Module mogptk.gpr.singleoutput

Expand source code Browse git
import torch
import numpy as np
from . import Kernel, Parameter, config

class WhiteKernel(Kernel):
    """
    A white kernel given by

    $$ K(x,x') = \\sigma^2 I $$

    with \\(\\sigma^2\\) the magnitude.

    Args:
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
    """
    def __init__(self, input_dims=1, active_dims=None, name="White"):
        super().__init__(input_dims, active_dims, name)

        self.magnitude = Parameter(1.0, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        if X2 is None:
            return self.magnitude() * torch.eye(X1.shape[0], X1.shape[0], dtype=config.dtype, device=config.device)
        return torch.zeros(X1.shape[0], X2.shape[0], dtype=config.dtype, device=config.device)

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

class ConstantKernel(Kernel):
    """
    A constant or bias kernel given by

    $$ K(x,x') = \\sigma^2 $$

    with \\(\\sigma^2\\) the magnitude.

    Args:
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
    """
    def __init__(self, input_dims=1, active_dims=None, name="Constant"):
        super().__init__(input_dims, active_dims, name)

        self.magnitude = Parameter(1.0, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        if X2 is None:
            X2 = X1
        return self.magnitude() * torch.ones(X1.shape[0], X2.shape[0], dtype=config.dtype, device=config.device)

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

class LinearKernel(Kernel):
    """
    A linear kernel given by

    $$ K(x,x') = \\sigma^2 xx'^T + c $$

    with \\(\\sigma^2\\) the magnitude and \\(c\\) the bias.

    Args:
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        bias (mogptk.gpr.parameter.Parameter): Bias \\(c\\) a scalar.
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
    """
    def __init__(self, input_dims=1, active_dims=None, name="Linear"):
        super().__init__(input_dims, active_dims, name)

        self.bias = Parameter(0.0, lower=0.0)
        self.magnitude = Parameter(1.0, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        if X2 is None:
            X2 = X1
        return self.magnitude() * X1.mm(X2.T) + self.bias()

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude() * X1.square().sum(dim=1) + self.bias()

class PolynomialKernel(Kernel):
    """
    A polynomial kernel given by

    $$ K(x,x') = (\\sigma^2 xx'^T + c)^d $$

    with \\(\\sigma^2\\) the magnitude, \\(c\\) the bias, and \\(d\\) the degree of the polynomial. When \\(d\\) is 1 this becomes equivalent to the linear kernel.

    Args:
        degree (int): Degree of the polynomial.
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        degree (float): Degree \\(d\\).
        bias (mogptk.gpr.parameter.Parameter): Bias \\(c\\) a scalar.
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
    """
    def __init__(self, degree, input_dims=1, active_dims=None, name="Polynomial"):
        super().__init__(input_dims, active_dims, name)

        self.degree = degree
        self.bias = Parameter(0.0, lower=0.0)
        self.magnitude = Parameter(1.0, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        if X2 is None:
            X2 = X1
        return (self.magnitude() * X1.mm(X2.T) + self.bias())**self.degree

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return (self.magnitude() * X1.square().sum(dim=1) + self.bias())**self.degree

class FunctionKernel(Kernel):
    """
    A kernel determined by a function \\(\\phi\\) given by

    $$ K(x,x') = \\phi(x) \\sigma^2 \\phi(x') $$

    with \\(\\sigma^2\\) the magnitude and \\(\\phi\\) the function.

    Args:
        phi (function): Function that takes (data_points,input_dims) as input and (data_points,feature_dims) as output. Input and output must be tensors.
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
    """
    def __init__(self, phi, input_dims=1, active_dims=None, name="Phi"):
        super().__init__(input_dims, active_dims, name)

        out = phi(torch.ones(42, input_dims, dtype=config.dtype, device=config.device))
        if not torch.is_tensor(out) or out.dtype != config.dtype or out.device != config.device:
            raise ValueError("phi must return a tensor of the same dtype and device as the input")
        if out.ndim != 2 or out.shape[0] != 42:
            raise ValueError("phi must take (data_points,input_dims) as input, and return (data_points,feature_dims) as output")

        feature_dims = out.shape[1]
        magnitude = torch.ones(feature_dims)

        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.phi = phi

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        variance = self.magnitude().diagflat()
        if X2 is None:
            X1 = self.phi(X1)
            return X1.mm(variance.mm(X1.T))
        else:
            return self.phi(X1).mm(variance.mm(self.phi(X2).T))

class ExponentialKernel(Kernel):
    """
    An exponential kernel given by

    $$ K(x,x') = \\sigma^2 \\exp\\left(-\\frac{\\tau}{2l}\\right) $$

    with \\(\\tau = |x-x'|\\), \\(\\sigma^2\\) the magnitude, \\(l\\) the lengthscale.

    Args:
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
        lengthscale (mogptk.gpr.parameter.Parameter): Lengthscale \\(l\\) of shape (input_dims,).
    """
    def __init__(self, input_dims=1, active_dims=None, name="Exponential"):
        super().__init__(input_dims, active_dims, name)

        magnitude = 1.0
        lengthscale = torch.ones(input_dims)

        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.lengthscale = Parameter(lengthscale, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        dist = torch.abs(self.distance(X1,X2))  # NxMxD
        exp = -0.5*torch.tensordot(dist, 1.0/self.lengthscale(), dims=1)  # NxM
        return self.magnitude() * torch.exp(exp)

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

class SquaredExponentialKernel(Kernel):
    """
    A squared exponential kernel given by

    $$ K(x,x') = \\sigma^2 \\exp\\left(-\\frac{1}{2}\\tau^TM\\tau\\right) $$

    with \\(\\tau = |x-x'|\\), \\(M = LL^T + \\mathrm{diag}(l)^{-2}\\), \\(\\sigma^2\\) the magnitude, \\(l\\) the lengthscales, and \\(LL^T\\) the cross lengthscales. When `order` equals zero this reverts to one lengthscale per input dimension (ie. ARD with \\(M = \\mathrm{diag}(l)^{-2}\\)). When `order` equals `-1` we revert to a single lengthscale for all input dimensions (ie. \\(M = l^{-2}I\\)).

    Args:
        order (int): Order of cross lengthscales.
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
        lengthscale (mogptk.gpr.parameter.Parameter): Lengthscale \\(l\\) of shape (input_dims,) or scalar.
        cross_lengthscale (mogptk.gpr.parameter.Parameter): Cross lengthscale \\(L\\) of shape (input_dims,order) if `0 < order`.
    """
    def __init__(self, order=0, input_dims=1, active_dims=None, name="SE"):
        super().__init__(input_dims, active_dims, name)

        magnitude = 1.0
        lengthscale = 1.0
        if -1 < order:
            lengthscale = torch.ones(input_dims)
        if 0 < order:
            cross_lengthscale = torch.ones(input_dims,order)

        self.order = order
        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.lengthscale = Parameter(lengthscale, lower=config.positive_minimum)
        if 0 < order:
            self.cross_lengthscale = Parameter(cross_lengthscale, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        tau = self.distance(X1,X2)  # NxMxD
        if self.order == -1:
            lengthscale = (1.0/self.lengthscale()**2).repeat(self.input_dims).diag()  # DxD
        elif self.order == 0:
            lengthscale = (1.0/self.lengthscale()**2).diag()  # DxD
        else:
            lengthscale = self.cross_lengthscale().mm(self.cross_lengthscale().T) + (1.0/self.lengthscale()**2).diag()  # DxD
        exp = -0.5 * torch.einsum("nmi,ij,nmj->nm", tau, lengthscale, tau)
        return self.magnitude() * torch.exp(exp) # NxM

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

class RationalQuadraticKernel(Kernel):
    """
    A rational quadratic kernel given by

    $$ K(x,x') = \\sigma^2 \\left(1 + \\frac{1}{2}\\tau^TM\\tau\\right)^{-\\alpha} $$

    with \\(\\tau = |x-x'|\\), \\(M = LL^T + \\mathrm{diag}(l)^{-2}\\), \\(\\sigma^2\\) the magnitude, \\(l\\) the lengthscale, \\(LL^T\\) the cross lengthscales, and \\(\\alpha\\) the relative weighting of small-scale and large-scale fluctuations. When \\(\\alpha \\to \\infty\\) this kernel becomes equivalent to the squared exponential kernel. When `order` equals zero this reverts to one lengthscale per input dimension (ie. ARD with \\(M = \\mathrm{diag}(l)^{-2}\\)). When `order` equals `-1` we revert to a single lengthscale for all input dimensions (ie. \\(M = l^{-2}I\\)).

    Args:
        alpha (float): Relative weighting of small-scale and large-scale fluctuations \\(\\alpha\\)
        order (int): Order of cross lengthscales.
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        alpha (float): Relative weighting of small-scale and large-scale fluctuations \\(\\alpha\\).
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
        lengthscale (mogptk.gpr.parameter.Parameter): Lengthscale \\(l\\) of shape (input_dims,) or scalar.
        cross_lengthscale (mogptk.gpr.parameter.Parameter): Cross lengthscale \\(L\\) of shape (input_dims,order) if `0 < order`.
    """
    def __init__(self, alpha=1.0, order=0, input_dims=1, active_dims=None, name="RQ"):
        super().__init__(input_dims, active_dims, name)

        magnitude = 1.0
        lengthscale = 1.0
        if -1 < order:
            lengthscale = torch.ones(input_dims)
        if 0 < order:
            cross_lengthscale = torch.ones(input_dims,order)

        self.alpha = alpha
        self.order = order
        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.lengthscale = Parameter(lengthscale, lower=config.positive_minimum)
        if 0 < order:
            self.cross_lengthscale = Parameter(cross_lengthscale, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        tau = self.distance(X1,X2)  # NxMxD
        if self.order == -1:
            lengthscale = (1.0/self.lengthscale()**2).repeat(self.input_dims).diag()  # DxD
        elif self.order == 0:
            lengthscale = (1.0/self.lengthscale()**2).diag()  # DxD
        else:
            lengthscale = self.cross_lengthscale().mm(self.cross_lengthscale().T) + (1.0/self.lengthscale()**2).diag()  # DxD
        power = 1.0 + 0.5*torch.einsum("nmi,ij,nmj->nm", tau, lengthscale, tau)/self.alpha  # NxM
        return self.magnitude() * torch.pow(power,-self.alpha)

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

class PeriodicKernel(Kernel):
    """
    A periodic kernel given by

    $$ K(x,x') = \\sigma^2 \\exp\\left(-\\frac{2\\sin^2(\\pi \\tau / p)}{l^2}\\right) $$

    with \\(\\tau = |x-x'|\\), \\(M = LL^T + \\mathrm{diag}(l)^{-2}\\), \\(\\sigma^2\\) the magnitude, \\(p\\) the period parameter, \\(l\\) the lengthscale, and \\(LL^T\\) the cross lengthscales. When `order` equals zero this reverts to one lengthscale per input dimension (ie. ARD with \\(M = \\mathrm{diag}(l)^{-2}\\)). When `order` equals `-1` we revert to a single lengthscale for all input dimensions (ie. \\(M = l^{-2}I\\)).

    Args:
        order (int): Order of cross lengthscales.
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
        period (mogptk.gpr.parameter.Parameter): Period \\(p\\) of shape (input_dims,).
        lengthscale (mogptk.gpr.parameter.Parameter): Lengthscale \\(l\\) of shape (input_dims,) or scalar.
        cross_lengthscale (mogptk.gpr.parameter.Parameter): Cross lengthscale \\(L\\) of shape (input_dims,order) if `0 < order`.
    """
    def __init__(self, order=0, input_dims=1, active_dims=None, name="Periodic"):
        super().__init__(input_dims, active_dims, name)

        magnitude = 1.0
        period = torch.ones(input_dims)
        lengthscale = 1.0
        if -1 < order:
            lengthscale = torch.ones(input_dims)
        if 0 < order:
            cross_lengthscale = torch.ones(input_dims,order)

        self.order = order
        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.period = Parameter(period, lower=config.positive_minimum)
        self.lengthscale = Parameter(lengthscale, lower=config.positive_minimum)
        if 0 < order:
            self.cross_lengthscale = Parameter(cross_lengthscale, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        tau = self.distance(X1,X2)
        sin = torch.sin(np.pi * tau / self.period())  # NxMxD
        if self.order == -1:
            lengthscale = (1.0/self.lengthscale()**2).repeat(self.input_dims).diag()  # DxD
        elif self.order == 0:
            lengthscale = (1.0/self.lengthscale()**2).diag()  # DxD
        else:
            lengthscale = self.cross_lengthscale().mm(self.cross_lengthscale().T) + (1.0/self.lengthscale()**2).diag()  # DxD
        exp = -2.0 * torch.einsum("nmi,ij,nmj->nm", sin, lengthscale, sin)  # NxM
        return self.magnitude() * torch.exp(exp)

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

class LocallyPeriodicKernel(Kernel):
    """
    A locally periodic kernel given by

    $$ K(x,x') = \\sigma^2 \\exp\\left(-\\frac{2\\sin^2(\\pi \\tau / p)}{l^2}\\right) \\exp\\left(-\\frac{\\tau^2}{2l^2}\\right) $$

    with \\(\\tau = |x-x'|\\), \\(M = LL^T + \\mathrm{diag}(l)^{-2}\\), \\(\\sigma^2\\) the magnitude, \\(p\\) the period, \\(l\\) the lengthscale, and \\(LL^T\\) the cross lengthscales. When `order` equals zero this reverts to one lengthscale per input dimension (ie. ARD with \\(M = \\mathrm{diag}(l)^{-2}\\)). When `order` equals `-1` we revert to a single lengthscale for all input dimensions (ie. \\(M = l^{-2}I\\)).

    Args:
        order (int): Order of cross lengthscales.
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
        period (mogptk.gpr.parameter.Parameter): Period \\(p\\) of shape (input_dims,).
        lengthscale (mogptk.gpr.parameter.Parameter): Lengthscale \\(l\\) of shape (input_dims,) or scalar.
        cross_lengthscale (mogptk.gpr.parameter.Parameter): Cross lengthscale \\(L\\) of shape (input_dims,order) if `0 < order`.
    """
    def __init__(self, order=0, input_dims=1, active_dims=None, name="LocallyPeriodic"):
        super().__init__(input_dims, active_dims, name)

        magnitude = 1.0
        period = torch.ones(input_dims)
        lengthscale = 1.0
        if -1 < order:
            lengthscale = torch.ones(input_dims)
        if 0 < order:
            cross_lengthscale = torch.ones(input_dims,order)

        self.order = order
        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.period = Parameter(period, lower=config.positive_minimum)
        self.lengthscale = Parameter(lengthscale, lower=config.positive_minimum)
        if 0 < order:
            self.cross_lengthscale = Parameter(cross_lengthscale, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        tau = self.distance(X1,X2)
        sin = torch.sin(np.pi * tau / self.period())  # NxMxD
        if self.order == -1:
            lengthscale = (1.0/self.lengthscale()**2).repeat(self.input_dims).diag()  # DxD
        elif self.order == 0:
            lengthscale = (1.0/self.lengthscale()**2).diag()  # DxD
        else:
            lengthscale = self.cross_lengthscale().mm(self.cross_lengthscale().T) + (1.0/self.lengthscale()**2).diag()  # DxD
        exp1 = -2.0 * torch.einsum("nmi,ij,nmj->nm", sin, lengthscale, sin)  # NxM
        exp2 = -0.5 * torch.einsum("nmi,ij,nmj->nm", tau, lengthscale, tau)  # NxM
        return self.magnitude() * torch.exp(exp1) * torch.exp(exp2)

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

class CosineKernel(Kernel):
    """
    A cosine periodic kernel given by

    $$ K(x,x') = \\sigma^2 \\cos(2\\pi \\tau / l) $$

    with \\(\\tau = |x-x'|\\), \\(\\sigma^2\\) the magnitude and \\(l\\) the lengthscale.

    Args:
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
        lengthscale (mogptk.gpr.parameter.Parameter): Lengthscale \\(l\\) of shape (input_dims,).
    """
    def __init__(self, input_dims=1, active_dims=None, name="Cosine"):
        super().__init__(input_dims, active_dims, name)

        magnitude = 1.0
        lengthscale = torch.ones(input_dims)

        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.lengthscale = Parameter(lengthscale, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        tau = self.distance(X1,X2)
        cos = 2.0*np.pi * torch.tensordot(tau, 1.0/self.lengthscale(), dims=1)  # NxM
        return self.magnitude() * torch.cos(cos)

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

class SincKernel(Kernel):
    """
    A sinc kernel given by

    $$ K(x,x') = \\sigma^2 \\frac{\\sin(\\Delta \\tau)}{\\Delta \\tau} \\cos(2\\pi \\xi_0 \\tau) $$

    with \\(\\tau = |x-x'|\\), \\(\\sigma^2\\) the magnitude, \\(\\Delta\\) the bandwidth, and \\(\\xi_0\\) the frequency.

    Args:
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
        frequency (mogptk.gpr.parameter.Parameter): Frequency \\(\\xi_0\\) of shape (input_dims,).
        bandwidth (mogptk.gpr.parameter.Parameter): Bandwidth \\(\\Delta\\) of shape (input_dims,).
    """
    def __init__(self, input_dims=1, active_dims=None, name="Sinc"):
        super().__init__(input_dims, active_dims, name)

        magnitude = 1.0
        frequency = torch.ones(input_dims)
        bandwidth = torch.ones(input_dims)

        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.frequency = Parameter(frequency, lower=config.positive_minimum)
        self.bandwidth = Parameter(bandwidth, lower=config.positive_minimum)

    def _sinc(self, x):
        x = torch.where(x == 0.0, 1e-20 * torch.ones_like(x), x)
        return torch.sin(np.pi*x) / (np.pi*x)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        tau = self.distance(X1,X2)  # NxMxD
        sinc = torch.tensordot(tau, self.bandwidth(), dims=1)  # NxM
        cos = 2.0*np.pi * torch.tensordot(tau, self.frequency(), dims=1)  # NxM
        return self.magnitude() * self._sinc(sinc) * torch.cos(cos)

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

class SpectralKernel(Kernel):
    """
    A spectral kernel as proposed by [1] given by

    $$ K(x,x') = \\sigma^2 \\exp\\left(-2\\pi^2 \\Sigma \\tau^2\\right) \\cos(2\\pi \\mu \\tau) $$

    with \\(\\tau = |x-x'|\\), \\(\\sigma^2\\) the magnitude, \\(\\Sigma\\) the variance, and \\(\\mu\\) the mean. When the mean is zero, this kernel is equivalent to the SquaredExponential kernel with \\(l = \\frac{1}{2\\pi\\sqrt{\\Sigma}}\\).

    Args:
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
        mean (mogptk.gpr.parameter.Parameter): Mean \\(\\mu\\) of shape (input_dims,).
        variance (mogptk.gpr.parameter.Parameter): Variance \\(\\Sigma\\) of shape (input_dims,).

    [1] A.G. Wilson, R.P. Adams, "Gaussian Process Kernels for Pattern Discovery and Extrapolation", Proceedings of the 30th International Conference on Machine Learning, 2013
    """
    def __init__(self, input_dims=1, active_dims=None, name="Spectral"):
        super().__init__(input_dims, active_dims, name)

        magnitude = 1.0
        mean = torch.zeros(input_dims)
        variance = torch.ones(input_dims)

        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.mean = Parameter(mean, lower=config.positive_minimum)
        self.variance = Parameter(variance, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        tau = self.distance(X1,X2)  # NxMxD
        exp = -2.0*np.pi**2 * tau**2 * self.variance().reshape(1,1,-1)  # NxMxD
        cos = 2.0*np.pi * tau * self.mean().reshape(1,1,-1)  # NxMxD
        return self.magnitude() * torch.einsum("nmd,nmd->nm", torch.exp(exp), torch.cos(cos))

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

class SpectralMixtureKernel(Kernel):
    """
    A spectral mixture kernel as proposed by [1] given by

    $$ K(x,x') = \\sum_{q=0}^Q \\sigma_q^2 \\exp\\left(-2\\pi^2 \\Sigma_q \\tau^2\\right) \\cos(2\\pi \\mu_q \\tau) $$

    with \\(Q\\) the number of mixtures, \\(\\tau = |x-x'|\\), \\(\\sigma^2\\) the magnitude, \\(\\Sigma\\) the variance, and \\(\\mu\\) the mean.

    Args:
        Q (int): Number of mixture components.
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) of shape (Q,).
        mean (mogptk.gpr.parameter.Parameter): Mean \\(\\mu\\) of shape (Q,input_dims).
        variance (mogptk.gpr.parameter.Parameter): Variance \\(\\Sigma\\) of shape (Q,input_dims).

    [1] A.G. Wilson, R.P. Adams, "Gaussian Process Kernels for Pattern Discovery and Extrapolation", Proceedings of the 30th International Conference on Machine Learning, 2013
    """
    def __init__(self, Q=1, input_dims=1, active_dims=None, name="SM"):
        super().__init__(input_dims, active_dims, name)

        magnitude = torch.ones(Q)
        mean = torch.zeros(Q,input_dims)
        variance = torch.ones(Q,input_dims)

        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.mean = Parameter(mean, lower=config.positive_minimum)
        self.variance = Parameter(variance, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        tau = self.distance(X1,X2)[None,:,:,:]  # 1xNxMxD
        exp = -2.0*np.pi**2 * tau**2 * self.variance()[:,None,None,:]  # QxNxMxD
        cos = 2.0*np.pi * tau * self.mean()[:,None,None,:]  # QxNxMxD
        return torch.einsum("q,qnmd,qnmd->nm", self.magnitude(), torch.exp(exp), torch.cos(cos))

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return torch.sum(self.magnitude()).repeat(X1.shape[0])

class MaternKernel(Kernel):
    """
    A Matérn kernel given by

    $$ K(x,x') = \\sigma^2 c \\exp\\left(-\\sqrt{2\\nu \\tau / l}\\right) $$

    with \\(\\tau = |x-x'|\\), \\(\\sigma^2\\) the magnitude, \\(l\\) the lengthscale, and \\(c\\) depending on \\(\\nu\\) is either \\(1.0\\) for \\(\\nu = 0.5\\), or \\(1.0 + \\sqrt{3}|x-x'|/l\\) for \\(\\nu = 1.5\\), or \\(1.0 + \\sqrt{5}|x-x'|/l + \\frac{5|x-x'|^2}{3l^2}\\).

    Args:
        nu (float): Parameter that must be 0.5, 1.5, or 2.5.
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
        lengthscale (mogptk.gpr.parameter.Parameter): Lengthscale \\(l\\) of shape (input_dims,).
    """
    def __init__(self, nu=0.5, input_dims=1, active_dims=None, name="Matérn"):
        super().__init__(input_dims, active_dims, name)

        if nu not in [0.5, 1.5, 2.5]:
            raise ValueError("nu parameter must be 0.5, 1.5, or 2.5")

        magnitude = 1.0
        lengthscale = torch.ones(input_dims)

        self.nu = nu
        self.magnitude = Parameter(magnitude, lower=1e-6)
        self.lengthscale = Parameter(lengthscale, lower=1e-6)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        if X2 is None:
            X2 = X1

        dist = torch.abs(torch.tensordot(self.distance(X1,X2), 1.0/self.lengthscale(), dims=1))
        if self.nu == 0.5:
            constant = 1.0
        elif self.nu == 1.5:
            constant = 1.0 + np.sqrt(3.0)*dist
        elif self.nu == 2.5:
            constant = 1.0 + np.sqrt(5.0)*dist + 5.0/3.0*dist**2
        return self.magnitude() * constant * torch.exp(-np.sqrt(self.nu*2.0) * dist)

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

Classes

class ConstantKernel (input_dims=1, active_dims=None, name='Constant')

A constant or bias kernel given by

K(x,x') = \sigma^2

with \sigma^2 the magnitude.

Args

input_dims : int
Number of input dimensions.
active_dims : list of int
Indices of active dimensions of shape (input_dims,).
name : str
Kernel name.

Attributes

magnitude : Parameter
Magnitude \sigma^2 a scalar.
Expand source code Browse git
class ConstantKernel(Kernel):
    """
    A constant or bias kernel given by

    $$ K(x,x') = \\sigma^2 $$

    with \\(\\sigma^2\\) the magnitude.

    Args:
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
    """
    def __init__(self, input_dims=1, active_dims=None, name="Constant"):
        super().__init__(input_dims, active_dims, name)

        self.magnitude = Parameter(1.0, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        if X2 is None:
            X2 = X1
        return self.magnitude() * torch.ones(X1.shape[0], X2.shape[0], dtype=config.dtype, device=config.device)

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

Ancestors

Inherited members

class CosineKernel (input_dims=1, active_dims=None, name='Cosine')

A cosine periodic kernel given by

K(x,x') = \sigma^2 \cos(2\pi \tau / l)

with \tau = |x-x'|, \sigma^2 the magnitude and l the lengthscale.

Args

input_dims : int
Number of input dimensions.
active_dims : list of int
Indices of active dimensions of shape (input_dims,).
name : str
Kernel name.

Attributes

magnitude : Parameter
Magnitude \sigma^2 a scalar.
lengthscale : Parameter
Lengthscale l of shape (input_dims,).
Expand source code Browse git
class CosineKernel(Kernel):
    """
    A cosine periodic kernel given by

    $$ K(x,x') = \\sigma^2 \\cos(2\\pi \\tau / l) $$

    with \\(\\tau = |x-x'|\\), \\(\\sigma^2\\) the magnitude and \\(l\\) the lengthscale.

    Args:
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
        lengthscale (mogptk.gpr.parameter.Parameter): Lengthscale \\(l\\) of shape (input_dims,).
    """
    def __init__(self, input_dims=1, active_dims=None, name="Cosine"):
        super().__init__(input_dims, active_dims, name)

        magnitude = 1.0
        lengthscale = torch.ones(input_dims)

        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.lengthscale = Parameter(lengthscale, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        tau = self.distance(X1,X2)
        cos = 2.0*np.pi * torch.tensordot(tau, 1.0/self.lengthscale(), dims=1)  # NxM
        return self.magnitude() * torch.cos(cos)

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

Ancestors

Inherited members

class ExponentialKernel (input_dims=1, active_dims=None, name='Exponential')

An exponential kernel given by

K(x,x') = \sigma^2 \exp\left(-\frac{\tau}{2l}\right)

with \tau = |x-x'|, \sigma^2 the magnitude, l the lengthscale.

Args

input_dims : int
Number of input dimensions.
active_dims : list of int
Indices of active dimensions of shape (input_dims,).
name : str
Kernel name.

Attributes

magnitude : Parameter
Magnitude \sigma^2 a scalar.
lengthscale : Parameter
Lengthscale l of shape (input_dims,).
Expand source code Browse git
class ExponentialKernel(Kernel):
    """
    An exponential kernel given by

    $$ K(x,x') = \\sigma^2 \\exp\\left(-\\frac{\\tau}{2l}\\right) $$

    with \\(\\tau = |x-x'|\\), \\(\\sigma^2\\) the magnitude, \\(l\\) the lengthscale.

    Args:
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
        lengthscale (mogptk.gpr.parameter.Parameter): Lengthscale \\(l\\) of shape (input_dims,).
    """
    def __init__(self, input_dims=1, active_dims=None, name="Exponential"):
        super().__init__(input_dims, active_dims, name)

        magnitude = 1.0
        lengthscale = torch.ones(input_dims)

        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.lengthscale = Parameter(lengthscale, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        dist = torch.abs(self.distance(X1,X2))  # NxMxD
        exp = -0.5*torch.tensordot(dist, 1.0/self.lengthscale(), dims=1)  # NxM
        return self.magnitude() * torch.exp(exp)

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

Ancestors

Inherited members

class FunctionKernel (phi, input_dims=1, active_dims=None, name='Phi')

A kernel determined by a function \phi given by

K(x,x') = \phi(x) \sigma^2 \phi(x')

with \sigma^2 the magnitude and \phi the function.

Args

phi : function
Function that takes (data_points,input_dims) as input and (data_points,feature_dims) as output. Input and output must be tensors.
input_dims : int
Number of input dimensions.
active_dims : list of int
Indices of active dimensions of shape (input_dims,).
name : str
Kernel name.

Attributes

magnitude : Parameter
Magnitude \sigma^2 a scalar.
Expand source code Browse git
class FunctionKernel(Kernel):
    """
    A kernel determined by a function \\(\\phi\\) given by

    $$ K(x,x') = \\phi(x) \\sigma^2 \\phi(x') $$

    with \\(\\sigma^2\\) the magnitude and \\(\\phi\\) the function.

    Args:
        phi (function): Function that takes (data_points,input_dims) as input and (data_points,feature_dims) as output. Input and output must be tensors.
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
    """
    def __init__(self, phi, input_dims=1, active_dims=None, name="Phi"):
        super().__init__(input_dims, active_dims, name)

        out = phi(torch.ones(42, input_dims, dtype=config.dtype, device=config.device))
        if not torch.is_tensor(out) or out.dtype != config.dtype or out.device != config.device:
            raise ValueError("phi must return a tensor of the same dtype and device as the input")
        if out.ndim != 2 or out.shape[0] != 42:
            raise ValueError("phi must take (data_points,input_dims) as input, and return (data_points,feature_dims) as output")

        feature_dims = out.shape[1]
        magnitude = torch.ones(feature_dims)

        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.phi = phi

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        variance = self.magnitude().diagflat()
        if X2 is None:
            X1 = self.phi(X1)
            return X1.mm(variance.mm(X1.T))
        else:
            return self.phi(X1).mm(variance.mm(self.phi(X2).T))

Ancestors

Inherited members

class LinearKernel (input_dims=1, active_dims=None, name='Linear')

A linear kernel given by

K(x,x') = \sigma^2 xx'^T + c

with \sigma^2 the magnitude and c the bias.

Args

input_dims : int
Number of input dimensions.
active_dims : list of int
Indices of active dimensions of shape (input_dims,).
name : str
Kernel name.

Attributes

bias : Parameter
Bias c a scalar.
magnitude : Parameter
Magnitude \sigma^2 a scalar.
Expand source code Browse git
class LinearKernel(Kernel):
    """
    A linear kernel given by

    $$ K(x,x') = \\sigma^2 xx'^T + c $$

    with \\(\\sigma^2\\) the magnitude and \\(c\\) the bias.

    Args:
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        bias (mogptk.gpr.parameter.Parameter): Bias \\(c\\) a scalar.
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
    """
    def __init__(self, input_dims=1, active_dims=None, name="Linear"):
        super().__init__(input_dims, active_dims, name)

        self.bias = Parameter(0.0, lower=0.0)
        self.magnitude = Parameter(1.0, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        if X2 is None:
            X2 = X1
        return self.magnitude() * X1.mm(X2.T) + self.bias()

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude() * X1.square().sum(dim=1) + self.bias()

Ancestors

Inherited members

class LocallyPeriodicKernel (order=0, input_dims=1, active_dims=None, name='LocallyPeriodic')

A locally periodic kernel given by

K(x,x') = \sigma^2 \exp\left(-\frac{2\sin^2(\pi \tau / p)}{l^2}\right) \exp\left(-\frac{\tau^2}{2l^2}\right)

with \tau = |x-x'|, M = LL^T + \mathrm{diag}(l)^{-2}, \sigma^2 the magnitude, p the period, l the lengthscale, and LL^T the cross lengthscales. When order equals zero this reverts to one lengthscale per input dimension (ie. ARD with M = \mathrm{diag}(l)^{-2}). When order equals -1 we revert to a single lengthscale for all input dimensions (ie. M = l^{-2}I).

Args

order : int
Order of cross lengthscales.
input_dims : int
Number of input dimensions.
active_dims : list of int
Indices of active dimensions of shape (input_dims,).
name : str
Kernel name.

Attributes

magnitude : Parameter
Magnitude \sigma^2 a scalar.
period : Parameter
Period p of shape (input_dims,).
lengthscale : Parameter
Lengthscale l of shape (input_dims,) or scalar.
cross_lengthscale : Parameter
Cross lengthscale L of shape (input_dims,order) if 0 < order.
Expand source code Browse git
class LocallyPeriodicKernel(Kernel):
    """
    A locally periodic kernel given by

    $$ K(x,x') = \\sigma^2 \\exp\\left(-\\frac{2\\sin^2(\\pi \\tau / p)}{l^2}\\right) \\exp\\left(-\\frac{\\tau^2}{2l^2}\\right) $$

    with \\(\\tau = |x-x'|\\), \\(M = LL^T + \\mathrm{diag}(l)^{-2}\\), \\(\\sigma^2\\) the magnitude, \\(p\\) the period, \\(l\\) the lengthscale, and \\(LL^T\\) the cross lengthscales. When `order` equals zero this reverts to one lengthscale per input dimension (ie. ARD with \\(M = \\mathrm{diag}(l)^{-2}\\)). When `order` equals `-1` we revert to a single lengthscale for all input dimensions (ie. \\(M = l^{-2}I\\)).

    Args:
        order (int): Order of cross lengthscales.
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
        period (mogptk.gpr.parameter.Parameter): Period \\(p\\) of shape (input_dims,).
        lengthscale (mogptk.gpr.parameter.Parameter): Lengthscale \\(l\\) of shape (input_dims,) or scalar.
        cross_lengthscale (mogptk.gpr.parameter.Parameter): Cross lengthscale \\(L\\) of shape (input_dims,order) if `0 < order`.
    """
    def __init__(self, order=0, input_dims=1, active_dims=None, name="LocallyPeriodic"):
        super().__init__(input_dims, active_dims, name)

        magnitude = 1.0
        period = torch.ones(input_dims)
        lengthscale = 1.0
        if -1 < order:
            lengthscale = torch.ones(input_dims)
        if 0 < order:
            cross_lengthscale = torch.ones(input_dims,order)

        self.order = order
        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.period = Parameter(period, lower=config.positive_minimum)
        self.lengthscale = Parameter(lengthscale, lower=config.positive_minimum)
        if 0 < order:
            self.cross_lengthscale = Parameter(cross_lengthscale, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        tau = self.distance(X1,X2)
        sin = torch.sin(np.pi * tau / self.period())  # NxMxD
        if self.order == -1:
            lengthscale = (1.0/self.lengthscale()**2).repeat(self.input_dims).diag()  # DxD
        elif self.order == 0:
            lengthscale = (1.0/self.lengthscale()**2).diag()  # DxD
        else:
            lengthscale = self.cross_lengthscale().mm(self.cross_lengthscale().T) + (1.0/self.lengthscale()**2).diag()  # DxD
        exp1 = -2.0 * torch.einsum("nmi,ij,nmj->nm", sin, lengthscale, sin)  # NxM
        exp2 = -0.5 * torch.einsum("nmi,ij,nmj->nm", tau, lengthscale, tau)  # NxM
        return self.magnitude() * torch.exp(exp1) * torch.exp(exp2)

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

Ancestors

Inherited members

class MaternKernel (nu=0.5, input_dims=1, active_dims=None, name='Matérn')

A Matérn kernel given by

K(x,x') = \sigma^2 c \exp\left(-\sqrt{2\nu \tau / l}\right)

with \tau = |x-x'|, \sigma^2 the magnitude, l the lengthscale, and c depending on \nu is either 1.0 for \nu = 0.5, or 1.0 + \sqrt{3}|x-x'|/l for \nu = 1.5, or 1.0 + \sqrt{5}|x-x'|/l + \frac{5|x-x'|^2}{3l^2}.

Args

nu : float
Parameter that must be 0.5, 1.5, or 2.5.
input_dims : int
Number of input dimensions.
active_dims : list of int
Indices of active dimensions of shape (input_dims,).
name : str
Kernel name.

Attributes

magnitude : Parameter
Magnitude \sigma^2 a scalar.
lengthscale : Parameter
Lengthscale l of shape (input_dims,).
Expand source code Browse git
class MaternKernel(Kernel):
    """
    A Matérn kernel given by

    $$ K(x,x') = \\sigma^2 c \\exp\\left(-\\sqrt{2\\nu \\tau / l}\\right) $$

    with \\(\\tau = |x-x'|\\), \\(\\sigma^2\\) the magnitude, \\(l\\) the lengthscale, and \\(c\\) depending on \\(\\nu\\) is either \\(1.0\\) for \\(\\nu = 0.5\\), or \\(1.0 + \\sqrt{3}|x-x'|/l\\) for \\(\\nu = 1.5\\), or \\(1.0 + \\sqrt{5}|x-x'|/l + \\frac{5|x-x'|^2}{3l^2}\\).

    Args:
        nu (float): Parameter that must be 0.5, 1.5, or 2.5.
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
        lengthscale (mogptk.gpr.parameter.Parameter): Lengthscale \\(l\\) of shape (input_dims,).
    """
    def __init__(self, nu=0.5, input_dims=1, active_dims=None, name="Matérn"):
        super().__init__(input_dims, active_dims, name)

        if nu not in [0.5, 1.5, 2.5]:
            raise ValueError("nu parameter must be 0.5, 1.5, or 2.5")

        magnitude = 1.0
        lengthscale = torch.ones(input_dims)

        self.nu = nu
        self.magnitude = Parameter(magnitude, lower=1e-6)
        self.lengthscale = Parameter(lengthscale, lower=1e-6)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        if X2 is None:
            X2 = X1

        dist = torch.abs(torch.tensordot(self.distance(X1,X2), 1.0/self.lengthscale(), dims=1))
        if self.nu == 0.5:
            constant = 1.0
        elif self.nu == 1.5:
            constant = 1.0 + np.sqrt(3.0)*dist
        elif self.nu == 2.5:
            constant = 1.0 + np.sqrt(5.0)*dist + 5.0/3.0*dist**2
        return self.magnitude() * constant * torch.exp(-np.sqrt(self.nu*2.0) * dist)

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

Ancestors

Inherited members

class PeriodicKernel (order=0, input_dims=1, active_dims=None, name='Periodic')

A periodic kernel given by

K(x,x') = \sigma^2 \exp\left(-\frac{2\sin^2(\pi \tau / p)}{l^2}\right)

with \tau = |x-x'|, M = LL^T + \mathrm{diag}(l)^{-2}, \sigma^2 the magnitude, p the period parameter, l the lengthscale, and LL^T the cross lengthscales. When order equals zero this reverts to one lengthscale per input dimension (ie. ARD with M = \mathrm{diag}(l)^{-2}). When order equals -1 we revert to a single lengthscale for all input dimensions (ie. M = l^{-2}I).

Args

order : int
Order of cross lengthscales.
input_dims : int
Number of input dimensions.
active_dims : list of int
Indices of active dimensions of shape (input_dims,).
name : str
Kernel name.

Attributes

magnitude : Parameter
Magnitude \sigma^2 a scalar.
period : Parameter
Period p of shape (input_dims,).
lengthscale : Parameter
Lengthscale l of shape (input_dims,) or scalar.
cross_lengthscale : Parameter
Cross lengthscale L of shape (input_dims,order) if 0 < order.
Expand source code Browse git
class PeriodicKernel(Kernel):
    """
    A periodic kernel given by

    $$ K(x,x') = \\sigma^2 \\exp\\left(-\\frac{2\\sin^2(\\pi \\tau / p)}{l^2}\\right) $$

    with \\(\\tau = |x-x'|\\), \\(M = LL^T + \\mathrm{diag}(l)^{-2}\\), \\(\\sigma^2\\) the magnitude, \\(p\\) the period parameter, \\(l\\) the lengthscale, and \\(LL^T\\) the cross lengthscales. When `order` equals zero this reverts to one lengthscale per input dimension (ie. ARD with \\(M = \\mathrm{diag}(l)^{-2}\\)). When `order` equals `-1` we revert to a single lengthscale for all input dimensions (ie. \\(M = l^{-2}I\\)).

    Args:
        order (int): Order of cross lengthscales.
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
        period (mogptk.gpr.parameter.Parameter): Period \\(p\\) of shape (input_dims,).
        lengthscale (mogptk.gpr.parameter.Parameter): Lengthscale \\(l\\) of shape (input_dims,) or scalar.
        cross_lengthscale (mogptk.gpr.parameter.Parameter): Cross lengthscale \\(L\\) of shape (input_dims,order) if `0 < order`.
    """
    def __init__(self, order=0, input_dims=1, active_dims=None, name="Periodic"):
        super().__init__(input_dims, active_dims, name)

        magnitude = 1.0
        period = torch.ones(input_dims)
        lengthscale = 1.0
        if -1 < order:
            lengthscale = torch.ones(input_dims)
        if 0 < order:
            cross_lengthscale = torch.ones(input_dims,order)

        self.order = order
        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.period = Parameter(period, lower=config.positive_minimum)
        self.lengthscale = Parameter(lengthscale, lower=config.positive_minimum)
        if 0 < order:
            self.cross_lengthscale = Parameter(cross_lengthscale, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        tau = self.distance(X1,X2)
        sin = torch.sin(np.pi * tau / self.period())  # NxMxD
        if self.order == -1:
            lengthscale = (1.0/self.lengthscale()**2).repeat(self.input_dims).diag()  # DxD
        elif self.order == 0:
            lengthscale = (1.0/self.lengthscale()**2).diag()  # DxD
        else:
            lengthscale = self.cross_lengthscale().mm(self.cross_lengthscale().T) + (1.0/self.lengthscale()**2).diag()  # DxD
        exp = -2.0 * torch.einsum("nmi,ij,nmj->nm", sin, lengthscale, sin)  # NxM
        return self.magnitude() * torch.exp(exp)

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

Ancestors

Inherited members

class PolynomialKernel (degree, input_dims=1, active_dims=None, name='Polynomial')

A polynomial kernel given by

K(x,x') = (\sigma^2 xx'^T + c)^d

with \sigma^2 the magnitude, c the bias, and d the degree of the polynomial. When d is 1 this becomes equivalent to the linear kernel.

Args

degree : int
Degree of the polynomial.
input_dims : int
Number of input dimensions.
active_dims : list of int
Indices of active dimensions of shape (input_dims,).
name : str
Kernel name.

Attributes

degree : float
Degree d.
bias : Parameter
Bias c a scalar.
magnitude : Parameter
Magnitude \sigma^2 a scalar.
Expand source code Browse git
class PolynomialKernel(Kernel):
    """
    A polynomial kernel given by

    $$ K(x,x') = (\\sigma^2 xx'^T + c)^d $$

    with \\(\\sigma^2\\) the magnitude, \\(c\\) the bias, and \\(d\\) the degree of the polynomial. When \\(d\\) is 1 this becomes equivalent to the linear kernel.

    Args:
        degree (int): Degree of the polynomial.
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        degree (float): Degree \\(d\\).
        bias (mogptk.gpr.parameter.Parameter): Bias \\(c\\) a scalar.
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
    """
    def __init__(self, degree, input_dims=1, active_dims=None, name="Polynomial"):
        super().__init__(input_dims, active_dims, name)

        self.degree = degree
        self.bias = Parameter(0.0, lower=0.0)
        self.magnitude = Parameter(1.0, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        if X2 is None:
            X2 = X1
        return (self.magnitude() * X1.mm(X2.T) + self.bias())**self.degree

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return (self.magnitude() * X1.square().sum(dim=1) + self.bias())**self.degree

Ancestors

Inherited members

class RationalQuadraticKernel (alpha=1.0, order=0, input_dims=1, active_dims=None, name='RQ')

A rational quadratic kernel given by

K(x,x') = \sigma^2 \left(1 + \frac{1}{2}\tau^TM\tau\right)^{-\alpha}

with \tau = |x-x'|, M = LL^T + \mathrm{diag}(l)^{-2}, \sigma^2 the magnitude, l the lengthscale, LL^T the cross lengthscales, and \alpha the relative weighting of small-scale and large-scale fluctuations. When \alpha \to \infty this kernel becomes equivalent to the squared exponential kernel. When order equals zero this reverts to one lengthscale per input dimension (ie. ARD with M = \mathrm{diag}(l)^{-2}). When order equals -1 we revert to a single lengthscale for all input dimensions (ie. M = l^{-2}I).

Args

alpha : float
Relative weighting of small-scale and large-scale fluctuations \alpha
order : int
Order of cross lengthscales.
input_dims : int
Number of input dimensions.
active_dims : list of int
Indices of active dimensions of shape (input_dims,).
name : str
Kernel name.

Attributes

alpha : float
Relative weighting of small-scale and large-scale fluctuations \alpha.
magnitude : Parameter
Magnitude \sigma^2 a scalar.
lengthscale : Parameter
Lengthscale l of shape (input_dims,) or scalar.
cross_lengthscale : Parameter
Cross lengthscale L of shape (input_dims,order) if 0 < order.
Expand source code Browse git
class RationalQuadraticKernel(Kernel):
    """
    A rational quadratic kernel given by

    $$ K(x,x') = \\sigma^2 \\left(1 + \\frac{1}{2}\\tau^TM\\tau\\right)^{-\\alpha} $$

    with \\(\\tau = |x-x'|\\), \\(M = LL^T + \\mathrm{diag}(l)^{-2}\\), \\(\\sigma^2\\) the magnitude, \\(l\\) the lengthscale, \\(LL^T\\) the cross lengthscales, and \\(\\alpha\\) the relative weighting of small-scale and large-scale fluctuations. When \\(\\alpha \\to \\infty\\) this kernel becomes equivalent to the squared exponential kernel. When `order` equals zero this reverts to one lengthscale per input dimension (ie. ARD with \\(M = \\mathrm{diag}(l)^{-2}\\)). When `order` equals `-1` we revert to a single lengthscale for all input dimensions (ie. \\(M = l^{-2}I\\)).

    Args:
        alpha (float): Relative weighting of small-scale and large-scale fluctuations \\(\\alpha\\)
        order (int): Order of cross lengthscales.
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        alpha (float): Relative weighting of small-scale and large-scale fluctuations \\(\\alpha\\).
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
        lengthscale (mogptk.gpr.parameter.Parameter): Lengthscale \\(l\\) of shape (input_dims,) or scalar.
        cross_lengthscale (mogptk.gpr.parameter.Parameter): Cross lengthscale \\(L\\) of shape (input_dims,order) if `0 < order`.
    """
    def __init__(self, alpha=1.0, order=0, input_dims=1, active_dims=None, name="RQ"):
        super().__init__(input_dims, active_dims, name)

        magnitude = 1.0
        lengthscale = 1.0
        if -1 < order:
            lengthscale = torch.ones(input_dims)
        if 0 < order:
            cross_lengthscale = torch.ones(input_dims,order)

        self.alpha = alpha
        self.order = order
        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.lengthscale = Parameter(lengthscale, lower=config.positive_minimum)
        if 0 < order:
            self.cross_lengthscale = Parameter(cross_lengthscale, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        tau = self.distance(X1,X2)  # NxMxD
        if self.order == -1:
            lengthscale = (1.0/self.lengthscale()**2).repeat(self.input_dims).diag()  # DxD
        elif self.order == 0:
            lengthscale = (1.0/self.lengthscale()**2).diag()  # DxD
        else:
            lengthscale = self.cross_lengthscale().mm(self.cross_lengthscale().T) + (1.0/self.lengthscale()**2).diag()  # DxD
        power = 1.0 + 0.5*torch.einsum("nmi,ij,nmj->nm", tau, lengthscale, tau)/self.alpha  # NxM
        return self.magnitude() * torch.pow(power,-self.alpha)

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

Ancestors

Inherited members

class SincKernel (input_dims=1, active_dims=None, name='Sinc')

A sinc kernel given by

K(x,x') = \sigma^2 \frac{\sin(\Delta \tau)}{\Delta \tau} \cos(2\pi \xi_0 \tau)

with \tau = |x-x'|, \sigma^2 the magnitude, \Delta the bandwidth, and \xi_0 the frequency.

Args

input_dims : int
Number of input dimensions.
active_dims : list of int
Indices of active dimensions of shape (input_dims,).
name : str
Kernel name.

Attributes

magnitude : Parameter
Magnitude \sigma^2 a scalar.
frequency : Parameter
Frequency \xi_0 of shape (input_dims,).
bandwidth : Parameter
Bandwidth \Delta of shape (input_dims,).
Expand source code Browse git
class SincKernel(Kernel):
    """
    A sinc kernel given by

    $$ K(x,x') = \\sigma^2 \\frac{\\sin(\\Delta \\tau)}{\\Delta \\tau} \\cos(2\\pi \\xi_0 \\tau) $$

    with \\(\\tau = |x-x'|\\), \\(\\sigma^2\\) the magnitude, \\(\\Delta\\) the bandwidth, and \\(\\xi_0\\) the frequency.

    Args:
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
        frequency (mogptk.gpr.parameter.Parameter): Frequency \\(\\xi_0\\) of shape (input_dims,).
        bandwidth (mogptk.gpr.parameter.Parameter): Bandwidth \\(\\Delta\\) of shape (input_dims,).
    """
    def __init__(self, input_dims=1, active_dims=None, name="Sinc"):
        super().__init__(input_dims, active_dims, name)

        magnitude = 1.0
        frequency = torch.ones(input_dims)
        bandwidth = torch.ones(input_dims)

        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.frequency = Parameter(frequency, lower=config.positive_minimum)
        self.bandwidth = Parameter(bandwidth, lower=config.positive_minimum)

    def _sinc(self, x):
        x = torch.where(x == 0.0, 1e-20 * torch.ones_like(x), x)
        return torch.sin(np.pi*x) / (np.pi*x)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        tau = self.distance(X1,X2)  # NxMxD
        sinc = torch.tensordot(tau, self.bandwidth(), dims=1)  # NxM
        cos = 2.0*np.pi * torch.tensordot(tau, self.frequency(), dims=1)  # NxM
        return self.magnitude() * self._sinc(sinc) * torch.cos(cos)

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

Ancestors

Inherited members

class SpectralKernel (input_dims=1, active_dims=None, name='Spectral')

A spectral kernel as proposed by [1] given by

K(x,x') = \sigma^2 \exp\left(-2\pi^2 \Sigma \tau^2\right) \cos(2\pi \mu \tau)

with \tau = |x-x'|, \sigma^2 the magnitude, \Sigma the variance, and \mu the mean. When the mean is zero, this kernel is equivalent to the SquaredExponential kernel with l = \frac{1}{2\pi\sqrt{\Sigma}}.

Args

input_dims : int
Number of input dimensions.
active_dims : list of int
Indices of active dimensions of shape (input_dims,).
name : str
Kernel name.

Attributes

magnitude : Parameter
Magnitude \sigma^2 a scalar.
mean : Parameter
Mean \mu of shape (input_dims,).
variance : Parameter
Variance \Sigma of shape (input_dims,).

[1] A.G. Wilson, R.P. Adams, "Gaussian Process Kernels for Pattern Discovery and Extrapolation", Proceedings of the 30th International Conference on Machine Learning, 2013

Expand source code Browse git
class SpectralKernel(Kernel):
    """
    A spectral kernel as proposed by [1] given by

    $$ K(x,x') = \\sigma^2 \\exp\\left(-2\\pi^2 \\Sigma \\tau^2\\right) \\cos(2\\pi \\mu \\tau) $$

    with \\(\\tau = |x-x'|\\), \\(\\sigma^2\\) the magnitude, \\(\\Sigma\\) the variance, and \\(\\mu\\) the mean. When the mean is zero, this kernel is equivalent to the SquaredExponential kernel with \\(l = \\frac{1}{2\\pi\\sqrt{\\Sigma}}\\).

    Args:
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
        mean (mogptk.gpr.parameter.Parameter): Mean \\(\\mu\\) of shape (input_dims,).
        variance (mogptk.gpr.parameter.Parameter): Variance \\(\\Sigma\\) of shape (input_dims,).

    [1] A.G. Wilson, R.P. Adams, "Gaussian Process Kernels for Pattern Discovery and Extrapolation", Proceedings of the 30th International Conference on Machine Learning, 2013
    """
    def __init__(self, input_dims=1, active_dims=None, name="Spectral"):
        super().__init__(input_dims, active_dims, name)

        magnitude = 1.0
        mean = torch.zeros(input_dims)
        variance = torch.ones(input_dims)

        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.mean = Parameter(mean, lower=config.positive_minimum)
        self.variance = Parameter(variance, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        tau = self.distance(X1,X2)  # NxMxD
        exp = -2.0*np.pi**2 * tau**2 * self.variance().reshape(1,1,-1)  # NxMxD
        cos = 2.0*np.pi * tau * self.mean().reshape(1,1,-1)  # NxMxD
        return self.magnitude() * torch.einsum("nmd,nmd->nm", torch.exp(exp), torch.cos(cos))

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

Ancestors

Inherited members

class SpectralMixtureKernel (Q=1, input_dims=1, active_dims=None, name='SM')

A spectral mixture kernel as proposed by [1] given by

K(x,x') = \sum_{q=0}^Q \sigma_q^2 \exp\left(-2\pi^2 \Sigma_q \tau^2\right) \cos(2\pi \mu_q \tau)

with Q the number of mixtures, \tau = |x-x'|, \sigma^2 the magnitude, \Sigma the variance, and \mu the mean.

Args

Q : int
Number of mixture components.
input_dims : int
Number of input dimensions.
active_dims : list of int
Indices of active dimensions of shape (input_dims,).
name : str
Kernel name.

Attributes

magnitude : Parameter
Magnitude \sigma^2 of shape (Q,).
mean : Parameter
Mean \mu of shape (Q,input_dims).
variance : Parameter
Variance \Sigma of shape (Q,input_dims).

[1] A.G. Wilson, R.P. Adams, "Gaussian Process Kernels for Pattern Discovery and Extrapolation", Proceedings of the 30th International Conference on Machine Learning, 2013

Expand source code Browse git
class SpectralMixtureKernel(Kernel):
    """
    A spectral mixture kernel as proposed by [1] given by

    $$ K(x,x') = \\sum_{q=0}^Q \\sigma_q^2 \\exp\\left(-2\\pi^2 \\Sigma_q \\tau^2\\right) \\cos(2\\pi \\mu_q \\tau) $$

    with \\(Q\\) the number of mixtures, \\(\\tau = |x-x'|\\), \\(\\sigma^2\\) the magnitude, \\(\\Sigma\\) the variance, and \\(\\mu\\) the mean.

    Args:
        Q (int): Number of mixture components.
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) of shape (Q,).
        mean (mogptk.gpr.parameter.Parameter): Mean \\(\\mu\\) of shape (Q,input_dims).
        variance (mogptk.gpr.parameter.Parameter): Variance \\(\\Sigma\\) of shape (Q,input_dims).

    [1] A.G. Wilson, R.P. Adams, "Gaussian Process Kernels for Pattern Discovery and Extrapolation", Proceedings of the 30th International Conference on Machine Learning, 2013
    """
    def __init__(self, Q=1, input_dims=1, active_dims=None, name="SM"):
        super().__init__(input_dims, active_dims, name)

        magnitude = torch.ones(Q)
        mean = torch.zeros(Q,input_dims)
        variance = torch.ones(Q,input_dims)

        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.mean = Parameter(mean, lower=config.positive_minimum)
        self.variance = Parameter(variance, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        tau = self.distance(X1,X2)[None,:,:,:]  # 1xNxMxD
        exp = -2.0*np.pi**2 * tau**2 * self.variance()[:,None,None,:]  # QxNxMxD
        cos = 2.0*np.pi * tau * self.mean()[:,None,None,:]  # QxNxMxD
        return torch.einsum("q,qnmd,qnmd->nm", self.magnitude(), torch.exp(exp), torch.cos(cos))

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return torch.sum(self.magnitude()).repeat(X1.shape[0])

Ancestors

Inherited members

class SquaredExponentialKernel (order=0, input_dims=1, active_dims=None, name='SE')

A squared exponential kernel given by

K(x,x') = \sigma^2 \exp\left(-\frac{1}{2}\tau^TM\tau\right)

with \tau = |x-x'|, M = LL^T + \mathrm{diag}(l)^{-2}, \sigma^2 the magnitude, l the lengthscales, and LL^T the cross lengthscales. When order equals zero this reverts to one lengthscale per input dimension (ie. ARD with M = \mathrm{diag}(l)^{-2}). When order equals -1 we revert to a single lengthscale for all input dimensions (ie. M = l^{-2}I).

Args

order : int
Order of cross lengthscales.
input_dims : int
Number of input dimensions.
active_dims : list of int
Indices of active dimensions of shape (input_dims,).
name : str
Kernel name.

Attributes

magnitude : Parameter
Magnitude \sigma^2 a scalar.
lengthscale : Parameter
Lengthscale l of shape (input_dims,) or scalar.
cross_lengthscale : Parameter
Cross lengthscale L of shape (input_dims,order) if 0 < order.
Expand source code Browse git
class SquaredExponentialKernel(Kernel):
    """
    A squared exponential kernel given by

    $$ K(x,x') = \\sigma^2 \\exp\\left(-\\frac{1}{2}\\tau^TM\\tau\\right) $$

    with \\(\\tau = |x-x'|\\), \\(M = LL^T + \\mathrm{diag}(l)^{-2}\\), \\(\\sigma^2\\) the magnitude, \\(l\\) the lengthscales, and \\(LL^T\\) the cross lengthscales. When `order` equals zero this reverts to one lengthscale per input dimension (ie. ARD with \\(M = \\mathrm{diag}(l)^{-2}\\)). When `order` equals `-1` we revert to a single lengthscale for all input dimensions (ie. \\(M = l^{-2}I\\)).

    Args:
        order (int): Order of cross lengthscales.
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
        lengthscale (mogptk.gpr.parameter.Parameter): Lengthscale \\(l\\) of shape (input_dims,) or scalar.
        cross_lengthscale (mogptk.gpr.parameter.Parameter): Cross lengthscale \\(L\\) of shape (input_dims,order) if `0 < order`.
    """
    def __init__(self, order=0, input_dims=1, active_dims=None, name="SE"):
        super().__init__(input_dims, active_dims, name)

        magnitude = 1.0
        lengthscale = 1.0
        if -1 < order:
            lengthscale = torch.ones(input_dims)
        if 0 < order:
            cross_lengthscale = torch.ones(input_dims,order)

        self.order = order
        self.magnitude = Parameter(magnitude, lower=config.positive_minimum)
        self.lengthscale = Parameter(lengthscale, lower=config.positive_minimum)
        if 0 < order:
            self.cross_lengthscale = Parameter(cross_lengthscale, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        tau = self.distance(X1,X2)  # NxMxD
        if self.order == -1:
            lengthscale = (1.0/self.lengthscale()**2).repeat(self.input_dims).diag()  # DxD
        elif self.order == 0:
            lengthscale = (1.0/self.lengthscale()**2).diag()  # DxD
        else:
            lengthscale = self.cross_lengthscale().mm(self.cross_lengthscale().T) + (1.0/self.lengthscale()**2).diag()  # DxD
        exp = -0.5 * torch.einsum("nmi,ij,nmj->nm", tau, lengthscale, tau)
        return self.magnitude() * torch.exp(exp) # NxM

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

Ancestors

Inherited members

class WhiteKernel (input_dims=1, active_dims=None, name='White')

A white kernel given by

K(x,x') = \sigma^2 I

with \sigma^2 the magnitude.

Args

input_dims : int
Number of input dimensions.
active_dims : list of int
Indices of active dimensions of shape (input_dims,).
name : str
Kernel name.

Attributes

magnitude : Parameter
Magnitude \sigma^2 a scalar.
Expand source code Browse git
class WhiteKernel(Kernel):
    """
    A white kernel given by

    $$ K(x,x') = \\sigma^2 I $$

    with \\(\\sigma^2\\) the magnitude.

    Args:
        input_dims (int): Number of input dimensions.
        active_dims (list of int): Indices of active dimensions of shape (input_dims,).
        name (str): Kernel name.

    Attributes:
        magnitude (mogptk.gpr.parameter.Parameter): Magnitude \\(\\sigma^2\\) a scalar.
    """
    def __init__(self, input_dims=1, active_dims=None, name="White"):
        super().__init__(input_dims, active_dims, name)

        self.magnitude = Parameter(1.0, lower=config.positive_minimum)

    def K(self, X1, X2=None):
        # X has shape (data_points,input_dims)
        X1, X2 = self._active_input(X1, X2)
        if X2 is None:
            return self.magnitude() * torch.eye(X1.shape[0], X1.shape[0], dtype=config.dtype, device=config.device)
        return torch.zeros(X1.shape[0], X2.shape[0], dtype=config.dtype, device=config.device)

    def K_diag(self, X1):
        # X has shape (data_points,input_dims)
        X1, _ = self._active_input(X1)
        return self.magnitude().repeat(X1.shape[0])

Ancestors

Inherited members