
Computrainer Serial Port Protocol

Computrainer Serial Protocol
Draft Version 0.3
Contents

2Change Log

3Introduction

41. Hardware and Port Configuration

41.1 Microcontroller Hardware

51.1 Serial Port Configuration

72. Control - PC to Computrainer

72.1 General command format

72.2 Specific command format

82. Telemetry - Computrainer to PC

82.1 General message format

122.2 Spin Scan Data

132.2 Message 0x09 - Push-On Pressure ‘RRC’

132.2 Message 0x01 – Speed

142.2 Message 0x0b – Sensor Status

Computrainer is a registered trademark of Racermate, Inc.

Change Log

	Tracker
	Date
	Description

	Draft
	28th Sep 2009
	· First draft after basic analysis

	V0.1
	9th Oct 2009
	· Added last couple of weeks additional findings related to telemetry message formats; HR, PWR, CAD, SPD,
· Added Spin-Scan marker

· Added RRC telemetry

· Added Sensor status telemetry

· Added current assumptions regarding spin-scan data format

	V0.2
	10th Oct 2009
	· Added Sync-bit on last byte of message

· Added low order bit for spin-scan bytes 0-2

· Added calculation of spinscan numbers and L.ATA and R.ATA

· Started to document the control messages

	V0.3
	11th Oct
	· Refined inbound sections

· Started control bytes section

· Still issues with spinscan byte decoding to resolve

Introduction

The serial protocol used by the Computrainer has been broken down into 3 sections;

· Section 1 – Hardware & Configuration – the settings required to open and communicate over a serial port including flow control, timeouts, baud rates etc.

· Section 2 – PC to Computrainer control protocol – the messages required to send to the Computrainer to choose mode and control load etc.

· Section 3 – Computrainer to PC telemetry protocol – the messages returned from the Computrainer to report controller button status, cadence, heart-rate, power and other telemetry

Since the Computrainer supports two modes of operation; Spin-Scan mode and Ergo mode section 1 and 2 describe the differences for each mode where they apply.

This is a summary of my analysis based upon serial snooping using the excellent DMS Serial monitor and custom decoding code I wrote which shared access to the physical serial port through a device splitter from Fabulatech.

Much of the protocol remains undocumented and will be refined as new insights emerge I will issue updates to this document. Feel free to send comments or feedback to the author at liversedge@gmail.com.

I hope you find the information useful, but it is supplied as-is and may or may not be factually correct. All efforts have been made to validate the contents through development of a Mac OS X program for controlling and recording Computrainer workouts that I am developing.

With grateful thanks to Stephan Mantler for sharing his initial investigations and accelerating my work in solving the remaining puzzles and riddles.

1. Hardware and Port Configuration

1.1 Microcontroller Hardware

[image: image1.jpg]
The core components inside the microcontroller span 2 PCBs, one in the front and one in the rear of the casing. The main components are;

· NXP Romless Microcontroller P80C51FA-4N – this includes the serial UART, interrupt ports and 256 bytes of addressable memory.
· 28 Pin RacerMate 256KB EPROM [M27C256B – 96001 V5 – MYS 96 650 (HB4543)] – contains the Racermate ROM for the microcontroller, in this case loaded with HB v45.43.
· Hitachi LCD Driver 2L2 7R – HD61602 – controls the front display
RS232 to USB
All generations of the Computrainer micro-controller communicate using RS232 serial communication hardware. In order to use a Computrainer with computers that do not support serial ports (most modern PC’s have moved to Firewire, USB and SATA for external device connections) an RS232 to USB adaptor is required.

These adapters do two things; firstly they provide a physical adaptor that allows the serial D-SUB connection at one end and a USB jack at the other. Secondly, they provide an operating system device driver that exposes the USB device as a serial device. By using these adaptors and software the Racermate software does not need to be modified to support USB or Serial connection.

Racermate provide two generations of converters from RS232 to USB which support Windows, Linux and Mac OS X;

· Sewell SW-130 (Mfg Part# AP1102) – The stereo jack from the microcontroller is connected to a Male D-SUB (serial connection) which then connects to the Sewell Female D-SUB and converted to a USB plug.

· FTDI USB-to-Stereo Adapter (Racermate Part# R980-105-00) - The stereo jack from the microcontroller is connected directly to a USB adapter removing the need for any D-SUB 9-pin connectors.

Critically, when using either of these devices it is critical that the correct drivers are employed for your operating system;

· Sewell – Windows 32 bit, Linux and Mac OS X Supported

· FTDI Virtual COM Port - Windows 32 and 64 bit, Linux and Mac OS X

1.1 Serial Port Configuration

The Computrainer microcontroller communicates using a specific serial port configuration as outlined below.
Basic Port Settings
These settings are fixed. The CT microcontroller expects to communicate using these settings and will fail to communicate with different settings.
	Setting Name
	Setting Value
	Comments

	Baud Rate
	2400
	The 80C51 is capable of 19.2k, 9.6k and 4.8k too.

	Byte Size
	8
	Bits

	Stop Bits
	1
	Bits

	Parity
	None
	No parity bits

	End of file character
	0x00
	Not used

	Error character
	0x00
	Not used

	Event character
	0x00
	Not used

	Flow Control
	RTS / CTS
	Use RTS/CTS hardware flow control

	Duplex
	FULL
	The 80C51 UART is capable of full duplex transmission and this is utilised to support inbound telemetry packets alongside outbound controller commands.

Port Timeout Settings

	Timeout Name
	Setting (Milliseconds)

	Read Interval
	0

	Read Total Timeout Constant
	1000

	Read Total Timeout Multiplier
	50

	Write Total Timeout Constant
	2000

	Write Total Timeout Multiplier
	0

Serial Port Discovery

To confirm the presence of a Computrainer at the other end of a serial port a short token ‘RacerMate’ should be sent to the port, if a Computrainer microcontroller is present it will return the token ‘LinkUp’. This handshake can be used to identify a Computrainer and confirm the port settings are correct.

	ASCII Send token
(Hex Byte Array)
	ASCII Receive token
(Hex Byte Array)

	RacerMate
52 61 63 65 72 4D 61 74 65
	LinkUp
4C 69 6E 6B 55 70

It should be noted that although this handshake is ASCII plain-text all communication is generally performed in binary, with some communications APIs it is necessary to state that binary communications will be required (notably the Microsoft MFC CreateFile, ReadFile, WriteFile API).
2. Control - PC to Computrainer

The computrainer has two modes – ergo and spinscan. In ergo mode the load is constantly maintained to ensure, regardless of pedal forces or velocity that the load is developed by the rider.
In spinscan mode, the load is set to represent a gradient and the user can develop as much power as they want against a constant load. In addition, the microcontroller, relinquished from duties of monitoring torque and adjusting load from the ergo mode, is now free to measure pedal torque in conjunction with the cadence trip to support spinscan analysis.

You cannot mix spin-scan with ergo mode – although you can switch from one to the other during a workout (if the racermate software were to support that).

The CompCS software sends regular messages to the microcontroller but essentially, from a user perspective, they either choose mode (ergo/spinscan) and set load or grade. All other functions are specific to the microcontroller and of no value from an end-user perspective.

2.1 General command format

The microcontroller receives control messages as a 7 byte packet, with almost identical characteristics to the messages it issues to report telemetry.
The general control message format is:

	Byte 0
	Byte 1
	Byte 2
	Byte 3
	Byte 4
	Byte 5
	Byte 6

	Control Bytes 1
	Control Byte 3
	Control Byte 3
	Status Byte

	Command Type & Setting Bits (a)
	Setting Bits (b)
	Setting Bits (c)

xxx need to update to reflect ctdiag.c and 7p.c
2.2 Specific command format
Xxx need to include set grade set load and set mode!
2. Telemetry - Computrainer to PC

2.1 General message format

	Byte 0
	Byte 1
	Byte 2
	Byte 3
	Byte 4
	Byte 5
	Byte 6

	Spinscan Data 1
	Spinscan Data 2
	Spinscan Data 3
	Status Byte

	Type & Telemetry Bits (a)
	Telemetry Bits (b)
	Telemetry Bits (c)

The microcontroller returns telemetry in 7 byte packets of data as shown above. The seven bytes ‘generally’ contain telemetry data but there are some exceptions;
· Keep alive bytes when the link is dropped are issued for a short period of time with a constant value of 0xCC

· The port discovery handshake as defined above

Bit Names

The bits across the 7 bytes are used quite weirdly. This is probably due to limitations in the microcontroller processing power, a desire to use available ram optimally and the need to provide a packet signature that can be synchronised should bytes be lost or missed. I have named each bit within the 7 byte records below so I can reference them later in this document. These bits are re-arranged into byte values that can be well understood for status, telemetry and format codes.

	
	MSB
	
	LSB
	

	
	128
	64
	32
	16
	8
	4
	2
	1
	

	Byte 0
	0
	A1
	A2
	A3
	A4
	A5
	A6
	A7
	A8

	Byte 1
	0
	B1
	B2
	B2
	B4
	B5
	B6
	B7
	B8

	Byte 2
	0
	C1
	C2
	C2
	C4
	C5
	C6
	C7
	C8

	Byte 3
	0
	RSET
	SSS
	MINUS
	F2
	PLUS
	F3
	F1
	F0

	Byte 4
	0
	M1
	M2
	M3
	M4
	T1
	T2
	T3
	T11

	Byte 5
	0
	T4
	T5
	T6
	T7
	T8
	T9
	T10
	T12

	Byte 6
	SYNC
	Z (?)
	A8
	B8
	B9
	F0
	T11
	T12
	

You will notice that the Most Significant Bit is only set on the last byte (byte 6) of the message. This is presumably to enable synchronisation/re-synchronisation when reading the serial port (at least it is most useful for this purpose). Bit 0x04 is also always zero for this last byte.
As a result the low-order (0x01) bit for each preceding byte is encoded in the final byte (byte 6) of the packet (in A8, B8, B9, T12), and for multi-byte telemetry values the low order-bit of the high byte is also encoded into the last packet (in T11). The last column on the right (and blue shading) is intended to highlight how the bits in byte 6 are used to set the LSB for the previous 6 bytes.
It is unclear at present what Z is used for, it is generally 0 but is modified for message type 0x08 and when spinscan data is present. Note that on outbound control messages it is always set.
 Spin-scan Data
	
	MSB
	
	LSB

	
	128
	64
	32
	16
	8
	4
	2
	1

	SS 1
	A1
	A2
	A3
	A4
	A5
	A6
	A7
	A8

	SS 2
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8

	SS 3
	C1
	C2
	C3
	C4
	C5
	C6
	C7
	C8

The three spin scan data bytes are pulled from Bytes 0-2 with the least significant bit coming from the last byte.
Button Status Code
The status byte contains the status of the buttons on the microcontroller:
	MSB
	LSB

	64
	32
	16
	8
	4
	2
	1

	RSET
	SSS

	MINUS
	F2
	PLUS
	F3
	F1

· When SSS is triggered all other bits are NOT set – it marks the beginning of a set of spinscan records.
· The RESET button bit is set when the button is not pressed and cleared when the button is pressed

· For all buttons except RESET the bit will be set if the key is depressed and or’ed in with all other values
· When a single button other than RESET is depressed only the bit for the button pressed will be set

· When more than one button other than RESET is depressed the values are or’ed together AND the reset bit behaves as normal (i.e. since it is not pressed it will be set)

· When more than one button is pressed AND RESET is pressed the bits for the buttons depressed ONLY are set

The table below gives an example of the bit status for different combinations;

	Button Configuration
	Resulting Button Status Code

	RESET Not pressed,+Pressed
	0x04

	RESET Pressed
	0x00

	RESET pressed,+ Pressed
	0x44

	RESET Not pressed,+ Pressed,- Pressed
	0x54

	RESET Pressed,+ Pressed,- Pressed
	0x14

Message Type
This byte contains the message type in the 4 topmost bits as shown below;
	MSB
	
	
	LSB

	8
	4
	2
	1

	M1
	M2
	M3
	M4

The Message type is stored in MMMM above and has the following meaning;

	Bits (Hex) [unshifted]
	Message Type
	Telemetry Encoding
	Telemetry Units

	0000 (0x00)
	Not seen
	
	

	0001 (0x01) [0x08]
	Speed
	12-bit
	MPS[*]

	0010 (0x02) [0x10]
	Power
	12-bit
	Watts

	0011 (0x03) [0x18]
	Heart-rate
	8-bit
	BPM

	0100 (0x04) [0x20]
	Unknown
	
	

	0101 (0x05) [0x28]
	Unknown
	
	

	0110 (0x06) [0x30]
	Cadence
	8-bit
	RPM

	0111 (0x07) [0x38]
	Unknown
	
	

	1000 (0x08) [0x40]
	Constant
	
	199/199

	1001 (0x09) [0x48]
	Push-on Pressure (‘RRC’)
	11-bit[*]
	lb/Feet[*]

	1010 (0x0a) [0x50]
	Unknown
	
	

	1011 (0x0b) [0x58]
	Sensor Connection Status
	Not applicable
	Boolean[*]

	1100 (0x0c) [0x60]
	Message Sync
	12-bit
	4095

	1101 (0x0d) [0x68]
	Not seen
	
	

	1110 (0x0e) [0x70]
	Not seen
	
	

	1111 (0x0f) [0x78]
	Not seen
	
	

 Telemetry Value
The telemetry value is stored in the remaining bits of byte 4 and all of byte 5, supplemented with some bits in byte 6, they are shown below.
In general the telemetry value can be constructed as an 12 or 8 bit value by extracting the bit values as shown in the table above and constructing a little endian number, thus;

For 12-bit telemetry values
	MSB
	
	
	
	
	
	LSB

	2048
	1024
	512
	256
	128
	64
	32
	16
	8
	4
	2
	1

	T1
	T2
	T3
	T11
	T4
	T5
	T6
	T7
	T8
	T9
	T10
	T12

Sample code:

int val;

val = (byte5 &~128)<<1; // standard 12 bit value
val |= (byte6 &1);
val |= (byte4 &7)<<9;

val |= (byte5 &2)<<7;
For 8-bit telemetry values
	MSB
	
	LSB

	128
	64
	32
	16
	8
	4
	2
	1

	T4
	T5
	T6
	T7
	T8
	T9
	T10
	T12

int val;

val = (byte5 &~128)<<1; // standard 8 bit value
val |= (byte6 &1);
2.2 Spin Scan Data

Spinscan data is embedded across 8 (not necessarily contiguous) data records, and found in the first 3 bytes of each packet. Each byte represents a single sample, thus 24 samples are provided. The values are full 8-bit values. A spin-scan record is indicated
Each set of spinscan telemetry data is preceded by a record whose button data in byte 3 is set to 0x20. This is a spinscan reset marker and indicates that the current record contains sample 1-3 of 24 samples. It is worth noting that when in spinscan mode a set of spinscan data is pushed out every two seconds regardless of any other activity.

The 24 separate values relate directly to the power output at each 24th of the spin-scan chart, where A null value is represented by 0x7b and should be ignored. All other values are valid.
[image: image2.jpg]
Therefore, the first 12 records represent the data for the right leg and the second 12 records represent data for the right leg.

L/R Balance – can be calculated as the sum of the first 12 data points / sum of the seconds 12 data points

Spin-Scan Number – Is calculated as the mean average for all data points divided by the maximum value then multiplied by 100. This can be applied to all 24 samples for an overall spin-scan calculation or to the first 12 for the right leg and second 12 for the left leg.

L.ATA & R.ATA – The peak torque for the first 12 and second 12 numbers identifies the angle of attack.

2.2 Message 0x09 - Push-On Pressure ‘RRC’
The bit encoding for RRC and subsequent formula for get RRC is slightly different from normal encoding.

Byte 4

	MSB
	
	LSB

	128
	64
	32
	16
	8
	4
	2
	1

	0
	M1
	M2
	M3
	M4
	X
	T2
	T3

X – is set if the calibration procedure has been followed on the unit. This means that T1 is not available and the RRC is encoded into a 11-bit number with the same mechanism as before but without T1.
	MSB
	
	
	
	
	LSB

	1024
	512
	256
	128
	64
	32
	16
	8
	4
	2
	1

	T2
	T3
	T11
	T4
	T5
	T6
	T7
	T8
	T9
	T10
	T12

Conversion - To convert the RRC from the stored 10-bit number to a lb/feet floating point value it should be divided by 256.

Sample code:

int val;

double rrc;

val |= (byte4 & 3)<<9; // T2, T3

val |= (byte6 & 2)<<7; // T11

val |= (byte5 & ~128)<<1; // T4, T5, T6, T7, T8, T9, T10

val |= (byte6 & 1); // T12
rrc = (double) val / 256;
printf(“RRC = %3.2f %c\n”, rrc, (byte4 & 4) ? ‘C’ : ‘U’);
2.2 Message 0x01 – Speed

As one would expect speed is stored as an 11-bit number as described in the general message format above. It appears to be encoded as meters per second * 10. When compared with the equivalent value returned from Racermate CompCS software it would appear that they reduce the value by 10% prior to displaying on the screen.

Conversion - to convert between the returned mps*10 to a kmh figure that would correlate directly with the Racermate software (before Aero-drag has been applied), you should multiply by 3.6 to convert from mps to kmh and then by 0.9 to correlate with CompCS.

Again, to demonstrate, some sample code:

int val, mps;

double kph;

val = (byte5 &~128)<<1; // standard 12 bit value
val |= (byte6 &1);
val |= (byte4 &7)<<9;

val |= (byte5 &2)<<7;

// convert to kph

mps = val;

val *=36;

// seems that compcs takes off 10% ?

val *=9;

val /=10;

kph = val;

kph /= 1000;

printf(" %2.4g kph (%d mps)", kph, mps);

2.2 Message 0x0b – Sensor Status

The status of the sensors is returned in the lower bits of byte 4 with a sensor status message:

Byte 4

	MSB
	
	LSB

	128
	64
	32
	16
	8
	4
	2
	1

	0
	M1
	M2
	M3
	M4
	CAD
	HR
	T3

HR bit is set if the HR sensor is attached to the back panel of the controller, similarly CAD is set if the cadence sensor is connected.

I neither cases does th connectivity status indicate any signal present (i.e. a working connection to a HR strap or trigger from the cadence sensor via the crank magnet.

Some sample code:

printf("HR is %s\n”, byte4 & 2 ? “Connected” :

 “Disconnected”);
printf(“Cadence sensor is %s\n”, byte4 & 4 ? “Connected” :

 “Disconnected”);

- Page 2 -

