
              Imagination Technologies Copyright  

PVRTexTool 1 Revision 1.11f 

PVRTexTool 

Reference Manual 

Copyright © 2009, Imagination Technologies Ltd. All Rights Reserved. 

This publication contains proprietary information which is protected by copyright. The information 
contained in this publication is subject to change without notice and is supplied 'as is' without warranty 

of any kind. Imagination Technologies and the Imagination Technologies logo are trademarks or 
registered trademarks of Imagination Technologies Limited. All other logos, products, trademarks and 

registered trademarks are the property of their respective owners. 

 

 

\\Gb1\PowerVR\DevRel\SDK\Internal\PVRTexTools 

Filename : PVRTexTool.Reference Manual.1.11f.External.doc 

Version : 1.11f External Issue (Package: POWERVR SDK 2.05.25.0869) 

Issue Date : 07 Jul 2009 

Author : PowerVR 



 Imagination Technologies Copyright  

Revision 1.11f 2 Reference Manual 

Contents 
1. PVRTexTool GUI ..................................... ....................................................................................3 

1.1. Texture Viewer ..............................................................................................................3 
1.2. Image Browser ..............................................................................................................4 
1.3. File Menu.......................................................................................................................5 
1.3.1. Open… ..........................................................................................................................5 
1.3.2. Open with Alpha….........................................................................................................5 
1.3.3. Compose Cube Map…..................................................................................................5 
1.3.4. Reload From File ...........................................................................................................5 
1.3.5. Save/Save As ................................................................................................................6 
1.3.6. Close/Close All ..............................................................................................................6 
1.3.7. Quit ................................................................................................................................7 
1.4. Edit Menu ......................................................................................................................7 
1.4.1. Preprocess….................................................................................................................7 
1.4.2. Transform…...................................................................................................................9 
1.4.3. Regenerate MIP-maps ..................................................................................................9 
1.4.4. Get Properties…............................................................................................................9 
1.4.5. Get Encoding Statistics…............................................................................................10 
1.4.6. Load MIP-Level/Load MIP-Level Alpha/......................................................................10 
1.4.7. Save MIP-Level ...........................................................................................................10 
1.4.8. Save Cube Map Faces................................................................................................10 
1.4.9. Encode….....................................................................................................................10 

2. PVR file format description........................ ..............................................................................12 
2.1.1. File Header description: ..............................................................................................12 
2.1.2. File Header Structure ..................................................................................................12 

3. PVRTexTool Command-Line ............................ .......................................................................14 
3.1. Description...................................................................................................................14 
3.2. Usage ..........................................................................................................................14 

4. PVRTexTool Plug-ins................................ ................................................................................16 
4.1. Adobe Photoshop CS/CS2/CS3..................................................................................16 
4.2. Autodesk 3DStudioMAX v6, 7, 8, 9, 2008, 2009.........................................................16 
4.3. Autodesk Maya............................................................................................................16 

5. Twiddle format description......................... .............................................................................18 

6. Texture Format Reference ........................... ............................................................................19 
6.1. DirectX 10 Formats......................................................................................................23 
6.2. OpenVG.......................................................................................................................27 

 



              Imagination Technologies Copyright  

PVRTexTool 3 Revision 1.11f 

1. PVRTexTool GUI 
 

 
 

PVRTexTool GUI is used to convert image files (BMP, TGA, GIF, PCX, JPG, PNG) files into 
hardware-friendly texture files. This is a Graphical User Interface program, available for Windows and 
Linux. Only the PVRTexTool GUI executable is required to run the program. 

1.1. Texture Viewer 
This window can display the currently selected MIP-map level of a texture in a number of different 
ways, along with some diagnostic information. 

 

 
 
1. View Panels  – Show the current image data before and after encoding, on a chequered 
background. If the image has transparency, it will be alpha blended with the background. The image 
can be moved around by clicking and dragging. 



 Imagination Technologies Copyright  

Revision 1.11f 4 Reference Manual 

2. Zoom  – Use this slider to zoom in and out of the image. The zoom feature can also be operated 
using the mouse wheel on either of the view panels. 

3. Display mode  – Selects how the image should be displayed. If the file is a normal 2D texture, you 
can choose between a single and a tiled view. If you are viewing a cube map, you can choose 
between a single view of the currently selected face and a 3D preview. 

4. Channels  – Un-checking each of these tick boxes will suppress the corresponding channel in the 
view panels. For example, if “A” is unchecked, alpha blending will be turned off. This pane also gives 
numerical values for each of the channels at the current cursor position, and the position on the 
texture. Values to the left are taken from the input texture; values from the right are from the output 
texture. 

5. Difference  – Activate the checkbox to display a representation of the difference between the 
original image data, and the image after it has been encoded, to highlight compression artefacts. 
Ticking the box will enable a slider which controls the intensity of this image, with a scale factor from 1 
to 9. 

1.2. Image Browser 
 

1. MIP-map browser  – Shows a list of all MIP-map levels in 
the texture. Click on a MIP-map to view it in the texture 
viewer. 
2. Load level  – Load an image into the currently selected 
MIP-map level. 

3. Load alpha  – Load an image as the alpha for the currently 
selected MIP-map level. 

4. Save level – Saves an image of the current MIP-map level 
once it has been encoded in the specified format, then 
decoded. 

5. Generate MIP-maps – Uses the currently selected MIP-
map to generate all smaller MIP-maps. 

2 

3 

5 

4 

1 

 



              Imagination Technologies Copyright  

PVRTexTool 5 Revision 1.11f 

1.3. File Menu 

1.3.1. Open… 
Use File | Open, to open a previously created texture file, or to open a standard image file as a 
texture. PVRTexTool supports POWERVR texture files (*.PVR), and Microsoft Direct Draw Surface 
files (*. DDS). It can also read the following image formats: BMP, TGA, GIF, PCX, JPG and PNG. 

1.3.2. Open with Alpha…  
Use File | Alpha to bring up a dialog for combining two image files to produce a texture with an alpha 
channel as well as RGB data. Specifying only an alpha image will produce a white texture with only 
the alpha channel filled. 

 

1.3.3. Compose Cube Map…  
 

 
 

Use this option to create a cube map texture by combining existing images. It allows you to specify 
image files from which to load each of the six faces of the cube and an optional transparency image 
for each one. All of these source images must be of identical, square dimensions. 

 

1.3.4. Reload From File 
This option reloads the current texture from disk reverting any pre-processing already carried out 
upon it. If the file has been updated in some way by another program since being opened this also 
allows the texture in memory to be updated to what is currently stored on disk. Any encoded data 
produced is discarded by this operation. 



 Imagination Technologies Copyright  

Revision 1.11f 6 Reference Manual 

1.3.5. Save/Save As 
The user can save the texture in different formats: 

- .PVR files. The data consists of a 12 bytes header (described in section 4) followed by the 
raw texture data. 

- .H files which are like .PVR file but in a format that allows including it in a C project. The 
default type for the data is currently ‘unsigned long’ although the legacy mode (‘unsigned 
char’) is still supported as an option. We recommend using the default mode to avoid 
alignment problems in some platforms enhancing portability of these textures files. 

- .DDS files. Files ready for use in Microsoft DirectX. See the DirectX documentation for a 
detailed description. 

- .NGT files. Files ready for use with Nokia’s NGAGE 2 SDK. See the NGAGE 2 documentation 
for a detailed description. 

- An image file of the format (BMP, TGA, GIF, PCX, JPG and PNG). MIP-map information will 
be discarded when these formats are chosen – use Save MIP-level from the Edit menu for 
this functionality. A decompressed version of the encoded data that will be saved. 

 

The user will be prompted to select a texture encoding format, if the texture hasn’t already been 
encoded through the usual encoding dialogue (described below). 

1.3.6. Close/Close All 
These options variously close the active document window or all open windows.



              Imagination Technologies Copyright  

PVRTexTool 7 Revision 1.11f 

 

1.3.7. Quit 
Exit PVRTexTool. 

1.4. Edit Menu 

1.4.1. Preprocess…  
 

 
 

This option brings up a pre-processing dialog box showing all the procedures which can be performed 
on the texture prior to encoding. 

Options 

Generate Normal Map 
A normal map is a texture that stores normal vectors instead of colours. The X component of the 
normal vector is stored in the red channel of the texture, the Y component in the green channel and 
the Z component in the blue channel. Normal maps are commonly used with Dot3 bump mapping. 
The normal map is calculated from a grey scale height map that indicates the roughness of the 
surface. Large values in the map mean taller heights, while small values mean lower heights. The 
values come from the red channel of the input texture. 

A normal vector is calculated per pixel using the difference between the intensity of adjacent pixels 
and then is compressed into the format selected. Note that internally, the format of normal maps is 
automatically raised to 32-bit floating point precision. 

Once the top MIP-map level has been converted to a normal map, lower MIP-map levels are 
regenerated from this image using the standard 2 by 2 averaging algorithm. This will give physically 
correct results for per pixel lighting on matte surfaces. 

Expand to Power of 2 
This is a quick function that will expand any size of texture so that its dimensions have values of 
powers of two although not necessarily equal unless the Make Square option is chosen. Nearest 
neighbour, Bilinear and Bicubic scaling algorithms are available for this operation. 

Pre-Multiply Alpha 
For alpha-blended rendering it is sometimes useful to have the other, opaque channels of a texture 
encoded with their value pre-multiplied by the alpha value for each pixel. Clicking Go will carry this 
out. 

Bleed Texture 
When mapping certain parts of a texture on an object, the texture may contain an invisible void 
between useful parts. This void creates discontinuities around the textured parts that can impair the 



 Imagination Technologies Copyright  

Revision 1.11f 8 Reference Manual 

texture compression with certain formats. Uncompressed textures can also benefit from this bleeding 
operation as texture filtering (bilinear and/or MIP-mapping) can cause undesired adjacent texels to 
contribute to the final colour being sampled. To avoid this issue, the bleeding process transforms 
these frontiers by filling the void with a mix from nearby pixels. You can enter this background colour 
in hexadecimal via the text field, or by clicking on the swatch to the left of the text field and selecting 
the colour from the image. 

Add Border 
PVRTC texture data is assumed to be continuous across texture edges, which is a common case in 
graphic applications where various material textures like rock, brick, grass etc. are tiled together to 
represent high texture detail for a larger area. This can occasionally result in minor compression 
artefacts along the edges of texture data that does not tile. 

Whenever results are deemed unsatisfying, this issue can easily be resolved by adding a border 
around the original texture data. This border will then absorb any possible artefacts related to tiling. 

This option has two possible functions depending on the width and height of the texture: 

- Width and height both a power of 2. In this case the user can select one of two options. The 
algorithm will scale the texture down by 8 pixels in the vertical direction (4 on each side) and 
either 8 or 16 pixels in the horizontal direction, and then add mirrored borders. 

- Width and/or height not a power of 2. In this other case, the border is directly added, so as to 
expand the image dimensions to their nearest respected powers of 2. This way the graphics 
are not changed by a downsize operation. 

 

Skyboxes: Skybox textures are a collection of six textures which are mapped onto a cube to represent 
the sky or background of a 3D scene. These textures are a special type of non-tiling textures with a 
very specific tiling behaviour from one texture to another. When filling in the border pixels this special 
behaviour needs to be taken into account to obtain the best possible end-result in combination with 
PVRTC. The specific tiling behaviour is illustrated in the PVRTC Texture Compression Usage Guide 
document from the POWERVR SDK. Skyboxes have six textures, specifically two textures for each 
major axis: X+ and X-, Y+ and Y-, Z+ and Z-. 

 

To remove potential tiling or texture filtering artefacts the border regions of each texture face need to 
be filled with the correct data from the neighbouring textures. For instance the borders of the Z+ 
texture get the top data from the Y+ texture, the bottom border gets data from the Y- texture, the left 
border gets data from the X- texture and finally the right border gets pixels from the X+ texture.  

 

Saving an image which this has been applied to as a .pvr or .h file will set a flag in the output file’s 
header (see table 2.1.1). For more information, please refer to the PVRTC Texture Compression 
Usage Guide document that’s part of the POWERVR SDK. 

 

A texture pre-processed in this way will have an edge of 4x4 pixels for the PVRTC 4bpp case and an 
edge of 8x4 for the PVRTC 2bpp case. This texture has to be remapped correctly to restore it to its 
original size. This remapping can be calculated as follows: 

(Note that 1 is added to the border size to avoid bilinear bleeding. ResX and ResY are the original 
texture resolution) 

 

PVRTC 4bpp: 
u = ((4+1)/ResX)+u*(1-(2*(4+1)/ResX) 

v = ((4+1)/ResY)+v*(1-(2*(4+1)/ResY)  

 

PVRTC 2bpp: 
u = ((8+1)/ResX)+u*(1-(2*(8+1)/ResX) 

v = ((4+1)/ResY)+v*(1-(2*(4+1)/ResY)  

 



              Imagination Technologies Copyright  

PVRTexTool 9 Revision 1.11f 

Colour MIP-maps 
Sometimes, for testing purposes, it’s useful to mark each MIP-map in the chain by giving it a colour. 
This option goes through the existing MIP-map chain and colours the levels green, red, yellow, pink, 
cyan, blue in descending order. It leaves the top MIP-map level unchanged. 

1.4.2. Transform…  
The transform dialog allows basic geometric transformations to be applied to the current texture. 

 

Resize 
Enter the desired dimensions, in pixels, into the Width and Height boxes, choose the scaling algorithm 
you desire and press Go. Nearest, Bilinear and Bicubic scaling is available. 

Mirror 
Basic reversal in the horizontal and vertical axes is available through this section of the Transform 
Dialog. 

Rotate 
Click the option in this section to rotate the current texture by 90 degrees in a clockwise or anti-
clockwise direction. 

For cube map textures, only the mirror and rotate options are available and these may be applied to 
the currently selected surface in the Surface Browser or all surfaces at once. 

1.4.3. Regenerate MIP-maps  
This option regenerates the entire MIP-map chain down to the smallest possible size, from the 
currently selected level, by successively performing 2 by 2 averaging. 

1.4.4. Get Properties…  
Displays some properties of the currently active texture in a floating dialog: 



 Imagination Technologies Copyright  

Revision 1.11f 10 Reference Manual 

 
 

1.4.5. Get Encoding Statistics…  
Displays some error statistics concerning the difference between input and output images of the 
current texture: 

 

1.4.6. Load MIP-Level/Load MIP-Level Alpha/ 
These options allow you to load an image into the currently selected MIP-map level, load an image for 
its alpha channel. The image chosen must match the selected MIP-level or image dimensions. 

1.4.7. Save MIP-Level 
Save an image of the current level after it has been encoded in PNG, JPG, GIF, TGA, PCX or BMP 
format. 

1.4.8. Save Cube Map Faces 
This option allows the faces of a cube map to be saved in PNG, JPG, GIF, TGA, PCX or BMP format. 
The filenames will be suffixed by FRONT, BACK, LEFT etc. corresponding to each face. 

1.4.9. Encode…  
This menu displays a dialog box that allows the user to specify the format of texture data produced.  

 



              Imagination Technologies Copyright  

PVRTexTool 11 Revision 1.11f 

 
 

First, choose your target API from the row of tabs at the top. Then choose the texture format that you 
require from the list in the tab. 

Finally, choose the number of MIP-map levels to encode in addition to the actual image. You can also 
choose to encode the top image alone with the MIP-map selector. 

Click Encode and the texture will be processed.  

PVRTC Iterations 
You can choose the number of iterations that the PVRTC compressor uses to generate encoded 
images. Higher numbers will produce higher quality encodings at the expense of speed; lower values 
will encode faster, but with worsening quality. 

ETC Quality 
Varies the setting used by the ETC compressor. Note that Medium and Slow settings may produce 
higher quality results, but can take very long periods to complete encoding even on modern hardware. 

Vertical Flip 
For each API you can set whether the texture is flipped vertically or not. By default, in the POWERVR 
SDKs, OpenGL, OpenGL ES 1.x and OpenGL ES 2.0 textures are flipped, however, you may not 
want to leave this box selected for your own applications. 

OpenVG textures should be immediately orientated for use with this API and do not have a flip option. 



 Imagination Technologies Copyright  

Revision 1.11f 12 Reference Manual 

2. PVR file format description 
The PVR file format is composed of a header followed by texture data. The header is 13 32-bit 
unsigned integers (52 bytes) long with the following format: 

2.1.1. File Header description: 
 

DWORD 
Offset 

Content Description 

0 Header Size 52 
1 Height Vertical height of the texture 
2 Width Horizontal width of the texture 
3 MIP-map Levels The number of MIP-map levels present in this 

file in addition to the main image. 
4 0x000000XX Pixel format identifier – please refer to the 

table at the end of this document for possible 
values. 

 Format flags:  
 0x00000100 File has MIP-maps. 
 0x00000200 Twiddled. 
 0x00000400 Normal Map. 
 0x00000800 Added border. 
 0x00001000 File is a cube map. 
 0x00002000 False colour MIP-maps. 
 0x00004000 Volume Texture. 
 0x00008000 Alpha in texture. 
 0x00010000 Texture is vertically flipped. 
5 Surface Data Size (bytes).  Size of entire texture, or one cube map face if 

this is a cube map. 
6 Bits Per Pixel The number of bits of data describing a single 

pixel. 
7 Red mask Mask for the red channel. 

8 Green Mask Mask for the green channel. 
9 Blue mask Mask for the blue channel. 
10 Alpha Mask Mask for the alpha channel. 
11 PVR Id ‘P’ ’V’ ’R’ ’!’ 
12 Number of Surfaces The number of slices for volume textures or 

sky boxes 

 

2.1.2. File Header Structure 
 



              Imagination Technologies Copyright  

PVRTexTool 13 Revision 1.11f 

typedef  struct  PVR_TEXTURE_HEADER_TAG{ 
 unsigned  int   dwHeaderSize;  /* size of the structure */ 
    unsigned  int   dwHeight;   /* height of surface to be created */ 
    unsigned  int   dwWidth;   /* width of input surface */ 
    unsigned  int   dwMipMapCount;  /* number of MIP-map levels requested */ 
    unsigned  int   dwpfFlags;   /* pixel format flags */ 
    unsigned  int   dwDataSize;   /* Size of the compress data */ 
    unsigned  int   dwBitCount;   /* number of bits per pixel  */ 
    unsigned  int   dwRBitMask;   /* mask for red bit */ 
    unsigned  int   dwGBitMask;   /* mask for green bits */ 
    unsigned  int   dwBBitMask;   /* mask for blue bits */ 
    unsigned  int   dwAlphaBitMask;  /* mask for alpha channel */ 
 unsigned  int   dwPVR;    /* should be 'P' 'V' 'R' '!' */ 
 unsigned  int   dwNumSurfs;   /* number of slices for volume textures or skyboxes  */ 
} PVR_TEXTURE_HEADER; 

Note:  

dwMipMapCount is the number of MIP-map levels present in addition to the top level. 0 means that 
there is only the top level, 1 means the top level plus an extra MIP-map level, etc… 

 

PVRTC4, PVRTC2 and formats that use more than 32 bits per pixel do not have dwRBitMask, 
dwGBitMask and dwBBitMask defined. For PVRTC4 and PVRTC2 dwAlphaBitMask will be 1 or 0 
depending on whether there exists a pixel in the texture that is less than fully opaque. 

 



 Imagination Technologies Copyright  

Revision 1.11f 14 Reference Manual 

3. PVRTexTool Command-Line 

3.1. Description 
This is the command-line version of PVRTexTool, and can be found inside the “CL” folder. It exists for 
Windows and Linux platforms. Only the PVRTexTool executable (PVRTexTool.exe for Windows and 
PVRTexTool for Linux) is required to run the program. 

3.2. Usage 
PVRTexTool can be used from the command-line to be able to process and compress textures using 
a batch file. The syntax for the command-line is as follows: 

 

PVRTexTool –f<format> -i<inputfilename> [-b<factor>] [-border] [-c<scalar>] [-d] [-dds] [-e] [-m] [-nt] [-
h] [-help] [-l<colour>] [-nt] [-ngt] [-o] [-p] [-pvrtciterations<numberof>] [-q<level>] [-r<algorithm>] [-
s(filename)] [-t1] [-t2] [-x<width>] [-y<height>] [yflip<0,1>] [-aSrcAlpha[.bmp]]  [-o<outputfilename>] 

 

Options 
-a  Input alpha file name ( also BMP, JPG, PNG, GIF or TGA file). 

-b[factor]   Bump/Normal map. This option calculates the normal-map from a height-map 
passed as input. [factor] is a multiplication factor for the normal map. Default 
value is 2.0. 

-border Preprocess texture for tiling with a mirrored border around the texture. Works the 
same as the GUI option described above. A texture with dimensions that are non-
power of two will be expanded to power of two dimension. For power of two input 
images the border will be of 4 pixels all round, unless the chosen format is 
PVRTC2 or OGLPVRTC2 in which case the border generated is 4 pixels at top 
and bottom and 8 pixels at the sides of the texture. 

-d Create output file(s) with decompressed texture data. 

-dds Create a Microsoft Direct Draw Surface file. 

-e Creates false colour MIP-map levels rather than true levels. The –m must also be 
set or no MIP-map levels will be generated for false colouring. 

-f  Output file format. For example –fPVRTC4 
4444, 1555, 565, 555, 888, 8888, 8332, 88, 8, VY1UY0, Y1VY0U, PVRTC2, 
PVRTC4, ETC, OGL4444, OGL5551, OGL8888, OGLBGRA8888, OGL565, 
OGL555, OGL888, OGL88, OGL8, OGLPVRTC2, OGLPVRTC4, 1_BPP, DXT1, 
DXT3, DXT5, 332, 44, LVU655, XLVU8888, QWVU8888, ABGR2101010, 
ARGB2101010, AWVU2101010, GR1616, VU1616, ABGR16161616, R16F, 
GR1616F, ABGR16161616F, R32F, GR3232F, ABGR32323232F. Please see 
the table at the end of this document for further format options. 

-h  Create include file with texture data. 

-help Displays information about PVRTexTool similar to that presented here. 

-i  Input file name (DDS, BMP, JPG, PNG, GIF or TGA file). 

-lRRGGBB    Apply a bleed filter to the texture and its MIP-maps with RRGGBB supplied as a 
32-bit hexadecimal colour value. 

-m  Automatically generate all MIP-Map levels. 

-nt   No twiddle. (Twiddle is enabled by default except for .dds files) 

-ngt  Output Nokia NGAGE2 NGT file. This requires use of a PVRTC 4BPP format. 

-o  OutputFile name. If this option is not used the output file name will be the same 
as the input file name with the extension .pvr or .h depending on the relevant 
options also passed. PVRTexTool will override an incorrect extension. 

-p Create binary PVR file with texture data. This is the default setting if the output 
type is not specified. 



              Imagination Technologies Copyright  

PVRTexTool 15 Revision 1.11f 

-pvrtciterations valid values are between 0 and 8. Lower values indicate lower quality output, but 
faster encoding. Higher values will cause longer encoding times, but higher 
quality output.   

-q quality mode for ETC compression. 0 = Fast, 1 = Medium, 2 = Slow, 3 = Fast 
Perceptual, 4 = Medium Perceptual, 5 = Slow Perceptual. Default is 3. 

-r Choose a resizing algorithm. 1 = nearest, 2 = bilinear, 3 = bicubic. Default is 
bicubic. 

-s   Compress a skybox. Files must be named XXXXXn where n=1-6. 

-t1, t2  See the –border option. The values 1 and 2 are interpreted for backwards 
compatibility only and are ignored. 

-x Define a new width for the output texture. 

-y Define a new height for the output texture. 

-yflip Flips the texture vertically. Use -yflip1 to force flipping; -yflip0 for no flip. 

 

Examples 
To encode the file Example.bmp as a binary PVR file with pre-generated MIP-maps in ARGB 1555 
format. 

PVRTexTool -m -f1555 -iExample.bmp 

To encode a sky box from files named skyboxn.bmp as an header include in OpenGL PVRTC 4bpp 
format: 

PVRTexTool -h –s -m –foglpvrtc4 –iskybox1.bmp 

 



 Imagination Technologies Copyright  

Revision 1.11f 16 Reference Manual 

4. PVRTexTool Plug-ins 

4.1. Adobe Photoshop CS/CS2/CS3 
This plug-in for Photoshop allows PVRTexTool capabilities from within this professional image 
manipulation package.  

 

To install it just copy the file supplied into the folder  

\Program Files\Adobe\Adobe Photoshop CS3\Plug-Ins\File Formats 
Or similar. 

 

Once you start Photoshop, PVR will be available as one of the formats supported for loading and also 
for saving images: 

 

4.2. Autodesk 3DStudioMAX v6, 7, 8, 9, 2008, 2009 
This plug-in will allow 3DSMax to load the PVR image format. When applying a material, this format 
will be available in the supported list and it will be displayed properly in the view-ports and final 
rendered images. 

 

It is possible to save a rendered image in PVR format, but the output format will be limited to 32 bits 
per pixel to keep quality. 

 

To install this plug-in just copy the file supplied into the folder  

\Program Files\Autodesk\3dsMax<version>\plugins 

4.3. Autodesk Maya 
This plug-in, like the previous one, will allow loading of a PVR file as a texture for a material. Equally, 
when saving an image, the format will be limited to 32 bits per pixel.. 

 



              Imagination Technologies Copyright  

PVRTexTool 17 Revision 1.11f 

To install this plug-in just copy the file supplied into the folder  

\Program Files\Alias\Maya<version>\bin\plug-ins\image 



 Imagination Technologies Copyright  

Revision 1.11f 18 Reference Manual 

5. Twiddle format description 
How it works: 

The U and V indices are interleaved in memory as follows: - 

U3V3U2V2U1V1U0V0 

The subscript denotes the bit position in U or V, which gives an order of texel storage shown below. 

0 2

1 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

31

32

47

48

63

64

128

192

129

130

131

20

 
Figure 1.  Twiddled Textures 

The grid represents the position in the bitmap, and the number represents the location that it is stored 
in memory. In the case of rectangular twiddling, the common least significant bits are twiddled, and 
the left over most significant bits are appended to the top. For example, take a 4 bit U co-ordinate and 
a 6-bit V co-ordinate. Twiddle the 4 least significant bits of U and V, then append the 2 most 
significant bits of V onto the top of the result of the twiddling thus: - 

V5V4U3V3U2V2U1V1U0V0 

Under MGL, source texture data can be twiddled into hardware-friendly format by using the 
mglx_texture_twiddle() function.  

When creating a texture with the OpenGL ES API, for instance, the texture source data must not be 
twiddled, as the drivers will perform the twiddling internally prior to uploading the texture to the 
hardware. PVRTexTool should handle the toggling of twiddling for appropriate texture formats. 



              Imagination Technologies Copyright  

PVRTexTool 19 Revision 1.11f 

6. Texture Format Reference 
Although some of the formats below are for specific colour spaces PVRTexTool is not colour space 
aware and it is up to the user to ensure that data from the correct colour space is used with 
PVRTexTool.  

Please note that greyed out formats, whilst present in the PixelType enum, are not supported by 
PVRTexTool at this time.  

 

Format Description Command Line 
Identifier 
eg –f4444 

Identifer Enum PVRTexLib 
Precision 

Mode 

Enum 
Value 

ARGB 
4444 

Good 16-bit 
format when 
smooth 
translucency 
is needed. 

4444  MGLPT_ARGB_4444 ePREC_INT8 0x0 

ARGB 
1555 

Punch-
through 16-
bit 
translucent 
format. 

1555 MGLPT_ARGB_1555 ePREC_INT8 0x1 

RGB 565 Best quality 
16-bit opaque 
format. 

565 MGLPT_RGB_565 ePREC_INT8 0x2 

RGB 555 As 1555 
format but 
alpha is 
ignored. 
Good 
channel 
balance. 

555 MGLPT_RGB_555 ePREC_INT8 0x3 

RGB 888 24-bit opaque 
format with 8 
bits for each 
colour 
channel. 

888 MGLPT_RGB_888 ePREC_INT8 0x4 

ARGB 
8888  

Best quality 
32-bit format, 
but size and 
performance 
are worse 
than 16-bit 
formats. 

8888 MGLPT_ARGB_8888 ePREC_INT8 0x5 

ARGB 
8332 

High quality 
translucency 
16-bit format. 

8332 MGLPT_ARGB_8332 ePREC_INT8 0x6 

I 8 8-bit intensity 
only format. 

8 MGLPT_I_8 ePREC_INT8 0x7 

AI 88 16-bit alpha 
and intensity 
format. 

88 MGLPT_AI_88 ePREC_INT8 0x8 

1BPP One bit per 1_BPP MGLPT_1_BPP ePREC_INT8 0x9 



 Imagination Technologies Copyright  

Revision 1.11f 20 Reference Manual 

pixel. 

(V,Y1,U,Y0) YUV 16-bit 
format. Used 
for streaming 
movies. Good 
for 
photographic 
quality 
textures. 

VY1UY0 MGLPT_VY1UY0 ePREC_INT8 0xA 

(Y1,V,Y0,U) YUV format. Y1VY0U MGLPT_Y1VY0U ePREC_INT8 0xB 

PVRTC2 PVRTC 
compression 
format. 2-bit 
per pixel. 

PVRTC2 MGLPT_PVRTC2 ePREC_INT8 0xC 

PVRTC4 PVRTC 
compression 
format. 4-bit 
per pixel. 

PVRTC4 MGLPT_PVRTC4 ePREC_INT8 0xD 

OpenGL 
ARGB 
4444 

Good 16-bit 
format when 
smooth 
translucency 
is needed. 

OGL4444  OGL_RGBA_4444 ePREC_INT8 0x10 

OpenGL 
ARGB 
1555 

Punch-
through 16-
bit 
translucent 
format. 

OGL1555 OGL_RGBA_5551 ePREC_INT8 0x11 

OpenGL 
ARGB 
8888  

Best quality 
32-bit format, 
but size and 
performance 
are worse 
than 16-bit 
formats. 

OGL8888 OGL_RGBA_8888 ePREC_INT8 0x12 

OpenGL  
RGB 565 

Best quality 
16-bit opaque 
format. 

OGL565 OGL_RGB_565 ePREC_INT8 0x13 

OpenGL 
RGB 555 

As 1555 
format but 
alpha is 
ignored. 
Good 
channel 
balance. 

OGL555 OGL_RGB_555 ePREC_INT8 0x14 

OpenGL 
RGB 888 

24-bit opaque 
format with 8 
bits for each 
colour 
channel. 

OGL888 OGL_RGB_888 ePREC_INT8 0x15 

OpenGL I 8  8-bit intensity 
only format. 

OGL8 MGLPT_I_8 ePREC_INT8 0x16 

OpenGL AI 16-bit alpha 
and intensity 

OGL88 MGLPT_AI_88 ePREC_INT8 0x17 



              Imagination Technologies Copyright  

PVRTexTool 21 Revision 1.11f 

88 format. 

OpenGL 
PVRTC2 

PVRTC 
compression 
format. 2-bit 
per pixel. 

OGLPVRTC2 MGLPT_PVRTC2 ePREC_INT8 0x18 

OpenGL 
PVRTC4 

PVRTC 
compression 
format. 4-bit 
per pixel. 

OGLPVRTC4 MGLPT_PVRTC4 ePREC_INT8 0x19 

OpenGL 
BGRA 
8888  

An 
OpenGL|ES 
extension-
only format 
offering the 
same quality 
as ARGB 
8888 in what 
may be a 
more 
desirable 
channel 
order. 

OGLBGRA8888 OGL_BGRA_8888 ePREC_INT8 0x1A 

DXT1 Microsoft 
S3TC format, 
4 bits per 
pixel with no 
alpha 
information. 

DXT1 D3D_DXT1 ePREC_INT8 0x20 

DXT2 Microsoft 
S3TC format, 
8 bits per 
pixel. Good 
for sharp 
alpha 
transitions. 
Alpha is 
considered 
premultiplied. 

DXT2 D3D_DXT2 ePREC_INT8 0x21 

DXT3 Microsoft 
S3TC format, 
8 bits per 
pixel. Good 
for sharp 
alpha 
transitions. 

DXT3 D3D_DXT3 ePREC_INT8 0x22 

DXT4 Microsoft 
S3TC format, 
8 bits per 
pixel. Good 
for gradient 
alpha 
transitions. 
Alpha is 
considered 
premultiplied. 

DXT4 D3D_DXT4 ePREC_INT8 0x23 



 Imagination Technologies Copyright  

Revision 1.11f 22 Reference Manual 

DXT5 Microsoft 
S3TC format, 
8 bits per 
pixel. Good 
for gradient 
alpha 
transitions. 

DXT5 D3D_DXT5 ePREC_INT8 0x24 

RGB 332 8-bit opaque 
format. 

332 D3D_RGB_332 ePREC_INT8 0x25 

AI 44 8-bit alpha 
and intensity 
format. 

44 D3D_AI_44  ePREC_INT8 0x26 

LVU 655 YUV format. LVU655 D3D_LVU_655 ePREC_INT8 0x27 

XLVU 8888 YUV format. XLVU8888 D3D_XLVU_8888 ePREC_INT8 0x28 

QWVU 
8888 

Signed 8bit 
format 
designed for 
bump 
mapping. 

QWVU8888 D3D_QWVU_8888 ePREC_INT8 0x29 

ABGR 
2101010 

10-bit 
precision 
format with 2 
bits for alpha. 

ABGR2101010 D3D_ABGR_2101010 ePREC_INT16 0x2A 

ARGB 
2101010 

Another 10-
bit precision 
format with 2 
bits for alpha. 

ARGB2101010 D3D_ARGB_2101010 ePREC_INT16 0x2B 

AWVU 
2101010 

10-bit 
precision 
signed format 
with 2 bits for 
alpha. 

AWVU2101010 D3D_AWVU_2101010 ePREC_INT16 0x2C 

GR 1616 2-channel 16-
bit per 
channel 
format. 

GR1616 D3D_GR_1616 ePREC_INT16 0x2D 

VU 1616 2-channel 16-
bit per 
channel 
format. 

VU1616 D3D_VU_1616 ePREC_INT16 0x2E 

ABGR 
16161616 

64-bit format 
with 
transparency. 

ABGR16161616 D3D_ABGR_16161616 ePREC_INT16 0x2F 

R 16F Single 
channel 16-
bit floating 
point format. 

R16F D3D_R16F ePREC_FLOAT 0x30 

GR 1616F 2-channel 16-
bit floating 
point format. 

GR1616F D3D_GR_1616F ePREC_FLOAT 0x31 

ABGR 
16161616F 

64-bit floating 
point format 

ABGR16161616F D3D_ABGR_16161616F ePREC_FLOAT 0x32 



              Imagination Technologies Copyright  

PVRTexTool 23 Revision 1.11f 

with 
transparency. 

R 32F Single 
channel 32-
bit floating 
point format. 

R32F D3D_R32F ePREC_FLOAT 0x33 

GR 3232F 2-channel 32-
bit floating 
point format. 

GR3232F D3D_GR_3232F ePREC_FLOAT 0x34 

ABGR 
32323232F 

128-bit 
floating point 
format with 
transparency. 

ABGR32323232F D3D_ABGR_32323232F ePREC_FLOAT 0x35 

ETC Ericsson 
Texture 
Compression, 
4 bits per 
pixel with no 
alpha 
information. 

ETC ETC_RGB_4BPP ePREC_INT8 0x36 

 Ericsson 
Texture 
Compression, 
4 bits per 
pixel with 
explicit alpha 
like DXT3. 

 ETC_RGBA_EXPLICIT  0x37 

 Ericsson 
Texture 
Compression, 
4 bits per 
pixel with 
interpolated 
alpha like 
DXT5. 

 ETC_RGBA_INTERPOLATED  0x38 

A 8 8-bit alpha 
texture 
format. 

DX9 A 8  D3D_A8 ePREC_INT8 0x39 

VU 88 2 channel 16-
bit format. 

DX9 VU 88  D3D_V8U8 ePREC_INT8 0x3A 

I 16 Single 
channel 16-
bit format.  

DX9 I 16  D3D_I16  ePREC_INT16 0x3B 

 

6.1. DirectX 10 Formats 

Format Channel 
Type 

Description Command Line Identifier Identifer Enum PVRTexLib 
Precision 

Mode 

Enum 
Value 

RGBA 
32323232 

float High 
precision 
formats with 
alpha 
support 

DX10_R32G32B32A32_FLOAT DX10_R32G32B32A32_FLOAT ePREC_FLOAT 0x50 



 Imagination Technologies Copyright  

Revision 1.11f 24 Reference Manual 

RGBA 
32323232 

unsigned 
int 

 DX10_R32G32B32A32_UINT DX10_R32G32B32A32_UINT ePREC_INT32 0x51 

RGBA 
32323232 

signed int  DX10_R32G32B32A32_SINT DX10_R32G32B32A32_SINT ePREC_INT32 0x52 

RGB 
323232 

float High 
precision 
formats with 
no alpha 
support 

DX10_R32G32B32_FLOAT DX10_R32G32B32_FLOAT ePREC_FLOAT 0x53 

RGB 
323232 

unsigned 
int 

 DX10_R32G32B32_UINT DX10_R32G32B32_UINT ePREC_INT32 0x54 

RGB 
323232 

signed int  DX10_R32G32B32_SINT DX10_R32G32B32_SINT ePREC_INT32 0x55 

RGBA 
16161616 

float 16-bit 
precision 
formats with 
alpha 
support 

DX10_R16G16B16A16_FLOAT DX10_R16G16B16A16_FLOAT ePREC_FLOAT 0x56 

RGBA 
16161616 

unsigned 
normalised 
int 

 DX10_R16G16B16A16_UNORM DX10_R16G16B16A16_UNORM ePREC_INT16 0x57 

RGBA 
16161616 

unsigned 
int 

 DX10_R16G16B16A16_UINT DX10_R16G16B16A16_UINT ePREC_INT16 0x58 

RGBA 
16161616 

signed 
normalised 
int 

 DX10_R16G16B16A16_SNORM DX10_R16G16B16A16_SNORM ePREC_INT16 0x59 

RGBA 
16161616 

signed int  DX10_R16G16B16A16_SINT DX10_R16G16B16A16_SINT ePREC_INT16 0x5A 

RG 3232 float High 
precision 
two channel 
formats 

DX10_R32G32_FLOAT DX10_R32G32_FLOAT ePREC_FLOAT 0x5B 

RG 3232 unsigned 
int 

 DX10_R32G32_UINT DX10_R32G32_UINT ePREC_INT32 0x5C 

RG 3232 signed int  DX10_R32G32_SINT DX10_R32G32_SINT ePREC_INT32 0x5D 

RGBA 
1010102 

unsigned 
normalised 
int 

10-bit 
precision 
format with 
basic 2 bit 
support for 
alpha. 

DX10_R10G10B10A2_UNORM DX10_R10G10B10A2_UNORM ePREC_INT16 0x5E 

RGBA 
1010102 

unsigned 
int 

 DX10_R10G10B10A2_UINT DX10_R10G10B10A2_UINT ePREC_INT16 0x5F 

 float   DX10_R11G11B10_FLOAT  0x60 

RGBA 
8888 

unsigned 
normalised 
int 

32-bit 
formats with 
alpha 
support 

DX10_R8G8B8A8_UNORM DX10_R8G8B8A8_UNORM ePREC_INT8 0x61 

RGBA 
8888 

unsigned 
normalised 
int sRGB 
colour 
space 

 DX10_R8G8B8A8_UNORM_SRGB DX10_R8G8B8A8_UNORM_SRGB ePREC_INT8 0x62 

RGBA 
8888 

unsigned 
int 

 DX10_R8G8B8A8_UINT DX10_R8G8B8A8_UINT ePREC_INT8 0x63 

RGBA signed 
normalised 

 DX10_R8G8B8A8_SNORM DX10_R8G8B8A8_SNORM ePREC_INT8 0x64 



              Imagination Technologies Copyright  

PVRTexTool 25 Revision 1.11f 

8888 int 

RGBA 
8888 

signed int  DX10_R8G8B8A8_SINT DX10_R8G8B8A8_SINT ePREC_INT8 0x65 

RG 1616 float 16-bit 
precision 
two channel 
formats 

DX10_R16G16_FLOAT DX10_R16G16_FLOAT ePREC_FLOAT 0x66 

RG 1616 unsigned 
normalised 
int 

 DX10_R16G16_UNORM DX10_R16G16_UNORM ePREC_INT16 0x67 

RG 1616 unsigned 
int 

 DX10_R16G16_UINT DX10_R16G16_UINT ePREC_INT16 0x68 

RG 1616 signed 
normalised 
int 

 DX10_R16G16_SNORM DX10_R16G16_SNORM ePREC_INT16 0x69 

RG 1616 signed int  DX10_R16G16_SINT DX10_R16G16_SINT ePREC_INT16 0x6A 

R 32 float 32-bit single 
channel 
formats 

DX10_R32_FLOAT DX10_R32_FLOAT ePREC_FLOAT 0x6B 

R 32 unsigned 
int 

 DX10_R32_UINT DX10_R32_UINT ePREC_INT32 0x6C 

R 32 signed int  DX10_R32_SINT DX10_R32_SINT ePREC_INT32 0x6D 

RG 88 unsigned 
normalised 
int 

8-bit 
precision 
two channel 
formats 

DX10_R8G8_UNORM DX10_R8G8_UNORM ePREC_INT8 0x6E 

RG 88 unsigned 
int 

 DX10_R8G8_UINT DX10_R8G8_UINT ePREC_INT8 0x6F 

RG 88 signed 
normalised 
int 

 DX10_R8G8_SNORM DX10_R8G8_SNORM ePREC_INT8 0x70 

RG 88 signed int  DX10_R8G8_SINT DX10_R8G8_SINT ePREC_INT8 0x71 

R 16 float 16-bit single 
channel 
formats 

DX10_R16_FLOAT DX10_R16_FLOAT ePREC_FLOAT 0x72 

R 16 unsigned 
normalised 
int 

 DX10_R16_UNORM DX10_R16_UNORM ePREC_INT16 0x73 

R 16 unsigned 
int 

 DX10_R16_UINT DX10_R16_UINT ePREC_INT16 0x74 

R 16 signed 
normalised 
int 

 DX10_R16_SNORM DX10_R16_SNORM ePREC_INT16 0x75 

R 16 signed int  DX10_R16_SINT DX10_R16_SINT ePREC_INT16 0x76 

R 8 unsigned 
normalised 
int 

8-bit single 
channel 
formats 

DX10_R8_UNORM DX10_R8_UNORM ePREC_INT8 0x77 

R 8 unsigned 
int 

 DX10_R8_UINT DX10_R8_UINT ePREC_INT8 0x78 

R 8 signed 
normalised 
int 

 DX10_R8_SNORM DX10_R8_SNORM ePREC_INT8 0x79 

R 8 signed int  DX10_R8_SINT DX10_R8_SINT ePREC_INT8 0x7A 

A 8 unsigned 
normalised 
int 

8-bit single 
channel 
alpha 
format 

DX10_A8_UNORM DX10_A8_UNORM ePREC_INT8 0x7B 



 Imagination Technologies Copyright  

Revision 1.11f 26 Reference Manual 

R 1 unsigned 
normalised 
int 

1-bit per 
pixel texture 
format 

DX10_R1_UNORM DX10_R1_UNORM ePREC_INT8 0x7C 

    DX10_R9G9B9E5_SHAREDEXP  0x7D 

 unsigned 
normalised 
int 

  DX10_R8G8_B8G8_UNORM  0x7E 

 unsigned 
normalised 
int 

  DX10_G8R8_G8B8_UNORM  0x7F 

BC 1 unsigned 
normalised 
int 

Microsoft 
S3TC 
format, 4 
bits per 
pixel with no 
alpha 
information. 

DX10_BC1_UNORM DX10_BC_1 ePREC_INT8 0x80 

BC 1 unsigned 
normalised 
int sRGB 
colour 
space 

Microsoft 
S3TC 
format, 4 
bits per 
pixel with no 
alpha 
information. 

DX10_BC1_UNORM_SRGB DX10_BC_1_SRGB ePREC_INT8 0x81 

BC 2 unsigned 
normalised 
int 

Microsoft 
S3TC 
format, 8 
bits per 
pixel. Good 
for sharp 
alpha 
transitions. 

DX10_BC2_UNORM DX10_BC_2 ePREC_INT8 0x82 

BC 2 unsigned 
normalised 
int sRGB 
colour 
space 

Microsoft 
S3TC 
format, 8 
bits per 
pixel. Good 
for sharp 
alpha 
transitions.  

DX10_BC2_UNORM_SRGB DX10_BC_2_SRGB ePREC_INT8 0x83 

BC 3 unsigned 
normalised 
int 

Microsoft 
S3TC 
format, 8 
bits per 
pixel. Good 
for smooth 
alpha 
transitions. 

DX10_BC3_UNORM DX10_BC_3 ePREC_INT8 0x84 

BC 3 unsigned 
normalised 
int sRGB 
colour 
space 

Microsoft 
S3TC 
format, 8 
bits per 
pixel. Good 
for smooth 
alpha 
transitions. 

DX10_BC3_UNORM_SRGB DX10_BC_3 _SRGB ePREC_INT8 0x85 

BC 4 unsigned 
normalised 
int 

  DX10_BC_4_UNORM  0x86 

BC 4 signed 
normalised 
int 

  DX10_BC_4_SNORM  0x87 

BC 5 unsigned 
normalised 
int 

  DX10_BC_5_UNORM  0x88 



              Imagination Technologies Copyright  

PVRTexTool 27 Revision 1.11f 

BC 5 signed 
normalised 
int 

  DX10_BC_5_SNORM  0x89 

 

6.2. OpenVG 
All these formats are treated by PVRTexLib as ePREC_INT8. 

Format Description Command Line Identifier Identifer Enum Enum 
Value 

RGBX 
8888 
sRGB 

32 bits per pixel, 
no alpha 
support, sRGB 
colour space 

OVG_RGBX_8888_SRGB ePT_VG_sRGBX_8888 0x90 

RGBA 
8888 
sRGB 

32 bits per pixel, 
alpha support, 
sRGB colour 
space 

OVG_RGBA_8888_SRGB ePT_VG_sRGBA_8888 0x91 

RGBA 
8888 
sRGB 
PRE 

32 bits per pixel, 
pre-multiplied 
alpha support, 
sRGB colour 
space 

OVG_RGBA_8888_SRGB_PRE ePT_VG_sRGBA_8888_PRE 0x92 

RGB 
565 
sRGB 

16 bits per pixel, 
no alpha 
support, sRGB 
colour space 

OVG_RGB_565_SRGB ePT_VG_sRGB_565 0x93 

RGBA 
5551 
sRGB 

16 bits per pixel, 
punch-through 
alpha support, 
sRGB colour 
space 

OVG_RGBA_5551_SRGB ePT_VG_sRGBA_5551 0x94 

RGBA 
4444 
sRGB 

16 bits per pixel, 
alpha support, 
sRGB colour 
space 

OVG_RGBA_4444_SRGB ePT_VG_sRGBA_4444 0x95 

L 8 
sRGB 

Single channel 8 
bits per pixel 
format, sRGB 
colour space 

OVG_L_8_SRGB ePT_VG_sL_8 0x96 

RGBX 
8888 
lRGB 

32 bits per pixel, 
no alpha 
support, lRGB 
colour space 

OVG_RGBX_8888_LRGB ePT_VG_lRGBX_8888 0x97 

RGBA 
8888 
lRGB 

32 bits per pixel, 
no alpha 
support, lRGB 
colour space 

OVG_RGBA_8888_LRGB ePT_VG_lRGBA_8888 0x98 

RGBA 
8888 
lRGB 
PRE 

32 bits per pixel, 
pre-multiplied 
alpha support, 
sRGB colour 
space 

OVG_RGBA_8888_LRGB_PRE ePT_VG_lRGBA_8888_PRE 0x99 



 Imagination Technologies Copyright  

Revision 1.11f 28 Reference Manual 

L 8 
lRGB 

Single channel 8 
bits per pixel 
format, lRGB 
colour space 

OVG_L_8_LRGB ePT_VG_lL_8 0x9A 

A 8 Alpha texture 8 
bits per channel 

OVG_A_8 ePT_VG_A_8 0x9B 

1 BPP Single bit per 
pixel B&W 
texture 

OVG_1_BPP ePT_VG_BW_1 0x9C 

XRGB 
8888 
sRGB 

32 bits per pixel, 
no alpha 
support, sRGB 
colour space 

OVG_XRGB_8888_SRGB ePT_VG_sXRGB_8888 0x9D 

ARGB 
8888 
sRGB 

32 bits per pixel, 
alpha support, 
sRGB colour 
space 

OVG_ARGB_8888_SRGB ePT_VG_sARGB_8888 0x9E 

ARGB 
8888 
sRGB 
PRE 

32 bits per pixel, 
pre-multiplied 
alpha support, 
sRGB colour 
space 

OVG_ARGB_8888_SRGB_PRE ePT_VG_sARGB_8888_PRE 0x9F 

ARGB 
1555 
sRGB 

16 bits per pixel, 
punch-through 
alpha support, 
sRGB colour 
space 

OVG_ARGB_1555_SRGB ePT_VG_sARGB_1555 0x100 

ARGB 
4444 
sRGB 

16 bits per pixel, 
alpha support, 
sRGB colour 
space 

OVG_ARGB_4444_SRGB ePT_VG_sARGB_4444 0x101 

XRGB 
8888 
lRGB 

32 bits per pixel, 
no alpha 
support, lRGB 
colour space 

OVG_XRGB_8888_LRGB ePT_VG_lXRGB_8888 0x102 

ARGB 
8888 
lRGB 

32 bits per pixel, 
alpha support, 
lRGB colour 
space 

OVG_ARGB_8888_LRGB ePT_VG_lARGB_8888 0x103 

ARGB 
8888 
lRGB 
PRE 

32 bits per pixel, 
pre-multiplied 
alpha support, 
lRGB colour 
space 

OVG_ARGB_8888_LRGB_PRE ePT_VG_lARGB_8888_PRE 0x104 

BGRX 
8888 
sRGB 

32 bits per pixel, 
no alpha 
support, sRGB 
colour space 

OVG_BGRX_8888_SRGB ePT_VG_sBGRX_8888 0x105 

BGRA 
8888 
sRGB 

32 bits per pixel, 
alpha support, 
sRGB colour 
space 

OVG_BGRA_8888_SRGB ePT_VG_sBGRA_8888 0x106 



              Imagination Technologies Copyright  

PVRTexTool 29 Revision 1.11f 

BGRA 
8888 
sRGB 
PRE 

32 bits per pixel, 
premultiplied 
alpha support, 
sRGB colour 
space 

OVG_BGRA_8888_SRGB_PRE ePT_VG_sBGRA_8888_PRE 0x107 

BGR 
565 
sRGB 

16 bits per pixel, 
no alpha 
support, sRGB 
colour space 

OVG_BGR_565_SRGB ePT_VG_sBGR_565 0x108 

BGR 
5551 
sRGB  

16 bits per pixel, 
punch-through 
alpha support, 
sRGB colour 
space 

OVG_BGR_5551_SRGB ePT_VG_sBGRA_5551 0x109 

BGRA 
4444 
sRGB 

16 bits per pixel, 
alpha support, 
sRGB colour 
space 

OVG_BGRA_4444_SRGB ePT_VG_sBGRA_4444 0x10A 

BGRX 
8888 
lRGB 

32 bits per pixel, 
no alpha 
support, lRGB 
colour space 

OVG_BGRX_8888_LRGB ePT_VG_lBGRX_8888 0x10B 

BGRA 
8888 
lRGB 

32 bits per pixel, 
alpha support, 
lRGB colour 
space 

OVG_BGRA_8888_LRGB ePT_VG_lBGRA_8888 0x10C 

BGRA 
8888 
lRGB 
PRE 

32 bits per pixel, 
pre-multiplied 
alpha support, 
lRGB colour 
space 

OVG_BGRA_8888_LRGB_PRE ePT_VG_lBGRA_8888_PRE 0x10D 

XBGR 
8888 
sRGB 

32 bits per pixel, 
no alpha 
support, sRGB 
colour space 

OVG_XBGR_8888_SRGB ePT_VG_sXBGR_8888 0x10E 

ABGR 
8888 
sRGB 

32 bits per pixel, 
alpha support, 
sRGB colour 
space 

OVG_ABGR_8888_SRGB ePT_VG_sABGR_8888 0x10F 

ABGR 
8888 
sRGB 
PRE 

32 bits per pixel, 
pre-multiplied 
alpha support, 
sRGB colour 
space 

OVG_ABGR_8888_SRGB_PRE ePT_VG_sABGR_8888_PRE 0x110 

ABGR 
1555 
sRGB 

16 bits per pixel, 
no alpha 
support, sRGB 
colour space 

OVG_ABGR_1555_SRGB ePT_VG_sABGR_1555 0x111 

ABGR 
4444 
lRGB 

16 bits per pixel, 
alpha support, 
sRGB colour 
space 

OVG_ABGR_4444_SRGB ePT_VG_sABGR_4444 0x112 

XBGR 32 bits per pixel, OVG_XBGR_8888_LRGB ePT_VG_lXBGR_8888 0x113 



 Imagination Technologies Copyright  

Revision 1.11f 30 Reference Manual 

8888 
lRGB 

no alpha 
support, lRGB 
colour space 

ABGR 
8888 
lRGB 

32 bits per pixel, 
alpha support, 
lRGB colour 
space 

OVG_ABGR_8888_LRGB ePT_VG_lABGR_8888 0x114 

ABGR 
8888 
lRGB 
PRE 

32 bits per pixel, 
pre-multiplied 
alpha support, 
lRGB colour 
space 

OVG_ABGR_8888_LRGB_PRE ePT_VG_lABGR_8888_PRE 0x115 

 

 


