
Cryptol version 2 Syntax

Contents

Layout 2

Comments 2

Identifiers 2

Keywords and Built-in Operators 3

Numeric Literals 4

Bits 4

If Then Else with Multiway 5

Tuples and Records 5

Sequences 6

Functions 7

Local Declarations 7

Explicit Type Instantiation 8

Demoting Numeric Types to Values 8

Explicit Type Annotations 8

Type Signatures 8

1

Type Synonym Declarations 8

Layout

Groups of declarations are organized based on indentation. Declarations with the
same indentation belong to the same group. Lines of text that are indented more
than the beginning of a declaration belong to that declaration, while lines of text
that are indented less terminate a group of declaration. Groups of declarations
appear at the top level of a Cryptol file, and inside where blocks in expressions.
For example, consider the following declaration group

f x = x + y + z
where
y = x * x
z = x + y

g y = y

This group has two declaration, one for f and one for g. All the lines between f
and g that are indented more then f belong to f.

This example also illustrates how groups of declarations may be nested within
each other. For example, the where expression in the definition of f starts
another group of declarations, containing y and z. This group ends just before
g, because g is indented less than y and z.

Comments

Cryptol supports block comments, which start with /* and end with */, and
line comments, which start with // and terminate at the end of the line. Block
comments may be nested arbitrarily.

Examples:

/* This is a block comment */
// This is a line comment
/* This is a /* Nested */ block comment */

Identifiers

Cryptol identifiers consist of one or more characters. The first character must
be either an English letter or underscore (_). The following characters may

2

be an English letter, a decimal digit, underscore (_), or a prime (’). Some
identifiers have special meaning in the language, so they may not be used in
programmer-defined names (see Keywords).

Examples:

name name1 name' longer_name
Name Name2 Name'' longerName

Keywords and Built-in Operators

The following identifiers have special meanings in Cryptol, and may not be used
for programmer defined names:

Arith Inf extern inf module then
Bit True fin lg2 newtype type
Cmp else if max pragma where
False export import min property width

The following table contains Cryptol’s operators and their associativity with
lowest precedence operators first, and highest precedence last.

Operator Associativity

|| left
ˆ left
&& left
-> (types) right
!= == not associative
> < <= >= not associative
right
>> << >>> <<< left
+ - left
* / % left
ˆˆ right
! !! @ @@ left
(unary) - ~ right

Table 1: Operator precedences.

3

Numeric Literals

Numeric literals may be written in binary, octal, decimal, or hexadecimal notation.
The base of a literal is determined by its prefix: 0b for binary, 0o for octal, no
special prefix for decimal, and 0x for hexadecimal.

Examples:

254 // Decimal literal
0254 // Decimal literal
0b11111110 // Binary literal
0o376 // Octal literal
0xFE // Hexadecimal literal
0xfe // Hexadecimal literal

Numeric literals represent finite bit sequences (i.e., they have type [n]). Using
binary, octal, and hexadecimal notation results in bit sequences of a fixed length,
depending on the number of digits in the literal. Decimal literals are overloaded,
and so the length of the sequence is inferred from context in which the literal is
used. Examples:

0b1010 // : [4], 1 * number of digits
0o1234 // : [12], 3 * number of digits
0x1234 // : [16], 4 * number of digits

10 // : {n}. (fin n, n >= 4) => [n]
// (need at least 4 bits)

0 // : {n}. (fin n) => [n]

Bits

The type Bit has two inhabitants: True and False. These values may be
combined using various logical operators, or constructed as results of comparisons.

Operator Associativity Description

|| left Logical or
ˆ left Exclusive-or
&& left Logical and
!= == none Not equals, equals
> < <= >= none Comparisons

4

Operator Associativity Description

~ right Logical negation

Table 2: Bit operations.

If Then Else with Multiway

If then else has been extended to support multi-way conditionals. Examples:

x = if y % 2 == 0 then 22 else 33

x = if y % 2 == 0 then 1
| y % 3 == 0 then 2
| y % 5 == 0 then 3
else 7

Tuples and Records

Tuples and records are used for packaging multiples values together. Tuples are
enclosed in parenthesis, while records are enclosed in braces. The components of
both tuples and records are separated by commas. The components of tuples are
expressions, while the components of records are a label and a value separated
by an equal sign. Examples:

(1,2,3) // A tuple with 3 component
() // A tuple with no components

{ x = 1, y = 2 } // A record with two fields, `x` and `y`
{} // A record with no fileds

The components of tuples are identified by position, while the components of
records are identified by their label, and so the ordering of record components is
not important. Examples:

(1,2) == (1,2) // True
(1,2) == (2,1) // False

{ x = 1, y = 2 } == { x = 1, y = 2 } // True
{ x = 1, y = 2 } == { y = 2, x = 1 } // True

5

The components of a record or a tuple may be accessed in two ways: via pattern
matching or by using explicit component selectors. Explicit component selectors
are written as follows:

(15, 20).1 == 15
(15, 20).2 == 20

{ x = 15, y = 20 }.x == 15

Explicit record selectors may be used only if the program contains sufficient type
information to determine the shape of the tuple or record. For example:

type T = { sign :: Bit, number :: [15] }

// Valid defintion:
// the type of the record is known.
isPositive : T -> Bit
isPositive x = x.sign

// Invalid defintion:
// insufficient type information.
badDef x = x.f

The components of a tuple or a record may also be access by using pattern match-
ing. Patterns for tuples and records mirror the syntax for constructing values:
tuple patterns use parenthesis, while record patterns use braces. Examples:

getFst (x,_) = x

distance2 { x = xPos, y = yPos } = xPos ^^ 2 + yPos ^^ 2

f x = fst + snd where

Sequences

A sequence is a fixed-length collection of element of the same type. The type of
a finite sequence of length n, with elements of type a is [n] a. Often, a finite
sequence of bits, [n] Bit, is called a word. We may abbreviate the type [n]
Bit as [n]. An infinite sequence with elements of type a has type [inf] a, and
[inf] is an infinite stream of bits.

[e1,e2,e3] // A sequence with three elements

6

[t ..] // Sequence enumerations
[t1, t2 ..] // Step by t2 - t1
[t1 .. t3]
[t1, t2 .. t3]
[e1 ...] // Infinite sequence starting at e1
[e1, e2 ...] // Infinite sequence stepping by e2-e1

[e | p11 <- e11, p12 <- e12 // Sequence comprehensions
| p21 <- e21, p22 <- e22]

Note: the bounds in finite unbounded (those with ..) sequences are type
expressions, while the bounds in bounded-finite and infinite sequences are value
expressions.

Operator Description

Sequence concatenation
>> << Shift (right,left)
>>> <<< Rotate (right,left)
@ ! Access elements (front,back)
@@ !! Access sub-sequence (front,back)

Table 3: Sequence operations.

There are also lifted point-wise operations.

[p1, p2, p3, p4] // Sequence pattern
p1 # p2 // Split sequence pattern

Functions

\p1 p2 -> e // Lambda expression
f p1 p2 = e // Function definition

Local Declarations

e where ds

7

Explicit Type Instantiation

If f is a polymorphic value with type:

f : { tyParam }

f `{ tyParam = t }

Demoting Numeric Types to Values

The value corresponding to a numeric type may be accessed using the following
notation:

`{t}

Here t should be a type expression with numeric kind. The resulting expression
is a finite word, which is sufficiently large to accomodate the value of the type:

`{t} :: {w >= width t}. [w]

Explicit Type Annotations

Explicit type annotations may be added on expressions, patterns, and in argument
definitions.

e : t

p : t

f (x : t) = ...

Type Signatures

f,g : {a,b} (fin a) => [a] b

Type Synonym Declarations

type T a b = [a] b

8

	Layout
	Comments
	Identifiers
	Keywords and Built-in Operators
	Numeric Literals
	Bits
	If Then Else with Multiway
	Tuples and Records
	Sequences
	Functions
	Local Declarations
	Explicit Type Instantiation
	Demoting Numeric Types to Values
	Explicit Type Annotations
	Type Signatures
	Type Synonym Declarations

