
1 

 

 

 

 

 

AGS3 Library 
Documentation 
AMD Graphics Developer Relations Team 

Revision 12 – 12th February 2016 

 

 



2 

AGS3 Library Overview 

This document provides an overview of the AGS (AMD GPU Services) library, including a presentation of 

available functionality and related entry points. The AGS library provides software developers with the ability 

to query AMD GPU software and hardware state information that is not normally available through standard 

operating systems or graphic APIs. Version 3.1 of the library includes support for querying graphics driver 

version info, GPU performance, Crossfire (AMD’s multi-GPU rendering technology) configuration info, as 

well as Eyefinity (AMD’s multi-display rendering technology) configuration info. AGS also exposes some 

additional functionality supported in the DirectX11 AMD driver. 

This paper only presents AGS library APIs and associated functionality. Additional information on Catalyst 

drivers, as well as on Crossfire and Eyefinity technologies is available at www.amd.com. Graphics 

programming recommendations are detailed in the Harnessing the Performance of CrossfireX and in the 

Gaming under Eyefinity whitepapers, both available at developer.amd.com. 

What’s new in AGS3.1 since 3.0 

AGS3.1 now returns a lot more information from the GPU in addition to exposing the explicit Crossfire API 

for DX11. The following changes are new to AGS3.1: 

 The initialization function can now return information about the GPU: 

o Whether the GPU is GCN or not. 

o The adapter string and device id. 

o The driver version is now rolled into this structure instead of a separate function call. 

o Performance metrics such as the number of compute units and clock speeds. 

 A whole new API to transfer resources on GPUs in Crossfire configuration in DirectX11. 

 A method to register your app and engine with the DirectX11 driver. 

 The screen rect primitive is now available in DirectX11 if supported. 

 

http://www.amd.com/
http://www.amd.com/


3 

Using the AGS library 

It is recommended to take a look at the source code for the samples that come with the AGS SDK: 

AGSSample, CrossfireSample, and EyefinitySample. The AGSSample application is the simplest of the three 

examples and demonstrates the code required to initialize AGS and use it to query the GPU and Eyefinity 

state. The CrossfireSample application demonstrates the use of the new API to transfer resources on GPUs in 

Crossfire mode. Lastly, the EyefinitySample application provides a more extensive example of Eyefinity setup 

than the basic example provided in AGSSample. 

 

To add AGS support to an existing project, follow these steps: 

 

 Link your project against the correct import library. Choose from either the 32 bit or 64 bit version. 

 Copy the AGS dll into the same directory as your game executable. 

 Include the amd_ags.h header file from your source code. 

 Declare a pointer to an AGSContext and make this available for all subsequent calls to AGS. 

 On game initialization, call agsInit() passing in the address of the context. On success, this function 

will return a valid context pointer. 

o The agsInit() function should be called before the D3D11 device is created. 



4 

Initializing the API 

The AGS library must be initialised before making any subesquent calls to the API. This should be performed 

before the D3D11 device is created. The API is cleaned up using agsDeInit(). 

AGSReturnCode agsInit( AGSContext** context, const AGSConfiguration* config, AGSGPUInfo* gpuInfo ) 

In/Out Param context Address of a pointer to a context. This function allocates a 
context on the heap which is then required for all 
subsequent API calls. 

In Param config Optional pointer to a AGSConfiguration struct to override 
the default library configuration. The desired Crossfire 
mode is specified here, for example. 

In/Out Param gpuInfo Optional pointer to a AGSGPUInfo struct which will get 
filled in for the primary adapter. 

Return Code On success AGS_SUCCESS, otherwise one of the failure codes. 

Notes This function will fail with AGS_ERROR_LEGACY_DRIVER in Catalyst versions before 12.20. 

This function should be called before the D3D11 device is created. 

 

AGSReturnCode agsDeInit ( AGSContext* context ) 

In Param context A valid pointer to an AGSContext structure. 

Return Code On success AGS_SUCCESS, otherwise one of the failure codes. 

 



5 

 

AGSConfiguration struct 

crossfireMode The desired Crossfire AFR mode. See the “Crossfire API Driver Extension” section in this 
document for more details. 

 

AGSGPUInfo struct 

agsVersionMajor The Major field of the Major.Minor.Patch AGS version number. 

agsVersionMinor The Minor field of the Major.Minor.Patch AGS version number. 

agsVersionPatch The Patch field of the Major.Minor.Patch AGS version number. 

architectureVersion The GPU architecture version. 

adapterString The adapter name, eg “AMD Radeon R9 Fury Series”. 

deviceId The device id. 

revisionId The revision id which can be used to differentiate some products that share the same 
device id. 

driverVersion A string containing the current packaged driver version. eg. “14.502.1014.1001-150526a-
184425E” 

iNumCUs The number of compute units. This value is zero for non GCN hardware. 

iCoreClock The core clock speed in MHz when the GPU is running at 100% performance. This value is 
zero for non GCN hardware. 

iMemoryClock The memory clock speed in MHz when the GPU is running at 100% performance. This 
value is zero for non GCN hardware. 

fTflops GPU compute power in Teraflops. This value is zero for non GCN hardware.  

 



6 

Querying Crossfire State 

The agsGetCrossfireGPUCount() function returns the number of AMD GPUs that operate in AMD 

Crossfire mode. 

AGSReturnCode agsGetCrossfireGPUCount( AGSContext* context,  int* numGPUs ) 

In Param context A valid pointer to an AGSContext structure. 

Out Param numGPUs A valid pointer to an int that will store the number of 
Crossfired GPUs. 

Return Code On success AGS_SUCCESS, otherwise one of the failure codes. 

 



7 

Querying GPU Memory 

The agsGetTotalGPUCount() function returns the total number of GPUs enumerated by the system. This 

can include GPUs from other hardware vendors other than AMD. To query the memory local to each GPU, 

call agsGetGPUMemorySize() which returns the amount in bytes. 

AGSReturnCode agsGetTotalGPUCount( AGSContext* context,  int* numGPUs ) 

In Param context A valid pointer to an AGSContext structure. 

Out Param numGPUs A valid pointer to an int that will store the total number of  
GPUs found on the machine. 

Return Code On success AGS_SUCCESS, otherwise one of the failure codes. 

 

AGSReturnCode agsGetGPUMemorySize( AGSContext* context, int gpuIndex, long long* sizeInBytes ) 

In Param context A valid pointer to an AGSContext structure. 

In Param gpuIndex The zero-based index of this GPU. Use 
agsGetTotalGPUCount() to get the number of GPUs in the 
system. 

Out Param sizeInBytes A valid pointer to a long long that will store the size in 
bytes of the memory of this GPU. 

Return Code On success AGS_SUCCESS, otherwise one of the failure codes. 



8 

Querying Eyefinity State 

Querying Eyefinity configuration state information can be accomplished with the 

agsGetEyefinityConfigInfo() function which returns the following information: 

 Whether Eyefinity is enabled or not; 

 The SLS (single large surface) grid configuration of displays used (3x1 layout, 3x2 layout, etc); 

 The SLS size of the surface that spans the displays; 

 Whether bezel compensation is enabled or not; 

 The SLS grid coordinate for each display; 

 The total rendering area for each display; 

 The visible rendering area for each display; 

 The preferred display (to properly position UI elements in games for example). 

In order to use this function correctly, you must call the function twice. Once to query the number of displays 

from numDisplayInfo, then again to fill in the array of displaysInfo. The usage would be thus: 

 Call once with NULL eyefinityInfo and NULL displaysInfo entries. This will return the number of 

monitors used in the Eyefinity configuration. 

 Allocate an array of AGSDisplayInfo structures based on the value of numDisplaysInfo. 

 Call a second time, this time supplying all parameters. The function will now fill out the displaysInfo 

field. 

Please refer to the AGSSample program source for correct usage of this function. 

 

 

 

 

 



9 

AGSReturnCode agsGetEyefinityConfigInfo( AGSContext* context,  

                                                                                int displayIndex, AGSEyefinityInfo* eyefinityInfo,  

                                                                                int* numDisplaysInfo, AGSDisplayInfo* displaysInfo) 

In Param context A valid pointer to an AGSContext structure. 

In Param displayIndex This is an operating system specific display index identifier. 
The value used should be the index of the display used for 
rendering operations. 

In Param eyefinityInfo A pointer to an AGSEyefinityInfo structure that contains 
system Eyefinity configuration information. This can be 
NULL if you are only interested in querying the number of 
displays. 

In/Out Param numDisplaysInfo A pointer to an int storing the number of displays.  

Out Param displaysInfo A pointer to the user allocated array of AGSDisplayInfo 
structures. It is the user’s responsibility to free this up 
after use. 

Return Code On success AGS_SUCCESS, otherwise one of the failure codes. 

 

AGSEyefinityInfo struct 

iSLSActive Indicates if Eyefinity is active for the operating system display index passed into 
agsGetEyefinityConfigInfo(). 1 if enabled and 0 if disabled. 

iSLSGridWidth Contains width of the multi-monitor grid that makes up the Eyefinity Single Large Surface. 
For example, a 3 display wide by 2 high Eyefinity setup will return 3 for this entry. 

iSLSGridHeight Contains height of the multi-monitor grid that makes up the Eyefinity Single Large Surface. 
For example, a 3 display wide by 2 high Eyefinity setup will return 2 for this entry. 

iSLSWidth Contains width in pixels of the multi-monitor SLS. The value returned is a function of the 
width of the SLS grid, of the horizontal resolution of each display, and of whether or not 
bezel compensation is enabled. 

iSLSHeight Contains height in pixels of the multi-monitor SLS. The value returned is a function of the 
height of the SLS grid, of the vertical resolution of each display, and of whether or not 
bezel compensation is enabled. 

iBezelCompensatedDisplay Indicates if bezel compensation is used for the current SLS display area. 1 if enabled and 0 
if disabled. 

 



10 

AGSDisplayInfo struct 

iGridCoordX Contains horizontal SLS grid coordinate of the display. The value is zero based with 
increasing values from left to right of the overall SLS grid. For example, the left-most 
display of a 3x2 Eyefinity setup will have the value 0, and the right-most will have the 
value 2. 

iGridCoordY Contains vertical SLS grid coordinate of the display. The value is zero based with 
increasing values from top to bottom of the overall SLS grid. For example, the top display 
of a 3x2 Eyefinity setup will have the value 0, and the bottom will have the value 1. 

displayRect Contains the base offset and dimensions in pixels of the SLS rendering area associated 
with this display. If bezel compensation is enabled, this area will be larger than what the 
display can natively present to account for bezel area. If bezel compensation is disabled, 
this area will be equal to what the display can support natively. 

displayRectVisible Contains the base offset and dimensions in pixels of the SLS rendering area associated 
with this display that is visible to the end user. If bezel compensation is enabled, this area 
will be equal to what the display can natively, but smaller than the area described in the 
displayRect entry. If bezel compensation is disabled, this area will be equal to what the 
display can support natively and equal to the area described in the displayRect entry. 
Developers wishing to place UI, HUD, or other assets on a given display so that it is 
visible and accessible to end users need to locate them inside of the region defined by 
this rect. 

iPreferredDisplay Indicates whether or not this display is the preferred one for rendering of game HUD and 
UI elements. Only one display out of the whole SLS grid will have this be true if it is the 
preferred display and 0 otherwise. Developers wishing to place specific UI, HUD, or other 
game assets on a given display so that it is visible and accessible to end users need to 
locate them inside of the region defined by this rect. If no display is marked as preferred, 
then it may be either down to the game to determine where to position the HUD or 
assume the HUD should cover the entire SLS such as in the case of 2x1 4k resolutions. 

 



11 

Using the DirectX11 Driver Extensions 

The AMD DirectX11 driver supports a number of useful extensions that can be accessed via AGS. In order to 

use these, AGS must already be initialized and agsDriverExtensions_Init must be called. This function returns 

which extensions are supported by the current hardware and driver configuration. 

AGSReturnCode agsDriverExtensions_Init ( AGSContext* context,  

                                                                               ID3D11Device* device,  

                                                                               unsigned int* extensionsSupported) 

In Param context A valid pointer to an AGSContext structure. 

In Param device A valid pointer to the D3D11 device. 

Out Param extensionsSupported A valid pointer to a bit mask of the extensions supported 
by the driver.  

Return Code On success AGS_SUCCESS, otherwise one of the failure codes. 

Notes The AGS needs to be initialized first in order to obtain an AGS context. Direct3D11 will 
then need to be initialized in order to obtain the ID3D11Device. Only then can this 
function be called. 

To check which extensions are supported, AND the AGSDriverExtension enumerated bits 
against the extensionsSupported value returned from this function call.  

 

AGSReturnCode agsDriverExtensions_DeInit ( AGSContext* context ) 

In Param context A valid pointer to an AGSContext structure. 

Return Code On success AGS_SUCCESS, otherwise one of the failure codes. 

Notes This needs to be called before the D3D11 device is released.  

 

 

 

 



12 

Quad List and Screen Rect Driver Extension 

The Quad List extension is a convenient way to submit quads without using an index buffer. Note that this still 

submits two triangles at the driver level. In order to use this function, AGS must already be initialized and 

agsDriverExtensions_Init must have been called successfully. 

The Screen Rect extension, which is only available on GCN hardware, allows the user to pass in three of the 

four corners of a rectangle. The hardware then uses the bounding box of the vertices to rasterize the rectangle 

primitive (ie as a rectangle rather than two triangles). Note that this will not return valid interpolated values, 

only valid SV_Position values. 

If either the Quad List or Screen Rect extension are used, then agsDriverExtensions_IASetPrimitiveTopology 

should be called in place of the native DirectX11 equivalent all the time. 

AGSReturnCode agsDriverExtensions_IASetPrimitiveTopology( AGSContext* context, 
D3D_PRIMITIVE_TOPOLOGY topology ) 

In Param context A valid pointer to an AGSContext structure. 

Return Code On success AGS_SUCCESS, otherwise one of the failure codes. 

 



13 

UAV Overlap Driver Extension 

When calling back-to-back draw calls or dispatch calls that write to the same UAV, the AMD DX11 driver 

will automatically insert a barrier to ensure there are no write after write (WAW) hazards. If the app can 

guarantee there is no overlap between the writes between these calls, then this extension will remove those 

barriers allowing the work to run in parallel on the GPU.  

Usage would be as follows: 

// Disable automatic WAW syncs 
agsDriverExtensions_BeginUAVOverlap( m_agsContext ); 
 
// Submit back-to-back dispatches that write to the same UAV 
m_device->Dispatch( ... );  // First half of UAV 
m_device->Dispatch( ... );  // Second half of UAV 
 
// Reenable automatic WAW syncs 
agsDriverExtensions_EndUAVOverlap( m_agsContext ); 

 

In order to use this function, AGS must already be initialized and agsDriverExtensions_Init must have been 

called successfully. 

AGSReturnCode agsDriverExtensions_BeginUAVOverlap ( AGSContext* context ) 

In Param context A valid pointer to an AGSContext structure. 

Return Code On success AGS_SUCCESS, otherwise one of the failure codes. 

 

AGSReturnCode agsDriverExtensions_EndUAVOverlap ( AGSContext* context ) 

In Param context A valid pointer to an AGSContext structure. 

Return Code On success AGS_SUCCESS, otherwise one of the failure codes. 

 



14 

Depth Bounds Driver Extension 

The depth bounds test is enables geometry to be clipped outside a specific depth range. In order to use this 

function, AGS must already be initialized and agsDriverExtensions_Init must have been called successfully. 

AGSReturnCode agsDriverExtensions_SetDepthBounds( AGSContext* context,  bool enabled,  

                                                                                                       float minDepth, float maxDepth ) 

In Param context A valid pointer to an AGSContext structure. 

In Param enabled Whether to enable the depth bounds test or not. If 
disabled, the min and max depth values are ignored. 

In Param minDepth The min depth value of the clipping region. 

In Param maxDepth The max depth value of the clipping region. 

Return Code On success AGS_SUCCESS, otherwise one of the failure codes. 

 



15 

Multi Draw Indirect Driver Extension 

The multi draw indirect extensions allow multiple sets of DrawInstancedIndirect to be submitted in one API 

call. The draw calls are issued on the GPU’s command processor (CP), potentially saving the significant CPU 

overheads incurred by submitting the equivalent draw calls on the CPU. 

The extension allows the following code: 

// Submit n batches of DrawIndirect calls 
for ( int i = 0; i < n; i++ )  
    DrawIndexedInstancedIndirect( buffer, i * sizeof( cmd ) ); 
 

To be replaced by the following call: 

// Submit all n batches in one call 
agsDriverExtensions_MultiDrawIndexedInstancedIndirect( m_agsContext,  

n, buffer, 0, sizeof( cmd ) ); 
 

 

The buffer used for the indirect args must be of the following formats: 

// Buffer layout for agsDriverExtensions_MultiDrawInstancedIndirect 
struct DrawInstancedIndirectArgs 
{ 
    UINT VertexCountPerInstance; 
    UINT InstanceCount; 
    UINT StartVertexLocation; 
    UINT StartInstanceLocation; 
} 
 
// Buffer layout for agsDriverExtensions_MultiDrawIndexedInstancedIndirect 
struct DrawIndexedInstancedIndirectArgs 
{ 
    UINT IndexCountPerInstance; 
    UINT InstanceCount; 
    UINT StartIndexLocation; 
    UINT BaseVertexLocation; 
    UINT StartInstanceLocation; 
} 
 
 

In order to use this function, AGS must already be initialized and agsDriverExtensions_Init must have been 

called successfully. 



16 

AGSReturnCode agsDriverExtensions_MultiDrawInstancedIndirect( AGSContext* context,   

                                                                                                                           unsigned int drawCount,  

                                                                                                                           ID3D11Buffer* pBufferForArgs,  

                                                                                                                           unsigned int alignedByteOffsetForArgs,    

                                                                                                                           unsigned int byteStrideForArgs ) 

In Param context A valid pointer to an AGSContext structure. 

In Param drawCount The number of draws to execute from the args buffer. 

In Param pBufferForArgs A pointer to the buffer containing the list of args. 

In Param alignedByteOffsetForArgs The DWORD aligned offset into the args buffer. 

In Param byteStrideForArgs The DWORD aligned stride of the args buffer, 
byteStrideForArgs >= sizeof(DrawInstancedIndirectArgs). 

Return Code On success AGS_SUCCESS, otherwise one of the failure codes. 

 

AGSReturnCode agsDriverExtensions_MultiDrawIndexedInstancedIndirect( AGSContext* context,   

                                                                                                                           unsigned int drawCount,  

                                                                                                                           ID3D11Buffer* pBufferForArgs,  

                                                                                                                           unsigned int alignedByteOffsetForArgs,    

                                                                                                                           unsigned int byteStrideForArgs ) 

In Param context A valid pointer to an AGSContext structure. 

In Param drawCount The number of draws to execute from the args buffer. 

In Param pBufferForArgs A pointer to the buffer containing the list of args. 

In Param alignedByteOffsetForArgs The DWORD aligned offset into the args buffer. 

In Param byteStrideForArgs The DWORD aligned stride of the args buffer, 
byteStrideForArgs >= 
sizeof(DrawIndexedInstancedIndirectArgs). 

Return Code On success AGS_SUCCESS, otherwise one of the failure codes. 

 

 



17 

Crossfire API Driver Extension 

The Crossfire API allows explicit control of resource transfers when running in Crossfire AFR mode in 

DirectX11.  

The crossfireMode member of the AGSConfiguration struct allows more control over how the app interacts 

with the driver in Crossfire AFR mode. The AGSConfiguration struct can be passed into agsInit() to override 

the default settings. 

AGS_CROSSFIRE_MODE_DRIVER_AFR is the default path apps will go down on multi-GPU systems. 

This will run AFR mode and the driver will auto detect which resources to copy from one GPU to the next. 

AGS_CROSSFIRE_MODE_DISABLE disables AFR and multi-GPU systems will only use a single GPU. To 

use this mode, ensure agsInit() is called before the D3D11 device is created. 

AGS_CROSSFIRE_MODE_EXPLICIT_AFR allows the app to determine which resources get transferred 

when using the AGS Crossfire API. Use this mode to enable the Crossfire API functions detailed below. 

In order to use the functions for the Crossfire API, AGS must already be initialized and 

agsDriverExtensions_Init must have been called successfully. Furthermore, the extensionsSupported value 

returned from agsDriverExtensions_Init must be checked to ensure the Crossfire API driver extension is 

actually available for use. To check support, AND the AGS_EXTENSION_CROSSFIRE_API flag against the 

extensionsSupported value. 



18 

Resources must be created with the appropriate Create function in order to specify the AFR transfer type per 

resource. 

AGSReturnCode agsDriverExtensions_CreateBuffer/Texture1D/2D/3D( AGSContext* context,   

                                                                                                                           D3D11_BUFFER/TEXTURE_DESC desc,  

                                                                                                                           D3D11_SUBRESOURCE_DATA* initialData,  

                                                                                                                           ID3D11Resource** resource,    

                                                                                                                           AGSAFRTransferType transferType ) 

In Param context A valid pointer to an AGSContext structure. 

In Param desc Pointer to the D3D11 resource description. 

In Param initialData Optional pointer to the initializing data for the resource. 

In/Out Param resource Returned pointer to the resource. 

In Param transferType The transfer behavior. See AGSAfrTransferType for more 
details. 

Return Code On success AGS_SUCCESS, otherwise one of the failure codes. 

 

 

AGSAFRTransferType enum 

AGS_AFR_TRANSFER_DEFAULT The default Crossfire driver resource tracking, i.e. if the driver 
detects that this resource is required by the next frame, a p2p copy 
will be performed, potentially at a suboptimal time. 

AGS_AFR_TRANSFER_DISABLE Turns off driver resource tracking completely for this resource, i.e. no 
p2p copies are ever done. 

AGS_AFR_TRANSFER_1STEP_P2P App controlled GPU to next GPU transfer. 

AGS_AFR_TRANSFER_2STEP_NO_BROADCAST App controlled GPU to next GPU transfer using intermediate system 
memory. 

AGS_AFR_TRANSFER_2STEP_WITH_BROADCAST App controlled GPU to all render GPUs transfer using intermediate 
system memory. 

 



19 

agsDriverExtensions_NotifyResourceEndWrites is required to notify the driver that we have finished writing 

to the resource this frame. This will initiate a transfer for AGS_AFR_TRANSFER_1STEP_P2P, 

AGS_AFR_TRANSFER_2STEP_NO_BROADCAST and 

AGS_AFR_TRANSFER_2STEP_WITH_BROADCAST. 

AGSReturnCode agsDriverExtensions_NotifyResourceEndWrites( AGSContext* context,   

                                                                                                                           ID3D11Resource* resource,  

                                                                                                                           const D3D11_RECT* transferRegions,  

                                                                                                                           const unsigned int* subresourceArray,    

                                                                                                                           unsigned int numSubresources ) 

In Param context A valid pointer to an AGSContext structure. 

In Param resource The D3D11 resource. 

In Param transferRegions An array of transfer regions (can be null to specify the whole 
area). 

In Param subresourceArray An array of subresource indices (can be null to specify all 
subresources). These should be sorted in ascending value (eg 
0, 1, 4, 8, rather than 4, 0, 1, 8). 

In Param numSubresources The number of subresources in subresourceArray OR 
number of transferRegions. Use 0 to specify ALL 
subresources and one transferRegion (which may be null if 
specifying the whole area). 

Return Code On success AGS_SUCCESS, otherwise one of the failure codes. 

 

agsDriverExtensions_NotifyResourceBeginAllAccess is required to notify the driver that the app will begin 

read/write access to the resource. 

AGSReturnCode agsDriverExtensions_ NotifyResourceBeginAllAccess( AGSContext* context,   

                                                                                                                           ID3D11Resource* resource ) 

In Param context A valid pointer to an AGSContext structure. 

In Param resource The D3D11 resource. 

Return Code On success AGS_SUCCESS, otherwise one of the failure codes. 

 



20 

agsDriverExtensions_NotifyResourceEndAllAccess is used for AGS_AFR_TRANSFER_1STEP_P2P to 

notify when it is safe to initiate a transfer. This call in frame N-(NumGpus-1) allows a 1 step P2P in frame N 

to start. This should be called after agsDriverExtensions_NotifyResourceEndWrites. 

AGSReturnCode agsDriverExtensions_ NotifyResourceEndAllAccess( AGSContext* context,   

                                                                                                                           ID3D11Resource* resource ) 

In Param context A valid pointer to an AGSContext structure. 

In Param resource The D3D11 resource. 

Return Code On success AGS_SUCCESS, otherwise one of the failure codes. 

 


