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EvoNet Technical Summary 

1. Model overview 
Simulations were conducted using EvoNetHIV, a stochastic, agent-based simulation model that 

incorporates sexual network structure, behavior, and HIV evolution. Each simulation first 

estimates a statistical model that governs sexual network structure, and then proceeds through a 

burn-in period and epidemic simulation. At each time step of both the burn-in period and 

epidemic simulation, (1) partnerships form and dissolve; (2) sexual acts take place within a 

subset of existing partnerships; (3) HIV transmission occurs probabilistically within a subset of 

sexual acts; (4) viral dynamics and disease progression are updated for each infected agent; and 

(5) vital dynamics, such as aging, are updated. In addition, HIV treatment and preventive 

interventions are implemented at user-specified intervals. Each of the aforementioned processes 

is described in further detail below. 

 

EvoNetHIV is programmed in the R software language (R Development Core Team 2008). 

Model code is accessible at https://github.com/EvoNetHIV.  EvoNetHIV is written as a series of 

modules, with multiple options for each module and the option to write additional modules. It 

also includes over 100 parameters that users can alter, while providing default values for all of 

those parameters. Here we describe the EvoNetHIV components and parameters used in this 

paper; for more details, see https://github.com/EvoNetHIV/EvoNetHIV-Overview. 

 

Simulations were conducted on the Hyak supercomputer system at University of Washington, an 

advanced computational, storage, and networking infrastructure provided by funding through the 

Student Technology Fee and the Center for Studies in Demography and Ecology. 

2. Sexual network 
We estimate the network using separable temporal exponential random graph models 

(STERGMs) (Krivitsky and Handcock 2014), as implemented in the statnet (Handcock et al. 

2003) and EpiModel (Jenness et al. 2016) software suites.  These algorithms also allow us to 

simulate a dynamic network that maintains our desired network features stochastically, even as 

the number of agents in the network changes, as do their attributes.  Network parameterization is 

flexible and can be parameterized for MSM and heterosexual dynamics as well as for additional 

age and group structure. 

3. Sexual behaviors and agent attributes 
Sexual acts are determined among agents in a serodiscordant relationship at each time step. 

Among these partnerships, the number of sexual acts per partnership at a given time step is 

assigned according to a Poisson draw with mean that varies across runs (see Table 1 in 

manuscript body). Condom use is determined for each sexual act with probability of 50%. 

Circumcision status is assigned to agents at model entry with 85% probability.  For MSM 

models, intra-event versatility (when men switch roles and each engage in insertive and receptive 
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anal intercourse (AI) during the same sexual contact) occurs with 40% probability when both 

partners are role versatile, averaged from two studies (Goodreau et al. 2012; Goodreau et al. 

2017).  

4. HIV transmission 
The probability of transmission is calculated for each sexual act that occurs in a serodiscordant 

relationship, as: 

 

𝑃(𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛) = 1 − (1 − 𝜆)𝑒𝑋𝛽
 

where 

 

𝑋𝛽 = ln(2.89) ∗ (𝑣𝑖𝑟𝑎𝑙 𝑙𝑜𝑎𝑑 − 4.0) + ln(2.9) ∗ 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑣𝑒 + ln(17.3) ∗ 𝑟𝑒𝑐𝑒𝑝𝑡𝑖𝑣𝑒 + ln(0.53)

∗ 𝑐𝑖𝑟𝑐𝑢𝑚𝑐𝑖𝑠𝑒𝑑 + ln(0.22) ∗ 𝑐𝑜𝑛𝑑𝑜𝑚 

5. Set point viral load 
Set point viral load (SPVL) in infected agents at model initialization is generated as a 

combination of viral and environmental factors. The viral contribution to SPVL is drawn from a 

normal distribution with mean 4.5 log10 copies/mL and standard deviation of 

√ℎ2 × 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑙𝑜𝑔10 𝑆𝑃𝑉𝐿. The environmental contribution is drawn from a normal 

distribution with mean of 0 and standard deviation of √(1 − ℎ2) × 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑙𝑜𝑔10 𝑆𝑃𝑉𝐿. 

SPVL is then the sum of the viral and environmental contributions, constrained to a minimum 

value of 2 log10 copies/mL and a maximum value of 7 log10 copies/mL. 

 

Upon transmission, the SPVL of a newly infected agent is determined by the SPVL of the donor 

virus, viral mutational variance, and an environmental contribution. The viral mutational 

variance is drawn from a normal distribution with mean 0 and standard deviation 0.01. The 

environmental contribution to the SPVL of newly infected agents is drawn from the same 

distribution as that of infected agents at model initialization. The SPVL of newly infected agents 

is then the sum of the inherited SPVL of the donor agent, mutational variance, and an 

environmental contribution. 

 

Table 5.1. Model parameters utilized in the assignment of set point viral load 

Model parameter Value Source(s) and notes 

Mean log10 SPVL at model 

initialization 

4.5 (Fraser et al. 2007); (Korenromp et al. 2009) 

Heritability of SPVL across 

transmissions (h2)  

0.36 (default), 

0, 5 

Default from (Fraser et al. 2014).  

Other values are sensitivity analysis. 

Variance of log10 SPVL 0.8 (Herbeck et al. 2012) 

Mutational variance 0.01 There are no published estimates of mutational 

variance. We have therefore programmed a low 

value to be conservative and to maintain 

approximately 0.36 heritability output measure. 
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6. Viral dynamics 

Upon infection, viral load, V, grows exponentially at rate r0 for the first 21 days according to the 

formula  

 

𝑉(𝑡) = 𝑉0𝑒𝑟0𝑡 

 

where V0 is the initial value (set to 0.0001 copies/mL) and t indicates the number of days since 

initial infection. One study (Robb et al. 2016) has shown that viral loads during primary infection 

correlate with SPVL. Thus, we allowed the peak viral load to depend on the agent’s SPVL as 

follows 

 

𝑉𝑝𝑒𝑎𝑘 = 4.639 + 0.495 ∗ 𝑙𝑜𝑔10(𝑆𝑃𝑉𝐿) 

 

where the values of 4.639 and 0.495 are based on regression data given there (Robb et al. 2016). 

We set r0 = ln(Vpeak/V0)/21 in order to obtain peak viral load on day 21. After reaching peak viral 

load, viral load decays bi-phasically. The first phase has a duration of 11 days, in which viral 

load decays linearly according to the following formula: 

 

𝑉(𝑡) = 𝑉𝑝𝑒𝑎𝑘 (
𝑉32

𝑉𝑝𝑒𝑎𝑘
)

(𝑡−21)
11

 

 

where viral load at t=32 is a weighted geometric mean of Vadj_peak and SPVL: 

 

𝑉32 = 𝑆𝑃𝑉𝐿0.714 ∗ 𝑉𝑝𝑒𝑎𝑘
0.286 

 

For the remainder of the duration of acute infection, viral load declines linearly until reaching the 

agent’s SPVL at day 90 of infection. Viral load decay in this phase is calculated by 

 

𝑉(𝑡) = 𝑉32 (
𝑆𝑃𝑉𝐿

𝑉32
)

(𝑡−32)
58

 

 

In the chronic phase of HIV infection, an agent’s viral load increases at a constant annual rate of 

0.14 loge copies/mL, calculated as follows 

 

𝑉(𝑡) = 𝑆𝑃𝑉𝐿 ∗ 𝑒0.14∗
𝑡−90
365  

 

This trajectory continues until an agent initiates antiretroviral treatment or enters the AIDS stage, 

defined by CD4 less than 200 cells/mm3. During the AIDS stage, the agent’s viral load increases 

linearly by 1.004112-fold per day: 
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𝑉(𝑡) = 1.004112 ∗ 𝑉(𝑡 − 1) 

 

Viral load in AIDS increases up to a maximum viral load of 6.38 log10 copies/mL. 

 

 

Table 6.1. Model parameters utilized in viral load dynamics 

Model parameter Value Source(s) and notes 

Viral load at day 0 of infection  
0.0001 Model-calibrated to replicate viral dynamics in 

(Lindback et al. 2000) 

r0 
1.19367006 Model-calibrated to replicate viral dynamics in 

(Lindback et al. 2000) 

Duration of exponential viral 

growth 

21 days (Lindback et al. 2000) 

Duration of phase 1 decay 11 days (Lindback et al. 2000) 

Duration of phase 2 decay 58 days (Lindback et al. 2000) 

Duration of acute infection 90 days (Fiebig et al. 2003) 

Viral load progression rate, 

natural log 

0.14 (Geskus et al. 2007) 

Maximum viral load in AIDS 

(CD4<200)  

2.4x106 copies/mL 

= 6.38 log10 copies 

/ mL 

(Piatak et al. 1993) 

 

7. Disease progression 
CD4 values determine the additional risk of death among infected agents. Values are categorized 

as CD4 ≥ 500 cells/mm3, 500 < CD4 ≤ 350, 350 < CD4 ≤ 200, and CD4 < 200. Agents are 

assigned a CD4 category probabilistically according to their set point viral load ((Cori et al. 

2015); Table 7.1). No agents are assigned a CD4 category of less than 200 cells/mm3 upon initial 

infection. 

 

Table 7.1. Probability of assignment to CD4 category stratified by set point viral load 

Set point viral load 

(log10 copies/mL) 

CD4 level (cells/mm3) 

≥ 500 350 – 500 200 – 350 

[2.0, 3.0] 0.88 0.12 0.00 

(3.0, 3.5] 0.87 0.12 0.01 

(3.5, 4.0] 0.85 0.12 0.03 

(4.0, 4.5] 0.78 0.19 0.03 

(4.5, 5.0] 0.73 0.21 0.05 

(5.0, 5.5] 0.71 0.25 0.04 

(5.5, 6.0] 0.64 0.27 0.09 

(6.0, 6.5] 0.00 0.00 1.00 

(6.5, 7.0] 0.00 0.00 1.00 

 

We note that the two highest categories are included for the sake of completion, so that any 

individual who does evolve into this zone will have an associated CD4 value. However, these 
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persons are very rare in the model and die quickly, limiting the persistence of their viral 

genotype in the population. 

 

In the absence of antiretroviral treatment, infected agents progress through CD4 categories 

probabilistically according to a geometric distribution with mean p-1, where p is the inverse of 

the mean amount of time that an individual remains in a specified CD4 category. The mean 

duration of time in each CD4 category is determined by SPVL ((Cori et al. 2015) and personal 

communication; Table 7.2). 

 

Table 7.2. Mean time (in years) spent in each CD4 category stratified by set point viral load 

Set point viral load 

(log10 copies/mL) 

CD4 level (cells/mm3) 

≥ 500 350 – 500 200 – 350 < 200 

[2.0, 3.0] 6.08 5.01 3.60 4.67 

(3.0, 3.5] 4.69 2.52 3.68 4.11 

(3.5, 4.0] 3.94 4.07 2.38 3.54 

(4.0, 4.5] 2.96 3.09 3.81 2.98 

(4.5, 5.0] 2.25 2.32 3.21 2.42 

(5.0, 5.5] 1.47 1.55 2.27 1.86 

(5.5, 6.0] 0.95 1.19 1.00 1.29 

(6.0, 6.5] 0.32 0.59 0.68 0.73 

(6.5, 7.0] 0.30 0.46 0.37 0.17 

 

8. Vital dynamics 
 

8.1  Model initialization 

The epidemic model can be initialized with variable population sizes, though a maximum of 

5,000 is considered the upper limit due to computational resources required for larger sizes. The 

default initial age distribution of model agents is obtained for United States males ages 18-85 

from Centers for Disease Control and Prevention (CDC) Wide-ranging Online Data for 

Epidemiologic Research (WONDER) data for the years 1999-2003 (Centers for Disease Control 

and Prevention 2015). This age distribution was used in a model without treatment, reflecting the 

high AIDS mortality rate observed in the first two decades of the AIDS epidemic, until reaching 

an equilibrium with respect to age. This equilibrium age distribution is scaled to the age range of 

18-55, such that the sum of proportions of agents in each age category is equal to 1. The age of 

each agent is then randomly assigned with probability of a given age equal to the proportion of 

the scaled equilibrium U.S. male population of that age. 

 

8.2 Entries 

The number of entries (births) into the model at each time step is determined by a Poisson draw 

from a distribution with mean 1.37. This distribution results in approximately 1% annual 

population growth when all of the default Evonet parameters are used. Each new agent enters the 

model uninfected with age 18. 
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8.3 Exits 

Age-specific annual mortality rates for US males ages 18-55 were obtained from the CDC 

WONDER database for the years 1999-2003 (Centers for Disease Control and Prevention 2015). 

We converted these annual mortality rates to daily probabilities. 

 

Natural deaths occur according to each agent’s age-specific probability of death, and are 

determined probabilistically by a random draw from a uniform distribution on [0, 1]. HIV-

infected agents with CD4 greater than 200 cells/mm3 have an increased probability of death that 

is dependent on their CD4 category. 

 

Deaths due to AIDS occur when an agent’s time in CD4 category 4 (CD4 < 200 cells/mm3) is 

completed according to disease progression described in Section 7.  

 

8.4 Aging 

Each agent’s age is incremented by 1/365 at each time step. 

 

Table 8.1. Model parameters governing vital dynamics 

Model parameter Value Source(s) and notes 

Initial population size 5,000 NA 

λ for model entries (births) 1.37 Model-calibrated to produce 1% 

annual growth 

Minimum age 18 NA 

Maximum age 55 NA 

Age distribution  0.0450, 0.0440, 0.0430, 0.0420, 

0.0410, 0.0400, 0.0390, 0.0380, 

0.0370, 0.0360, 0.0350, 0.0340, 

0.0330, 0.0320, 0.0310, 0.0300, 

0.0290, 0.0280, 0.0270, 0.0260, 

0.0250, 0.0240, 0.0230, 0.0220, 

0.0210, 0.0200, 0.0190, 0.0180, 

0.0170, 0.0160, 0.0150, 0.0140, 

0.0130, 0.0120, 0.0110, 0.0100, 

0.0090 

Modified from CDC WONDER 

(Centers for Disease Control and 

Prevention 2015) 

Age-specific annual mortality 

rates 

0.0011, 0.0012, 0.0013, 0.0014, 

0.0014, 0.0014, 0.0014, 0.0014, 

0.0014, 0.0014, 0.0014, 0.0014, 

0.0014, 0.0015, 0.0015, 0.0016, 

0.0016, 0.0017, 0.0018, 0.0019, 

0.0021, 0.0022, 0.0024, 0.0026, 

0.0028, 0.0030, 0.0033, 0.0036, 

0.0039, 0.0043, 0.0046, 0.0050, 

0.0055, 0.0059, 0.0064, 0.0069, 

0.0074 

CDC WONDER (Centers for 

Disease Control and Prevention 

2015) 

Additional probability of death 

with CD4 > 500 cells/mm3 

0.0000112 per day The values in CASCADE, 2011 

(Writing Committee for the 

CASCADE Collaboration 2011) 
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are for men with mean age 30. 

Rates presented here therefore 

subtract 0.0014, the natural 

mortality rate for North 

American males aged 30 

(Centers for Disease Control and 

Prevention 2015), to estimate an 

excess death rate associated with 

this CD4 category. 

Additional probability of death 

with CD4 350-500 cells/mm3 

0.0000148 per day See note above 

Additional probability of death 

with CD4 200-350 cells/mm3 

0.0000333 per day See note above 
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