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Mathematical structure of linear networks

A line segment with endpoints u ∈ R2 and v ∈ R2 \ {u} is given by
l = [u, v] = {tu+ (1− t)v : 0 ≤ t ≤ 1} ⊆ R2, u 6= v and a linear network L is
defined as the union

L =
k⋃
i=1

li

of k ≥ 1 line segments li = [ui, vi], the components of L, which we assume
satisfy li 6⊆ lj , i 6= j, and boundedness, i.e. |li| = |ui − vi| <∞.

The total network length is given by the sum of the component lengths, i.e.

|L| =
k∑
i=1

|li|,

whereby |L| <∞ if k <∞. On the other hand, if k =∞, since each
component has positive length, we have that |L| =∞.
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Mathematical structure of linear networks

A path from a starting point u ∈ L to some end point v ∈ L is a sequence of
points u0, . . . , un ∈ L, n > 1, such that u0 = u, un = v and [ui, ui+1] ⊆ L
for all i = 0, . . . , n− 1.
Denoting by pu,v the collection of all paths between u ∈ L and v ∈ L, the
shortest-path (geodesic) distance between u and v is given by

dL(u, v) = min
(u0,...,un)∈pu,v

n−1∑
i=0

|ui − ui+1|

= min
(u0,...,un)∈pu,v

|u− u1|+
n−2∑
i=1

|ui+1 − ui|+ |v − un−1|.
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Network example

Example

The first very simple example is any L =
⋃∞
i=1 li, |L| =∞, where each node

has degree 2. Since the 1-dimensional Euclidean space R may be expressed
as a countable union of compacts, we note that L is isometric to R and may
be viewed as a bending of the real line at k =∞ places. For the particular
case where L = R it additionally follows that dL(·, ·) coincides with the
Euclidean metric.

Example

The second example is the graph L = Z2, which has its nodes at all integer
pairs (i, j) ∈ R2, i, j ∈ Z. The edges EL are formed by the line segments
joining the nodes horizontally and vertically. Note that we may scale
everything by an arbitrary positive constant α > 0 so that all edges have
length α.
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Linear network point processes

Assume X is a point process on linear network L with intensity measure µ,

µ(A) = E(N(A)) =

∫
A

ρ(u)d1u, A ⊆ L,

where N(A) is the number of points belong to subnetwork A, we then say
X has intensity function ρ(u), u ∈ L.
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Linear network point processes

Example

A Poisson process X on L with intensity function ρ(·) is a LNPP such that
X(A1), . . . , X(An) are mutually independent for any disjoint line segments
A1, . . . , An ⊆ L, n ≥ 1, and X(A) is Poisson distributed with mean
µ(A) =

∫
A
ρ(u)d1u. Conditioning on X(L) = n, we obtain a classical

random sample with density f(u) = ρ(u)/µ(L) = ρ(u)/n, a so-called
Binomial point process (Møller and Waagepetersen; 2004).
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Voronoi tessellations/estimator

In the context of a linear network L, the Voronoi cell/subnetwork of x ∈ X
is given by (Okabe and Sugihara; 2012)

Vx = Vx(X) = {u ∈ L : dL(x, u) ≤ dL(y, u) for all y ∈ X \ {x}}.

Definition
Given a LNPP X on a linear (sub)network L with intensity function ρ(u),
u ∈ L, the Voronoi intensity estimator is given by

ρ̂V (u) = ρ̂V (u;X,L) =
∑

x∈X∩L

1{u ∈ Vx(X) ∩ L}
|Vx(X) ∩ L| , u ∈ L,

if X ∩ L 6= ∅; set ρ̂V (u) = 0 otherwise.
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Kernel smoothing

The Kernel-based intensity estimator (Diggle corrected) of a point pattern
on a linear network L is as

λ̂(D)
ε (u) =

n∑
i=1

κε(dL(u,vi))

CL,ε(vi)
, u ∈ L, (1)

where κε is a one-dimensional kernel function with bandwidth ε, and

CL,ε(v) =

∫
L

κε(dL(v,u))d1u, v ∈ X ∩ L, (2)

is an edge-correction factor (Moradi et al.; 2016).
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Kernel smoothing

The diffusion estimator of intensity function of a point pattern on a linear
network L with bandwidth ε =

√
t is as

λ̂ε(u) =
n∑
i=1

κε2(u|xi), u ∈ L (3)

where κt is the heat kernel (McSwiggan et al.; 2016).
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How to choose bandwidth parameter ε

Common possibilities:

I use the smoothing bandwidth parameter ε which miximaize (Loader
(1999))

n∑
i=1

log(λ̂−i,ε(ui))−
∫
L

λ̂ ε(ui)d1u (4)

I use the smoothing bandwidth parameter ε which minimizes (Cronie
and van Lieshout (2016))∣∣∣∣∣

n∑
i=1

1

λ̂
(D)
ε (ui)

− |L|

∣∣∣∣∣ .
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