e l f . ac t ive_screen . image)
82 s e l f . help_var . s e t (s e l f . ac t ive_screen . help_text)
83
84 de f show_next_screen (s e l f) :
85 s e l f . current_screen_number += 1 ;
86 i f s e l f . current_screen_number < len (s e l f . game_screens) :
87 s e l f . d i sp lay_screen (s e l f . current_screen_number)
88 e l s e :
89 s e l f . s c r e en . d e l e t e (" a l l ")
90 s e l f . s c r e en . c on f i gu r e (bg="black ")
91 s e l f . s c r e en . c reate_text ((250 ,300) , t ex t="You Win ! " , f ont=s e l f . success_font ,

f i l l ="white ")
92
93 de f add_inventory_item (s e l f , item_name) :
94 next_avai lab le_inventory_slot = len (s e l f . inventory_slots_in_use)
95 i f next_avai lab le_inventory_s lot < len (s e l f . i nvento ry_s lo t s) :
96 next_slot = s e l f . i nvento ry_s lo t s [next_avai lab le_inventory_s lot]
97
98 i f item_name == "key" :
99 next_slot . c on f i gu r e (image=s e l f . key_image)

100
101 s e l f . inventory_slots_in_use . append (item_name)
102
103 de f play (s e l f) :
104 i f not s e l f . game_screens :
105 p r i n t ("No s c r e en s added ! ")
106 e l s e :
107 s e l f . d i sp lay_screen (0)
108
109
110 i f __name__ == "__main__" :
111 game = Game()
112
113 scene1 = GameScreen (game , " a s s e t s / scene1 . png" , (378 ,135 ,427 ,217) , "key" , "You Need

To Leave but the Door i s Locked ! ")
114 scene2 = GameScreen (game , " a s s e t s / scene2 . png" , (117 ,54 ,329 ,412) , None , "You Got the

Key ! ")
115 scene3 = GameScreen (game , " a s s e t s / scene3 . png" , (117 ,54 ,329 ,412) , None , "The Door i s

Open ! ")
116
117 a l l_s c r e en s = [scene1 , scene2 , scene3]
118
119 game . set_game_screens (a l l_ s c r e en s)
120 game . play ()

4.1. THE INITIAL CONCEPT 37

121 game . mainloop ()

Listing 4.1: Our Game

4.1.1 GameScreen

The GameScreen Class is essentially a nice container around the attributes associated with each screen.
It holds a reference to our main Game object, the image to display for this screen (I’ll cover PhotoImages
next), the region-of-interest (i.e. where to click in order to advance), an item to be picked up, and the
help text to display. The on_cl ick function is sent the click event from the Game’s Canvas. It compares
the coordinates of the clicked point of the Canvas to its region-of-interest, then advances the game if
the correct area was clicked. If the screen holds an inventory item it is added to the Game’s inventory
before advancing. I debated with myself whether or not to handle this logic within the Game itself, but
have decided it looks a bit neater here.

4.1.2 Game

Our Game object defines the main window and layout, as well as handles tracking and progressing in
the game. Let’s break it down a bit:

__init__

We begin with creating some empty l i s t s for our inventory and used-inventory (more on this later).
We initialise the current screen to 0 and create a Font which will be used to display a success message
when the player finishes the game. After setting the title and size of the window, we also set r e s i z a b l e
to (False, False) to prevent the window from being resized in either direction. This removes any need
to re-size the GameScreen images if the player decides to change the window dimensions.

Next we create two PhotoImage objects. These are just t k i n t e r ’s way of holding an image file in a
usable format. These PhotoImages can be placed onto widgets such as Buttons, Labels and Canvases.
These two PhotoImages will be going on Buttons which will represent our player’s inventory.

We define a Canvas and Frame with fixed widths and heights which allows us to accurately split our
screen in two. We use pack_propagate (0) to keep the Frame at its defined size. Frames will shrink to
the size necessary to hold their contents by default, but we need this one to stay full-sized irrespective
of its children.

We go on to define a Str ingVar to hold our help text, a Label to display it, another Label to
title our inventory, and a second Frame inside the r ight_frame to hold our inventory items. Our
three inventory items are just Buttons which start off showing a question mark image. These are
then packed with some padding to space them out a bit. A tup l e is used to define (above,below)
padding independently (which would be (left,right) inside padx). We stick our inventory items into
our i nvento ry_s lo t s list and finish packing before binding a method to left-clicking our canvas.

Handling Game Screens

set_game_screens simply sets a list of GameScreen objects as an attribute of our Game. The reason
this isn’t in __init__ is because we need a reference to the Game to create the GameScreens.

di sp lay_screen takes in an index of our game_screens l i s t and keeps a reference to the GameScreen
at that index. It then clears the Canvas and draws our current screen’s image onto it. Finally it updates
the help Label ’s Str ingVar to display its hint to the player.

show_next_screen updates the number which points to our current screen then checks that it is
within the bounds of our game_screens. If it is then we display the screen at that index. If it’s not

38 CHAPTER 4. A POINT-AND-CLICK GAME

then we are out of screens, indicating that the player has won. In this case we set the Canvas to black
and show a success message.

Handling Inventory

With this iteration of our inventory system, we’re using a l i s t to track which slots are available. The
length of the inventory_slots_in_use l i s t is used to select the next index of our inventory to add
a new item to. The same check as show_next_screen is used to ensure we are using a valid index of
our i nvento ry_s lo t s list, and if so the Button at that slot is chosen. We c on f i gu r e the Button with
the appropriate PhotoImage for the item being added (in this case we just have the key) and append
the item_name to our inventory_slots_in_use l i s t to track that this slot is now in use.

4.1.3 Playing the Game

We begin by making a Game object as the main window. We then create three GameScreens with their
associated image, region-of-interest, item, and hint. The GameScreen’s region-of-interest is specified
as a 4-tuple with the first two numbers as the top-left x and y, and the second two as the bottom
right x and y, forming a rectangle. We merge these together into a l i s t and pass it to our Game with
set_game_screens. We finish up by calling play () to set the initial screen and mainloop () to make
the window visible.

4.1.4 Next Iteration

Next up we’ll be refining the inventory system logic as well as showing the history of hints in the big
space below the current one.

4.2. OUR REFINED POINT-AND-CLICK GAME 39

4.2 Our Refined Point-and-Click game

With this iteration our item system is more sophisticated. We can now click and use things from our
inventory and specify scenes which require the use of an item to continue. Let’s look at how this is
done.

1 import t k i n t e r as tk
2 from tk i n t e r import font
3 from fun c t o o l s import p a r t i a l
4
5 c l a s s GameScreen () :
6 de f __init__(s e l f , master , image , ro i , inventory_item=None , help_text=None ,

required_item=None) :
7 . . .
8 s e l f . required_item = required_item
9

10 de f on_cl ick (s e l f , event , item_in_use) :
11 i f s e l f . master . has_won :
12 re turn
13
14 i f item_in_use and not s e l f . required_item :
15 s e l f . master . show_cannot_use_message ()
16 e l i f (s e l f . r o i [0] <= event . x <= s e l f . r o i [2]
17 and s e l f . r o i [1] <= event . y <= s e l f . r o i [3]) :
18
19 i f s e l f . inventory_item :
20 s e l f . master . add_inventory_item (s e l f . inventory_item)
21
22 i f s e l f . required_item :
23 i f item_in_use == s e l f . required_item :
24 s e l f . master . show_next_screen ()
25 e l s e :
26 s e l f . master . show_next_screen ()
27 e l s e :
28 i f item_in_use :
29 s e l f . master . show_cannot_use_message ()
30
31
32 c l a s s Game(tk .Tk) :
33 de f __init__(s e l f) :
34 . . .
35 s e l f . cannot_use_font = font . Font (fami ly="ubuntu" , s i z e =28, weight=font .BOLD)
36 s e l f . item_in_use = ""
37 s e l f . has_won = False
38
39 . . .
40
41 s e l f . help_history_var_1 = tk . Str ingVar (s e l f . r ight_frame)
42 s e l f . help_history_var_2 = tk . Str ingVar (s e l f . r ight_frame)
43 s e l f . help_history_var_3 = tk . Str ingVar (s e l f . r ight_frame)
44
45 help_history_box_1 = tk . Label (s e l f . r ight_frame , t extvar=s e l f . help_history_var_1

, bg="black " , f g="white " , padx=10, pady=10)
46 help_history_box_2 = tk . Label (s e l f . r ight_frame , t extvar=s e l f . help_history_var_2

, bg="black " , f g="white " , padx=10, pady=10)
47 help_history_box_3 = tk . Label (s e l f . r ight_frame , t extvar=s e l f . help_history_var_3

, bg="black " , f g="white " , padx=10, pady=10)
48
49 help_history_box_1 . pack (s i d e=tk .TOP, f i l l =tk .X, padx=10)
50 help_history_box_2 . pack (s i d e=tk .TOP, f i l l =tk .X, padx=10)
51 help_history_box_3 . pack (s i d e=tk .TOP, f i l l =tk .X, padx=10)
52
53 . . .
54
55 inventory_row_1 = tk . Frame(s e l f . inventory_space , pady=10)
56 inventory_row_2 = tk . Frame(s e l f . inventory_space , pady=10)

40 CHAPTER 4. A POINT-AND-CLICK GAME

57 inventory_row_3 = tk . Frame(s e l f . inventory_space , pady=10)
58
59 inventory_slot_1 = tk . Button (s e l f . inventory_row_1 ,
60 image=s e l f . question_mark_image ,
61 width=50, he ight =50,
62 bg="black " ,
63 command=lambda : s e l f . use_item (0))
64
65 inventory_slot_2 = tk . Button (s e l f . inventory_row_2 ,
66 image=s e l f . question_mark_image ,
67 width=50, he ight =50,
68 bg="black " ,
69 command=lambda : s e l f . use_item (1))
70
71 inventory_slot_3 = tk . Button (s e l f . inventory_row_3 ,
72 image=s e l f . question_mark_image ,
73 width=50, he ight =50,
74 bg="black " ,
75 command=lambda : s e l f . use_item (2))
76
77 item_name_1 = tk . Str ingVar (s e l f . inventory_row_1)
78 item_name_2 = tk . Str ingVar (s e l f . inventory_row_2)
79 item_name_3 = tk . Str ingVar (s e l f . inventory_row_3)
80
81 s e l f . i tem_label_vars = [s e l f . item_name_1 , s e l f . item_name_2 , s e l f . item_name_3]
82
83 item_label_1 = tk . Label (s e l f . inventory_row_1 , t extvar=s e l f . item_name_1 , anchor=

"w")
84 item_label_2 = tk . Label (s e l f . inventory_row_2 , t extvar=s e l f . item_name_2 , anchor=

"w")
85 item_label_3 = tk . Label (s e l f . inventory_row_3 , t extvar=s e l f . item_name_3 , anchor=

"w")
86
87 inventory_row_1 . pack (f i l l =tk .X, expand=1)
88 inventory_row_2 . pack (f i l l =tk .X, expand=1)
89 inventory_row_3 . pack (f i l l =tk .X, expand=1)
90
91 inventory_slot_1 . pack (s i d e=tk .LEFT, padx=(100 ,20))
92 item_label_1 . pack (s i d e=tk .LEFT, f i l l =tk .X, expand=1)
93 inventory_slot_2 . pack (s i d e=tk .LEFT, padx=(100 ,20))
94 item_label_2 . pack (s i d e=tk .LEFT, f i l l =tk .X, expand=1)
95 inventory_slot_3 . pack (s i d e=tk .LEFT, padx=(100 ,20))
96 item_label_3 . pack (s i d e=tk .LEFT, f i l l =tk .X, expand=1)
97
98 . . .
99

100 de f handle_c l i ck (s e l f , event) :
101 . . .
102
103 de f set_game_screens (s e l f , game_screens) :
104 . . .
105
106 de f d i sp lay_screen (s e l f , game_screen_number) :
107 . . .
108 s e l f . show_help_text (s e l f . ac t ive_screen . help_text)
109
110 de f show_next_screen (s e l f) :
111 s e l f . current_screen_number += 1 ;
112 i f s e l f . current_screen_number < len (s e l f . game_screens) :
113 s e l f . d i sp lay_screen (s e l f . current_screen_number)
114 s e l f . clear_used_item ()
115 e l s e :
116 s e l f . s c r e en . d e l e t e (" a l l ")
117 s e l f . s c r e en . c on f i gu r e (bg="black ")
118 s e l f . s c r e en . c reate_text ((250 ,300) , t ex t="You Win ! " , f ont=s e l f . success_font ,

f i l l ="white ")

4.2. OUR REFINED POINT-AND-CLICK GAME 41

119 s e l f . has_won = True
120
121 de f show_help_text (s e l f , t ex t) :
122 s e l f . help_history_var_3 . s e t (s e l f . help_history_var_2 . get ())
123 s e l f . help_history_var_2 . s e t (s e l f . help_history_var_1 . get ())
124 s e l f . help_history_var_1 . s e t (s e l f . help_var . get ())
125 s e l f . help_var . s e t (t ex t)
126
127 de f add_inventory_item (s e l f , item_name) :
128 next_avai lab le_inventory_slot = len (s e l f . inventory_slots_in_use)
129 i f next_avai lab le_inventory_s lot < len (s e l f . i nvento ry_s lo t s) :
130 next_slot = s e l f . i nvento ry_s lo t s [next_avai lab le_inventory_s lot]
131 next_label_var = s e l f . item_label_vars [next_avai lab le_inventory_s lot]
132
133 i f item_name == "key" :
134 next_slot . c on f i gu r e (image=s e l f . key_image)
135
136 next_label_var . s e t (item_name . t i t l e ())
137 s e l f . inventory_slots_in_use . append (item_name)
138
139 de f use_item (s e l f , item_number) :
140 i f item_number < len (s e l f . inventory_slots_in_use) :
141 item_name = s e l f . inventory_slots_in_use [item_number]
142 i f item_name :
143 s e l f . item_in_use = item_name
144
145 f o r button in s e l f . i nvento ry_s lo t s :
146 button . c on f i gu r e (bg="black ")
147
148 s e l f . i nvento ry_s lo t s [item_number] . c on f i gu r e (bg="white ")
149 s e l f . i nvento ry_s lo t s [item_number] . c on f i gu r e (command=s e l f .

clear_used_item)
150
151 de f clear_used_item (s e l f) :
152 s e l f . item_in_use = ""
153 f o r index , button in enumerate (s e l f . i nvento ry_s lo t s) :
154 button . c on f i gu r e (bg="black ")
155
156 use_cmd = pa r t i a l (s e l f . use_item , item_number=index)
157 button . c on f i gu r e (command=use_cmd)
158
159 de f show_cannot_use_message (s e l f) :
160 text_id = s e l f . s c r e en . c reate_text ((250 ,25) , t ex t="You cannot use that the re ! " ,

f ont=s e l f . cannot_use_font , f i l l ="white ")
161 s e l f . a f t e r (2000 , lambda : s e l f . s c r e en . d e l e t e (text_id))
162
163 de f play (s e l f) :
164 . . .
165
166
167 i f __name__ == "__main__" :
168 . . .
169 scene2 = GameScreen (game , " a s s e t s / scene2 . png" , (117 ,54 ,329 ,412) , None , "You Got the

Key ! " , "key")
170 . . .

Listing 4.2: Our Game With Working Inventory

4.2.1 GameScreen

We’ve now got a new argument for each screen, required_item , which establishes whether or not we
need to be using an item to advance to the next screen. We’ve added some new logic to on_cl ick to
accommodate this.

The method now takes an item_in_use argument which represents the active inventory item (if

42 CHAPTER 4. A POINT-AND-CLICK GAME

any). First off, we return if the game is won, to prevent clicks on the "You Win" screen. We display
a message to the user if they are trying to use an item on a screen which does not require one, or
they are outside of the scene’s region-of-interest. When inside the region-of-interest, we check that the
item_in_use matches the scene’s required_item and only advance the screen if so. The rest of the
logic is the same as before.

4.2.2 Game

__init__

We’ve added a few new attributes to the beginning of our __init__. We have a font for the message
letting a user know they cannot use their selected item, a string which will hold the item currently in
use, and a boolean for whether or not the game has been won.

Afterwards we define three Str ingVars for our help history and 3 Labels to hold them. We next
need 3 frames to hold our inventory Buttons and associated Labels. Our Buttons have had commands
added so that they will now use an item when clicked (method will be covered later). We then define
three more Str ingVars and Labels to display the name of each item next to its button. The StingVars
are put into a l i s t for access later. We finish off by packing everything.

Handling Game Screens

di sp lay_screen is mostly the same, but now calls a new method show_help_text instead of directly
manipulating the help_var.

show_next_screen clears the used item when updating the screen, and sets has_won to True if the
game has displayed all of its screens.

The aforementioned show_help_text propagates the values of each of our he lp_history Str ingVar
s down to the next one before setting the main help_var’s text to that of the current GameScreen.

Handling the Inventory

This is where the majority of changes this iteration are. Our add_inventory_item method now grabs
the Str ingVar in the same index as the next open inventory slot and adds the name of the item to it.
The . t i t l e () here just capitalises the text for aesthetic purposes.

Our new use_item method (which is bound to each Button in our inventory space) takes in the index
of each inventory item as item_number, checks it’s valid for the size of the inventory_slots_in_use

l i s t and sets it as our item_in_use, which is used by our GameScreen’s on_cl ick . It then loops
through our inventory Buttons resetting them to a black background before configuring the clicked
Button to have a white background, indicating that the item is in use. It also swaps out the Button’s
command to clear_used_item so that the user can un-set the item if they want to deactivate it.

Speaking of which, our clear_used_item method sets our item_in_use to an empty string, resets
each Button’s background to black and re-binds it’s command to its previous use_item. We need to
use a p a r t i a l from the f u n c t o o l s module to ensure we bind a function with the correct item_number
argument for each Button.

If the player is trying to use an item somewhere in the scene where it is not usable, we need to
tell them so. We do this with the show_cannot_use_message method. This method creates some
text on our Canvas with our previously-defined font style. Since the create_text method returns a
unique ID for the created text, we store that in a variable called text_id . We then use tkinter’s a f t e r
method to schedule a function to be called after 2 seconds. This function is a lambda which deletes

4.2. OUR REFINED POINT-AND-CLICK GAME 43

the previously-created text by passing its ID to de l e t e . This ensures the text does not stay on the
player’s screen for the rest of that scene.

Playing the Final Game

Just one change here - we pass the "key" as the required_item to our second scene. This means the
player needs to activate the key in their inventory to open the door.

This is where we will leave development of our point-and-click game. The fundamentals of just
clicking a region and collecting / using items leads to the potential for a lot of gameplay. A lot of
further development would require creating scenes and artwork, which has always been my weakpoint
with game development. Despite this I feel like this point-and-click framework has a lot of potential,
and is especially interesting given that it is written without an actual game engine.

4.2.3 Further Development

If you’d like to continue work on this project as an exercise, try the following:

• Add a screen which gives the player another item, and a screen which requires this item (how
about it’s raining outside so the player must pick up an umbrella?).

• Add cutscenes with dialogue boxes which can be advanced by pressing the space bar.

• Add a clues section which has a button for one clue per screen.

Chapter 5

Ini File Editor

In this chapter we’ll be creating an app which allows us to edit . i n i config files. There’s a folder in
the code repository called i n i _ f i l e s with a test file for you to play with while writing out this code.
With this project we will learn about the following:

• The Listbox widget.

• The Spinbox widget.

• Creating a file open and file save dialogue.

• Using keyboard shortcuts with Menu items.

5.1 Basic View and Edit Functionality

Figure 5.1: Our Ini File Editor

44

5.1. BASIC VIEW AND EDIT FUNCTIONALITY 45

1 import t k i n t e r as tk
2 from tk i n t e r import f i l e d i a l o g
3 import t k i n t e r . messagebox as msg
4 import c on f i g p a r s e r as cp
5 import ntpath
6
7 c l a s s I n iEd i t o r (tk .Tk) :
8
9 de f __init__(s e l f) :

10 super () . __init__ ()
11
12 s e l f . t i t l e ("Config F i l e Editor ")
13 s e l f . geometry ("600x600")
14
15 s e l f . a c t i v e_ in i = ""
16 s e l f . ac t ive_in i_f i l ename = ""
17 s e l f . in i_e lements = {}
18
19 s e l f . menubar = tk .Menu(s e l f , bg=" l i g h t g r e y " , f g="black ")
20
21 s e l f . f i le_menu = tk .Menu(s e l f . menubar , t e a r o f f =0, bg=" l i g h t g r e y " , f g="black ")
22 s e l f . f i le_menu . add_command(l a b e l="Open" , command=s e l f . f i l e_open , a c c e l e r a t o r="

Ctr l+O")
23 s e l f . f i le_menu . add_command(l a b e l="Save" , command=s e l f . f i l e_save , a c c e l e r a t o r="

Ctr l+S")
24
25 s e l f . menubar . add_cascade (l a b e l=" F i l e " , menu=s e l f . f i le_menu)
26
27 s e l f . c on f i g (menu=s e l f . menubar)
28
29 s e l f . l e f t_frame = tk . Frame(s e l f , width=200 , he ight =600 , bg="grey ")
30 s e l f . l e f t_frame . pack_propagate (0)
31
32 s e l f . r ight_frame = tk . Frame(s e l f , width=400 , he ight =600 , bg=" l i g h t g r e y ")
33 s e l f . r ight_frame . pack_propagate (0)
34
35 s e l f . file_name_var = tk . Str ingVar (s e l f)
36 s e l f . f i le_name_label = tk . Label (s e l f , t ex tvar=s e l f . file_name_var , f g=" black " ,

bg="white " , f ont=(None , 12))
37 s e l f . f i le_name_label . pack (s i d e=tk .TOP, expand=1, f i l l =tk .X)
38
39 s e l f . s e c t i o n_s e l e c t = tk . Listbox (s e l f . l e f t_frame , se lectmode=tk .SINGLE)
40 s e l f . s e c t i o n_s e l e c t . c on f i gu r e (e xp o r t s e l e c t i o n=False)
41 s e l f . s e c t i o n_s e l e c t . pack (expand=1)
42 s e l f . s e c t i o n_s e l e c t . bind ("<<Li s tboxSe l e c t >>" , s e l f . d i sp lay_sect ion_contents)
43
44 s e l f . l e f t_frame . pack (s i d e=tk .LEFT, f i l l =tk .BOTH)
45 s e l f . r ight_frame . pack (s i d e=tk .LEFT, expand=1, f i l l =tk .BOTH)
46
47 s e l f . bind ("<Control−o>" , s e l f . f i l e_open)
48 s e l f . bind ("<Control−s>" , s e l f . f i l e_ sav e)
49
50 de f f i l e_open (s e l f , event=None) :
51 i n i _ f i l e = f i l e d i a l o g . askopenf i l ename ()
52
53 whi le i n i _ f i l e and not i n i _ f i l e . endswith (" . i n i ") :
54 msg . showerror ("Wrong F i l e type " , " Please s e l e c t an i n i f i l e ")
55 i n i _ f i l e = f i l e d i a l o g . askopenf i l ename ()
56
57 i f i n i _ f i l e :
58 s e l f . p a r s e_ in i_ f i l e (i n i _ f i l e)
59
60 de f f i l e_sav e (s e l f , event=None) :
61 i f not s e l f . a c t i v e_ in i :
62 msg . showerror ("No F i l e Open" , " Please open an i n i f i l e f i r s t ")
63 re turn

46 CHAPTER 5. INI FILE EDITOR

64
65 chosen_sect ion = s e l f . s e c t i o n_s e l e c t . get (s e l f . s e c t i o n_s e l e c t . c u r s e l e c t i o n ())
66
67 f o r key in s e l f . a c t i v e_ in i [chosen_sect ion] :
68 s e l f . a c t i v e_ in i [chosen_sect ion] [key] = s e l f . in i_elements [key] . get ()
69
70 with open (s e l f . act ive_in i_f i l ename , "w") as i n i _ f i l e :
71 s e l f . a c t i v e_ in i . wr i t e (i n i _ f i l e)
72
73 msg . showinfo ("Saved" , " F i l e Saved Su c c e s s f u l l y ")
74
75 de f pa r s e_ in i_ f i l e (s e l f , i n i _ f i l e) :
76 s e l f . a c t i v e_ in i = cp . Conf igParser ()
77 s e l f . a c t i v e_ in i . read (i n i _ f i l e)
78 s e l f . ac t ive_in i_f i l ename = i n i _ f i l e
79
80 s e l f . s e c t i o n_s e l e c t . d e l e t e (0 , tk .END)
81
82 f o r index , s e c t i o n in enumerate (s e l f . a c t i v e_ in i . s e c t i o n s ()) :
83 s e l f . s e c t i o n_s e l e c t . i n s e r t (index , s e c t i o n)
84 i f "DEFAULT" in s e l f . a c t i v e_ in i :
85 s e l f . s e c t i o n_s e l e c t . i n s e r t (l en (s e l f . a c t i v e_ in i . s e c t i o n s ()) + 1 , "DEFAULT")
86
87 fi le_name = " : " . j o i n ([ntpath . basename (i n i _ f i l e) , i n i _ f i l e])
88 s e l f . file_name_var . s e t (f i le_name)
89
90 s e l f . c lear_right_frame ()
91
92 de f c lear_right_frame (s e l f) :
93 f o r c h i l d in s e l f . r ight_frame . winfo_chi ldren () :
94 ch i l d . des t roy ()
95
96 de f d i sp lay_sect ion_contents (s e l f , event=None) :
97 i f not s e l f . a c t i v e_ in i :
98 msg . showerror ("No F i l e Open" , " Please open an i n i f i l e f i r s t ")
99 re turn

100
101 s e l f . c lear_right_frame ()
102
103 s e l f . in i_e lements = {}
104
105 chosen_sect ion = s e l f . s e c t i o n_s e l e c t . get (s e l f . s e c t i o n_s e l e c t . c u r s e l e c t i o n ())
106
107 f o r key in so r t ed (s e l f . a c t i v e_ in i [chosen_sect ion]) :
108 new_label = tk . Label (s e l f . r ight_frame , t ext=key , f ont=(None , 12) , bg="black

" , f g="white ")
109 new_label . pack (f i l l =tk .X, s i d e=tk .TOP, pady=(10 ,0))
110
111 value = s e l f . a c t i v e_ in i [chosen_sect ion] [key]
112
113 i f va lue . i snumer ic () :
114 spinbox_default = tk . IntVar (s e l f . r ight_frame)
115 spinbox_default . s e t (i n t (va lue))
116 ini_element = tk . Spinbox (s e l f . r ight_frame , from_=0, to =99999 ,

t e x t v a r i a b l e=spinbox_default , bg="white " , f g=" black " , j u s t i f y="
cente r ")

117 e l s e :
118 ini_element = tk . Entry (s e l f . r ight_frame , bg="white " , f g="black " ,

j u s t i f y=" cente r ")
119 ini_element . i n s e r t (0 , va lue)
120
121 ini_element . pack (f i l l =tk .X, s i d e=tk .TOP, pady=(0 ,10))
122 s e l f . in i_e lements [key] = ini_element
123
124 save_button = tk . Button (s e l f . r ight_frame , t ext="Save Changes" , command=s e l f .

f i l e_ sav e)

5.1. BASIC VIEW AND EDIT FUNCTIONALITY 47

125 save_button . pack (s i d e=tk .BOTTOM, pady=(0 ,20))
126
127
128 i f __name__ == "__main__" :
129 i n i_ed i t o r = In iEd i t o r ()
130 i n i_ed i t o r . mainloop ()

Listing 5.1: Our Ini Editor

5.1.1 __init__

We begin with the hopefully-now-familiar activities such as setting the window title and size, initialising
some blank variables, creating our necessary widgets and packing everything. The ac t i v e_ in i will
hold our parsed . i n i file, the act ive_in i_f i l ename will hold the name of the given . i n i file, and
in i_elements will be used to associate a setting with a t k i n t e r widget.

We go on to create a Menu containing a "file" option which holds "open" and "save" functionality.
The a c c e l e r a t o r argument passed to the file options is used to display the keyboard shortcut which
will activate them.

Our window will be split into two Frames with the left being half as big as the right. We again use
pack_propagate (0) to stop them shrinking. We will also display a Label at the top of the window
telling the user which file they have open. We specify the f on t argument here to increase the font size.
The f on t argument takes a tuple of three: (family, size, style). We can omit the family and style to
have the font retain the defaults, and just give the size to make it bigger. This is why we use a tuple
of (None , 12) to modify only the size to 12.

Now that the layout is sorted, we create the only widget going into our left Frame - the Listbox . A
listbox is somewhat like an expanded dropdown list. It displays multiple elements in a box and allows
a user to select them. In this case we only want one selection at a time, so we set the se lectmode to
tk .SINGLE to enforce this. We then use e xp o r t s e l e c t i o n=False to prevent the selection from being
"lost" when another widget is clicked. We pack it up then bind a method to <<Lis tboxSe l e c t >> so
that we can fire off an event when the user selects an option.

After packing our Frames we bind the keyboard shortcuts we added to our Menu items to the same
functions. With that, our __init__ is complete.

5.1.2 file_open

Our f i l e_open method makes use of t k i n t e r ’s f i l e d i a l o g which takes care of opening files for us.
The askopenf i l ename method pops up a window with which the user can select a file and returns the
path of this file, which we store in i n i _ f i l e . If the given filename does not end with ".ini" we show an
error message and bring the open window back up again. We also need to check in this loop condition
that i n i _ f i l e is not empty, so that the user can use the "cancel" option to end the interaction. If the
filename is valid, we pass it off over to pa r s e_ in i_ f i l e .

5.1.3 parse_ini_file

We begin by creating an instance of a Conf igParser which is a library that will handle parsing of . i n i
files into almost-dictionaries. We store this object as s e l f . a c t i v e_ in i so that we can refer to it later,
then tell it to read and parse the string we got from the file open dialogue. We also store the file path
in s e l f . ac t ive_in i_f i l ename so that we can write to the same file later on.

After opening the file we need to clear any widgets which may still be in our r ight_frame . If we
don’t do this the user would still see the first file’s contents after opening a second, which would be

48 CHAPTER 5. INI FILE EDITOR

confusing, and could lead to data loss if they then saved. We achieve this by using winfo_chi ldren to
get all children of the r ight_frame and then calling dest roy on each to remove it.

Our job now is to get the sections of the file into our Listbox . We begin by clearing the Listbox
in case there are any items left in there from previous file openings. We then enumerate over our . i n i
file’s sections and i n s e r t each into our Listbox . Since the "DEFAULT" section is not returned by
the call to s e c t i o n s () we manually account for it afterwards if it exists. We finish up by putting the
filename at the top of the window in our f i le_name_label . We use ntpath to parse the file name
out of the path string, then put a colon, followed by the full path string. Now that our Listbox is
populated we can display the contents of a section to the user once they have selected one.

5.1.4 display_section_contents

We first need to check we have an . i n i file to work with, and show an error message if not. We follow
on by clearing out the contents of our right Frame to ensure it is empty, and then do the same for our
dictionary of ini elements. We now need to populate our Frame with the elements in the chosen ini
section.

The currently selected Listbox element is grabbed by passing the id returned by c u r s e l e c t i o n ()
to its get () method. Next we iterate over a sorted version of the chosen section in our parsed . i n i
file and create a Label with the item’s name. The item’s value is grabbed using the current key and
its type is checked. If it’s a number, we create a Spinbox, otherwise we use a normal Entry. The
numerical Spinbox utilises an IntVar (like a Str ingVar for integers) to set its default value to the one
read from the ini file. We use the from_ and to arguments to set the minimum and maximum values
we can spin to.

We finish off by packing our chosen element and then pairing it with the key in our in i_elements
dictionary. This allows us to keep track of which widget’s value should be associated to which config
item when saving. Speaking of saving, we also create a Button to save without going up into the Menu.

5.1.5 file_save

Before we attempt to save we again check to make sure we have a loaded . i n i file to write to. We
then get the chosen section from our Listbox and iterate over the section’s items. We set each item’s
value to the value of its associated widget. We finish up by opening the file at the location stored in
act ive_in i_f i l ename and telling our Conf igParser to write into it. We finally display a message to
let the user know that the file has been saved.

5.1.6 Next Iteration

The user currently has to save each section before loading the next one, otherwise any changes will be
lost. We’ll look at adjusting our in i_elements to hold all of the changed values until the program is
closed. There’s also some graphical tweaks we need to make to better handle the screen resizing.

5.2. NOW WITH CACHING AND RESIZING 49

5.2 Now With Caching and Resizing

With this iteration we hold the updated values in memory even when switching between sections. This
means the user can update as many sections as they want and will only need to save once at the end.
We’ve also updated the size of the Frames on re-size. Let’s take a look at how this is done:

1 . . .
2
3 c l a s s I n iEd i t o r (tk .Tk) :
4
5 de f __init__(s e l f) :
6 . . .
7 s e l f . l e f t_frame = tk . Frame(s e l f , width=200 , bg="grey ")
8 s e l f . l e f t_frame . pack_propagate (0)
9

10 s e l f . r ight_frame = tk . Frame(s e l f , width=400 , bg=" l i g h t g r e y ")
11 s e l f . r ight_frame . pack_propagate (0)
12 . . .
13 s e l f . f i le_name_label . pack (s i d e=tk .TOP, expand=1, f i l l =tk .X, anchor="n")
14 . . .
15 s e l f . r ight_frame . bind ("<Configure>" , s e l f . frame_height)
16 . . .
17
18 de f frame_height (s e l f , event=None) :
19 new_height = s e l f . winfo_height ()
20 s e l f . r ight_frame . c on f i gu r e (he ight=new_height)
21
22 de f f i l e_open (s e l f , event=None) :
23 . . .
24
25 de f f i l e_sav e (s e l f , event=None) :
26 . . .
27
28 f o r s e c t i o n in s e l f . a c t i v e_ in i :
29 f o r key in s e l f . a c t i v e_ in i [s e c t i o n] :
30 t ry :
31 s e l f . a c t i v e_ in i [s e c t i o n] [key] = s e l f . in i_elements [s e c t i o n] [key] . get

()
32 except KeyError :
33 # wasn ’ t changed , no need to save i t
34 pass
35
36 . . .
37
38 de f pa r s e_ in i_ f i l e (s e l f , i n i _ f i l e) :
39 . . .
40
41 f o r index , s e c t i o n in enumerate (s e l f . a c t i v e_ in i . s e c t i o n s ()) :
42 s e l f . s e c t i o n_s e l e c t . i n s e r t (index , s e c t i o n)
43 s e l f . in i_e lements [s e c t i o n] = {}
44 i f "DEFAULT" in s e l f . a c t i v e_ in i :
45 s e l f . s e c t i o n_s e l e c t . i n s e r t (l en (s e l f . a c t i v e_ in i . s e c t i o n s ()) + 1 , "DEFAULT")
46 s e l f . in i_e lements ["DEFAULT"] = {}
47 . . .
48
49 de f c lear_right_frame (s e l f) :
50 . . .
51
52 de f d i sp lay_sect ion_contents (s e l f , event) :
53 i f not s e l f . a c t i v e_ in i :
54 msg . showerror ("No F i l e Open" , " Please open an i n i f i l e f i r s t ")
55 re turn
56
57 chosen_sect ion = s e l f . s e c t i o n_s e l e c t . get (s e l f . s e c t i o n_s e l e c t . c u r s e l e c t i o n ())
58
59 f o r ch i l d in s e l f . r ight_frame . winfo_chi ldren () :

50 CHAPTER 5. INI FILE EDITOR

60 ch i l d . pack_forget ()
61
62 f o r key in so r t ed (s e l f . a c t i v e_ in i [chosen_sect ion]) :
63 new_label = tk . Label (s e l f . r ight_frame , t ext=key , f ont=(None , 12) , bg="black

" , f g="white ")
64 new_label . pack (f i l l =tk .X, s i d e=tk .TOP, pady=(10 ,0))
65
66 try :
67 sect ion_elements = s e l f . in i_e lements [chosen_sect ion]
68 except KeyError :
69 sect ion_elements = {}
70
71 try :
72 ini_element = sect ion_elements [key]
73 except KeyError :
74 value = s e l f . a c t i v e_ in i [chosen_sect ion] [key]
75
76 i f va lue . i snumer ic () :
77 spinbox_default = tk . IntVar (s e l f . r ight_frame)
78 spinbox_default . s e t (i n t (va lue))
79 ini_element = tk . Spinbox (s e l f . r ight_frame , from_=0, to =99999 ,

t e x t v a r i a b l e=spinbox_default , bg="white " , f g=" black " , j u s t i f y="
cente r ")

80 e l s e :
81 ini_element = tk . Entry (s e l f . r ight_frame , bg="white " , f g="black " ,

j u s t i f y=" cente r ")
82 ini_element . i n s e r t (0 , va lue)
83
84 s e l f . in i_e lements [chosen_sect ion] [key] = ini_element
85
86 ini_element . pack (f i l l =tk .X, s i d e=tk .TOP, pady=(0 ,10))
87
88 save_button = tk . Button (s e l f . r ight_frame , t ext="Save Changes" , command=s e l f .

f i l e_ sav e)
89 save_button . pack (s i d e=tk .BOTTOM, pady=(0 ,20))
90
91
92 i f __name__ == "__main__" :
93 . . .

Listing 5.2: Our Ini Editor

5.2.1 __init__ and frame_height

We’ve now removed the fixed heights from our Frames and bound a method to their <Configure>
event. This method gets the root window’s height and sets the height of the right Frame to the same
value. The left Frame also follows suit. Now when the user re-sizes the window the Frames will adjust
accordingly. Horizontal adjustment was already handled by the expand=1 on our right Frame’s pack.

We have also used the anchor argument when packing our f i le_name_label to fix it to the very
top of the screen.

5.2.2 parse_ini_file

Since we need to keep track of each individual section’s items, we now create an attribute for each
section in our in i_elements dictionary, which is initialised as another empty dictionary. This will be
written to with di sp lay_sect ion_contents .

5.2.3 display_section_contents

I’ve left this entire method in for clarity, but some has stayed the same. We now unpack the widgets
associated with each section instead of dest roy ing them so that we can retain a reference to their values.

5.2. NOW WITH CACHING AND RESIZING 51

pack_forget removes widgets from their parent but does not destroy them in memory, meaning we
can remove them from the frame without losing their values.

Within our loop we now check to see if we have elements for the chosen section already. If we do
we grab them, otherwise we stick an empty dictionary into our sect ion_elements variable to trigger
our second except block. If we have the element already, we grab it out of in i_elements and pack it,
otherwise we create it, put it into in i_elements , and set the default just as before (except now each
element is under the key of its section name). We use t ry and except to catch KeyErrors here as a
way of testing whether or not the elements are already loaded in our cache (in i_elements) rather than
as a way of handling something "going wrong". You may know the python idiom "it’s easier to ask
forgiveness than permission" which is what we have applied here. Instead of trying to check whether
or not the ini element has been loaded, we simply assume it has and handle the resulting KeyError if
it hasn’t.

5.2.4 file_save

Since we now store each element inside the key of its section, we simply iterate over each section and
update the ac t i v e_ in i accordingly.

5.2.5 Running

Nothing has changed with regards to running this iteration. You should be able to launch it as before.
You can now try changing some of the values under one section, then swapping to a different section
and back to the first, and you should see the changes you made have persisted.

5.2.6 Next Iteration

With our current app we can edit existing content but cannot create anything new. We will finish this
project off with the ability to create new .ini files, new sections and new items.

52 CHAPTER 5. INI FILE EDITOR

5.3 Our finished Ini Editor

Now complete with creating capabilities, let’s look at our finalised app:

1 . . .
2
3 c l a s s CentralForm (tk . Topleve l) :
4 de f __init__(s e l f , master , my_height=80) :
5 super () . __init__ ()
6 s e l f . master = master
7
8 master_pos_x = s e l f . master . winfo_x ()
9 master_pos_y = s e l f . master . winfo_y ()

10
11 master_width = s e l f . master . winfo_width ()
12 master_height = s e l f . master . winfo_height ()
13
14 my_width = 300
15
16 pos_x = (master_pos_x + (master_width // 2)) − (my_width // 2)
17 pos_y = (master_pos_y + (master_height // 2)) − (my_height // 2)
18
19 geometry = "{}x{}+{}+{}" . format (my_width , my_height , pos_x , pos_y)
20 s e l f . geometry (geometry)
21
22
23 c l a s s AddSectionForm (CentralForm) :
24 de f __init__(s e l f , master) :
25 super () . __init__(master)
26
27 s e l f . t i t l e ("Add New Sect i on ")
28
29 s e l f . main_frame = tk . Frame(s e l f , bg=" l i g h t g r e y ")
30 s e l f . name_label = tk . Label (s e l f . main_frame , t ex t=" Sec t i on Name" , bg=" l i g h t g r e y "

, f g="black ")
31 s e l f . name_entry = tk . Entry (s e l f . main_frame , bg="white " , f g=" black ")
32 s e l f . submit_button = tk . Button (s e l f . main_frame , t ext="Create " , command=s e l f .

c r ea t e_sec t i on)
33
34 s e l f . main_frame . pack (expand=1, f i l l =tk .BOTH)
35 s e l f . name_label . pack (s i d e=tk .TOP, f i l l =tk .X)
36 s e l f . name_entry . pack (s i d e=tk .TOP, f i l l =tk .X, padx=10)
37 s e l f . submit_button . pack (s i d e=tk .TOP, f i l l =tk .X, pady=(10 ,0) , padx=10)
38
39 de f c r ea t e_sec t i on (s e l f) :
40 section_name = s e l f . name_entry . get ()
41 i f section_name :
42 s e l f . master . add_section (section_name)
43 s e l f . des t roy ()
44 msg . showinfo (" Sec t i on Added" , " Sec t i on " + section_name + " s u c c e s s f u l l y

added")
45 e l s e :
46 msg . showerror ("No Name" , " Please ente r a s e c t i o n name" , parent=s e l f)
47
48
49 c l a s s AddItemForm(CentralForm) :
50 de f __init__(s e l f , master) :
51
52 my_height = 120
53
54 super () . __init__(master , my_height)
55
56 s e l f . t i t l e ("Add New Item")
57
58 s e l f . main_frame = tk . Frame(s e l f , bg=" l i g h t g r e y ")

5.3. OUR FINISHED INI EDITOR 53

59 s e l f . name_label = tk . Label (s e l f . main_frame , t ex t="Item Name" , bg=" l i g h t g r e y " ,
f g="black ")

60 s e l f . name_entry = tk . Entry (s e l f . main_frame , bg="white " , f g=" black ")
61 s e l f . va lue_labe l = tk . Label (s e l f . main_frame , t ex t="Item Value" , bg=" l i g h t g r e y " ,

f g="black ")
62 s e l f . value_entry = tk . Entry (s e l f . main_frame , bg="white " , f g=" black ")
63 s e l f . submit_button = tk . Button (s e l f . main_frame , t ext="Create " , command=s e l f .

create_item)
64
65 s e l f . main_frame . pack (f i l l =tk .BOTH, expand=1)
66 s e l f . name_label . pack (s i d e=tk .TOP, f i l l =tk .X)
67 s e l f . name_entry . pack (s i d e=tk .TOP, f i l l =tk .X, padx=10)
68 s e l f . va lue_labe l . pack (s i d e=tk .TOP, f i l l =tk .X)
69 s e l f . value_entry . pack (s i d e=tk .TOP, f i l l =tk .X, padx=10)
70 s e l f . submit_button . pack (s i d e=tk .TOP, f i l l =tk .X, pady=(10 ,0) , padx=10)
71
72 de f create_item (s e l f) :
73 item_name = s e l f . name_entry . get ()
74 item_value = s e l f . value_entry . get ()
75 i f item_name and item_value :
76 s e l f . master . add_item (item_name , item_value)
77 s e l f . des t roy ()
78 msg . showinfo (" Item Added" , item_name + " s u c c e s s f u l l y added")
79 e l s e :
80 msg . showerror ("Miss ing In f o " , " Please ente r a name and value " , parent=s e l f)
81
82
83 c l a s s I n iEd i t o r (tk .Tk) :
84
85 de f __init__(s e l f) :
86 . . .
87 s e l f . f i le_menu = tk .Menu(s e l f . menubar , t e a r o f f =0, bg=" l i g h t g r e y " , f g="black ")
88 . . .
89 s e l f . bind ("<Control−n>" , s e l f . f i l e_new)
90 . . .
91
92 de f add_section_form (s e l f) :
93 i f not s e l f . a c t i v e_ in i :
94 msg . showerror ("No F i l e Open" , " Please open an i n i f i l e f i r s t ")
95 re turn
96
97 AddSectionForm (s e l f)
98
99 de f add_section (s e l f , section_name) :

100 s e l f . a c t i v e_ in i [section_name] = {}
101 s e l f . populate_sect ion_select_box ()
102
103 de f frame_height (s e l f , event=None) :
104 . . .
105
106 de f f i le_new (s e l f , event=None) :
107 i n i _ f i l e = f i l e d i a l o g . a sk saveas f i l ename (f i l e t y p e s =[(" Conf igurat ion f i l e " , " ∗ .

i n i ")])
108
109 whi le i n i _ f i l e and not i n i _ f i l e . endswith (" . i n i ") :
110 msg . showerror ("Wrong F i l e type " , "Filename must end in . i n i ")
111 i n i _ f i l e = f i l e d i a l o g . askopenf i l ename ()
112
113 i f i n i _ f i l e :
114 s e l f . p a r s e_ in i_ f i l e (i n i _ f i l e)
115
116 de f f i l e_open (s e l f , event=None) :
117 i n i _ f i l e = f i l e d i a l o g . askopenf i l ename (f i l e t y p e s =[(" Conf igurat ion f i l e " , " ∗ . i n i "

)])
118 . . .
119

54 CHAPTER 5. INI FILE EDITOR

120 de f f i l e_sav e (s e l f , event=None) :
121 . . .
122
123 de f add_item_form(s e l f) :
124 AddItemForm(s e l f)
125
126 de f add_item (s e l f , item_name , item_value) :
127 chosen_sect ion = s e l f . s e c t i o n_s e l e c t . get (s e l f . s e c t i o n_s e l e c t . c u r s e l e c t i o n ())
128 s e l f . a c t i v e_ in i [chosen_sect ion] [item_name] = item_value
129 s e l f . d i sp lay_sect ion_contents ()
130
131 de f pa r s e_ in i_ f i l e (s e l f , i n i _ f i l e) :
132 s e l f . a c t i v e_ in i = cp . Conf igParser ()
133 s e l f . a c t i v e_ in i . read (i n i _ f i l e)
134 s e l f . ac t ive_in i_f i l ename = i n i _ f i l e
135 s e l f . populate_sect ion_select_box ()
136
137 fi le_name = " : " . j o i n ([ntpath . basename (i n i _ f i l e) , i n i _ f i l e])
138 s e l f . file_name_var . s e t (f i le_name)
139
140 s e l f . c lear_right_frame ()
141
142 de f c lear_right_frame (s e l f) :
143 . . .
144
145 de f populate_sect ion_select_box (s e l f) :
146 s e l f . s e c t i o n_s e l e c t . d e l e t e (0 , tk .END)
147
148 f o r index , s e c t i o n in enumerate (s e l f . a c t i v e_ in i . s e c t i o n s ()) :
149 s e l f . s e c t i o n_s e l e c t . i n s e r t (index , s e c t i o n)
150 s e l f . in i_e lements [s e c t i o n] = {}
151 i f "DEFAULT" in s e l f . a c t i v e_ in i :
152 s e l f . s e c t i o n_s e l e c t . i n s e r t (l en (s e l f . a c t i v e_ in i . s e c t i o n s ()) + 1 , "DEFAULT")
153 s e l f . in i_e lements ["DEFAULT"] = {}
154
155 de f d i sp lay_sect ion_contents (s e l f , event=None) :
156 . . .
157
158 save_button = tk . Button (s e l f . r ight_frame , t ext="Save Changes" , command=s e l f .

f i l e_ sav e)
159 save_button . pack (s i d e=tk .BOTTOM, pady=(0 ,20))
160
161 add_button = tk . Button (s e l f . r ight_frame , t ex t="Add Item" , command=s e l f .

add_item_form)
162 add_button . pack (s i d e=tk .BOTTOM, pady=(0 ,20))
163
164
165 i f __name__ == "__main__" :
166 . . .

Listing 5.3: Our Ini Editor

5.3.1 CentralForm

To save a bunch of __init__ method duplication we’ve got a base-class for a form which will appear in
the center of its parent window. The __init__ method begins by grabbing the x and y co-ordinates of
its master (our IniEditor instance) as well as its width and height. It then has variables representing its
own width and height which it uses to calculate where to place itself in order to be in the center of the
master and stores these in pos_x and pos_y. It finally calls the . geometry () method on a formatted
string of (width x height + x + y) to define its size and position in one go. Now we have this we can
create other windows which inherit from this class, and as long as they call super () . __init__(master)
they will be placed in the center of their master. Let’s look at our 2 child classes now.

5.3. OUR FINISHED INI EDITOR 55

5.3.2 AddSectionForm and AddItemForm

Both of these windows initialise by creating and packing some Labels and Entr i e s followed by a submit
Button. Both then have a method attached to their Button which grabs the values from the Entr i e s
and sends them over to the master if they aren’t blank. When showing the error messagebox we specify
the parent as s e l f to ensure that it displays on top of our forms. Since the forms and messageboxes
both display in the center of the master, our error message would appear behind our forms since by
default they are parented to the main Tk object. By passing in the parent argument as s e l f we ensure
they appear in front of our form. We don’t need to do this on success as we destroy the form object
beforehand anyway.

5.3.3 IniEditor

__init__ and file_new

We’ve now added a "new" option to our file menu and given it a keyboard shortcut. These both call
our f i l e_new method. This method uses the ask saveas f i l ename method of the f i l e d i a l o g to grab
a filename from the user, which must end in .ini as before, and then parses it. We’ve passed in the
f i l e t y p e s argument to force the file to end with . i n i this time (and done the same in f i l e_open
too). Even thought this new file will be blank, passing it to our pa r s e_ in i_ f i l e method still sets it
up in our ac t i v e_ in i and act ive_in i_f i l ename variables, as well as putting the filename at the top
of our window.

Adding items and sections

Our add_∗_form methods both just create an instance of the relevant form windows, which then in
turn call their add_∗ methods on the master. Our add_section_form needs to check there is an .ini file
open before running, but our add_item_form doesn’t need to as the Button won’t be rendered without
an open file.

add_section simply adds a new empty dictionary into our ac t i v e_ in i with the key matching the
text entered into the form. It then calls a new method - populate_sect ion_select_box - which clears
and re-populates the Listbox . It’s moved into its own method since we now do this in two places.

add_item is similar - but it needs to get the current section from our Listbox , and then add a key-
value pair to it’s dictionary. We then call di sp lay_sect ion_contents so that the new item appears
on the users screen right away and we get its widget into our cache for saving.

display_section_contents

The only change here is to add the "Add Item" Button which calls add_item_form. Even though we
pack this after our save_button it will appear above it, due to the use of tk .BOTTOM.

That’s it for development of our . i n i file editor. We now have an application which allows us to
change specific values without having to wade through the large blocks of comments often written in
. i n i files. Along the way we’ve learned how to use Listboxes to allow the user to make choices which
affect the GUI, and Spinboxes to allow for precision when adjusting numbers. No more typos when
trying to increase a 2 to a 3 and ending up with 23 instead!

5.3.4 Further Development

If you’d like to continue work on this project as an exercise, try the following:

• Make the right Frame scrollable using a Canvas (remember chapter 2?).

• Alter the running code to allow the user to launch the application with a specific file from the
command line, such as "python i n i f i l e e d i t o r . py t e s t . i n i"

56 CHAPTER 5. INI FILE EDITOR

• Add deletion functionality to complete all 4 parts of CRUD (Create, Read, Update, Delete).

Chapter 6

A Python Text Editor With
Autocomplete and Syntax Highlighting

In this chapter we’ll be making a simple Python editor complete with syntax highlighting and some
basic auto-completion. Here we’ll learn about:

• More advanced features of the Text widget.

• More advanced event binding.

• Using Menus outside of a top bar.

• Using tags.

• Overriding some of the window manager’s event calls.

6.1 Basic Functionality and Autocompletion

Figure 6.1: Our Text Editor.

57

58CHAPTER 6. A PYTHON TEXT EDITOR WITH AUTOCOMPLETE AND SYNTAX HIGHLIGHTING

1 import t k i n t e r as tk
2 from tk i n t e r import f i l e d i a l o g
3 from fun c t o o l s import p a r t i a l
4
5 c l a s s Editor (tk .Tk) :
6 de f __init__(s e l f) :
7 super () . __init__ ()
8
9 s e l f .FONT_SIZE = 12

10 s e l f .AUTOCOMPLETE_WORDS = [" de f " , " import " , " i f " , " e l s e " , " whi l e " , " f o r " , " t ry : "
, " except : " , " p r i n t (" , "True" , " Fa l se "]

11 s e l f .WINDOW_TITLE = "Text Editor "
12
13 s e l f . open_f i l e = ""
14
15 s e l f . t i t l e (s e l f .WINDOW_TITLE)
16 s e l f . geometry ("800x600")
17
18 s e l f . menubar = tk .Menu(s e l f , bg=" l i g h t g r e y " , f g="black ")
19
20 s e l f . f i le_menu = tk .Menu(s e l f . menubar , t e a r o f f =0, bg=" l i g h t g r e y " , f g="black ")
21 s e l f . f i le_menu . add_command(l a b e l="New" , command=s e l f . f i le_new , a c c e l e r a t o r="

Ctr l+N")
22 s e l f . f i le_menu . add_command(l a b e l="Open" , command=s e l f . f i l e_open , a c c e l e r a t o r="

Ctr l+O")
23 s e l f . f i le_menu . add_command(l a b e l="Save" , command=s e l f . f i l e_save , a c c e l e r a t o r="

Ctr l+S")
24
25 s e l f . menubar . add_cascade (l a b e l=" F i l e " , menu=s e l f . f i le_menu)
26
27 s e l f . c on f i gu r e (menu=s e l f . menubar)
28
29 s e l f . main_text = tk . Text (s e l f , bg="white " , f g="black " , f ont=("Ubuntu Mono" ,

s e l f .FONT_SIZE))
30
31 s e l f . main_text . pack (expand=1, f i l l =tk .BOTH)
32
33 s e l f . main_text . bind ("<space>" , s e l f . destroy_autocomplete_menu)
34 s e l f . main_text . bind ("<KeyRelease>" , s e l f . display_autocomplete_menu)
35 s e l f . main_text . bind ("<Tab>" , s e l f . i n s e r t_space s)
36
37 s e l f . bind ("<Control−s>" , s e l f . f i l e_ sav e)
38 s e l f . bind ("<Control−o>" , s e l f . f i l e_open)
39 s e l f . bind ("<Control−n>" , s e l f . f i l e_new)
40
41 de f f i le_new (s e l f , event=None) :
42 fi le_name = f i l e d i a l o g . a sk saveas f i l ename ()
43 i f f i le_name :
44 s e l f . open_f i l e = fi le_name
45 s e l f . main_text . d e l e t e (1 . 0 , tk .END)
46 s e l f . t i t l e (" − " . j o i n ([s e l f .WINDOW_TITLE, s e l f . open_f i l e]))
47
48 de f f i l e_open (s e l f , event=None) :
49 f i le_to_open = f i l e d i a l o g . askopenf i l ename ()
50
51 i f f i le_to_open :
52 s e l f . open_f i l e = fi le_to_open
53 s e l f . main_text . d e l e t e (1 . 0 , tk .END)
54
55 with open (f i le_to_open , " r ") as f i l e_con t en t s :
56 f i l e _ l i n e s = f i l e_con t en t s . r e a d l i n e s ()
57 i f l en (f i l e _ l i n e s) > 0 :
58 f o r index , l i n e in enumerate (f i l e _ l i n e s) :
59 index = f l o a t (index) + 1 .0
60 s e l f . main_text . i n s e r t (index , l i n e)
61

6.1. BASIC FUNCTIONALITY AND AUTOCOMPLETION 59

62 s e l f . t i t l e (" − " . j o i n ([s e l f .WINDOW_TITLE, s e l f . open_f i l e]))
63
64 de f f i l e_sav e (s e l f , event=None) :
65 i f not s e l f . open_f i l e :
66 new_file_name = f i l e d i a l o g . a sk saveas f i l ename ()
67 i f new_file_name :
68 s e l f . open_f i l e = new_file_name
69
70 i f s e l f . open_f i l e :
71 new_contents = s e l f . main_text . get (1 . 0 , tk .END)
72 with open (s e l f . open_f i le , "w") as open_f i l e :
73 open_f i l e . wr i t e (new_contents)
74
75 de f in s e r t_space s (s e l f , event=None) :
76 s e l f . main_text . i n s e r t (tk . INSERT, " ")
77
78 re turn "break"
79
80 de f get_menu_coordinates (s e l f) :
81 bbox = s e l f . main_text . bbox (tk . INSERT)
82 menu_x = bbox [0] + s e l f . winfo_x () + s e l f . main_text . winfo_x ()
83 menu_y = bbox [1] + s e l f . winfo_y () + s e l f . main_text . winfo_y () + s e l f .FONT_SIZE +

2
84
85 re turn (menu_x , menu_y)
86
87 de f display_autocomplete_menu (s e l f , event=None) :
88 current_index = s e l f . main_text . index (tk . INSERT)
89 s t a r t = s e l f . ad just_f loat ing_index (current_index)
90
91 try :
92 currently_typed_word = s e l f . main_text . get (s t a r t + " wordstart " , tk . INSERT)
93 except tk . TclError :
94 currently_typed_word = ""
95
96 currently_typed_word = s t r (currently_typed_word) . s t r i p ()
97
98 i f currently_typed_word :
99 s e l f . destroy_autocomplete_menu ()

100
101 sugge s t i on s = []
102 f o r word in s e l f .AUTOCOMPLETE_WORDS:
103 i f word . s t a r t sw i t h (currently_typed_word) and not currently_typed_word

== word :
104 sugge s t i on s . append (word)
105
106 i f l en (sugg e s t i on s) > 0 :
107 x , y = s e l f . get_menu_coordinates ()
108 s e l f . complete_menu = tk .Menu(s e l f , t e a r o f f =0, bg=" l i g h t g r e y " , f g="black

")
109
110 f o r word in sugge s t i on s :
111 insert_word_cal lback = pa r t i a l (s e l f . insert_word , word=word , part=

currently_typed_word , index=current_index)
112 s e l f . complete_menu . add_command(l a b e l=word , command=

insert_word_cal lback)
113
114 s e l f . complete_menu . post (x , y)
115 s e l f . main_text . bind ("<Down>" , s e l f . focus_menu_item)
116
117 de f destroy_autocomplete_menu (s e l f , event=None) :
118 try :
119 s e l f . complete_menu . des t roy ()
120 s e l f . main_text . unbind ("<Down>")
121 s e l f . main_text . f ocus_force ()
122 except Att r ibuteError :

60CHAPTER 6. A PYTHON TEXT EDITOR WITH AUTOCOMPLETE AND SYNTAX HIGHLIGHTING

123 pass
124
125 de f insert_word (s e l f , word , part , index) :
126 amount_typed = len (part)
127 remaining_word = word [amount_typed :]
128 remaining_word_offset = " +" + s t r (l en (remaining_word)) + "c"
129 s e l f . main_text . i n s e r t (index , remaining_word)
130 s e l f . main_text . mark_set (tk . INSERT, index + remaining_word_offset)
131 s e l f . destroy_autocomplete_menu ()
132 s e l f . main_text . f ocus_force ()
133
134 de f ad just_f loat ing_index (s e l f , number) :
135 i n d i c e s = number . s p l i t (" . ")
136 x_index = i nd i c e s [0]
137 y_index = i nd i c e s [1]
138 y_as_number = in t (y_index)
139 y_previous = y_as_number − 1
140
141 re turn " . " . j o i n ([x_index , s t r (y_previous)])
142
143 de f focus_menu_item (s e l f , event=None) :
144 try :
145 s e l f . complete_menu . focus_force ()
146 s e l f . complete_menu . en t r y con f i g (0 , s t a t e=" ac t i v e ")
147 except tk . TclError :
148 pass
149
150 i f __name__ == "__main__" :
151 ed i t o r = Editor ()
152 ed i t o r . mainloop ()

Listing 6.1: Text Editor

6.1.1 __init__

We begin with some constants. FONT_SIZE will be used to adjust the positioning of the autocomplete
menu (and also the font size used in our editor, as you probably guessed). Next is theAUTOCOMPLETE_WORDS
list which holds all of the words which we wish to autocomplete. Finally is the self-explanitory

WINDOW_TITLE. We also define open_f i l e which will be a string representing the path of our currently
opened file (much like last chapter) then set the title and geometry.

We then move on to our menu bar, which is much the same as the one from last chapter. We create
the new, open, and save buttons which are fairly standard for text editors.

The last thing we need is the main area to enter text, which is achieved using a Text widget. We
specify the colours and the font (if you don’t have ubuntu mono feel free to change this) and pack it
to take up as much space as it can with expand=1 and f i l l =tk .BOTH. We finish up by binding some
methods to space, tab, and KeyRelease (each will be covered below) as well as the open, new, and save
bindings from our f i le_menu.

6.1.2 Handling Files

f i l e_new sets the value of our open_f i l e to the one returned by ask saveas f i l ename and empties our
Text area before changing the window title to display the new file’s path.

f i l e_open uses askopenf i l ename to grab an existing file name and sets it as our open_f i l e . It
then clears the contents of our Text area to get rid of any existing text in there. Afterwards the file is
opened in read mode and we obtain a list of each line with r e a d l i n e s () . Each line is i n s e r t ed into
our Text area at the relevant index. We add 1.0 to the float value of the l i s t index because t k i n t e r ’s

6.1. BASIC FUNCTIONALITY AND AUTOCOMPLETION 61

indexing starts at 1.0, whereas python’s l i s t indexing begins at 0. We then finish by displaying the
open file in the window’s title as before.

f i l e_ sav e begins by checking if we have an open_f i l e , and if not will try and get one with
ask saveas f i l ename () . If that was successful, we grab the text out of our Text area and write it into
our opened file.

6.1.3 Autocompletion

display_autocomplete_menu

We’ll start off with display_autocomplete_menu which is bound to <KeyRelease>, meaning it’s called
every time a key is typed into our Text area. We begin by grabbing the current index of the cursor with
index (tk . INSERT) . This is returned in a string of the format "x.y". For example, the first character
of the second line is "1.2" and the 14th character of line 12 is "14.12". The reason we need this is to
try and grab the word which is currently being typed by the user. We need to go back one character
in order to do this, which is where adjust_f loat ing_index comes in. In adjust_f loat ing_index we
split off the string on the point to get the x and y indices. Then we need to remove 1 from y_index and
put it back together as a string in the form of "x.y". With this done, we can use t k i n t e r ’s magic word
"wordstart" to get the beginning of the word being typed. This is combined with the INSERT position
of the cursor to grab the currently_typed_word. This may be hard to grasp, so here’s a picture which
will hopefully clear it up a bit:

Figure 6.2: Finding our current word boundaries. Word is the pink arrow.

Now that we have the currently typed word (or not, if there was a TclError raised along the way
due to a bad index) we begin by destroying the autocomplete menu if it is already active, since we will
only want one up at a time, and then we build a l i s t of suggestions based on the current word. We do
this by looping through our AUTOCOMPLETE_WORDS and appending ones which start with what the user
is currently typing (but not any which are equal to it, since then there’s no need to "complete" what
they’ve already typed). If there are any matching suggestions then we need to show the menu. We get
the coordinates with get_menu_coordinates (covered next) and instantiate a new Menu to hold each
suggestion.

We loop through each suggestion and create a p a r t i a l of insert_word (covered below) passing
in the suggested word, the currently-being-typed word and the index of our cursor. We then add a
menu item for this word with the p a r t i a l as its command. After all suggestions are added, we use
post (x , y) to place our menu exactly at the calculated coordinates and bind the down arrow key so
that it focuses the first menu item.

get_menu_coordinates

In order to calculate where to put our autocomplete menu we use the Text area’s bbox method to get
the bounding box of the cursor position (tk . INSERT). We then add on the x and y position of our
main window to ensure it displays within the application itself, and add some extra onto the y so that
our menu doesn’t cover up what the user is currently typing.

62CHAPTER 6. A PYTHON TEXT EDITOR WITH AUTOCOMPLETE AND SYNTAX HIGHLIGHTING

insert_word

In order to complete the word being typed, we need to know how much has already been entered. We
get this with l en (part) and use it to get the rest of the word which needs to be inserted. We then
need to build another of t k i n t e r ’s magic strings to tell it how many characters are being inserted.
The format "+nc" implies n characters ahead of the given index, so "+2c" goes 2 characters forward.

With all of that figured out we insert the rest of the word at the current cursor’s position and then
move the cursor forward the appropriate number of characters with mark_set so that it is at the end
of the newly-completed word. We then dest roy the autocomplete menu and force the focus back to
our Text area so that the user can continue typing.

Focusing and Destroying the Menu

focus_menu_item forces focus onto the autocomplete menu and sets its first item as active so the user
can select it with Enter. If we somehow end up here with no menu (or an empty menu) then we will
get a TclError , which we can just ignore and do nothing.

destroy_autocomplete_menu calls dest roy on our menu and unbinds the down arrow from our
Text area. If the menu doesn’t exist then the TclError is caught and nothing will happen. We finally
force the focus back to our Text area so that the user can continue typing.

6.1.4 Spaces over Tabs!?

There’s a method called i n s e r t_space s bound to the Tab key which inserts 4 spaces and uses re turn
"break" to prevent the default behaviour of said key. This is to demonstrate how to make an event

binding override the default key behaviour. Using re turn "break" we end the chain of events caused
by pressing the Tab key, meaning no Tab character is inserted. Most editors will offer the option of
inserting spaces when pressing Tab, and using 4 spaces conforms to PEP-8.

6.1.5 Next Iteration

Now it’s time to utilise some tags to get syntax highlighting working.

6.2. SYNTAX HIGHLIGHTING 63

6.2 Syntax Highlighting

With this iteration we have some syntax highlighting for strings, numbers, decorators, and various
language keywords. A lot of the code has stayed the same, just a small addition to f i l e_open to
highlight files upon opening them.

1 import re
2 . . .
3
4 c l a s s Editor (tk .Tk) :
5 de f __init__(s e l f) :
6 . . .
7
8 s e l f .AUTOCOMPLETE_WORDS = [
9 " de f " , " import " , " as " , " i f " , " e l i f " , " e l s e " , " whi l e " ,

10 " f o r " , " t ry " , " except " , " p r i n t " , "True" , " Fa l se " ,
11 " s e l f " , "None" , " re turn " , "with"
12]
13 s e l f .KEYWORDS_1 = [" import " , " as " , " from" , " de f " , " t ry " , " except " , " s e l f "]
14 s e l f .KEYWORDS_FLOW = [" i f " , " e l s e " , " e l i f " , " t ry " , " except " , " f o r " , " in " , "

whi l e " , " re turn " , "with"]
15
16 s e l f .SPACES_REGEX = re . compi le ("^\s ∗")
17 s e l f .STRING_REGEX_SINGLE = re . compi le (" ’ [^ ’ \ r \n]∗ ’ ")
18 s e l f .STRING_REGEX_DOUBLE = re . compi le (’ "[^"\ r \n]∗" ’)
19 s e l f .NUMBER_REGEX = re . compi le (r "\b(?=\(∗) \d+\.?\d∗(?=\) ∗\ ,∗) \b")
20 s e l f .KEYWORDS_REGEX = re . compi le (" (?=\(∗) (? <! [a−z]) (None | True | Fa l se) (?=\) ∗\ ,∗) "

)
21 s e l f .SELF_REGEX = re . compi le (" (?=\(∗) (? <! [a−z]) (s e l f) (?=\) ∗\ ,∗) ")
22 s e l f .FUNCTIONS_REGEX = re . compi le (" (?=\(∗) (? <! [a−z]) (p r i n t | l i s t | d i c t | s e t | i n t |

s t r) (?=\() ")
23
24 s e l f .REGEX_TO_TAG = {
25 s e l f .STRING_REGEX_SINGLE : " s t r i n g " ,
26 s e l f .STRING_REGEX_DOUBLE : " s t r i n g " ,
27 s e l f .NUMBER_REGEX : " d i g i t " ,
28 s e l f .KEYWORDS_REGEX : "keywordcaps" ,
29 s e l f .SELF_REGEX : "keyword1" ,
30 s e l f .FUNCTIONS_REGEX : "keywordfunc" ,
31 }
32
33 . . .
34
35 s e l f . main_text . tag_conf ig ("keyword1" , foreground="orange ")
36 s e l f . main_text . tag_conf ig ("keywordcaps" , foreground="navy")
37 s e l f . main_text . tag_conf ig ("keywordflow" , foreground=" purple ")
38 s e l f . main_text . tag_conf ig ("keywordfunc" , foreground="darkgrey ")
39 s e l f . main_text . tag_conf ig (" decorato r " , foreground="khaki ")
40 s e l f . main_text . tag_conf ig (" d i g i t " , foreground=" red ")
41 s e l f . main_text . tag_conf ig (" s t r i n g " , foreground="green ")
42
43 . . .
44 s e l f . main_text . bind ("<KeyRelease>" , s e l f . on_key_release)
45 s e l f . main_text . bind ("<Escape>" , s e l f . destroy_autocomplete_menu)
46 . . .
47
48 de f f i le_new (s e l f , event=None) :
49 . . .
50
51 de f f i l e_open (s e l f , event=None) :
52 . . .
53
54 f ina l_ index = s e l f . main_text . index (tk .END)
55 final_line_number = in t (f ina l_ index . s p l i t (" . ") [0])
56
57 f o r line_number in range (f inal_line_number) :

64CHAPTER 6. A PYTHON TEXT EDITOR WITH AUTOCOMPLETE AND SYNTAX HIGHLIGHTING

58 l ine_to_tag = " . " . j o i n ([s t r (line_number) , "0"])
59 s e l f . tag_keywords (None , l ine_to_tag)
60
61
62 de f f i l e_sav e (s e l f , event=None) :
63 . . .
64
65 de f in s e r t_space s (s e l f , event=None) :
66 . . .
67
68 de f get_menu_coordinates (s e l f) :
69 . . .
70
71 de f display_autocomplete_menu (s e l f , event=None) :
72 . . .
73 s e l f . complete_menu . post (x , y)
74 s e l f . complete_menu . bind ("<Escape>" , s e l f . destroy_autocomplete_menu)
75 s e l f . main_text . bind ("<Down>" , s e l f . focus_menu_item)
76
77 de f destroy_autocomplete_menu (s e l f , event=None) :
78 . . .
79
80 de f insert_word (s e l f , word , part , index) :
81 . . .
82
83 de f ad just_f loat ing_index (s e l f , number) :
84 . . .
85
86 de f focus_menu_item (s e l f , event=None) :
87 . . .
88
89 de f tag_keywords (s e l f , event=None , current_index=None) :
90 i f not current_index :
91 current_index = s e l f . main_text . index (tk . INSERT)
92 line_number = current_index . s p l i t (" . ") [0]
93 l ine_beg inn ing = " . " . j o i n ([line_number , "0"])
94 l ine_text = s e l f . main_text . get (l ine_beginning , l ine_beg inn ing + " l i n e end ")
95 l ine_words = l ine_text . s p l i t ()
96 number_of_spaces = s e l f . number_of_leading_spaces (l i n e_text)
97 y_pos it ion = number_of_spaces
98
99 f o r tag in s e l f . main_text . tag_names () :

100 s e l f . main_text . tag_remove (tag , l ine_beginning , l ine_beg inn ing + " l i n e end ")
101
102 s e l f . add_regex_tags (line_number , l i n e_text)
103
104 f o r word in l ine_words :
105 stripped_word = word . s t r i p (" () : , ")
106 word_start = s t r (y_pos it ion)
107 word_end = s t r (y_pos it ion + len (stripped_word))
108 start_index = " . " . j o i n ([line_number , word_start])
109 end_index = " . " . j o i n ([line_number , word_end])
110
111 i f stripped_word in s e l f .KEYWORDS_1:
112 s e l f . main_text . tag_add ("keyword1" , start_index , end_index)
113 e l i f stripped_word in s e l f .KEYWORDS_FLOW:
114 s e l f . main_text . tag_add ("keywordflow" , start_index , end_index)
115 e l i f stripped_word . s t a r t sw i t h ("@") :
116 s e l f . main_text . tag_add (" decorato r " , start_index , end_index)
117
118 y_pos it ion += len (word) + 1
119
120 de f number_of_leading_spaces (s e l f , l i n e) :
121 spaces = re . search (s e l f .SPACES_REGEX, l i n e)
122 i f spaces . group (0) i s not None :
123 number_of_spaces = len (spaces . group (0))

6.2. SYNTAX HIGHLIGHTING 65

124 e l s e :
125 number_of_spaces = 0
126
127 re turn number_of_spaces
128
129 de f add_regex_tags (s e l f , line_number , l i n e_text) :
130 f o r regex , tag in s e l f .REGEX_TO_TAG. items () :
131 f o r match in regex . f i n d i t e r (l i n e_text) :
132 s ta r t , end = match . span ()
133 start_index = " . " . j o i n ([line_number , s t r (s t a r t)])
134 end_index = " . " . j o i n ([line_number , s t r (end)])
135 s e l f . main_text . tag_add (tag , start_index , end_index)
136
137 de f on_key_release (s e l f , event=None) :
138 i f not event . keysym in ("Up" , "Down" , " Le f t " , "Right" , "BackSpace" , " Delete " , "

Escape") :
139 s e l f . display_autocomplete_menu ()
140 s e l f . tag_keywords ()
141
142 i f __name__ == "__main__" :
143 . . .

Listing 6.2: Text Editor

6.2.1 __init__

We’ve got some more autocomplete words now as well as two more lists which separate them out a bit.
This is to avoid colouring all keywords with the same colour, which looks horrible in my opinion. We
then have a big pile of regexes which will match spaces, strings, numbers and keywords. I will try to
explain each below. After that we’ve got a dictionary mapping the regexes to strings, which are some
of the tag names defined below. We use tag_conf ig to define a tag represented by a string (the first
argument) and add some styling associated with it (the proceeding keyword arguments). Anything
which is given the tag "keyword1" will be orange, for example.

A tag is essentially just a group of properties which can be assigned to certain characters within the
Text area. In this instance we are changing the colour of certain words to achieve syntax highlighting.

We’ve adjusted the method bound to <KeyRelease> to a new one, since we now want to call 2
methods each time. This will be covered later.

6.2.2 Regexes Explained

1 s e l f .STRING_REGEX_SINGLE = " ’ [^ ’ \ r \n]∗ ’ "
2 # a l i t e r a l ’
3 # anything which i s n ’ t ’ or a newl ine 0 or more t imes
4 # a l i t e r a l ’
5
6 s e l f .STRING_REGEX_DOUBLE = re . compi le (’ "[^"\ r \n]∗" ’)
7 # a l i t e r a l " ,
8 # anything which i s n ’ t " or a newl ine 0 or more t imes
9 # a l i t e r a l "

10
11 s e l f .NUMBER_REGEX = re . compi le (
12 \b # begin with a word boundry (punctuat ion or space)
13 (?=\(∗) # match but don ’ t h i g h l i g h t 0 or more opening bracket s
14 \d+\.?\d∗ # match 1 or more numbers , 0 or 1 decimal po ints , 0 or more numbers
15 (?=\) ∗\ ,∗) # match but don ’ t h i g h l i g h t 0 or more c l o s i n g bracket s or commas
16 \b # end with a word boundry (punctuat ion or space)
17)
18
19
20 s e l f .KEYWORDS_REGEX = re . compi le (

66CHAPTER 6. A PYTHON TEXT EDITOR WITH AUTOCOMPLETE AND SYNTAX HIGHLIGHTING

21 (?=\(∗) # match but don ’ t h i g h l i g h t 0 or more opening bracket s
22 (? <! [a−z]) # don ’ t match i f i t beg ins with an alphabet charac t e r
23 (None | True | Fa l se) # match None or True or Fa l se
24 (?=\) ∗\ ,∗) # match but don ’ t h i g h l i g h t 0 or more c l o s i n g bracket s or commas
25)
26
27 s e l f .SELF_REGEX = re . compi le (
28 (?=\(∗) # same as above
29 (? <! [a−z]) # same as above
30 (s e l f) # match s e l f
31 (?=\) ∗\ ,∗) # same as above
32)
33
34
35 s e l f .FUNCTIONS_REGEX = re . compi le (
36 (?=\(∗) # same as above
37 (? <! [a−z]) # same as above
38 (p r i n t | l i s t | d i c t | s e t | i n t | s t r) # l i t e r a l match pr int , l i s t , d i c t , e t c .
39 (?=\() # match but dont capture 1 opening bracket
40)

Listing 6.3: Regex Explanations

6.2.3 file_open

After all of the previous code for opening files, we need to run them through our tag_keywords method
to apply the syntax highlighting. Since this function works line-by-line, we get the index of the end
of our file and split the x off of t k i n t e r ’s "x.y" indexing format. This gives us the number of the
last line, which is also the number of lines in the document. We can then iterate over the range of
that number, build a t k i n t e r index of "line_number.0" and pass it into our tag_keywords method.
Speaking of which:

6.2.4 tag_keywords

The main bulk of this iteration is right here. As mentioned, this method works on a line-by-line basis,
so we need to check whether we have a line number passed in. If not, we use the line with the cursor
on it. We again split off the x and join it with a 0 to get the t k i n t e r index of the line’s beginning. We
combine that with the magic word "lineend" within get to get the contents of the whole line. We can
then use s p l i t () to get each individual "word" on the line. We grab the number of leading spaces on
the line so that we can adjust our y position to the start of the actual text.

With all of that set up, we remove all tags on the current line so that we can overwrite them with
new ones. We do this by looping through all of our tag_names () and calling tag_remove on the entire
line. Without this, when the user types "as" it will become highlighted because it is a keyword. If
they then continue to write the full word "assumption" the first "as" will remain highlighted, which
will look wrong and be offputting.

The first thing to do is to add the regex-specified tags. Let’s jump to that method now:

add_regex_tags

We iterate over our d i c t i ona ry of regex-to-tag mappings and use f i nd_ i t e r over the current line to
see if we have any matches. If we do, the span () function handily gives us the start and end indexes of
the entire string at which this match occcurs. We j o i n these to the line number with a dot to match
t k i n t e r ’s indexing and add the associated tag in that range.

back to tag_keywords

Now that we’ve covered the more complex cases we can do a slightly more manual approach to finish
off the remaining keyword types. We strip off brackets, colons, and commas because they are part of

6.2. SYNTAX HIGHLIGHTING 67

some keywords (if:, else:) but we don’t want them to be coloured. We then use the current y position
as the word’s start and add the length to it to get the word’s end. We join it with the line number to
get an index as usual so that we can begin comparison.

All we have to do is check whether the word is in one of our keywords l i s t s, and if it is, assign
the relevant tag to its range. We just use s t a r t sw i t h ("@") to find a decorator for simplicity. We then
update the current y position with the length of the word plus one (for the space character).

That’s all there is to applying the syntax highlighting to our Text area. The majority of the work is
figuring out how to correctly keep track of the relevant t k i n t e r index of the word you wish to colour.

Why Two Methods of Tagging?

Certain keywords should not be observed as part of a bigger "word". Take "if" for example. It should
generally appear by itself (aside from the colon, which we can easily strip off). Now consider "None".
"None" will often get merged into a bigger "word". For example: s e l f . add_task (None , task_text
, True) . Here there is no spacing around "None", which is the correct python styling, but when
s p l i t ting this line we get one big chunk of s e l f . add_task (None , which is not equal to "None". We
can’t pick out the "None" easily here, which is why we need to use regex.

Strings and numbers are also different beasts entirely. You can’t really build a list of all possible
strings or numbers, so regex is a must in order to match them.

6.2.5 display_autocomplete_menu, number_of_leading_spaces, and on_key_release

display_autocomplete_menu now has destroy_autocomplete_menu bound to Escape so that the user
can close it and continue typing. The same binding was added to our main_text in __init__.

number_of_leading_spaces is a method taken from an older project of mine. It uses a regex
matching 0 or more space characters at the start of a string. If it finds a match, we return the length
of the match, otherwise 0.

on_key_release is just created to call two methods on the <KeyRelease> event. It displays the
autocomplete menu as before as well as updating our syntax highlighting tags with tag_keywords. We
do not want to display the autocomplete menu on a few specific key presses, including the arrow keys,
backspace, and escape, so we will check the event . keysym before calling display_autocomplete_menu.
event . keysym returns a human-readable representation of the key which triggered the event.

6.2.6 Next Iteration

We’ll finish off our text editor by adding some standard features to bring it in line with other text
editors, including a scroll bar, line numbers, select-all, find, and an Edit menu.

68CHAPTER 6. A PYTHON TEXT EDITOR WITH AUTOCOMPLETE AND SYNTAX HIGHLIGHTING

6.3 Our Finished Editor

1 . . .
2 import t k i n t e r . messagebox as msg
3
4 c l a s s FindPopup (tk . Topleve l) :
5 de f __init__(s e l f , master) :
6 super () . __init__ ()
7
8 s e l f . master = master
9

10 s e l f . t i t l e ("Find in f i l e ")
11 s e l f . center_window ()
12
13 s e l f . t r a n s i e n t (master)
14
15 s e l f . matches_are_highl ighted = True
16
17 s e l f . main_frame = tk . Frame(s e l f , bg=" l i g h t g r e y ")
18 s e l f . button_frame = tk . Frame(s e l f . main_frame , bg=" l i g h t g r e y ")
19
20 s e l f . f i nd_labe l = tk . Label (s e l f . main_frame , t ex t="Find : " , bg=" l i g h t g r e y " , f g="

black ")
21 s e l f . f ind_entry = tk . Entry (s e l f . main_frame , bg="white " , f g="black ")
22 s e l f . f ind_button = tk . Button (s e l f . button_frame , t ex t="Find Al l " , bg=" l i g h t g r e y "

, f g="black " , command=s e l f . f i nd)
23 s e l f . next_button = tk . Button (s e l f . button_frame , t ex t="Next" , bg=" l i g h t g r e y " , f g

="black " , command=s e l f . jump_to_next_match)
24 s e l f . cancel_button = tk . Button (s e l f . button_frame , t ext="Cancel " , bg=" l i g h t g r e y "

, f g="black " , command=s e l f . c ance l)
25
26 s e l f . main_frame . pack (f i l l =tk .BOTH, expand=1)
27
28 s e l f . f ind_button . pack (s i d e=tk .LEFT, pady=(0 ,10) , padx=(20 ,20))
29 s e l f . next_button . pack (s i d e=tk .LEFT, pady=(0 ,10) , padx=(15 ,20))
30 s e l f . cancel_button . pack (s i d e=tk .LEFT, pady=(0 ,10) , padx=(15 ,0))
31 s e l f . button_frame . pack (s i d e=tk .BOTTOM, f i l l =tk .BOTH)
32 s e l f . f i nd_labe l . pack (s i d e=tk .LEFT, f i l l =tk .X, padx=(20 ,0))
33 s e l f . f ind_entry . pack (s i d e=tk .LEFT, f i l l =tk .X, expand=1, padx=(0 ,20))
34
35 s e l f . f ind_entry . f ocus_force ()
36 s e l f . f ind_entry . bind ("<Return>" , s e l f . jump_to_next_match)
37 s e l f . f ind_entry . bind ("<KeyRelease>" , s e l f . matches_are_not_highlighted)
38 s e l f . bind ("<Escape>" , s e l f . c ance l)
39
40 s e l f . p r o to co l ("WM_DELETE_WINDOW" , s e l f . c ance l)
41
42 de f f i nd (s e l f , event=None) :
43 text_to_find = s e l f . f ind_entry . get ()
44 i f text_to_find and not s e l f . matches_are_highl ighted :
45 s e l f . master . remove_all_find_tags ()
46 s e l f . master . h ighl ight_matches (text_to_find)
47 s e l f . matches_are_highl ighted = True
48
49 de f jump_to_next_match (s e l f , event=None) :
50 text_to_find = s e l f . f ind_entry . get ()
51 i f text_to_find :
52 i f not s e l f . matches_are_highl ighted :
53 s e l f . f i nd ()
54 s e l f . master . next_match ()
55
56 de f cance l (s e l f , event=None) :
57 s e l f . master . remove_all_find_tags ()
58 s e l f . des t roy ()
59
60 de f matches_are_not_highlighted (s e l f , event) :

6.3. OUR FINISHED EDITOR 69

61 key_pressed = event . keysym
62 i f not key_pressed == "Return" :
63 s e l f . matches_are_highl ighted = False
64
65 de f center_window (s e l f) :
66 master_pos_x = s e l f . master . winfo_x ()
67 master_pos_y = s e l f . master . winfo_y ()
68
69 master_width = s e l f . master . winfo_width ()
70 master_height = s e l f . master . winfo_height ()
71
72 my_width = 300
73 my_height = 100
74
75 pos_x = (master_pos_x + (master_width // 2)) − (my_width // 2)
76 pos_y = (master_pos_y + (master_height // 2)) − (my_height // 2)
77
78 geometry = "{}x{}+{}+{}" . format (my_width , my_height , pos_x , pos_y)
79 s e l f . geometry (geometry)
80
81
82
83 c l a s s Editor (tk .Tk) :
84 de f __init__(s e l f) :
85 . . .
86 s e l f . edit_menu = tk .Menu(s e l f . menubar , t e a r o f f =0, bg=" l i g h t g r e y " , f g="black ")
87 s e l f . edit_menu . add_command(l a b e l="Cut" , command=s e l f . edit_cut , a c c e l e r a t o r="

Ctr l+X")
88 s e l f . edit_menu . add_command(l a b e l="Paste " , command=s e l f . edit_paste , a c c e l e r a t o r=

" Ctr l+V")
89 s e l f . edit_menu . add_command(l a b e l="Undo" , command=s e l f . edit_undo , a c c e l e r a t o r="

Ctr l+Z")
90 s e l f . edit_menu . add_command(l a b e l="Redo" , command=s e l f . edit_redo , a c c e l e r a t o r="

Ctr l+Y")
91
92 s e l f . menubar . add_cascade (l a b e l=" F i l e " , menu=s e l f . f i le_menu)
93 s e l f . menubar . add_cascade (l a b e l="Edit " , menu=s e l f . edit_menu)
94
95 . . .
96
97 s e l f . l ine_numbers = tk . Text (s e l f , bg=" l i g h t g r e y " , f g="black " , width=6)
98 s e l f . l ine_numbers . i n s e r t (1 . 0 , "1 \n")
99 s e l f . l ine_numbers . c on f i gu r e (s t a t e=" d i s ab l ed ")

100 s e l f . l ine_numbers . pack (s i d e=tk .LEFT, f i l l =tk .Y)
101
102 . . .
103
104 s e l f . s c r o l l b a r = tk . S c r o l l b a r (s e l f , o r i e n t=" v e r t i c a l " , command=s e l f .

scroll_text_and_line_numbers)
105 s e l f . main_text . c on f i gu r e (yscrollcommand=s e l f . s c r o l l b a r . s e t)
106
107 s e l f . s c r o l l b a r . pack (s i d e=tk .RIGHT, f i l l =tk .Y)
108 s e l f . main_text . pack (expand=1, f i l l =tk .BOTH)
109
110 . . .
111 s e l f . main_text . tag_conf ig (" findmatch" , background=" ye l low ")
112
113 . . .
114
115 s e l f . main_text . bind ("<Control−y>" , s e l f . edit_redo)
116
117 . . .
118
119 s e l f . bind ("<Control−a>" , s e l f . s e l e c t_a l l)
120 s e l f . bind ("<Control−f>" , s e l f . show_find_window)
121

70CHAPTER 6. A PYTHON TEXT EDITOR WITH AUTOCOMPLETE AND SYNTAX HIGHLIGHTING

122 s e l f . main_text . bind ("<MouseWheel>" , s e l f . scroll_text_and_line_numbers)
123 s e l f . main_text . bind ("<Button−4>" , s e l f . scroll_text_and_line_numbers)
124 s e l f . main_text . bind ("<Button−5>" , s e l f . scroll_text_and_line_numbers)
125
126 s e l f . l ine_numbers . bind ("<MouseWheel>" , s e l f . skip_event)
127 s e l f . l ine_numbers . bind ("<Button−4>" , s e l f . skip_event)
128 s e l f . l ine_numbers . bind ("<Button−5>" , s e l f . skip_event)
129
130 de f skip_event (s e l f , event=None) :
131 re turn "break"
132
133 de f scroll_text_and_line_numbers (s e l f , ∗ args) :
134 try :
135 # from s c r o l l b a r
136 s e l f . main_text . yview_moveto (args [1])
137 s e l f . l ine_numbers . yview_moveto (args [1])
138 except IndexError :
139 #from MouseWheel
140 event = args [0]
141 i f event . d e l t a :
142 move = −1∗(event . d e l t a /120)
143 e l s e :
144 i f event .num == 5 :
145 move = 1
146 e l s e :
147 move = −1
148
149 s e l f . main_text . yv i ew_scro l l (move , " un i t s ")
150 s e l f . l ine_numbers . yv i ew_scro l l (move , " un i t s ")
151
152 re turn "break"
153
154 de f f i le_new (s e l f , event=None) :
155 . . .
156
157 de f f i l e_open (s e l f , event=None) :
158 f i le_to_open = f i l e d i a l o g . askopenf i l ename ()
159
160 i f f i le_to_open :
161 s e l f . open_f i l e = fi le_to_open
162 s e l f . main_text . d e l e t e (1 . 0 , tk .END)
163
164 with open (f i le_to_open , " r ") as f i l e_con t en t s :
165 f i l e _ l i n e s = f i l e_con t en t s . r e a d l i n e s ()
166 i f l en (f i l e _ l i n e s) > 0 :
167 f o r index , l i n e in enumerate (f i l e _ l i n e s) :
168 index = f l o a t (index) + 1 .0
169 s e l f . main_text . i n s e r t (index , l i n e)
170
171 s e l f . t i t l e (" − " . j o i n ([s e l f .WINDOW_TITLE, s e l f . open_f i l e]))
172
173 s e l f . t ag_a l l_ l ine s ()
174
175
176 de f f i l e_sav e (s e l f , event=None) :
177 . . .
178
179 de f s e l e c t_a l l (s e l f , event=None) :
180 s e l f . main_text . tag_add (" s e l " , 1 . 0 , tk .END)
181
182 re turn "break"
183
184 de f edit_cut (s e l f , event=None) :
185 s e l f . main_text . event_generate ("<<Cut>>")
186
187 re turn "break"

6.3. OUR FINISHED EDITOR 71

188
189 de f ed it_paste (s e l f , event=None) :
190 s e l f . main_text . event_generate ("<<Paste>>")
191 s e l f . on_key_release ()
192 s e l f . t ag_a l l_ l ine s ()
193
194 re turn "break"
195
196 de f edit_undo (s e l f , event=None) :
197 s e l f . main_text . event_generate ("<<Undo>>")
198
199 re turn "break"
200
201 de f edit_redo (s e l f , event=None) :
202 s e l f . main_text . event_generate ("<<Redo>>")
203
204 re turn "break"
205
206 de f in s e r t_space s (s e l f , event=None) :
207 . . .
208
209 de f get_menu_coordinates (s e l f) :
210 . . .
211
212 de f display_autocomplete_menu (s e l f , event=None) :
213 . . .
214
215 de f destroy_autocomplete_menu (s e l f , event=None) :
216 . . .
217
218 de f insert_word (s e l f , word , part , index) :
219 . . .
220
221 de f ad just_f loat ing_index (s e l f , number) :
222 . . .
223
224 de f focus_menu_item (s e l f , event=None) :
225 . . .
226
227 de f tag_keywords (s e l f , event=None , current_index=None) :
228 . . .
229
230 de f number_of_leading_spaces (s e l f , l i n e) :
231 . . .
232
233 de f add_regex_tags (s e l f , line_number , l i n e_text) :
234 . . .
235
236 de f on_key_release (s e l f , event=None) :
237 . . .
238 s e l f . update_line_numbers ()
239
240 de f tag_a l l_ l ine s (s e l f) :
241 f ina l_ index = s e l f . main_text . index (tk .END)
242 final_line_number = in t (f ina l_ index . s p l i t (" . ") [0])
243
244 f o r line_number in range (f inal_line_number) :
245 l ine_to_tag = " . " . j o i n ([s t r (line_number) , "0"])
246 s e l f . tag_keywords (None , l ine_to_tag)
247
248 s e l f . update_line_numbers ()
249
250 de f update_line_numbers (s e l f) :
251 s e l f . l ine_numbers . c on f i gu r e (s t a t e="normal")
252 s e l f . l ine_numbers . d e l e t e (1 . 0 , tk .END)
253 number_of_lines = s e l f . main_text . index (tk .END) . s p l i t (" . ") [0]

72CHAPTER 6. A PYTHON TEXT EDITOR WITH AUTOCOMPLETE AND SYNTAX HIGHLIGHTING

254 line_number_string = "\n" . j o i n (s t r (no+1) f o r no in range (i n t (number_of_lines)))
255 s e l f . l ine_numbers . i n s e r t (1 . 0 , l ine_number_string)
256 s e l f . l ine_numbers . c on f i gu r e (s t a t e=" d i s ab l ed ")
257
258 de f show_find_window (s e l f , event=None) :
259 FindPopup (s e l f)
260
261 de f highl ight_matches (s e l f , text_to_find) :
262 s e l f . main_text . tag_remove (" findmatch" , 1 . 0 , tk .END)
263 s e l f . match_coordinates = []
264 s e l f . current_match = −1
265
266 f ind_regex = re . compi le (text_to_find)
267 search_text_l ines = s e l f . main_text . get (1 . 0 , tk .END) . s p l i t ("\n")
268
269 f o r line_number , l i n e in enumerate (search_text_l ines) :
270 line_number += 1
271 f o r match in f ind_regex . f i n d i t e r (l i n e) :
272 s ta r t , end = match . span ()
273 start_index = " . " . j o i n ([s t r (line_number) , s t r (s t a r t)])
274 end_index = " . " . j o i n ([s t r (line_number) , s t r (end)])
275 s e l f . main_text . tag_add (" findmatch" , start_index , end_index)
276 s e l f . match_coordinates . append ((start_index , end_index))
277
278 de f next_match (s e l f , event=None) :
279 try :
280 current_target , current_target_end = s e l f . match_coordinates [s e l f .

current_match]
281 s e l f . main_text . tag_remove (" s e l " , current_target , current_target_end)
282 s e l f . main_text . tag_add (" findmatch" , current_target , current_target_end)
283 except IndexError :
284 pass
285
286 try :
287 s e l f . current_match = s e l f . current_match + 1
288 next_target , target_end = s e l f . match_coordinates [s e l f . current_match]
289 except IndexError :
290 i f l en (s e l f . match_coordinates) == 0 :
291 msg . showinfo ("No Matches" , "No Matches Found")
292 e l s e :
293 i f msg . askyesno ("Wrap Search ?" , "Reached end o f f i l e . Continue from the

top ?") :
294 s e l f . current_match = −1
295 s e l f . next_match ()
296 e l s e :
297 s e l f . main_text . mark_set (tk . INSERT, next_target)
298 s e l f . main_text . tag_remove (" findmatch" , next_target , target_end)
299 s e l f . main_text . tag_add (" s e l " , next_target , target_end)
300 s e l f . main_text . s e e (next_target)
301
302 de f remove_all_find_tags (s e l f) :
303 s e l f . main_text . tag_remove (" findmatch" , 1 . 0 , tk .END)
304 s e l f . main_text . tag_remove (" s e l " , 1 . 0 , tk .END)
305
306
307 i f __name__ == "__main__" :
308 ed i t o r = Editor ()
309 ed i t o r . mainloop ()

Listing 6.4: Our Finished Editor

6.3.1 FindPopup

__init__

After setting the title and borrowing code from our ini editor to center this window with the center_window
method, we specify that this window should be a t r an s i e n t , which means it will remain over the

6.3. OUR FINISHED EDITOR 73

top of our main window until closed. Next is a boolean which we use to indicate if the matches are
highlighted in the main window or not. We then define two frames: a main one for the whole window
and a button frame to hold our Buttons. We pack our Label and Entry in the main_frame and our
three Buttons - Find All, Next, and Cancel - into the button_frame, which is packed to the bottom
of the main_frame. We force focus to the Entry so that the user doesn’t have to click in it to be-
gin typing, bind Enter to our jump_to_next_match method, bind Escape to our cance l method, and
override the window manager using s e l f . p r o to co l ("WM_DELETE_WINDOW" , <ca l lback >) so that our
cance l method will be called when the user closes the window.

The rest

Our f i nd method sets the matches_are_highl ighted flag to True to avoid repeatedly calling the
highl ight_matches method of the master window, and calls highl ight_matches with the text from
our Entry, providing there is something written in there and the matches are not already highlighted.

jump_to_next_match will call f i nd () if the matches for the Entry’s text are not currently high-
lighted, then pass off to the next_match method of our master window.

cance l will tell the master window to remove the tags added by the find methods and then destroy
our FindPopup instance.

matches_are_not_highlighted will set matches_are_highl ighted to False if any key except Enter
is pressed within our Entry, as this indicates the word to search for has now changed and needs to be
re-found.

center_window came from our Ini Editor, so see the previous chapter for an explanation.

6.3.2 Editor

__init__

With this iteration, we have an edit menu to accompany our file menu. It’s created in the same way
with cut , paste , undo , and redo buttons.

Our line numbers are handled by a disabled Text widget. It’s six characters wide, meaning it can
keep track of up to one million lines of code (I hope nobody ever encounters a million-line file however!)
We start it off at line 1 and pack it over to the left.

We create a S c r o l l b a r and bind it to a command - scroll_text_and_line_numbers - as it will
need to scroll both of our Text widgets simultaneously. We also pair the main_text’s yscrollcommand
to the bar to ensure the bar moves when we scroll with the mouse. We pack this to the right before
finally packing our main_text so that everything is in the right place.

We finish up by adding a new tag - findmatch - to indicate matches made from our FindPopup,
and finally binding some key events.

Scrolling

scroll_text_and_line_numbers will receive different arguments depending on if it is triggered by the
S c r o l l b a r or mouse wheel. The S c r o l l b a r will pass a tuple of ("moveto", <fraction>) over here, so
we can directly call yview_moveto and pass over the fraction argument. Our mouse wheel will only
pass the usual event object which will raise an IndexError if we try and grab element [1] from it.
Therefore we catch this exception and use the code we saw in Chapter 2 to scroll both areas.

74CHAPTER 6. A PYTHON TEXT EDITOR WITH AUTOCOMPLETE AND SYNTAX HIGHLIGHTING

Our skip_event method is bound to the mouse wheel on the l ine_numbers. This is to stop the
user from scrolling the line numbers. The method just uses re turn "break" in order to do nothing
but end the chain of events triggered by scrolling.

select_all, file_open, and on_key_release

Simple changes here. We want to update the line numbers after opening a file for obvious reasons, so
we call update_line_numbers (covered later). Same deal for on_key_release. s e l e c t_a l l adds the
" s e l " tag to all of the text in our main_text area, thereby selecting it all.

The Edit Menu

As well as binding callbacks to events in t k i n t e r , we can generate the events ourselves using event_generate
. Here we generate the <<Cut>>, <<Paste>>, <<Undo>>, and <<Redo>> events.

After pasting we want to make sure the new text is syntax-highlighted. To do this we have
abstracted some code from f i l e_open into a new function - tag_a l l_ l ine s - which we call after
pasting. We also call on_key_release directly, since we are returning "break", which will both update
the line numbers and trigger auto-completion if we paste part of a keyword. We have bound <Control
−v> to this paste method in __init__ to ensure this happens when the user pastes from the keyboard
shortcut too.

update_line_numbers

In order to update the line numbers as the opened file grows, we enable our l ine_numbers widget,
remove all of its contents, grab the number of lines off of the end-of-file index, join each number in the
range up to our final line with a newline character, place this long string into the widget, and finally
disable it again. Note that we add 1 to each line number in our loop. This is because we don’t want
our first line to be line 0 and we do want the last value included.

highlight_matches

We begin this method by removing all "findmatch" tags from our main_text widget and initialising a
couple of variables which we will use to keep track of our matches. We then compile text_to_match,
which came from the Entry in our FindPopup, as regex. This allows the user to put an actual regular
expression in this box as well as the literal text. We then split the main_text’s contents on newline
characters to get a l i s t of every line. We enumerate over this l i s t and use code very similar to that
in our add_regex_tags to add a "findmatch" tag to the relevant t k i n t e r index range containing our
matches. We need to add 1 to the line_number when enumerating because a l i s t index begins at 0
but a t k i n t e r line number index begins at 1.

next_match

This method makes use of current_match and match_coordinates which were both initialised and
built in our highl ight_matches method. We begin by trying to remove the currently selected match’s
"sel" tag so that we only have one match selected at a time. If there isn’t one we will get an IndexError
which we will just catch and pass .

We then increment our current_match by 1 and try to grab the next set of match coordinates. If
this also throws an IndexError then we either have no matches or we are at the final match of the file.
If the l en of our match_coordinates list is 0 then we have no matches, so we will show a messagebox
letting the user know. Otherwise we are at the final match in the file, so we use an askyesno to ask
the user if they want to wrap the search back to the top. If they choose "yes" we put current_match
back to -1 and re-run this next_match method.

6.3. OUR FINISHED EDITOR 75

If no error is caught we put the cursor at the start of the matched word, swap its "findmatch" tag
for the "sel" tag to select it, then use s ee to scroll the main_text widget enough so that the match
comes into view.

6.3.3 The Finished Product

We’ve now got a nice little text editor with some syntax highlighting, autocomplete, and a find menu,
along with a few standard features you would expect to be in a text editor. I’m going to leave this
chapter here, even though there are so many more things I think can be added to this project, and
it’s really tempting to just carry on forever. Feel free to play with this project to really customise
it to your own preferences, everything from colour schemes to keyboard shortcuts. Hopefully from
writing this code you will have learned how powerful a tool the tags are within t k i n t e r , and gained
an understanding of how t k i n t e r keeps track of indexing.

The Text widget provides a search method of its own which can be used to obtain indexes of any
matches, and supports regexes. I decided to stick with manual regex searching and processing using
f i nd_ i t e r and constructing the t k i n t e r indexes to better show how they work. If you wish to re-write
some of the code to practise using the search method, please do.

6.3.4 Further Development

If you’d like to continue work on this project as an exercise, try the following:

• Use a checkbox or radio buttons to give the user the option of using either regex or plain-text
search with the FindPopup.

• Utilise the c o l o r choo s e r widget to give the user the ability to change some of the colour scheme.

• Add Replace functionality to the FindPopup.

• Use regex to pull all of the function names from the opened file and provide a popup window to
list them all.

• Pick any feature you like from a text editor and try to implement it.

Chapter 7

A Pomodoro Timer

In this chapter we will be creating an app which will help people to follow the pomodoro technique.
The pomodoro technique involves concentrating on a task for 25 minute bursts, so we will be building
a timer which will count down for 25 minutes then alert the user when the time is up. It will also
contain a log of completed tasks. In this chapter we will learn about the following:

• Using threads with tkinter

• the ttk Treeview widget

• Using ttk widgets for a more native look

7.1 A Basic Timer

Figure 7.1: A Pomodoro Timer

1 import thread ing
2 import time
3 import datet ime
4 import t k i n t e r as tk
5 from tk i n t e r import messagebox as msg
6

76

7.1. A BASIC TIMER 77

7 c l a s s CountingThread (thread ing . Thread) :
8 de f __init__(s e l f , master , start_time , end_time) :
9 super () . __init__ ()

10 s e l f . master = master
11 s e l f . start_time = start_time
12 s e l f . end_time = end_time
13
14 s e l f . end_now = False
15 s e l f . paused = False
16 s e l f . f o r ce_qu i t = Fal se
17
18 de f run (s e l f) :
19 whi l e True :
20 i f not s e l f . paused and not s e l f . end_now and not s e l f . f o rce_qu i t :
21 s e l f . main_loop ()
22 i f datet ime . datet ime . now() >= s e l f . end_time :
23 i f not s e l f . f o r ce_qui t :
24 s e l f . master . f i n i s h ()
25 break
26 e l i f s e l f . end_now :
27 s e l f . master . f i n i s h ()
28 break
29 e l i f s e l f . f o rce_qu i t :
30 de l s e l f . master . worker
31 re turn
32 e l s e :
33 cont inue
34 re turn
35
36 de f main_loop (s e l f) :
37 now = datet ime . datet ime . now()
38 i f now < s e l f . end_time :
39 t ime_d i f f e r ence = s e l f . end_time − now
40 mins , s e c s = divmod (t ime_di f f e r ence . seconds , 60)
41 t ime_str ing = " { :02d } : { : 0 2 d}" . format (mins , s e c s)
42 i f not s e l f . f o r ce_qui t :
43 s e l f . master . update_time_remaining (t ime_str ing)
44
45
46 c l a s s Timer (tk .Tk) :
47 de f __init__(s e l f) :
48 super () . __init__ ()
49
50 s e l f . t i t l e ("Pomodoro Timer")
51 s e l f . geometry ("500x300")
52 s e l f . r e s i z a b l e (False , Fa l se)
53
54 s e l f . standard_font = (None , 16)
55
56 s e l f . main_frame = tk . Frame(s e l f , width=500 , he ight =300 , bg=" l i g h t g r e y ")
57
58 s e l f . task_name_label = tk . Label (s e l f . main_frame , t ext="Task Name : " , bg="

l i g h t g r e y " , f g="black " , f ont=s e l f . standard_font)
59 s e l f . task_name_entry = tk . Entry (s e l f . main_frame , bg="white " , f g="black " , f ont=

s e l f . standard_font)
60 s e l f . start_button = tk . Button (s e l f . main_frame , t ex t=" Star t " , bg=" l i g h t g r e y " , f g

="black " , command=s e l f . s t a r t , f ont=s e l f . standard_font)
61 s e l f . time_remaining_var = tk . Str ingVar (s e l f . main_frame)
62 s e l f . time_remaining_var . s e t (" 25 :00 ")
63 s e l f . t ime_remaining_label = tk . Label (s e l f . main_frame , t extvar=s e l f .

time_remaining_var , bg=" l i g h t g r e y " , f g="black " , f ont=(None , 40))
64 s e l f . pause_button = tk . Button (s e l f . main_frame , t ext="Pause" , bg=" l i g h t g r e y " , f g

="black " , command=s e l f . pause , f ont=s e l f . standard_font , s t a t e=" d i s ab l ed ")
65
66 s e l f . main_frame . pack (f i l l =tk .BOTH, expand=1)
67

78 CHAPTER 7. A POMODORO TIMER

68 s e l f . task_name_label . pack (f i l l =tk .X, pady=15)
69 s e l f . task_name_entry . pack (f i l l =tk .X, padx=50, pady=(0 ,20))
70 s e l f . start_button . pack (f i l l =tk .X, padx=50)
71 s e l f . t ime_remaining_label . pack (f i l l =tk .X , pady=15)
72 s e l f . pause_button . pack (f i l l =tk .X, padx=50)
73
74 s e l f . p r o to co l ("WM_DELETE_WINDOW" , s e l f . sa f e_destroy)
75
76 de f setup_worker (s e l f) :
77 now = datet ime . datet ime . now()
78 in_25_mins = now + datet ime . t imede l ta (minutes=25)
79 #in_25_mins = now + datet ime . t imede l ta (seconds=3)
80 worker = CountingThread (s e l f , now , in_25_mins)
81 s e l f . worker = worker
82
83 de f s t a r t (s e l f) :
84 i f not ha sa t t r (s e l f , "worker") :
85 s e l f . setup_worker ()
86
87 s e l f . task_name_entry . c on f i gu r e (s t a t e=" d i s ab l ed ")
88 s e l f . start_button . c on f i gu r e (t ext=" Fin i sh " , command=s e l f . f i n i s h_ea r l y)
89 s e l f . time_remaining_var . s e t (" 25 :00 ")
90 s e l f . pause_button . c on f i gu r e (s t a t e="normal")
91 s e l f . worker . s t a r t ()
92
93 de f pause (s e l f) :
94 s e l f . worker . paused = not s e l f . worker . paused
95 i f s e l f . worker . paused :
96 s e l f . pause_button . c on f i gu r e (t ex t="Resume")
97 s e l f . worker . start_time = datet ime . datet ime . now()
98 e l s e :
99 s e l f . pause_button . c on f i gu r e (t ex t="Pause")

100 end_timedelta = datet ime . datet ime . now() − s e l f . worker . start_time
101 s e l f . worker . end_time = s e l f . worker . end_time + datet ime . t imede l ta (seconds=

end_timedelta . seconds)
102
103 de f f i n i s h_ea r l y (s e l f) :
104 s e l f . start_button . c on f i gu r e (t ext=" Star t " , command=s e l f . s t a r t)
105 s e l f . worker . end_now = True
106
107 de f f i n i s h (s e l f) :
108 s e l f . task_name_entry . c on f i gu r e (s t a t e="normal")
109 s e l f . time_remaining_var . s e t (" 25 :00 ")
110 s e l f . pause_button . c on f i gu r e (t ex t="Pause" , s t a t e=" d i s ab l ed ")
111 s e l f . start_button . c on f i gu r e (t ext=" Star t " , command=s e l f . s t a r t)
112 de l s e l f . worker
113 msg . showinfo ("Pomodoro Fin i shed ! " , "Task completed , take a break ! ")
114
115 de f update_time_remaining (s e l f , t ime_str ing) :
116 s e l f . time_remaining_var . s e t (t ime_str ing)
117 s e l f . update_id letasks ()
118
119 de f sa fe_destroy (s e l f) :
120 i f ha sa t t r (s e l f , "worker") :
121 s e l f . worker . f o rce_qui t = True
122 s e l f . a f t e r (100 , s e l f . sa f e_destroy)
123 e l s e :
124 s e l f . des t roy ()
125
126 i f __name__ == "__main__" :
127 t imer = Timer ()
128 t imer . mainloop ()

Listing 7.1: A 25 Minute Timer

7.1. A BASIC TIMER 79

7.1.1 Timer

__init__

Everything in __init__ should look familiar now. We create a Frame which holds all of our content. We
have a Label which tells the user what to put in the Entry, a start Button, another Label holding the
time remaining, and a pause Button. Within the pomodoro technique tasks aren’t actually supposed
to be paused, but life happens, so it may come in handy. Note that the pause Button is disabled by
default, since we cannot pause a timer until it has begun.

We pack everything to fill the x direction giving us a single column layout. We use some padding
to separate widgets vertically and to pull them off of the sides of the window. We then bind a method
- sa fe_destroy - to the window close. This will be explained later.

setup_worker

Our "worker" is going to be a separate thread which will hold a reference to our Timer instance and
call functions on it to update its widgets. Since a thread can only be run once, we cannot just set this
up in our __init__ and then call run each time we want to start a timer, we instead need to create a
new instance each time. That’s why we have this separate method.

To set up our CountingThread we need to give it a start_time and an end_time. As this method
will only be run upon starting the timer, we can use datet ime . datet ime . now() to get the current
time as our start_time . Since the pomodoro technique works in 25 minute blocks, we create our
end_time by adding on a datet ime . t imede l ta (minutes=25). We create our CountingThread with
these arguments and assign it to our Timer as s e l f . worker.

start

If we don’t have a worker, we will set one up. We then disable our task_name_entry and enable our
pause_button, swap our start_button to a finish button, set the time Label to "25:00", and finally
start off our worker.

pause

We use not to flip the paused attribute of our worker, allowing this function to work as both a pause
and resume. If the worker is now paused we change the pause button to say "Resume" and set the
current time as our worker’s start_time . This will allow us to keep track of how long we were paused
for an adjust the end_time accordingly.

On unpausing we set the button text back to "Pause" and calculate how long we were paused for
by subtracting the start_time from the current time. This amount now needs to be added on to the
worker’s end_time to account for the time paused.

finish

Upon finishing we revert things back to their initial state, enabling our task_name_entry, disabling
our pause_button, setting our clock back to "25:00", and changing our finish button back to a start
button. We delete the reference to our worker as we no longer need it, since threads can only run once,
before alerting the user that their time is up.

finish_early

If finishing early (by clicking the finish button which replaced our start button) We just need to swap
the finish button back to a start button and set the end_now variable of our worker to True, which will
set it up to handle the rest.

80 CHAPTER 7. A POMODORO TIMER

update_time_remaining

To update the timer on screen we simply call s e t on our time_remaining_var with the time returned
from our CountingThread. We then call update_id letasks which forces the app to refresh its display.
Without this the timer may occasionally appear to miss seconds.

safe_destroy

If the user was to start the timer and then close the window they would be left with a running thread
still. In this case it seems as if the thread will throw an exception when it cannot reach the Timer
instance and exit, but it is always best to ensure you do not leave an application with active threads
still remaining. This ties up system resources and makes the user have to close them via some sort of
task manager.

In our sa fe_destroy method we check to see if we have an assigned worker. If so this means the
user has started the timer. We set the f o rce_qu i t attribute of our worker to True which will cause it
to re turn out of its run method and complete its duty. Before doing so it will de l the reference in our
Timer instance so that we know it has successfully ended. We use s e l f . a f t e r to call this same method
again every 100 milliseconds until the worker has removed the reference to itself from our Timer, in
which case we are free to dest roy the Timer.

Now let’s have a look at exactly how our CountingThread works:

7.1.2 CountingThread

__init__ and run

Hopefully __init__ is self explanitory, we are just setting up some variables. master will be our main
window, start_time and end_time will be timestamps of when the pomodoro should start and end,
and then we have 3 variables which keep track of whether or not the thread should continue running
its loop.

run contains an infinite loop which first checks that none of our three variables which indicate that
the loop should stop are true. If they aren’t it will run its main loop to do some calculations and
update the GUI. If the current time is past the set end_time we will signal to the Timer to f i n i s h .

If end_now is set, this means the user is finishing the task early, so this will jump to the finish
method too. If f o rce_qu i t is set then the user has closed the application window whilst the thread is
still running, so we need to remove the thread from the main Timer before returning, which will end
the thread.

The final e l s e cont inue is hit when the Timer is paused, so the CountingThread needs to do
nothing but still remain in its loop.

main_loop

In this method we need to find out the amount of time remaining and update the Timer’s clock
appropriately. We grab the current time with datet ime . datet ime . now() and check if it’s still less
than our end_time. If it is we calculate the difference. We then use divmod to get the time in minutes
and seconds which we can use with . format to create our next time string. We check once again for
f o rce_qu i t just to be sure before passing the time to update_time_remaining.

7.1.3 Next Iteration

Now that we have a basic timer application working we can build up some useful features to go along
with it. Next iteration we will add a log screen to display finished tasks which have been stored in a

7.1. A BASIC TIMER 81

sqlite database.

82 CHAPTER 7. A POMODORO TIMER

7.2 Keeping a Log

1 import s q l i t e 3
2 import os
3 import f un c t o o l s
4 from tk i n t e r import t tk
5
6 c l a s s CountingThread (thread ing . Thread) :
7 . . .
8
9

10 c l a s s LogWindow(tk . Topleve l) :
11 de f __init__(s e l f , master) :
12 super () . __init__ ()
13
14 s e l f . t i t l e ("Log")
15 s e l f . geometry ("600x300")
16
17 s e l f . notebook = ttk . Notebook (s e l f)
18
19 dates_sql = "SELECT DISTINCT date FROM pymodoros ORDER BY date DESC"
20 dates = s e l f . master . runQuery (dates_sql , None , True)
21
22 f o r index , date in enumerate (dates) :
23 dates [index] = date [0] . s p l i t () [0]
24
25 dates = sor t ed (s e t (dates) , r e v e r s e=True)
26
27 f o r date in dates :
28 tab = tk . Frame(s e l f . notebook)
29
30 columns = ("name" , " f i n i s h e d " , " time")
31
32 t r e e = ttk . Treeview (tab , columns=columns , show="headings ")
33
34 t r e e . heading ("name" , t ex t="Name")
35 t r e e . heading (" f i n i s h e d " , t ex t=" Ful l 25 Minutes")
36 t r e e . heading (" time" , t ex t="Time")
37
38 t r e e . column ("name" , anchor=" cente r ")
39 t r e e . column (" f i n i s h e d " , anchor=" cente r ")
40 t r e e . column (" time" , anchor=" cente r ")
41
42 tasks_sq l = "SELECT ∗ FROM pymodoros WHERE date LIKE ?"
43 date_l ike = date + "%"
44 data = (date_l ike ,)
45
46 ta sk s = s e l f . master . runQuery (tasks_sql , data , True)
47
48 f o r task_name , task_f in i shed , task_date in ta sk s :
49 task_f in i shed_text = "Yes" i f t a sk_f in i shed e l s e "No"
50 task_time = task_date . s p l i t () [1]
51 task_time_pieces = task_time . s p l i t (" : ")
52 task_time_pretty = " {} :{} " . format (task_time_pieces [0] , task_time_pieces

[1])
53 t r e e . i n s e r t ("" , tk .END, va lue s=(task_name , task_f in i shed_text ,

task_time_pretty))
54
55 t r e e . pack (f i l l =tk .BOTH, expand=1)
56
57 s e l f . notebook . add (tab , t ex t=date)
58
59 s e l f . notebook . pack (f i l l =tk .BOTH, expand=1)
60
61
62 c l a s s Timer (tk .Tk) :

7.2. KEEPING A LOG 83

63 de f __init__(s e l f) :
64 . . .
65
66 s e l f . menubar = tk .Menu(s e l f , bg=" l i g h t g r e y " , f g="black ")
67
68 s e l f . log_menu = tk .Menu(s e l f . menubar , t e a r o f f =0, bg=" l i g h t g r e y " , f g=" black ")
69 s e l f . log_menu . add_command(l a b e l="View Log" , command=s e l f . show_log_window ,

a c c e l e r a t o r=" Ctr l+L")
70
71 s e l f . menubar . add_cascade (l a b e l="Log" , menu=s e l f . log_menu)
72 s e l f . c on f i gu r e (menu=s e l f . menubar)
73
74 . . .
75
76 s e l f . bind ("<Control−l>" , s e l f . show_log_window)
77
78 . . .
79
80 de f setup_worker (s e l f) :
81 . . .
82
83 de f s t a r t (s e l f) :
84 i f not s e l f . task_name_entry . get () :
85 msg . showerror ("No Task" , " Please ente r a task name")
86 return
87
88 . . .
89 s e l f . ta sk_f in i shed_ear ly = Fal se
90 . . .
91
92 de f pause (s e l f) :
93 . . .
94
95 de f f i n i s h_ea r l y (s e l f) :
96 s e l f . start_button . c on f i gu r e (t ext=" Star t " , command=s e l f . s t a r t)
97 s e l f . ta sk_f in i shed_ear ly = True
98 s e l f . worker . end_now = True
99

100 de f f i n i s h (s e l f) :
101 . . .
102 i f not s e l f . ta sk_f in i shed_ear ly :
103 s e l f . mark_finished_task ()
104 de l s e l f . worker
105 msg . showinfo ("Pomodoro Fin i shed ! " , "Task completed , take a break ! ")
106
107 de f update_time_remaining (s e l f , t ime_str ing) :
108 . . .
109
110 de f add_new_task (s e l f) :
111 task_name = s e l f . task_name_entry . get ()
112 s e l f . task_started_time = datet ime . datet ime . now()
113 add_task_sql = "INSERT INTO pymodoros VALUES (? , 0 , ?) "
114 s e l f . runQuery (add_task_sql , (task_name , s e l f . task_started_time))
115
116 de f mark_finished_task (s e l f) :
117 task_name = s e l f . task_name_entry . get ()
118 add_task_sql = "UPDATE pymodoros SET f i n i s h e d = ? WHERE task = ? and date = ?"
119 s e l f . runQuery (add_task_sql , ("1" , task_name , s e l f . task_started_time))
120
121 de f show_log_window(s e l f , event=None) :
122 LogWindow(s e l f)
123
124 de f sa fe_destroy (s e l f) :
125 . . .
126
127 @staticmethod

84 CHAPTER 7. A POMODORO TIMER

128 de f runQuery (sq l , data=None , r e c e i v e=False) :
129 conn = s q l i t e 3 . connect ("pymodoro . db")
130 cur so r = conn . cur so r ()
131 i f data :
132 cur so r . execute (sq l , data)
133 e l s e :
134 cur so r . execute (s q l)
135
136 i f r e c e i v e :
137 re turn cur so r . f e t c h a l l ()
138 e l s e :
139 conn . commit ()
140
141 conn . c l o s e ()
142
143 @staticmethod
144 de f firstTimeDB () :
145 c r ea t e_tab l e s = "CREATE TABLE pymodoros (task text , f i n i s h e d in t ege r , date t ext

) "
146 Timer . runQuery (c r ea t e_tab l e s)
147
148
149 i f __name__ == "__main__" :
150 t imer = Timer ()
151
152 i f not os . path . i s f i l e ("pymodoro . db") :
153 t imer . firstTimeDB ()
154
155 t imer . mainloop ()

Listing 7.2: A Timer With a Log

7.2.1 Timer

There should be some nostalgia when working through this chapter, as a lot of code has been taken
from Chapter 2. Most notably: runQuery and f i rstTimeDb .

When setting up our Timer instance we now have a Menu with a button to open the log. This is
also bound to Control-L.

Upon starting a task, if there’s no task name in our task_name_entry we will inform the user with
a messagebox. You may have noticed that the task_name_entry was kind of pointless in the previous
iteration, but now we have a database connected we will need the ability to name each task. We also
have a boolean task_f in i shed_ear ly which will be used to mark whether or not a task was executed
for the full 25 minutes. Within our f i n i s h_ea r l y method we will set this to True which affects whether
or not the record is updated when we get to f i n i s h .

When we first s t a r t a task we add an entry into the database with the task’s name and the
date/time it started (via add_new_task). It is initially marked as not being worked on for the full 25
minutes. Once we hit the f i n i s h method we will update the value of the f i n i s h e d column if the task
was not finished early (with mark_finished_task).

When creating and running our Timer instance, we will call f i rstTimeDb if the database file does
not exist in the same directory as the app. This is the same as we did in Chapter 2 for our Todo list.

7.2.2 LogWindow

The LogWindow consists of two widgets from the ttk set: a Notebook, which we met in Chapter 3, and
a Treeview. The Notebook is used to create a tabbed interface inside the window, and the Treeview
will organise our information into a neat little table. This saves us from having to manually lay the
information out using Labels.

7.2. KEEPING A LOG 85

We query our database for a list of dates then enumerate over them to replace each full datet ime
with just the date part. We need to use date [0] for each record as sqlite returns even single items
in a tup l e . We then use the somewhat strange looking dates = sor t ed (s e t (dates) , r e v e r s e=True)
to get a list of unique dates in descending order. We first cast the l i s t to a s e t in order to remove
duplicates, then so r t ed with r e v e r s e=True to order them descending. That way today’s items are
always first.

We once again loop over our now-ordered dates and create a new Frame, which will function as a
tab in our Notebook, for each date. The tuple of strings will function as identifiers for each column and
the show="headings " removes the default "icon" column from the Treeview. Without this we would
get a blank first column. We use three calls to . heading to configure each column’s heading, followed
by three calls to . column to center-align our data.

Another query is run against our database to get all of the tasks which match the current date.
We iterate over the results formatting the data in a friendlier way, and getting the times rather than
the dates (since the date is written on the tab) before using i n s e r t to add the information into our
Treeview. The blank string as the first argument tells the Treeview that this record has no parent,
and the tk .END tells it to insert each record after all others. We then pack our Treeview into the tab
and add the tab to our Notebook.

Once this has been done for each date, we finish off by packing our Notebook. With that our
LogWindow is complete. Give it a go by running a couple of tasks then pressing Control-L to pop open
the log.

Figure 7.2: Our Log Window

7.2.3 Next Iteration

We’ll finish up our timer by styling the Treeview using ttk’s Sty l e objects, as well as neatening up the
main window by replacing some tk widgets with the ttk equivalent. We’ll also add delete functionality
via the log.

86 CHAPTER 7. A POMODORO TIMER

7.3 Our Finished Timer

1 . . .
2
3 c l a s s CountingThread (thread ing . Thread) :
4 . . .
5
6
7 c l a s s LogWindow(tk . Topleve l) :
8 de f __init__(s e l f , master) :
9 . . .

10 s e l f . tab_trees = {}
11
12 s t y l e = ttk . S ty l e ()
13 s t y l e . c on f i gu r e ("Treeview" , f ont=(None , 1 2))
14 s t y l e . c on f i gu r e ("Treeview . Heading" , f ont=(None , 14))
15
16 dates = s e l f . master . get_unique_dates ()
17
18 f o r index , date in enumerate (dates) :
19 dates [index] = date [0] . s p l i t () [0]
20
21 dates = sor t ed (s e t (dates) , r e v e r s e=True)
22
23 f o r date in dates :
24 . . .
25
26 t r e e . pack (f i l l =tk .BOTH, expand=1)
27 t r e e . bind ("<Double−Button−1>" , s e l f . conf i rm_delete)
28 s e l f . tab_trees [date] = t r e e
29
30 s e l f . notebook . add (tab , t ex t=date)
31
32 s e l f . notebook . pack (f i l l =tk .BOTH, expand=1)
33
34 de f conf i rm_delete (s e l f , event=None) :
35 current_tab = s e l f . notebook . tab (s e l f . notebook . s e l e c t () , " t ex t ")
36 t r e e = s e l f . tab_trees [current_tab]
37 se lected_item_id = t r e e . s e l e c t i o n ()
38 se l ected_item = t r e e . item (se lected_item_id)
39
40 i f msg . askyesno (" Delete Item?" , " Delete " + se lected_item [" va lue s "] [0] + "?" ,

parent=s e l f) :
41 task_name = se lected_item [" va lue s "] [0]
42 task_time = se lected_item [" va lue s "] [2]
43 task_date = " " . j o i n ([current_tab , task_time])
44 s e l f . master . de le te_task (task_name , task_date)
45 t r e e . d e l e t e (se lected_item_id)
46
47 c l a s s Timer (tk .Tk) :
48 de f __init__(s e l f) :
49 . . .
50
51 s t y l e = ttk . S ty l e ()
52 s t y l e . c on f i gu r e ("TLabel" , foreground="black " , background=" l i g h t g r e y " , f ont=(

None , 16) , anchor=" cente r ")
53 s t y l e . c on f i gu r e ("B. TLabel" , f ont=(None , 40))
54 s t y l e . c on f i gu r e ("B. TButton" , foreground="black " , background=" l i g h t g r e y " , f ont=(

None , 16) , anchor=" cente r ")
55 s t y l e . c on f i gu r e ("TEntry" , foregound="black " , background="white ")
56
57 . . .
58
59 s e l f . task_name_label = ttk . Label (s e l f . main_frame , t ex t="Task Name : ")
60 s e l f . task_name_entry = ttk . Entry (s e l f . main_frame , f ont=(None , 16))

7.3. OUR FINISHED TIMER 87

61 s e l f . start_button = ttk . Button (s e l f . main_frame , t ex t=" Star t " , command=s e l f .
s t a r t , s t y l e="B. TButton")

62 s e l f . time_remaining_var = tk . Str ingVar (s e l f . main_frame)
63 s e l f . time_remaining_var . s e t (" 25 :00 ")
64 s e l f . t ime_remaining_label = ttk . Label (s e l f . main_frame , t extvar=s e l f .

time_remaining_var , s t y l e="B. TLabel")
65 s e l f . pause_button = ttk . Button (s e l f . main_frame , t ext="Pause" , command=s e l f .

pause , s t a t e=" d i s ab l ed " , s t y l e="B. TButton")
66
67 . . .
68
69 s e l f . task_name_entry . focus_set ()
70
71 de f setup_worker (s e l f) :
72 . . .
73
74 de f s t a r t (s e l f) :
75 i f not s e l f . task_name_entry . get () :
76 . . .
77
78 i f s e l f . task_is_dupl i cate () :
79 msg . showerror ("Task Dupl icate " , " Please ente r a d i f f e r e n t task name")
80 return
81
82 . . .
83
84 de f pause (s e l f) :
85 . . .
86
87 de f f i n i s h_ea r l y (s e l f) :
88 . . .
89
90 de f f i n i s h (s e l f) :
91 . . .
92
93 de f update_time_remaining (s e l f , t ime_str ing) :
94 . . .
95
96 de f add_new_task (s e l f) :
97 . . .
98
99 de f mark_finished_task (s e l f) :

100 . . .
101
102 de f show_log_window(s e l f , event=None) :
103 . . .
104
105 de f sa fe_destroy (s e l f) :
106 . . .
107
108 de f get_unique_dates (s e l f) :
109 dates_sql = "SELECT DISTINCT date FROM pymodoros ORDER BY date DESC"
110 dates = s e l f . runQuery (dates_sql , None , True)
111
112 re turn dates
113
114 de f get_tasks_by_date (s e l f , date) :
115 tasks_sq l = "SELECT ∗ FROM pymodoros WHERE date LIKE ?"
116 date_l ike = date + "%"
117 data = (date_l ike ,)
118
119 ta sk s = s e l f . runQuery (tasks_sql , data , True)
120
121 re turn ta sk s
122
123 de f de le te_task (s e l f , task_name , task_date) :

88 CHAPTER 7. A POMODORO TIMER

124 de lete_task_sql = "DELETE FROM pymodoros WHERE task = ? AND date LIKE ?"
125 task_date_like = task_date + "%"
126 data = (task_name , task_date_like)
127 s e l f . runQuery (delete_task_sql , data)
128
129 de f task_is_dupl i cate (s e l f) :
130 task_name = s e l f . task_name_entry . get ()
131 today = datet ime . datet ime . now() . date ()
132 task_ex i s t s_sq l = "SELECT task FROM pymodoros WHERE task = ? AND date LIKE ?"
133 today_like = s t r (today) + "%"
134 data = (task_name , today_like)
135 ta sk s = s e l f . runQuery (task_exis ts_sq l , data , True)
136
137 re turn l en (ta sk s)
138
139 @staticmethod
140 de f runQuery (sq l , data=None , r e c e i v e=False) :
141 . . .
142
143 @staticmethod
144 de f firstTimeDB () :
145 . . .
146
147
148 i f __name__ == "__main__" :
149 . . .

Listing 7.3: Our ttk Timer

7.3.1 Timer

__init__

Our widgets have now been swapped to their ttk counterparts and the styling options have been
removed from their creation arguments. Ttk aims to keep declaration of widgets separate from their
styling, meaning they will no longer support keyword arguments like bg when creating the instances.
We instead create and use a t tk . S ty l e object in order to adjust how our widgets look.

To achieve this we create a Sty l e object and use its c on f i gu r e method to adjust style elements.
Each ttk widget will have an associated class with which it gathers styling - usually a capital T
followed by the object name, such as TButton or TLabel - but there are a couple of exceptions. The
first argument to the c on f i gu r e method is the name of the style class we are changing and the following
keyword arguments signify what we are changing.

When we configure TLabel in the first instance we are changing all Labels throughout our appli-
cation. This is fine for us here as we only have two which both want the same colouring. We cannot
do this for the Button class however as this affects the Buttons which appear in messageboxes.

In order to "subclass" a style we use a kind of dot-notation to specify inheritance. In our code you
will see we define B. TLabel. This style inherits from the global TLabel we adjusted and allows us to
build on top of it. In this case we want to inherit the colouring but increase the font size (the B stands
for Big). Styling in this way prevents us from having to type bg="l i g h t g r e y " , f g="black " for each
widget.

We go on to define a Big Button styling with B. TButton and some global Entry styling with TEntry.
Note that the font of an Entry cannot be set with the styling, so must be set upon creation as before.

To apply the non-global styles to our widgets we use the s t y l e keyword. Each one will default to
the global (TButton , TLabel , etc) and if we want to specify an inherited style we pass the full style
class as the argument. You can see this being done with our Buttons using "B.TButton" and our

7.3. OUR FINISHED TIMER 89

t ime_remaining_label using "B.TLabel".

We finish up our changes to __init__ by setting focus to the task_name_entry when the user opens
the app so that they don’t have to click into it to begin typing.

Managing Tasks

All of the SQL has been moved from the LogWindow into the Timer for consistency. The two queries
which should look familiar are get_unique_dates and get_tasks_by_date.

de lete_task handles removing a task when it is double-clicked in the LogWindow (we will get to
that soon).

task_is_dupl i cate is used to check whether we have a task with the same name on the current
date. This is because we don’t have a unique identifier for each task and we want to make sure we
only delete one task at a time. If we had three tasks called "test" all done at the same time we would
end up deleting them all when double clicking one of them in the log. We call this method from our
s t a r t method and show a messagebox with an error if a task already exists.

7.3.2 LogWindow

Styling

The Treeview widget is one of the exceptions mentioned earlier when it comes to naming ttk Sty l es.
Its class is just "Treeview" not "TTreeview". We use the Sty l e to configure the font size of the items
within our table. In order to change the font used in the headings we need to adjust the Treeview .
Heading class. Again both of these c on f i gu r e s apply globally to all Treeviews in our app.

Deleting

In order to get our delete functinality to work we need to bind double-click (<Double−Button−1> in
tkinter) events to each Treeview. We also need to keep track of what Treeviews we have and which
date they belong to. We do this using a dictionary called tab_trees . The key is the date and the item
is the Treeview itself. Since our Notebook tabs are named after the dates this will allow us to access
the relevant Treeview for the current tab.

Within conf i rm_delete we use the tab method of our Notebook to get the "text" attribute from
our currently selected tab. This gives us the date of the tab currently being looked at. We use this date
to fish out the relevant Treeview from tab_trees and grab the selected item’s ID with s e l e c t i o n () .
We pass this ID to the item method in order to get a dictionary containing its information. If you want
to see this dictionary add pr in t (se l ected_item) after this line. The values of this item are stored
within the "values" section of the dictionary.

We use an askyesno messagebox to confirm whether the user wants to delete this record. If so we
get the task name and time from the "values", merge the date with the task time for specificity with
delete statement, and then pass this information over to de lete_task in our Timer. We finish off by
calling the de l e t e method of our tree to remove the item from the screen without having to re-build
the whole page.

That’s where we’ll leave our pomodoro timer. We now have a 25 minute timer which contains a
full log of all of our tasks, all handled automatically. We can also remove any tasks which we didn’t
want logged for any reason.

90 CHAPTER 7. A POMODORO TIMER

7.3.3 Further Development

If you’d like to continue work on this project as an exercise, try the following:

• Add scrolling to our log for those days when we are super productive.

• Add a way to re-order the tabs to be either ascending or descending.

• Add a to-do list to the app and have a way to select an item and have it auto-populate the task
name entry.

• Allow the user to vary the timer length.

Chapter 8

Miscellaneous

That’s it for all of the projects within this book. I hope you’ve learned enough to start developing your
own GUI application with tkinter. I haven’t covered absolutely everything in this book since I wanted
all of the examples to be real, useful applications as opposed to small demonstrations of widgets. In
this final chapter we’ll just have a brief look at some things which I think will be useful to know but I
didn’t manage to cover in my examples.

8.1 Alternate Geometry Managers

8.1.1 Grid

Grid is a geometry manager with the same job as pack: to place your widgets into their parent. As
you may have guessed from the name, g r id treats your window as a literal grid and allows you to
place widgets into a "cell" at a certain row and column. Their horizontal size is handled with co l span
and the vertical size with rowspan. Widgets will expand via the use of a s t i c ky argument which takes
a combination of "n", "s", "e", and "w" (north, south, east, west). This will make it stick to the
particular end of its cell, so a s t i c ky of "we" means the widget will stretch horizontally within its
assigned cell. Widgets default to the center of their cell if there is no s t i c ky value set.

We can g r id widgets in any order we like, providing we specify their values correctly, since each
one is assigned to a specific cell (or group of cells). With pack the order in which we pack our widgets
defines their position. For example, when we are packing two Buttons with s i d e=tk .BOTTOM, the first
Button which is packed will appear at the very bottom, with the second above it. When adding more
Buttons to the bottom of this window, we must ensure we pack them after the first one if we want to
keep it at the bottom, whereas with g r id we can just specify a smaller row value, and then g r id it
whenever we like.

The other main advantage of g r id is that we don’t have to use Frames if we wish to specify two
s i d e s. For example, take our find window from the text editor in chapter 6. In order to place our
Buttons both at the bottom of the window and side-by-side we had to use a Frame packed to the
bottom, then pack each widget to the left. If using g r id we wouldn’t need the extra Frame, we could
simply give all of the Buttons the same row.

The reason I don’t tend to use grid is simply because I find it unflexible when developing iteratively.
If we accidentally g r id a widget in the same row and column as another it will just overtake that cell,
hiding the first widget. This means each time we want to add something we would potentially have to
adjust the row and column of multiple other widgets.

I also find pack to be typically more readable than g r id . Instead of having to compare numbers
across multiple widgets to get a mental picture of what goes where, we have words like "bottom" and
"left" right there in the code.

91

92 CHAPTER 8. MISCELLANEOUS

Despite my opinions, g r id is a powerful tool, so if you feel it is better for the job than pack then
I encourage you to use it. For some great examples with pictures check out the tkinterbook page over
at e f f b o t . org / tk in te rbook / g r id . htm.

8.1.2 Place

If you want to specify exact coordinates within the window to put something, p lace will do that for
you. It’s generally a pain to lay a window out with specifics, and there’s much less room for the widgets
to adapt with the window size, so p lace sees very little use.

To put a widget at (100, 300) within a window, use widget . p l ace (x=100 , y=500). Alternatively,
you can use r e l x and r e l y to p lace a widget relative to its parent. r e l x =0.5 , r e l y =0.5 , anchor=tk
.CENTER will keep a widget completely central in its parent.

p laced widgets will overlap anything underneath them. This can be good or bad depending on
your intentions.

8.2 Tk Widgets

There are still some widgets which I didn’t manage to fit into any of the example apps. We’ll have a
brief overview of them here:

8.2.1 Checkbutton

A Checkbutton is essentially a checkbox with an attached label. The label is set with the t ex t argument
much like the other t k i n t e r widgets. We can query whether or not the box has been checked by
attaching a t k i n t e r variable to it (StringVar , IntVar etc) with va r i ab l e=s e l f . my_variable. By
deault the value of this variable will be 1 when checked and 0 when not. We can change this with the
onvalue and o f f v a l u e arguments. Changing the linked variable directly will update the associated
Checkbutton automatically.

Much like a normal Button, a Checkbutton can take a command argument to call a function whenever
it is pressed.

8.2.2 Radiobutton

Somewhat similar to a Checkbutton, a Radiobutton is used to represent one choice out of a group
of possible options. To group Radiobuttons, point them all to the same t k i n t e r variable using the
va r i ab l e keyword. Each Radiobutton can then have its own unique value assigned with the value
keyword, which becomes the value of the linked variable when this Radiobutton is selected.

Once again, the t ex t argument will put a label beside the button. We can also bind a function via
command.

By default a Radiobutton will look like it does on a standard HTML page (circular icon next to
text with a dot inside the selected option). If you wish instead to have each option look like a regular
button with the chosen option pressed in, setting the i nd i c a to ron argument to false will do this.

8.2.3 Checkbuttons and Radiobuttons in a Menu

A Menu can take contain Checkbuttons and Radiobuttons as well as the normal Buttons we used
in our projects. These are added with . add_checkbutton (l a b e l="check " , v a r i ab l e=s e l f . checked)
and . add_radiobutton (l a b e l="rad io " , v a r i a b l e=s e l f . r ad io) . The buttons will be linked to the
supplied t k i n t e r variable just like regular Checkbuttons and Radiobuttons.

8.3. TTK WIDGETS 93

8.2.4 OptionMenu

An OptionMenu is much like an HTML dropdown box. Unlike other t k i n t e r widgets the OptionMenu
doesn’t rely on keyword arguments when creating an instance. Instead, instances are created like this:
om = OptionMenu (parent , va r i ab l e , " opt ion1 " , " opt ion2 " , " opt ion3 ") . In this case parent is
your root window, va r i ab l e is a t k i n t e r variable, and all of the following arguments are the options
to choose from in the box.

If developing for Windows or OSX I would recommend using the t tk version of OptionMenu (and any
ttk-supported widget to be honest), since it looks so much nicer. One thing to note with this version is
the third argument will become the default. To clarify, we create an instance with OptionMenu (parent
, va r i ab l e , " d e f au l t cho i c e " , " cho i c e 1" , " cho i ce2 ") . The default choice will not appear in
the list of available options unless re-declared as the 4th or higher argument, eg (parent , va r i ab l e ,
"medium" , " low " , "medium" , "high ") .

A nicer way to specify the potential choices is to create a tup l e and then unpack it when creating
the OptionMenu, eg (parent , va r i ab l e , ∗ cho i c e s) .

8.3 Ttk Widgets

8.3.1 Combobox

A Combobox is a combination of an Entry and an OptionMenu. The user can either pick an option from
the dropdown list or type their own. This is sometimes called a "select2" in the web development
world. Unfortunately, typing in the Entry does not filter the values in the dropdown by default, so if
that is your intention you will need to implement this manually. This can either be done by binding
to the <KeyRelease> event, or by using the postcommand argument to bind a function which will run
when the user clicks the dropdown arrow.

A Combobox can be instantiated by passing the parent as the first argument followed by the values
as a sequence of strings. For example: Combobox(parent , va lue s=("one " , "two" , " three ")) . This
widget can also be bound to a Str ingVar with the t e x t v a r i a b l e argument.

8.3.2 Progressbar

When running something which may take a long time we can use a Progressbar to let the user know
that the application has not crashed.

If you have a quantifiable end goal, such as a number of open files to process, you can use a
determinate Progressbar to show exactly how far through the process your application currently is.
Determinate is the default mode of the Progressbar widget. Let’s say you had a big list of open files
to process - you would show the progress like so: pb = Progressbar (parent , maximum=len (f i l e s)) .
You now have a Progressbar with step count equal to the length of your file list. After processing
each file, you can call pb . s tep () to increment progress by one. Once the Progressbar has reached its
maximum it will return to empty, so you should dest roy it (or its parent if it has a separate window).

If you have no idea how much work there is to do but still want to signal to the user that the app
is processing, there is the mode="indeterminate " argument. This will create one of those animations
where a small block bounces left and right until processing is complete. To begin this animation call
pb . s t a r t () , and use pb . stop () when processing is complete (or use dest roy () as before).

The length of a Progressbar can be set with the l ength argument, and for some reason you can
also set it to vertical with o r i e n t=tk .VERTICAL.

94 CHAPTER 8. MISCELLANEOUS

8.4 Final Words

With that, we have come to the end of this book. Thanks very much for reading. I would love to hear
your thoughts on this book - you can find me @Dvlv292 on twitter or Dvlv on reddit. Any comments,
questions, or suggestions on the source code can be handled through Github. I am more than happy to
alter the code and this book in order to improve it for people new to tkinter. As always in programming
- nothing is ever finished!

