AIfES 2 2.0.0
aimath_q7_avr_pgm.h File Reference

Math functions for Q7 data type using AVR pgmspace.h library for constant data storage. More...

Go to the source code of this file.

Functions

void aimath_q7_avr_pgm_linear32_1 (const aitensor_t *a, const aitensor_t *b, const aitensor_t *c, aitensor_t *result)
 Performs a matrix multiplication of Q7 matrices a and b and adds a Q31 vector c to each row. More...
 
void aimath_q7_avr_pgm_linear32_2 (const aitensor_t *a, const aitensor_t *b, const aitensor_t *c, aitensor_t *result)
 Performs a matrix multiplication of Q7 matrices a and b and adds a Q31 vector c to each row. More...
 
void aimath_q7_avr_pgm_linear32_bt_1 (const aitensor_t *a, const aitensor_t *b, const aitensor_t *c, aitensor_t *result)
 Performs a matrix multiplication of Q7 matrices a and b (transposed) and adds a Q31 vector c to each row. More...
 
void aimath_q7_avr_pgm_linear32_bt_2 (const aitensor_t *a, const aitensor_t *b, const aitensor_t *c, aitensor_t *result)
 Performs a matrix multiplication of Q7 matrices a and b and adds a Q31 vector c to each row. More...
 
void aimath_q7_avr_pgm_relu (const aitensor_t *x, aitensor_t *result)
 Calculates the rectifier (ReLU) value of each element in a Q7 tensor. More...
 
void aimath_q7_avr_pgm_leaky_relu (const aitensor_t *x, const void *alpha, aitensor_t *result)
 Calculates the leaky rectifier (leaky ReLU) value of each element in a Q7 tensor. More...
 
void aimath_q7_avr_pgm_elu (const aitensor_t *x, const void *alpha, aitensor_t *result)
 Calculates the exponential rectifier (ELU) value of each element in a Q7 tensor. More...
 
void aimath_q7_avr_pgm_sigmoid (const aitensor_t *x, aitensor_t *result)
 Calculates the sigmoid of each element in a Q7 tensor. More...
 
void aimath_q7_avr_pgm_tanh (const aitensor_t *x, aitensor_t *result)
 Calculates the tanh of each element in a Q7 tensor. More...
 
void aimath_q7_avr_pgm_softsign (const aitensor_t *x, aitensor_t *result)
 Calculates the softsign value of each element in a Q7 tensor. More...
 
void aimath_q7_avr_pgm_softmax (const aitensor_t *x, aitensor_t *result)
 Calculates the softmax value of each batch element (row) of a Q7 tensor. More...
 

Detailed Description

Math functions for Q7 data type using AVR pgmspace.h library for constant data storage.

Version
2.0alpha

AIfES is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this program. If not, see https://www.gnu.org/licenses/.

These functions modify the default implementation of the Q7 math functions to work with parameters, stored in the program memory of AVR controllers.

The library avr/pgmspace.h is required.

Function Documentation

◆ aimath_q7_avr_pgm_elu()

void aimath_q7_avr_pgm_elu ( const aitensor_t x,
const void *  alpha,
aitensor_t result 
)

Calculates the exponential rectifier (ELU) value of each element in a Q7 tensor.

The quantization parameters x must be defined constant in PROGMEM.

This function wraps the function aimath_f32_default_elu() internally.

\[ result_{i} = \begin{cases} \alpha \cdot (e^{x_i} - 1) & \text{if } x_i < 0 \\ x_i & \text{if } x_i \geq 0 \end{cases} \]

The ELU is calculated with a piecewise linear approximation to avoid using exponential functions.

\[ result_{i} = \begin{cases} x_i & \text{if } 0 \leq x_i\\ \alpha \cdot 0.625 \cdot x_i & \text{if } -1 \leq x < 0\\ \alpha \cdot (0.25 \cdot x_i - 0.375) & \text{if } -2 \leq x < -1\\ \alpha \cdot (0.09375 \cdot x_i - 0.6875) & \text{if } -3 \leq x < -2\\ \alpha \cdot (0.03125 \cdot x_i - 0.875) & \text{if } -4 \leq x < -3\\ - \alpha & \text{if } x < -4 \end{cases} \]

The quantization parameters of the result tensor are set to {shift = x.shift, zero_point = x.zero_point} by the function because the output values are in the interval (max(-alpha, min(x)), max(x)].

Example:

uint16_t x_shape[2] = {2, 3};
const aimath_q7_params_t x_params PROGMEM = {1, 0}; // {shift, zero point}
int8_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q7(x_shape, &x_params, x_data);
aiscalar_q7_t alpha = AISCALAR_Q7(1.0f, 0, 0);
uint16_t result_shape[2] = {2, 3};
aimath_q7_params_t result_params; // {shift, zero point}
int8_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q7(result_shape, &result_params, result_data);
aimath_q7_avr_pgm_elu(&x, &alpha, &result);
print_aitensor(&result);
void print_aitensor(const aitensor_t *tensor)
Printing a tensor to console.
void aimath_q7_avr_pgm_elu(const aitensor_t *x, const void *alpha, aitensor_t *result)
Calculates the exponential rectifier (ELU) value of each element in a Q7 tensor.
Parameters used for the quantized Q7 values, used as property of a tensor.
Definition: aimath_q7.h:151
Single quantized Q7 value/scalar.
Definition: aimath_q7.h:158
A tensor in AIfES.
Definition: aifes_math.h:92
Parameters
*xQ7 tensor to calculate the ELU from (N-D tensor) (quantization parameters const in PROGMEM)
*alphaScalar \( \alpha \) (type aiscalar_q7_t)
*resultResulting Q7 tensor (N-D tensor)

◆ aimath_q7_avr_pgm_leaky_relu()

void aimath_q7_avr_pgm_leaky_relu ( const aitensor_t x,
const void *  alpha,
aitensor_t result 
)

Calculates the leaky rectifier (leaky ReLU) value of each element in a Q7 tensor.

The quantization parameters x must be defined constant in PROGMEM.

This function wraps the function aimath_f32_default_leaky_relu() internally.

\[ result_{i} = \begin{cases} \alpha \cdot x_i & \text{if } x_i < 0 \\ x_i & \text{if } x_i \geq 0 \end{cases} \]

The quantization parameters of the result tensor are set to {shift = x.shift, zero_point = x.zero_point} by the function because the output values are in the interval (alpha * min(x), max(x)].

Example:

uint16_t x_shape[2] = {2, 3};
const aimath_q7_params_t x_params PROGMEM = {6, 0}; // {shift, zero point}
int8_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q7(x_shape, &x_params, x_data);
aiscalar_q7_t alpha = AISCALAR_Q7(0.01f, 10, 0);
uint16_t result_shape[2] = {2, 3};
aimath_q7_params_t result_params; // {shift, zero point}
int8_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q7(result_shape, &result_params, result_data);
aimath_q7_avr_pgm_leaky_relu(&x, &alpha, &result);
print_aitensor(&result);
void aimath_q7_avr_pgm_leaky_relu(const aitensor_t *x, const void *alpha, aitensor_t *result)
Calculates the leaky rectifier (leaky ReLU) value of each element in a Q7 tensor.
Parameters
*xQ7 tensor to calculate the leaky ReLU from (N-D tensor) (quantization parameters const in PROGMEM)
*alphaScalar \( \alpha \) (type aiscalar_q7_t) for the leakage
*resultResulting Q7 tensor (N-D tensor)

◆ aimath_q7_avr_pgm_linear32_1()

void aimath_q7_avr_pgm_linear32_1 ( const aitensor_t a,
const aitensor_t b,
const aitensor_t c,
aitensor_t result 
)

Performs a matrix multiplication of Q7 matrices a and b and adds a Q31 vector c to each row.

The data of b and c and the quantization parameters of a, b, c and result must be defined constant in PROGMEM.

Same functionality as aimath_f32_default_linear32().

The addition of the horizontal vector c is performed via broadcast, i.e. element wise in each column Mathematically this broadcast is equal to multiplying c with an vertical vector (with the same number of elements as c) and adding the result to a * b.

** The quantization parameters of the vector c have to be {zero_point = 0, shift = a.shift + b.shift}! **

\[ result = a \cdot b + \left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \\ \end{array}\right) \cdot c \]

Example:

uint16_t a_shape[2] = {3, 3};
const aimath_q7_params_t a_params PROGMEM = {1, 0}; // {shift, zero point}
int8_t a_data[3*3] = { 2, 4, 6,
8, 10, 12,
14, 16, 18};
aitensor_t a = AITENSOR_2D_Q7(a_shape, &a_params, a_data);
uint16_t b_shape[2] = {3, 2};
const aimath_q7_params_t b_params PROGMEM = {2, 0}; // {shift, zero point}
const int8_t b_data[3*2] PROGMEM = {4, 0,
0, 4,
0, 0};
aitensor_t b = AITENSOR_2D_Q7(b_shape, &b_params, b_data);
uint16_t c_shape[2] = {1, 2};
const aimath_q31_params_t c_params PROGMEM = {3, 0}; // {shift, zero point}
const int32_t c_data[1*2] PROGMEM = {16, 40};
aitensor_t c = AITENSOR_2D_Q31(c_shape, &c_params, c_data);
uint16_t result_shape[2] = {3, 2};
const aimath_q7_params_t result_params PROGMEM = {1, 0}; // {shift, zero point}
int8_t result_data[3*2];
aitensor_t result = AITENSOR_2D_Q7(result_shape, &result_params, result_data);
aimath_q7_avr_pgm_linear32_1(&a, &b, &c, &result);
void aimath_q7_avr_pgm_linear32_1(const aitensor_t *a, const aitensor_t *b, const aitensor_t *c, aitensor_t *result)
Performs a matrix multiplication of Q7 matrices a and b and adds a Q31 vector c to each row.
Parameters used for the quantized Q31 values, used as property of a tensor.
Definition: aimath_q31.h:152
Parameters
*aQ7 matrix a (2D tensor of shape [N x K]) (quantization parameters const in PROGMEM)
*bQ7 matrix b (2D tensor of shape [K x M]) (data and quantization parameters const in PROGMEM)
*cQ31 vector c (2D tensor of shape [1 x M]) (data and quantization parameters const in PROGMEM)
*resultResulting Q7 matrix (2D tensor of shape [N x M]) (quantization parameters const in PROGMEM)

◆ aimath_q7_avr_pgm_linear32_2()

void aimath_q7_avr_pgm_linear32_2 ( const aitensor_t a,
const aitensor_t b,
const aitensor_t c,
aitensor_t result 
)

Performs a matrix multiplication of Q7 matrices a and b and adds a Q31 vector c to each row.

The data of b and c and the quantization parameters of b, c and result (not of a!) must be defined constant in PROGMEM.

Same functionality as aimath_f32_default_linear32().

The addition of the horizontal vector c is performed via broadcast, i.e. element wise in each column Mathematically this broadcast is equal to multiplying c with an vertical vector (with the same number of elements as c) and adding the result to a * b.

** The quantization parameters of the vector c have to be {zero_point = 0, shift = a.shift + b.shift}! **

\[ result = a \cdot b + \left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \\ \end{array}\right) \cdot c \]

Example:

uint16_t a_shape[2] = {3, 3};
aimath_q7_params_t a_params = {1, 0}; // {shift, zero point}
int8_t a_data[3*3] = { 2, 4, 6,
8, 10, 12,
14, 16, 18};
aitensor_t a = AITENSOR_2D_Q7(a_shape, &a_params, a_data);
uint16_t b_shape[2] = {3, 2};
const aimath_q7_params_t b_params PROGMEM = {2, 0}; // {shift, zero point}
const int8_t b_data[3*2] PROGMEM = {4, 0,
0, 4,
0, 0};
aitensor_t b = AITENSOR_2D_Q7(b_shape, &b_params, b_data);
uint16_t c_shape[2] = {1, 2};
const aimath_q31_params_t c_params PROGMEM = {3, 0}; // {shift, zero point}
const int32_t c_data[1*2] PROGMEM = {16, 40};
aitensor_t c = AITENSOR_2D_Q31(c_shape, &c_params, c_data);
uint16_t result_shape[2] = {3, 2};
const aimath_q7_params_t result_params PROGMEM = {1, 0}; // {shift, zero point}
int8_t result_data[3*2];
aitensor_t result = AITENSOR_2D_Q7(result_shape, &result_params, result_data);
aimath_q7_avr_pgm_linear32_2(&a, &b, &c, &result);
void aimath_q7_avr_pgm_linear32_2(const aitensor_t *a, const aitensor_t *b, const aitensor_t *c, aitensor_t *result)
Performs a matrix multiplication of Q7 matrices a and b and adds a Q31 vector c to each row.
Parameters
*aQ7 matrix a (2D tensor of shape [N x K])
*bQ7 matrix b (2D tensor of shape [K x M]) (data and quantization parameters const in PROGMEM)
*cQ31 vector c (2D tensor of shape [1 x M]) (data and quantization parameters const in PROGMEM)
*resultResulting Q7 matrix (2D tensor of shape [N x M]) (quantization parameters const in PROGMEM)

◆ aimath_q7_avr_pgm_linear32_bt_1()

void aimath_q7_avr_pgm_linear32_bt_1 ( const aitensor_t a,
const aitensor_t b,
const aitensor_t c,
aitensor_t result 
)

Performs a matrix multiplication of Q7 matrices a and b (transposed) and adds a Q31 vector c to each row.

The data of b and c and the quantization parameters of a, b, c and result must be defined constant in PROGMEM.

The b matrix has to be transposed.

Same functionality as aimath_f32_default_linear32_bt().

The addition of the horizontal vector c is performed via broadcast, i.e. element wise in each column Mathematically this broadcast is equal to multiplying c with an vertical vector (with the same number of elements as c) and adding the result to \( a * b^T \).

The quantization parameters of the vector c have to be {zero_point = 0, shift = a.shift + b.shift}!

\[ result = a \cdot b^T + \left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \\ \end{array}\right) \cdot c \]

Example:

uint16_t a_shape[2] = {3, 3};
const aimath_q7_params_t a_params PROGMEM = {1, 0}; // {shift, zero point}
int8_t a_data[3*3] = { 2, 4, 6,
8, 10, 12,
14, 16, 18};
aitensor_t a = AITENSOR_2D_Q7(a_shape, &a_params, a_data);
uint16_t b_shape[2] = {2, 3};
const aimath_q7_params_t b_params PROGMEM = {2, 0}; // {shift, zero point}
const int8_t b_data[2*3] PROGMEM = {4, 0, 0,
0, 4, 0};
aitensor_t b = AITENSOR_2D_Q7(b_shape, &b_params, b_data);
uint16_t c_shape[2] = {1, 2};
const aimath_q31_params_t c_params PROGMEM = {3, 0}; // {shift, zero point}
const int32_t c_data[1*2] PROGMEM = {16, 40};
aitensor_t c = AITENSOR_2D_Q31(c_shape, &c_params, c_data);
uint16_t result_shape[2] = {3, 2};
const aimath_q7_params_t result_params PROGMEM = {1, 0}; // {shift, zero point}
int8_t result_data[3*2];
aitensor_t result = AITENSOR_2D_Q7(result_shape, &result_params, result_data);
aimath_q7_avr_pgm_linear32_bt_1(&a, &b, &c, &result);
void aimath_q7_avr_pgm_linear32_bt_1(const aitensor_t *a, const aitensor_t *b, const aitensor_t *c, aitensor_t *result)
Performs a matrix multiplication of Q7 matrices a and b (transposed) and adds a Q31 vector c to eac...
Parameters
*aQ7 matrix a (2D tensor of shape [N x K]) (quantization parameters const in PROGMEM)
*bQ7 matrix b (2D tensor of shape [M x K]) (data and quantization parameters const in PROGMEM)
*cQ31 vector c (2D tensor of shape [1 x M]) (data and quantization parameters const in PROGMEM)
*resultResulting Q7 matrix (2D tensor of shape [N x M]) (quantization parameters const in PROGMEM)

◆ aimath_q7_avr_pgm_linear32_bt_2()

void aimath_q7_avr_pgm_linear32_bt_2 ( const aitensor_t a,
const aitensor_t b,
const aitensor_t c,
aitensor_t result 
)

Performs a matrix multiplication of Q7 matrices a and b and adds a Q31 vector c to each row.

The data of b and c and the quantization parameters of b, c and result (not of a!) must be defined constant in PROGMEM.

The b matrix has to be transposed.

Same functionality as aimath_f32_default_linear32().

The addition of the horizontal vector c is performed via broadcast, i.e. element wise in each column Mathematically this broadcast is equal to multiplying c with an vertical vector (with the same number of elements as c) and adding the result to \( a * b^T \).

** The quantization parameters of the vector c have to be {zero_point = 0, shift = a.shift + b.shift}! **

\[ result = a \cdot b^T + \left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \\ \end{array}\right) \cdot c \]

Example:

uint16_t a_shape[2] = {3, 3};
aimath_q7_params_t a_params = {1, 0}; // {shift, zero point}
int8_t a_data[3*3] = { 2, 4, 6,
8, 10, 12,
14, 16, 18};
aitensor_t a = AITENSOR_2D_Q7(a_shape, &a_params, a_data);
uint16_t b_shape[2] = {2, 3};
const aimath_q7_params_t b_params PROGMEM = {2, 0}; // {shift, zero point}
const int8_t b_data[2*3] PROGMEM = {4, 0, 0,
0, 4, 0};
aitensor_t b = AITENSOR_2D_Q7(b_shape, &b_params, b_data);
uint16_t c_shape[2] = {1, 2};
const aimath_q31_params_t c_params PROGMEM = {3, 0}; // {shift, zero point}
const int32_t c_data[1*2] PROGMEM = {16, 40};
aitensor_t c = AITENSOR_2D_Q31(c_shape, &c_params, c_data);
uint16_t result_shape[2] = {3, 2};
const aimath_q7_params_t result_params PROGMEM = {1, 0}; // {shift, zero point}
int8_t result_data[3*2];
aitensor_t result = AITENSOR_2D_Q7(result_shape, &result_params, result_data);
aimath_q7_avr_pgm_linear32_bt_2(&a, &b, &c, &result);
void aimath_q7_avr_pgm_linear32_bt_2(const aitensor_t *a, const aitensor_t *b, const aitensor_t *c, aitensor_t *result)
Performs a matrix multiplication of Q7 matrices a and b and adds a Q31 vector c to each row.
Parameters
*aQ7 matrix a (2D tensor of shape [N x K])
*bQ7 matrix b (2D tensor of shape [M x K]) (data and quantization parameters const in PROGMEM)
*cQ31 vector c (2D tensor of shape [1 x M]) (data and quantization parameters const in PROGMEM)
*resultResulting Q7 matrix (2D tensor of shape [N x M]) (quantization parameters const in PROGMEM)

◆ aimath_q7_avr_pgm_relu()

void aimath_q7_avr_pgm_relu ( const aitensor_t x,
aitensor_t result 
)

Calculates the rectifier (ReLU) value of each element in a Q7 tensor.

The quantization parameters x must be defined constant in PROGMEM.

This function wraps the function aimath_f32_default_relu() internally.

\[ result_{i} = max(0, x_{i}) \]

The quantization parameters of the result tensor are set to {shift = x.shift, zero_point = x.zero_point} by the function because the output values are in the interval [0, max(x)].

Example:

uint16_t x_shape[2] = {2, 3};
const aimath_q7_params_t x_params PROGMEM = {1, 0}; // {shift, zero point}
int8_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q7(x_shape, &x_params, x_data);
uint16_t result_shape[2] = {2, 3};
aimath_q7_params_t result_params;
int8_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q7(result_shape, &result_params, result_data);
print_aitensor(&result);
void aimath_q7_avr_pgm_relu(const aitensor_t *x, aitensor_t *result)
Calculates the rectifier (ReLU) value of each element in a Q7 tensor.
Parameters
*xQ7 tensor to calculate the ReLU from (N-D tensor) (quantization parameters const in PROGMEM)
*resultResulting Q7 tensor (N-D tensor)

◆ aimath_q7_avr_pgm_sigmoid()

void aimath_q7_avr_pgm_sigmoid ( const aitensor_t x,
aitensor_t result 
)

Calculates the sigmoid of each element in a Q7 tensor.

The quantization parameters x must be defined constant in PROGMEM.

This function wraps the function aimath_f32_default_sigmoid() internally.

\[ result_{i} = \sigma(x_{i}) = \frac{1}{1 + e^{-x_{i}}} \]

The sigmoid is calculated with a piecewise linear approximation (PLAN) to avoid using exponential functions.

\[ result_{i} = \sigma_{PLAN}(x_i) = \begin{cases} 1 & \text{if } 5 \leq x_i\\ 0.03125 \cdot |x_i| + 0.84375 & \text{if } 2.375 \leq x_i < 5\\ 0.0125 \cdot |x_i| + 0.625 & \text{if } 1 \leq x_i < 2.375\\ 0.25 \cdot |x_i| + 0.5 & \text{if } 0 \leq x_i < 1\\ 1 - \sigma_{PLAN}(- x_i) & \text{if } x_i < 0\\ \end{cases} \]

The quantization parameters of the result tensor are set to {shift = 8, zero_point = -2^7} by the function because the output values are in the interval (0, 1).

Example:

uint16_t x_shape[2] = {2, 3};
const aimath_q7_params_t x_params PROGMEM = {1, 0}; // {shift, zero point}
int8_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q7(x_shape, &x_params, x_data);
uint16_t result_shape[2] = {2, 3};
aimath_q7_params_t result_params;
int8_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q7(result_shape, &result_params, result_data);
print_aitensor(&result);
void aimath_q7_avr_pgm_sigmoid(const aitensor_t *x, aitensor_t *result)
Calculates the sigmoid of each element in a Q7 tensor.
See also
Sigmoid PLAN: https://www.researchgate.net/figure/Comparative-representation-of-the-sigmoid-function-and-PLAN-approximation_fig7_228618304
Parameters
*xQ7 tensor to calculate the sigmoid from (N-D tensor) (quantization parameters const in PROGMEM)
*resultResulting Q7 tensor (N-D tensor)

◆ aimath_q7_avr_pgm_softmax()

void aimath_q7_avr_pgm_softmax ( const aitensor_t x,
aitensor_t result 
)

Calculates the softmax value of each batch element (row) of a Q7 tensor.

The quantization parameters x must be defined constant in PROGMEM.

This function wraps the function aimath_f32_default_softmax() internally.

\[ result_{i} = \frac{e^{x_i}}{\sum_{j=1}^{K} e^{x_j}} \]

The quantization parameters of the result tensor are set to {shift = 8, zero_point = -128} by the function because the output values are in the interval (0, 1).

Example:

uint16_t x_shape[2] = {2, 3};
const aimath_q7_params_t x_params PROGMEM = {1, 0}; // {shift, zero point}
int8_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q7(x_shape, &x_params, x_data);
uint16_t result_shape[2] = {2, 3};
aimath_q7_params_t result_params;
int8_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q7(result_shape, &result_params, result_data);
print_aitensor(&result);
void aimath_q7_avr_pgm_softmax(const aitensor_t *x, aitensor_t *result)
Calculates the softmax value of each batch element (row) of a Q7 tensor.
Parameters
*xQ7 tensor to calculate the softmax from (N-D tensor) (quantization parameters const in PROGMEM)
*resultResulting Q7 tensor (N-D tensor)

◆ aimath_q7_avr_pgm_softsign()

void aimath_q7_avr_pgm_softsign ( const aitensor_t x,
aitensor_t result 
)

Calculates the softsign value of each element in a Q7 tensor.

The quantization parameters x must be defined constant in PROGMEM.

This function wraps the function aimath_f32_default_softsign() internally.

\[ result_{i} = \frac {x_i} {1 + |x_i|} \]

The quantization parameters of the result tensor are set to {shift = 7, zero_point = 0} by the function because the output values are in the interval (-1, 1).

Example:

uint16_t x_shape[2] = {2, 3};
const aimath_q7_params_t x_params PROGMEM = {1, 0}; // {shift, zero point}
int8_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q7(x_shape, &x_params, x_data);
uint16_t result_shape[2] = {2, 3};
aimath_q7_params_t result_params;
int8_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q7(result_shape, &result_params, result_data);
print_aitensor(&result);
void aimath_q7_avr_pgm_softsign(const aitensor_t *x, aitensor_t *result)
Calculates the softsign value of each element in a Q7 tensor.
Parameters
*xQ7 tensor to calculate the softsign from (N-D tensor) (quantization parameters const in PROGMEM)
*resultResulting Q7 tensor (N-D tensor)

◆ aimath_q7_avr_pgm_tanh()

void aimath_q7_avr_pgm_tanh ( const aitensor_t x,
aitensor_t result 
)

Calculates the tanh of each element in a Q7 tensor.

The quantization parameters x must be defined constant in PROGMEM.

This function wraps the function aimath_f32_default_tanh() internally.

\[ result_{i} = \tanh(x_{i}) = \frac{e^{x_i} - e^{-x_i}}{e^{x_i} + e^{-x_i}} \]

The tanh is calculated with a piecewise linear approximation (PLA) to avoid using exponential functions.

\[ result_{i} = \tanh_{PLA}(x_i) = 2 \cdot \sigma(2x_i) - 1 = \begin{cases} 1 & \text{if } 5 \leq x_i\\ 0.0625 \cdot |x_i| + 0.6875 & \text{if } 2.375 \leq x_i < 5\\ 0.25 \cdot |x_i| + 0.25 & \text{if } 1 \leq x_i < 2.375\\ 0.5 \cdot |x_i| & \text{if } 0 \leq x_i < 1\\ - \tanh_{PLA}(- x_i) & \text{if } x_i < 0\\ \end{cases} \]

The quantization parameters of the result tensor are set to {shift = 7, zero_point = 0} by the function because the output values are in the interval (-1, 1).

Example:

uint16_t x_shape[2] = {2, 3};
const aimath_q7_params_t x_params PROGMEM= {1, 0}; // {shift, zero point}
int8_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q7(x_shape, &x_params, x_data);
uint16_t result_shape[2] = {2, 3};
aimath_q7_params_t result_params;
int8_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q7(result_shape, &result_params, result_data);
print_aitensor(&result);
void aimath_q7_avr_pgm_tanh(const aitensor_t *x, aitensor_t *result)
Calculates the tanh of each element in a Q7 tensor.
See also
Sigmoid PLAN: https://www.researchgate.net/figure/Comparative-representation-of-the-sigmoid-function-and-PLAN-approximation_fig7_228618304
Parameters
*xQ7 tensor to calculate the tanh from (N-D tensor) (quantization parameters const in PROGMEM)
*resultResulting Q7 tensor (N-D tensor)