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Purpose of this Document 

The purpose of this document is to describe a standard method for articulating technical functions and 

algorithms in such a way as to be understood by all interested parties. In the SmILES context, the 

documentation will support the translation of the control functions present in simulation models 

between simulation environments. This will enable the migration of simulation cases between partners 

and the dissemination of these cases to the public. 

This document is an abridged version of the Scientific Algorithm Documentation Standard1 developed by 

NOAA. It has been adapted to the needs of SmILES, and its scope has been broadened to cover the entire 

definition of "Control Functions" in the SmILES context.  

A control function (CF), in the context of SmILES, is a description of an embedded control system (or an 

aspect thereof) which, together with the inherent physical properties of the system itself, defines the 

behaviour of the control system and its response to dynamic input. Control functions can be seen as a 

further detailing, or more formal description, of the mechanisms governing the behaviour of individual 

actors in a use case. 

Control functions may take the form of mathematical functions, such as e.g. transfer functions or 

descriptions of a stochastic process, or they may be best described by an algorithm. These different forms 

require different description options. As a result, some of the sections of the document are optional 

because their content does not apply to all descriptions. This is indicated at the beginning of each section. 

Optional sections should be left blank, rather than being deleted entirely, in order to preserve the 

consistency of section numbers. Sections marked as mandatory must be filled in every case. 

Explanatory text and/or examples for each section are provided in gray. All gray text should be deleted 

when the section is filled in, or when optional sections are left blank. 

1. Document History 

This section is mandatory. 

Date Versions Description Author 

21-04-20 1.0 Initial draft Petra Raussi 

04-06-21 1.1  Felipe Castro 

02-11-21 1.2 Edit. comments Gunter Arnold 

    

    

2. Functional Description 

                                                           
1 National Oceanic and Atmospheric Administration (NOAA), National Weather Service, Office og Hydrologic 

Development: "Scientific Algorithm Documentation Standard", August 2006 



This section is mandatory. 

The purpose here is to provide a brief introduction to the problem solved by the function or the algorithm. 

The technical background should be outlined by giving an overview of the function or algorithm.  It will 

be important in the early introduction of the document to clearly inform the reader on the intent of the 

function or algorithm as well as the problem the function or algorithm is addressing.  The author should 

keep in mind that this document is not a technical paper and should be written in such a way that it can 

be understood by an audience with limited expertise in specific simulation domains. 

The statement of the problem should include a clear statement outlining the problem and why the 

problem is important and needs to be addressed. It should contain a sketch of the problem/situation and, 

if known and/or relevant, the background history that led to the development of the function or 

algorithm, including why the problem was investigated and how it relates to earlier work that has been 

done in the field.  It should show that the author thoroughly understands the problem. 

3. Methodology or Theory (equations and computations) 

This section is mandatory. 

This section is used to provide the methodology or theory of the function or algorithm in detail.  Relevant 

research results should be referenced.  The description should not be as detailed as a peer-review journal 

paper.  However, all information necessary for understanding specifics of the function or algorithm, 

especially for translating it into software, must be included.  Required equations and computations 

should be described and explained term by term and be closely related to the detailed description of the 

function or algorithm later in the document. 

In case of well-known or standard functions or algorithms, a simple reference to the theory (e.g. a link to 

the Wikipedia page for "PID controller") is sufficient. 

This control function implements a voltage control algorithm. This algorithm is responsible of 

calculating the inputs of the controllable elements of a distribution network that would result on the 

optimal operation point of the system. The optimal operation point is calculated based on three 

criteria: busbar voltage values within a certain user-defined range, reactive power flowing through 

the high voltage side of the transformer that connects the high and medium voltage networks within 

a user defined range, and the average value of the voltage of all the medium network busbars to 

remain as close to 1 p.u. as possible.  The algorithm continuously calculates inputs for the tap 

position of the transformers, the step position of shunt elements (capacitors and/or reactors), and 

the reactive power contribution (or absorption) of the generating sources located within the 

distribution network. 



The algorithm continuously receives as input the current tap position of the transformers of the 

power distribution network, the current operational status (on service/out of service) of the shunt 

elements, and their step position. 

The algorithm executes a load flow for all  possible combinations of the following operation 

scenarios: 

 Tap position: considering the current tap position and the following “X” positions to both 

sides, bounded by the maximum and minimum tap position allowed by the transformer 

(denoted as “TapMax” and “TapMin”, respectively). 

 Step position: considering all the step positions of the shunt elements, bounded by their 

maximum step position, denoted as “StepMax”. 

 Power factor of the generating sources: considering, at the same time for all the generating 

sources, a power factor of “PF” lag, “PF” lead, and a power factor of “1”. 

The user may define the variables “X” and “PF”: 

 “X”: defines how many positions away from the current tap position will be considered for 

the combination of operational scenarios for the load-flow calculation (e.g. if the current tap 

position is 1, and “X” is set to “2”, then the tap positions considered by the algorithm are “-

1”, ”0”, ”1”, ”2” and “3”) 

 “PF”: defines the power factor that will be considered for all of the generating sources at 

the same time. For example, if “PF” is set to “0.95”, the algorithm will consider “0.95 lag”, 

“1” and “0.95 lead” as the power factor of all the generating sources, for the combination of 

the operational scenarios. 

The variables “TapMax”, “TapMin” and “StepMax” must be set by the user considering the 

characteristics of the elements involved (the transformer and the shunt element). 

With these inputs, the algorithm executes a load flow for each of the operational scenarios 

originated by the combination of these inputs. As an example, if the power distribution system 

counts with one HV/MV transformer, and “X” is set to “1”, then there are three possible values for 

the tap position of the transformer (the current value, one tap down and one tap up, if the bounds 

of the tap position of the transformers are not reached). In another hand, if there is one shunt 

element with 3 step positions, then there are four possible values (“0”,”1”,”2” and “3”). Finally, there 

are 3 possibilities of reactive power contribution for the generating sources of the distribution 

system “PF lag”, “1” and “PF lead”. Therefore, there is a total of (3 tap positions x4 step positions x3 

power factor possibilities) 36 different operational scenarios. In case the operational status of the 

capacitor bank is set as “out of service”, only the step position “0” of the shunt element is assessed. 

For each load flow calculation, the number of busbars for which the voltage value is outside a 

predefined range is calculated. This range is defined by the user by setting the value “V_deviation”.  

As an example, if this variable is set to 0.03, then the algorithm counts for each load flow the number 

of busbars that present a voltage outside of the range (0.97-1.03 p.u.). this amount is denoted as 

“number of violations”. Moreover, the average of the voltage of all the busbars located in the 

medium voltage network is calculated and denoted as “mean voltage”. Then the absolute deviation 

of this variable to the nominal value (1 p.u.) is calculated and denoted as “mean deviation”. 

Additionally, for each load flow, the resulting reactive power flowing in the primary  (HV) side of the 

transformer is obtained. This result is denoted as “Q transformer”.  



4. Limitations 

This section is mandatory. 

The Limitations section will describe prerequisites for the function or algorithm.  These include limitations 

caused by input data, special types of data required, limitations inherent to the function or algorithm, 

situations where the function or algorithm cannot be applied, potential implementation difficulties, and 

any other problems known to be associated with the function or algorithm.  This section should also 

describe both the implementation and operational impacts of these limitations. 

Finally, for each load flow, the tap position, the step position, and the power factor of the generating 

sources are denoted as “tap”, “step” and “PFgen”, respectively. 

 The following results are stored in each row of a matrix denoted “Performance”: 

“Number of violations” | “Q transformer” | “mean deviation” | “tap” | “Step” | “PFgen” 

After executing each load flow calculation, the rows of the performance matrix are sorted according 

to the following criteria: 

 The user defines a permissive reactive power window for the reactive power flowing in the 

HV side of the transformer by setting “Q_permissive”. The permissive operation range for 

this value is (-“Q_permissive” / “Q_permissive”) 

 The rows which have a value of “Q transformer” within the permissive reactive power range 

are separated in a matrix denoted “Performance_1”, and the rest of the rows are stored in 

a matrix denoted “Performance_2”. 

The matrix “Performance_1” is sorted as follows: 

 In a first level, the rows are sorted increasingly according to the “Number of violations” 

 In a second level, the rows are sorted increasingly according to the “mean deviation” 

 In this matrix, the variable “Q transformer” is irrelevant, because it already complies with its 

value being within the user-defined range. 

The matrix “Performance_2” is sorted as follows: 

 In a first level, the rows are sorted increasingly according to the “Q transformer” 

 In a second level, the rows are sorted increasingly according to the “Number of violations” 

 In a third level, the rows are sorted increasingly according to the “mean deviation” 

The final output of the algorithm are the values “tap”, “step” and “PFgen”, which represent the 

inputs to the controllable elements of the power distribution grid for obtaining the optimal 

operation point of the assessed combination. These values are obtained from the first row of the 

sorted matrix “Performance_1”. If this matrix is empty, then these values are obtained from the first 

row of the sorted matrix “Performance_2”. 



5. Use Cases 

This section is mandatory. 

Use Cases are a way to express functional requirements.  They bridge the gap between user needs and 

system functionality by directly stating the user’s intention and system response for each step in a 

particular interaction.  No single Use Case specifies the entire requirements of the system.  A Use Case 

itself is an interaction that a User or another System has with the system that is being designed in order 

to achieve a goal.  Different scenarios within a Use Case show how the goal succeeds or fails.  A success 

scenario is one in which the goal is achieved; a failure scenario is one where the goal is not achieved.  

Because the goals summarize the intention of the various uses of the system, the users can see how they 

are supposed to use the system.  Users can also spot when the system does not support all of their goals 

without having to wait for the first prototype or having to wait for the system to be developed.  

This is a summary of how to write Use Cases: 

 The name of the use case should start with a strong verb.  

 A Use Case is a set of scenarios.  A scenario is a list of steps.  

 Each step should state what the user does and/or how the system responds.  

 The steps must not mention how the system does something.  

 Each step needs to be analyzed in detail before it becomes code.  

 Keep It Simple: use the simplest format you need.  

 Keep track of different versions.  

 Writing use cases is a team sport.  

 Focus on a particular user (give them a name).  

 Don't get bogged down in all the special ways it can go wrong until you've finished the main 

success story. 

The limitations of this code are the following: 

 A tool for calculating load flow calculations is needed for this code. In the implementation 

of this benchmark, the python module PandaPower is used to execute the load flows in the 

algorithm. 

 The model of the power system used to execute load flows within the algorithm has to be 

identical to the power system from where the inputs of this algorithm are sent. 

 The algorithm is currently coded to support power system models in which just one 

transformer and one shunt element are controlled. 

 The current power system model provided in this benchmark corresponds to a reduced 

version of the 15-busbar CIGRE MV Benchmark model. 

Use Case Example Analyzes Model input and output time series 

data (forecast and calibration mode) 

Date created: 09/08/05 

Actor: Research Scientist, RFC Hydrologic Forecaster 

Description: DHM will use existing software to analyze input 

and output time series data 



6. Embedding (implicit functions or algorithms) 

This section is optional. It should be filled in if the described function or algorithm is implicitly 

contained in a simulation model, solver, optimizer etc. 

This section will describe in which way the documented functions or algorithms are implicitly contained 

or embedded in simulation models, solvers, optimization algorithms etc. This embedding may take the 

form of assumptions or abstractions. An example may be an optimization algorithm which assumes that 

an energy system is always in balance between supply and demand. However, no physical law 

guarantees this balance to be present at all times. Instead, if this system were to be implemented, a 

dedicated controller would have to maintain the balance. In order to reproduce the simulation results on 

another simulation tool, the function or algorithm which governs the behaviour of this controller would 

have to be extracted and documented. Otherwise, the reproduced simulation is likely to behave 

differently to the original simulation, especially if the two simulations are of a different type (e.g. 

transferring from an optimization tool to a timeseries simulator). 

The documentation in this section should not focus on the description of the function or algorithm itself 

– this should be done in subsequent sections – but on describing how the function or algorithm is 

embedded into the simulation tool. This could be done by e.g. describing the underlying assumptions 

which imply the existence of the function of algorithm. 

7. Inputs 

Preconditions: User must have previously ran Model  

Postconditions: User must be satisfied with results and should 

also have knowledge on how to edit model data 

Priority: High 

Frequency of use: Daily or as often as every hour 

Normal course: Forecast Mode:  

Use existing procedures to get IFP to display 

input/output time series data (e.g. a PLOT-TUL or 

PLOTTS operation has been previously defined to 

show the desired data) 

Alternative course: Calibration Mode: 

Use existing procedures to get ICP to display 

input/output time series data (e.g. a PLOTTS 

operation has been previously defined to show 

the desired data), or use XDMS. 

Exceptions:  

Assumptions: User must have familiarity with the existing river 

forecasting operations workflow 

Notes and Issues:  

 



This section is mandatory. 

This section will describe all required data inputs to the documented function or algorithm. This includes 

static input data such as configuration or parametrization as well as dynamic input data such as 

measurement data or events. Each input data element should specify the data type (e.g. floating point, 

integer, character string), units (e.g. degrees, percentages), valid ranges (e.g. 0 – infinity; -1.0 – +1.0 

inclusive), the expected update rate of the data (e.g. static; 10Hz; daily) and a short description of the 

information the variable contains (e.g. “Width of the radar beam in degrees …”). 

All data element names should be self-descriptive (i.e. the name should describe what the data element 

contains). Widely recognized symbols from textbooks and professional literature are acceptable. 

 

 

 

 

Name Current tap position 

Type Scalar 

Unit none 

Range Defined by user (in this model -3 /+3) 

Expected update rate 20 seconds 

Description Contains the information of the current tap position of the transformer 

in the power system that the algorithm is controlling. 

Name Current step position 

Type Scalar 

Unit none 

Range Defined by user (in this model 0 - 3) 

Expected update rate 20 seconds 

Description Contains the information of the current step position of the shunt 

element (capacitor) in the power system that the algorithm is 

controlling. 

Name Current status of the shunt element 

Type Scalar (binary) 

Unit None 

Range 0 or 1 

Expected update rate 20 seconds 

Description Contains the information of the current operation status (on service or 

out of service) of the shunt element (capacitor) in the power system 

that the algorithm is controlling. 



8. Diagrams (data flow diagrams, sequence diagrams, logic diagrams, state 
diagrams, control hierarchy, etc.) 

This section is mandatory. 

This section will contain diagrams which capture the data flow occurring between a function or algorithm 

and the rest of the system. These diagrams should reveal relationships among and between the various 

components in a program or system. 

In case of distributed controllers, i.e. multiple processes communicating to achieve an overall objective, 

sequence diagrams of the interaction between the individual processes must be provided here, in 

addition to the detailed descriptions of the individual processes in subsequent sections. 

Where applicable, this section should also contain Logic Diagrams and/or State Diagrams.  Logic 

Diagrams represent logical concepts and State Diagrams represent the behavior of a system.  State 

diagrams describe all of the possible states of an object as events occur.  Each diagram usually represents 

objects of a single class and tracks the different states of its objects through the system. 

9. Deterministic Functions 

This section is optional; however, at least one of the three detailed description sections (Deterministic 

functions, stochastic functions, algorithms) must be filled in. 

This section will contain a mathematical description of the deterministic (as opposed to stochastic) part 

of a function. Each mathematical formula should be followed by a brief explanation of the symbology. 

The section can also be used to document the mathematical background of an algorithm for which 

pseudocode is provided in the "Algorithms" section below. In this case, the description should also cover 

the method used to realize the implementation in the Algorithms section. 

10. Stochastic Functions 

This section is optional; however, at least one of the three detailed description sections (Deterministic 

functions, stochastic functions, algorithms) must be filled in. 

This section will contain a mathematical description of the stochastic (as opposed to deterministic) part 

of a function. Each mathematical formula should be followed by a brief explanation of the symbology. 

Thermostat flowchart as example for a logic diagram. 

 

 



The section can also be used to document the mathematical background of an algorithm for which 

pseudocode is provided in the "Algorithms" section below. In this case, the description should also cover 

the method used to realize the implementation in the Algorithms section. 

11. Algorithms (pseudocode) 

This section is optional; however, at least one of the three detailed description sections (Deterministic 

functions, stochastic functions, algorithms) must be filled in. 

This section will contain the description of algorithms in a step-by-step fashion, preferably using 

pseudocode if applicable. 

The term “pseudocode” is used here to describe an English-like language that articulates the steps carried 

out in an algorithm.  It allows the author to focus on the logic of the algorithm without being distracted 

by details of any given programming language’s syntax.  For the sake of completeness and consistency, 

pseudocode should follow a general syntax convention (see the appendix).  Pseudocode can be 

augmented with natural language where convenient. 

In case of distributed controllers, i.e. multiple processes communicating to achieve an overall objective, 

sequence diagrams of the interaction between the individual processes must be provided in the 

"diagrams" section, in addition to the detailed descriptions of each of the individual processes here.… 

12. Outputs 

This section is mandatory. 

This section will describe all data output produced by the documented function or algorithm, insofar as 

the output is relevant to the interaction between the function or algorithm and the rest if the system. 

This covers mostly dynamic output data such as setpoints or events. Each output data element should 

describe the format of the output data in sufficient detail for downstream algorithms to be easily 

interfaced. This should as a minimum include the data type (e.g. floating point, integer, character string), 

units (e.g. degrees, percentages), valid ranges (e.g. 0 – infinity; -1.0 – +1.0 inclusive), the expected update 

rate of the data (e.g. static; 10Hz; daily) and a short description of the information the variable contains 

(e.g. “Power setpoint in kW”). 

All data element names should be self-descriptive (i.e. the name should describe what the data element 

contains). Widely recognized symbols from textbooks and professional literature are acceptable. 

 

 



 

 

 

13. References 

This section is mandatory. 

This section shall provide all the references which appear in this document.  They need to be in one of the 

standard citation formats like IEEE, ACM, Harvard, … 

A. Pseudocode Constructs 

Name Optimal tap position 

Type Scalar 

Unit none 

Range Defined by user (in this model -3 /+3) 

Expected update rate 20 seconds 

Description Contains the output of the optimal tap position of the transformer. To 

be sent to the power system 

Name Optimal step position 

Type Scalar 

Unit none 

Range Defined by user (in this model 0 - 3) 

Expected update rate 20 seconds 

Description Contains the output of the optimal step position of the shunt element 

(capacitor). To be sent to the power system 

Name Optimal reactive power setpoint of the DER 

Type Vector of floating values. Dimension of the vector equal to the amount 

of controllable DER in the power system.  

Unit MVAr 

Range Depending on the active power input of each of the sources, the 

equivalent of a power factor set by the user. In this benchmark it is set 

to 0.95. 

Expected update rate 20 seconds 

Description Contains the output of the optimal step position of the shunt element 

(capacitor). To be sent to the power system 

 



This appendix contains examples of pseudocode constructs to be used in describing a scientific algorithm.  

The convention is for keywords and commands to appear in uppercase, which variables and procedure 

names are either lowercase or have the first letter capitalized. 

A.1 Algorithm Construct 

The format of an algorithm construct shall be as follows: 

BEGIN ALGORITHM (algorithm-name) 

Pseudocode statement(s) 

… 

Pseudocode statement(s) 

END ALGORITHM (algorithm-name) 

Example: 

BEGIN ALGORITHM (Storm Segments) 

COMPUTE (Storm Segment) 

END ALGORITHM (Storm Segments) 

A.2 WHILE Construct 

The second DO construct is DO WHILE.  The format shall be as follows: 

DO WHILE (predicate) 

Pseudocode statement(s) 

END DO 

The DO WHILE construct represents a loop of repeated consideration of the pseudocode statement while 

the value of the predicate is true.   

Example: 

DO WHILE (Reflectivity is above threshold) 

Add the current SAMPLE VOLUME to current segment. 

Update end SAMPLE VOLUME number. 

COMPUTE (maximum Reflectivity Factor (dbze)) 

WRITE (maximum Reflectivity Factor (dbze)) 

END DO 

A.3 DO UNTIL Construct 

The third DO construct is DO UNTIL.  The format shall be as follows: 

DO UNTIL (predicate) 

Pseudocode statement(s) 

END DO 

This construct represents a loop of repeated consideration of Pseudocode statement until the value of 

the predicate is true.  Pseudocode statement is considered at least once even if the predicate is true at 

the onset.   

Example: 

DO UNTIL (No more storms isolated) 

Correlate the cells along vertical. 



Find 3D characteristics of correlated cells. 

Add correlated cells as a new storm to the table of storms. 

END DO 

A.4 IF-THEN-ELSE Construct 

The IF-THEN-ELSE construct shall have the following format: 

IF (predicate) THEN 

Pseudocode statement(s)1 

ELSE <optional> 

Pseudocode statement(s)2 

END IF 

If the predicate is true, Pseudocode statement(s)1 (the “THEN” portion) will execute.  If the predicate is 

false, then Pseudocode statement(s)2 (the “ELSE” portion) will execute.  Note that the “ELSE” portion of 

this construct is optional and may not be used in every instance.   

Example: 

IF (REFLECTIVITY is greater than 35 dBZe) THEN 

Label current segment 

COMPUTE (maximum Reflectivity Factor (Reflectivity)) 

ELSE 

Ignore current segment 

END IF 

A.5 CASE Construct 

The CASE construct shall have the following format: 

BEGIN CASE (variable-name) 

CASE (value-list-l) 

Pseudocode statement(s)1 

CASE (value-list-2) 

Pseudocode statement(s)2 

… 

CASE (value-list-n) 

Pseudocode statement(s)n 

END CASE 

where "value-list-i" is a series of values "variable-name" can take.  Pseudocode statement(s)i is 

performed if a variable-name has the same value as a member of value-list-i. 

 Example: 

BEGIN CASE (elapsed time in minutes) 

CASE (6, 12, 18, 24) 

Collect raw radar data 

CASE (7, 13, 19, 25) 

Preprocess raw data 

CASE (8, 14, 20, 26) 

Analyze preprocessed data 

CASE (9, 15, 21, 27) 



Track and forecast the storms 

COMPUTE (Storm Speed) 

END CASE 

A.6 Logical Constructs 

In creating pseudocode, it is often useful to use the logical operators AND, OR, and NOT.  The format for 

using these shall be as follows: 

 (predicate1) AND (predicate2) 

 (predicate1) OR (predicate2) 

 NOT (predicate) 

Example: 

IF (Velocity is greater than 10 knots) AND (Velocity is less than 20 knots) THEN 

Label current segment 

ELSE 

Ignore current segment 

END IF 

A.7 I/O Constructs 

The READ and WRITE constructs indicate when the algorithm will input or output data items and shall 

have the following formats: 

READ (variable-name) 

and: 

WRITE (variable-name) 

Examples: 

READ (Maximum Reflectivity Factor (dbze)) 

and: 

WRITE (Centroid Position) 

A.8 COMPUTE Construct 

The COMPUTE construct is a shorthand notation for a set of computations used to derive a value or set 

of values.  The COMPUTE construct shall have the following format: 

COMPUTE (variable-name) 

This construct causes the value(s) for variable-name to be computed.  

Example: 

COMPUTE (Minimum Velocity (Doppler)) 

causes the algorithm to compute the minimum Doppler velocity.… 

A.9 EXIT Construct 

The EXIT construct shall have the following format: 



EXIT ALGORITHM (algorithm-name) 

This key word forces an unconditional exit from the body of the algorithm, terminating its execution. 

 


