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Abstract

Because the increasing size of time series datasets makes their manual
exploration impossible, there is naturally an increasing demand for
fast analytics tools. In this work, we provide the readers analysis of
distance measures used for time series, clustering methods for large
datasets, and approaches for visual exploration of time series datasets.
Further, we propose a novel approach for transforming datasets of
time series with multiple components of different lengths into a feature
space representation, based on the Feature DTW transformation. In
the last part, we demonstrate our approach, in combination with other
methods, on the analysis of a large dataset of power consumption
curves using clustering and anomaly detection techniques.
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Introduction

Nowadays, there are only a few aspects of everyday life that are not
affected by modern technologies, and the rise of technologies like
Internet of Things lowers this number even more. These technologies
produce large amounts of data with temporal stamp, also recognized
as time series. As the amount and speed, at which we are getting new
data, are making it impossible to process and analyze them manually,
we are in need for fast analytics tools for time series data.

Our work focuses on methods for analyzing large datasets of long
time series, demonstrating it on a power consumption dataset. We
are using the approach to transform the dataset into a spatial feature
space representation. Using this representation, we prepare multiple
visualizations for exploring the structures within the dataset and
detailed views for examining time series details. To supply the analysis,
we apply clustering and anomaly detection methods. This work is
divided into four chapters.

Chapter 1 will discuss metrics used for time series, their complex-
ity, advantages and disadvantages, and their application in practical
analysis. Afterwards, it explores the representations of time series
datasets in artificial feature space. Finally, it examines clustering and
anomaly detection methods available for large datatasets.

Chapter 2 will discuss techniques for visual representation and
analysis of time series datasets. Firstly, it analyzes the dimension-
ality reduction techniques for transforming the datasets into low-
dimensional embeddings. Secondly, it goes through algorithms for
downsampling time series with a specific focus on visual analysis.

Chapter 3 applies the methods from the first two chapters to an-
alyze a large power consumption dataset, while introducing a novel
approach for time series transformation.

Chapter 4 is a conclusion of our work, containing the discussion
of the benefits and drawbacks of our novel approach about the novel
approach for time series transformation, and possible future research
directions in this field.






1 Time Series Data Mining For Visual Analy-
sis

Even though most of the data around us have a temporal nature, we
often transform them into spatial data by either fixing time or ignoring
time completely. It is not because the time aspect is not essential,
though it makes all tasks significantly more challenging as it increases
the number of data points and adding relations between them. For
example, it is straightforward to compare temperatures in two places
at a fixed time. However, once we want to compare their temperature
profiles throughout the year, we cannot omit the temporal aspect of
the data. Because the temporal aspect adds relations between points
and increases the dimensionality of the data, the analysis becomes
significantly more difficult. This effect is multiplied once we work with
a dataset of time series [1]. Mostly there, we see an opportunity where
visual exploration could help.

This chapter will discuss the right choices for measuring the dis-
tance between time series and examine how to effectively apply them
in the subsequent visual analysis. Then it goes through the clustering
and anomaly detection methods available for large datasets. However,
before we dive into the chapter, we will clarify the basic terminology.

Having a set of objects X, we define the distance function as:

d:XxX—R{ (1.1)

The resulting non-negative real value is called a distance or dissimilar-
ity. We call a distance function a metric if and only if it satisfies the
following three axioms:

1. Vx,y € X :d(x,y) = 0 & x = y (identity of indiscernibles)
2. Vx,y € X:d(x,y) =d(y,x) (symmetry)
3. Vx,y,z € X :d(x,y) +d(y,z) > d(x,z) (triangle inequality)

A semi-metric is a distance function that satisfies the first two axioms,
but it does not guarantee the triangle inequality. A time series is then
defined as a sequence of data points (X;) indexed by time (¢).
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1.1 Distance Measures for Time Series

In a typical scenario, a distance metric computes the distance for one
specific data type (categorical, spatial, numerical). However, time
series are a combination of multiple data types as each point has an
order in time, and we have to take it into account when computing
the distance.

To the best of our knowledge, there are over 30 used distance
measures for time series today. As there is no "universally best" metric
[2], we will go through the different types of distance measures used
for time series, following the categorization proposed by Esling and
Agon [3].

1.1.1 Shape-Based Distance Measures

Shape-based distance measures compare the overall shape of the time
series [3]. They are the closest derivation of commonly used distance
measures adjusted for the time series data, making them easy to imple-
ment and understand. Regardless of their simple nature, they generally
yield very competitive results and are considered a gold standard of
time series distance measures [4, 5, 6,2, 7].

Euclidian Distance and Other L, Norms

The most basic and widely used distance measures for spatial and
temporal data are Euclidian distance (ED) and other L, norms [8, 9].
A distance measure on a set of objects X is a functiond : X x X —
[0; 0). Given the two time series X and Y, where X = (xq; x2;...; Xp;)
and Y = (y1;Y2;..;Ym), we define L, norms as listed in Table 1.1.

Norm Definition

Ly - Manhattan Y7 ; [x; — i

L - Buclidian /Y7 (x; — ;)2
1

L, - Minkowski C/Z?:l(xi — )b

L - Infinite maxi—i., |X; — i

Table 1.1: Lp norms for time series.
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Although the L, norms perform well, especially on larger datasets
[2,4,10], they require time series of equal length and tend to be fragile
to the noise, shifts, and different speeds in time series [3].

Dynamic Time Warping

An elegant solution to the above-mentioned limitations of the L,
norms are elastic measures, especially the Dynamic Time Warping
(DTW) [11]. DTW is a method to compute a distance between a pair of
time series. When computing DTW distance between time series X and
Y, it finds the best alignment between them as a minimal cost warping
path (W = wy, ..., wy, ..., wg) in m X n matrix. Elements of the ma-
trix represent the cost to align two corresponding points ((x; — y]-)Z).
The warping path starts in the bottom-left corner and ends in the
upper-right one (Fig. 1.1a). It is formally defined as:

DTW(X;Y) = argmin i (xi —yj)? (1.2)

W=w1,...,W,..., WK k=1;w=(i;f)

When comparing DTW with the Euclidian distance, DTW finds the
best possible alignment between time series (Fig. 1.1b). That allows
us to reasonably compare time series that could have different lengths,
speeds, and shift [11, 12].

Dynamic time warping is considered one of the best distance mea-
sures for time series and regularly outperforms other more sophisti-
cated approaches [2, 4, 6, 5], but its use comes with two main concerns:

1. Inpractice, DTW is solved by dynamic programming with O(n?)
time complexity.

2. DTW is a semi-metric — it does not guarantee triangle inequality,
limiting the number of optimization techniques and structures
we can use.

The time complexity of this algorithm becomes an issue when
operating with long time series and their large amounts. As a solution
to the DTW algorithm’s time complexity, it is possible to either use
lower and upper bounding constraints on the maximal allowed warp-
ing path [13] or use a temporal constraint on the warping window

5
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DTW calculated optimal warping path

Euclidian distance

—_—
== Optimal warping path
== Default warping path

Dynamic Time Warping

(a) (b)

Figure 1.1: (a) displays the optimal warping path between two time
series. The darkness of color encodes the distance between the corre-
sponding data points (darker is further away). (b) shows the align-
ment of data points between two time series using the Euclidian dis-
tance and DTW.

size [12]. Among the most used are Sakoe-Chiba [12], Itakura [14],
and upper bound to discard complex paths [15]. Another option is
to use an approximate algorithm proposed by Salvador and Chan
[16] called FastDTW, where the warping path is recursively projected
and optimized from a lower resolution. This algorithm has linear time
complexity. Using the bounding or approximate algorithm comes with
faster computational speed and could help with better accuracy due
to generalization [7].

DTW is a semi-metric that makes it rather problematic to use with
many machine learning algorithms that require a metric space. As
there does not exist any complete solution to this issue, there are only
partial answers, like Feature DTW from Kate [7]. As we want to use a
wide variety of algorithms for visual exploration, we will discuss this
in more detail in the following section.

6
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SpADe, DISSIM, and OSB

In 2007, three new distance measures for time series were proposed.
The first one is the Spatial Assembling Distance (SpADe), a distance
measure used for streaming data that recognizes matching patterns
concerning shifting and scaling in temporal and amplitude axes [17].

For measuring similarity between trajectories with different sam-
pling rates, Frentzos et al. [18] proposed the DISSIM as an approxi-
mation of the integral of Euclidian distance.

Because data tend to be noisy and include many outliers, Latecki et
al. [19] proposed Optimal Subsequence Bijection (OSB) for similarity
search. This method automatically finds the most suitable subsequence
for a sensible comparison. Its disadvantage is a higher computational
cost.

1.1.2 Other Distance Measures

Except for the shape-based metrics used for time series data, other
methods could be used for the distance calculation. These types of
measures focus on specific properties shared among time series.

Edit-based distances were originally designed for string compari-
son. The idea is to find the minimal number of basic string operations
(insertion, deletion, and substitution) by which we can transform one
string to another. The most popular are techniques measuring the
similarity by comparing the longest common subsequences (LCSS)
[20, 21, 22]. They are robust to outliers and noise in the data. Similar
options are the Edit Distance on Real Sequence (EDR) [23] and Edit
Distance with a Real Penalty (ERP) [24]. EDR finds the minimal num-
ber of edit operations to convert time series and penalizes unmatched
regions’ gaps by their lengths. On the other hand, ERP is a combina-
tion of DTW and EDR approaches. It uses the Manhattan distance as
a penalization for local shifting. Edit-based distances tend to perform
well, but generally are outperformed by DTW-like measures [5, 6].

Feature-based distance measures use features extracted from the
original time series, such as correlation [25] or coefficients from dis-
crete Fourier transformation and discrete wavelet transformation [26].
It is possible to use them in specific applications but they overly show
worse results than other techniques [4].
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Model-based measures are an option for very long sequences, but
they require prior knowledge of the time series generating process
[3]. After choosing and fitting the parametric temporal model on time
series, the distance measure is a likelihood that time series came from
the same model. Most standard models are using Hidden Markov
models or ARMA models [27].

Compression-based strategies have been succesfully applied in bioin-
formatics and medical data applications [28, 29, 30]. This approach
uses the fact that concatenation and compression of similar time series
should produce a higher compression ratio than for very diverse ones.

Many of these techniques can outperform more common shape-
based measures, particularly in specific domains, but lack wide usage
and universality of shape-based approaches. Even though we would
primarily use the shape-based measure in this thesis, the proposed
techniques for time series analysis can use any underlying distance
measure.

1.2 Artificial Feature Space Representation

From the previous section, we can presume that shape-based distance
measures, especially Dynamic Time Warping and its derivatives, are
robust and accurate. The original DTW algorithm’s time complexity
can be reduced significantly by using bounding or approximation.
However, we still need to consider its semi-metric nature because the
triangle inequality is required for many machine learning algorithms
[31]. It significantly reduces the number of available algorithms that
we could use, primarily as datasets’ size increases. Partial answer to
this problem is building a feature space representation, which we
could consider to be in a metric space.

1.2.1 Feature DTW Transformation

Kate [7] introduced an idea to build a feature space representation by
using DTW. He transforms the original dataset of time series into a
new feature space on which it is possible to apply any technique that
is used in a metric space.

8
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The transformation works as follows. Having dataset X consisting
of time series (Xy; X3; ...; Xj,), we define the Feature DTW transforma-
tion as function

ffDTW X xX—-M (13)

where M = (m;;) € RE5" is a distance matrix withm;; = DTW(X;; X;).

In his paper, Kate sees an improved accuracy in classification tasks
to widely used techniques using DTW directly. Further, he shows that
using DTW with bonding and approximation increases the accuracy
probably due to better generalization, and points out that any distance
measure could be used instead of DTW. Another notable advantage of
using the Feature DTW transformation is that it is possible to combine
DTW obtained features with other measures and features. In his work,
Kate [7] combined DTW features with Euclidian ones, which led to
an additional approvement in terms of accuracy. This technique’s
main drawback is space complexity as the distance matrix M size is
n? regarding the number of time series.

1.2.2 Prototyped Feature DTW Transformation

The result of Feature DTW transformation on two similar time series
should produce very similar and correlated feature vectors. A statis-
tical point suggests that we are adding very little new information
while increasing the number of dimensions in the new feature space.
An increase in dimensionality leads to a rise in computational and
space requirements, while having multiple significantly correlated
teatures is a problem for many machine learning algorithms. Iwana
et al. [32] showed that using only a fraction of the original distance
matrix M could obtain comparable or better results than using the
whole matrix.

Having the dataset X = (Xj; Xp;...; X)) and a set of time series
P C X,P = (Py; Py;...; Py) called prototypes, we define the transfor-
mation as function

flwanaffDTW XXX =K (1.4)

where K = (k;;) € RLj™ is a distance matrix with k;; = DTW(X;; P;).

As this method strongly depends on prototypes, their selection is
crucial for the method’s success. They proposed a supervised tech-
nique using the AdaBoost algorithm and weak learners on one feature

9
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at a time. Using this technique, they were able to use a smaller number
of components while increasing the classification accuracy. Because
this method is available only for supervised problems, they briefly
discussed multiple statistical strategies to chose possible prototypes.
All of the approaches described in their work require prior com-
putation of the whole distance matrix, which is problematic for larger
datasets. In this thesis, we will propose methods that do not require a
full distance matrix in advance but rather compute it interactively.

1.3 Clustering

Another part of our work is to determine the clusters in a dataset.
Because we are using the Feature DTW transformation, we are not
limited to clustering specific only for time series, but we can use a
wide variety of clustering algorithms used for spatial data. Because
we will be working with large datasets in our analysis, we will list
only algorithms that are scalable to a large number of samples and
features.
We will separate the clustering algorithms into three categories:

1. Distance-based methods
2. Methods using the nearest-neighbor graph

3. Density-based methods

1.3.1 Distance-based Methods

Distance-based methods are directly using the distance between the
data points to determine their affiliations to the clusters. The two main
representatives of this category, that scale well with dataset’s size, are
K-means and Agglomerative Hierarchical Clustering methods.

K-means

The K-means method [33] is a simple clustering algorithm that sepa-
rates the data into n clusters, minimizing the within-cluster sum of
squares. It produces convex and isotropic clusters, and it is easily scal-
able to large datasets. The disadvantages of this method are that we

10
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have to define the number of clusters in advance, and in some cases,
the clusters in data are neither convex nor isotropic. Nevertheless, it is
a solid starting point for any cluster analysis.

Agglomerative Hierarchical Clustering

The Agglomerative Hierarchical Clustering approach [34, 33] uses a
bottom-up strategy to join the two most similar data points or clusters
into a single bigger one. The primary representation is a tree-like struc-
ture, where leaves are single data points, nodes represent clusters, and
the root is a single unified cluster. The algorithm selects two closest
nodes based on the merge strategy in each iteration and joins them
into a single one, until the given number of clusters is met.
There are four main merge strategies called linkages:

1. Single linkage — the minimal distance among all tuples of data
points from two clusters.

2. Complete linkage — the maximal distance among all tuples of data
points from two clusters.

3. Average linkage — the average distance between all pairs of data
points from two clusters.

4. Ward linkage — minimization of the within-cluster sum of squares,
similar to the K-means.

This clustering method is scalable with the increasing number of
samples and, based on the linkage type, provides different cluster
types. The ward linkage produces the most even-sized clusters among
the merging strategies, but is usable only with Euclidian metrics, while
also having much higher time complexity. If we want to use non-
Euclidian metrics, the average linkage is a feasible alternative. Both
single linkage and complete linkage are very efficient and scale well
on large datasets. The drawback is that they are fragile to noise in the
data, as they are using only the distance between two points from
clusters.

11
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1.3.2 Methods Using the Nearest Neighbor Graph

Another family of clustering algorithms is using the pre-constructed
affiliation graph from data points. Usually, it uses the nearest neighbor
graph. The two main representatives are the Affinity Propagation and
Spectral clustering.

Affinity Propagation

The Affinity Propagation [35] sends messages between data points in
the affiliation graph to determine cluster centers and the number of
clusters. The disadvantage is that it is usable only for smaller datasets
because of its quadratic time complexity, making it unusable for our
datasets of interest.

Spectral Clustering

The Spectral Clustering [36] starts with the nearest neighbor graph
represented as a similarity matrix, where each row represents a data
point and its graph distance to the other points. After selecting the
number of clusters n, it computes the optimal graph cuts to create
a connected component for every cluster. The drawback of spectral
clustering is that it can be efficiently computed only for a small number
of clusters.

1.3.3 Density-based Methods

The last group of clustering algorithms, density-based methods, uses
the difference between dense and sparse regions to determine the op-
timal clustering. The main challenge of these methods is to determine
the correct density estimate of the dataset, which is problematic for
high-dimensional datasets. As the number of dimensions increases,
the volume of the space rises exponentially, thus making the dataset
quickly sparse. This phenomenon is also known as the Curse of Dimen-
sionality [37].

Due to the expected size of datasets of our interest, and usage of
the Feature DTW transformation, we will be interest and the usage
with high-dimensional data. Therefore, we are not considering the
most common density-based techniques such as Gaussian Mixture

12
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Models [38] and Mean Shift [39], as they make assumptions about the
underlying data distribution, or computationally expensive.

DBSCAN

The first density-based clustering algorithm in our work is the Density-
Based Spatial Clustering of Applications With Noise (DBSCAN)) [40]. This
algorithm separates the dataset into dense clusters divided by sparse
regions and outlying data points, considered as noise. Firstly it sepa-
rates data points into three groups: core points, non-core points close
to the core points, and noise.

We say that a point is a core point if and only if in its surrounding
area with radius € there are at least X other data points (the minimal
number of data points). The non-core points close to the core points
have a core point within the radius €, yet they do not meet the mini-
mal data points requirement within €. Noise points do not have any
core points in their surrounding area. Hence, the DBSCAN algorithm
automatically detects the number of clusters and only requires the
radius € and the minimal number of samples X. The disadvantage of
DBSCAN is that it cannot detect clusters with very different density,
as the radius is same for each point.

OPTICS

The Ordering Points To Identify the Clustering Structure (OPTICS) [41]
is a partial solution of the DBSCAN’s problem with clustering regions
with different densities. OPTICS uses the minimal number of neigh-
bors X, and instead of a single radius like in DBSCAN, it uses the
maximal radius to consider €. For each point, it computes the core
distance, the minimal radius, in which is the point is considered as
a core point, and reachability distance to every other point, which
is either the core distance of the other point or the distance between
them, whichever of them is bigger. If two neighboring points have a
reachability distance smaller than the core distance, we consider them
to be a part of the same cluster.

Because OPTICS computes both core distance and reachability, it
has a much higher computational cost than DBSCAN. With the usage

13
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of spatial indexing trees, we could avoid a costly computation of the
full distance matrix, making it applicable to larger datasets.

HDBSCAN

The Hierarchical Density-based Spatial Clustering of Applications with
Noise (HDBSCAN) [42] is another clustering algorithm originating
in the DBSCAN. Like DBSCAN and OPTICS, it starts by computing
the core distance of every point, which is a minimum radius in which
there are at least X data points (minimal number of data points) and
the mutual reachability distance for every pair of data points — the
largest value among their core distances and their mutual distance.

Afterwards, it finds the minimal spanning tree of a weighted graph,
where data points are vertices, and edges between them have the
weight of their mutual reachability distance (Fig. 1.2b).

Generated Dataset Minimal Spanning Tree
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Figure 1.2: The minimal spanning tree from HDBSCAN (a) using the
mutual reachability distance on an artificially generated dataset (b).

The next step clusters the tree vertices by single-linkage hierar-
chical clustering using the edge weights. In Fig. 1.3a, we can see the
dendrogram visualizing such clustering, where on the y axis we can
see the mutual reachability distance at which the nodes merge.

14
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Hierarchy of Connected Components Condensed Cluster Tree
100

(a) | (b) |

Figure 1.3: HDBSCAN's single linkage hierarchy of connected com-
ponents (a) and the most stable clusters in condensed cluster tree

(b).
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The next step converts the tree into a hierarchy of connected com-
ponents by sorting the edges and merging them in an ascending order
(Fig. 1.3a). To determine the number of clusters in the data, DBSCAN
computes the stability of each cluster. As a measure, we are usin% the
A value, which is the reversed mutual reachability distance (A = ).
For every cluster, HDBSCAN defines the distance when it is created
as A. and the distance when it splits into multiple clusters as A;. Then
for every point p in the cluster, it computes the value A,, which is
the value when the point leaves the cluster either by cluster split or

complete separation. The stability of a cluster C is then defined as:

> (Ap—Ac) (1.5)

peC

Finally, HDBSCAN travels through the tree, starting from the leaves
going up to the root node. For every node (cluster), if its stability is
greater than the sum of its children’s stabilities, HDBSCAN marks
the cluster as a real cluster and unmarks all its descendants. Once
the algorithm reaches the root node, it stops and returns all marked
clusters as final data clustering (Fig. 1.3b).
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Even though HDBSCAN consists of multiple computational steps,
there are highly optimized implementations [43], allowing HDBSCAN
to be effectively used for large datasets.

1.4 Anomaly Detection

In the last part of our analysis, we want to detect and study the anoma-
lous data points within a dataset. Here we will focus on two methods,
Isolation Forest and Lightweight On-line Detector of Anomalies, which are
widely used and efficient even for large high-dimensional datasets.

1.4.1 Isolation Forest

One of the widely used anomaly detection algorithms for large datasets
is the Isolation Forest [44]. The central concept of this approach is
that anomalous data points can be isolated faster than the rest of the
dataset.

To find the anomalies, it constructs the forest of binary isolation
trees. A binary isolation tree is a simple decision tree with restricted
depth, where each node of the tree selects the random feature and
random value in its range as a separator. The anomaly score of a data
point is the average depth it reached in trees in the isolation forest.

Because of its simple nature, the Isolation Forest scales very well
with the number of samples and number of features, while also achiev-
ing competitive results.

1.4.2 Lightweight On-line Detector of Anomalies

The Lightweight On-line Detector of Anomalies (LODA) is an anomaly
detection method designed to process huge high-dimensional real-
time data streams. LODA uses a combination of randomly generated
sparse projections and histograms to determine the anomaly score of
each data point.

In the first step, LODA generates X random projection vectors with
only v/d non-zero taken from N (0, 1) values, where 4 is input data’s
dimensionality. Then, it constructs a histogram on every projection
vector. The final anomaly score of each point is the negative average
logarithm of probability obtained throughout all histograms.
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Because LODA is using sparse projections and histograms as very
simple density estimators, it has very fast training and execution time.
Another advantage is that through the vectors’ sparsity, it is possible
to discover which feature contributed most to the data points anomaly
score. We compute the one-tailed two-sample t-test between probabilities
from histograms on projections with and without a specific feature.
The higher the value of the t-test, the stronger is the feature significance.

1.5 Chapter Summary

In this chapter, we discussed distance measures for time series. Among
them, shaped-based distances, particularly the Euclidian distance
and Dynamic Time Warping (DTW) seem like the most promising
ones. The main drawback of DTW is its semi-metric nature. To use
the advantages of DTW in a metric space, we can use Feature DTW
transformation to create a feature space representation of DTW. This
representation then forms the input for other machine learning algo-
rithms and can be combined with other distance measures and feature
extraction algorithms.
There are several options for clustering of large datasets:

e K-means is suitable when we know the number of clusters and
want evenly sized convex clusters. It is a good starting technique
as it scales very well with the dataset size.

e Hierarchical agglomerative clustering is suitable for medium to large
datasets based on the chosen linkage. Ward linkage produces the
most evenly sized clusters but has the highest complexity and is
defined only in the Euclidian space. For non-Euclidian cases, the
average linkage is a good alternative. While the single linkage is very
efficient and can be used on large datasets, with the capability
to produce non-convex clusters it is fragile to noise in the data.

e OPTICS and HDBSCAN are suitable for cases when we do not
know the number of clusters in our data but want to specify
only the minimal number of clusters. As these methods are
density-based, we have to be aware of the curse of dimensionality,
and consider transforming the dataset into a low-dimensional
representation.
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In the field of anomaly detection, we recommend the Isolation
Forest and LODA approaches. Both methods are ensembles of simple
estimators, giving them high-speed performance regardless of the
dataset size. LODA also provides us with the capability for scoring
the features based on their significance in the anomaly score.
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2 Visual Exploration of Time Series Datasets

In data science, it is very rare to get a well-defined and detailed prob-
lem description. A much more common task is to analyze the data
and to detect interesting patterns, outliers, or other phenomena that
are fulfilling a complex set of criteria, which results in multiple pro-
cessing steps. As we cannot comprehensively represent all necessary
information only by numbers, we use data visualization.

This chapter looks at methods for comprehensible and effective
visualization of comprehensibly and effectively visualize a time series
datasets. These methods enable to study these datasets in detail.

2.1 Dimensionality Reduction

Usual datasets that we encounter in computer science have often tens
or hundreds of dimensions, far beyond our imagination’s capabilities.
It makes it unintuitive for us to examine the dataset while also in-
creases computational requirements for its analysis and visualization.
For a visual exploration of the dataset, it is necessary to project our
data into a lower-dimensional space. In this section, we will focus on
the dimensionality reduction techniques, that are specifically used in
data visualization.

2.1.1 Principal Component Analysis

The oldest and probably the most used dimensionality reduction tech-
nique in computer science is the Principal Component Analysis (PCA)
[45]. PCA is a linear transformation that determines the orthogonal
axes in which the dataset has the largest variances and then projects it
onto these axes. They are represented as orthogonal eigenvectors with
eigenvalues that correspond to the variance on the vector. Formally
we define the PCA transformation as:

PCA(X)=Xx Wl =M (2.1)

where X (m x n) is the original dataset with m data points, each
having 1 features, W{ (n x I) is the transposed matrix of [ eigenvectors,
and M (m x I; I < n) is the lower-dimensional representation of X.
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Usually we choose eigenvectors with the largest eigenvalues that are
corresponding to directions with the largest variances.

Because PCA comes from statistical data analysis, its primary pur-
pose is to capture maximal statistical information in lower-dimensional
representation, not data visualization. We usually use eigenvectors
with the largest variance to project data into two or three-dimensional
embeddings when we want to use it for data visualization. It means
that we mainly show global structures without enough detail to see
the data’s local behavior (Fig. 2.1b). In combination with incredible
speed and efficiency of modern PCA implementations, it is a perfect
first step for every visual exploration of multi-dimensional datasets.

2.1.2 t-SNE

t-SNE or t-Distributed Stochastic Neighbor Embedding [46] is a popular
manifold representation learning technique that is particularly effi-
cient for visualizing high dimensional datasets [47]. It transforms the
multi-dimensional data into a low-dimensional space, emphasizing
the preservation of local similarities and distances from the high-
dimensional space. It does so by converting affinities of data points
into probabilities. Gaussian joint probabilities represent the higher-
dimensional space’s affinities, and Student’s t-distributions represent
the embedded space’s affinities. Because it very well preserves the
local structures in a dataset (Fig. 2.1c), it is one of the most popular
techniques for data visualization [48].
However, the usage of t-SNE comes with several disadvantages:

e Itis quite computationally expensive. The common practice uses
some other fast dimensionality reduction methods, such as PCA,
to reduce the dataset into a reasonable number of parameters
and use t-SNE afterwards. Another option is to use optimized
approximate Barnes-Hut t-SNE [49], which is only available for
two or three-dimensional embeddings.

e Asitis focusing on preserving mainly the local structure of the
data, it does not guarantee to preserve the global structure cor-
rectly. For example, the number and distances between clusters
are not always reliable.
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(a) S-shape dataset (b) PCA embedding (c) t-SNE embedding

Figure 2.1: Comparison of PCA (b) and t-SNE (c) applied to the
S-shape dataset (a), commonly used for benchmarking the dimension-
ality reduction techniques.

e t-SNE is a stochastic algorithm, and each its run every run could
return slightly different results.

2.1.3 UMAP and densMAP

Uniform Manifold Approximation and Projection (UMAP) [50] is one
of the more recent manifold dimension reduction techniques. Sim-
ilar to t-SNE, it is excellent for visualization but also as a general
non-linear dimensionality reduction transformation. The underlying
idea of UMAP comes from the Riemannian geometry and algebraic
topology. It makes three assumptions about the data:

1. Dataset has a uniform distribution on the Riemannian manifold.
2. The Riemannian metric is locally approximately constant.
3. The manifold is locally connected.

Using these assumptions, UMAP models the manifold as a fuzzy topo-
logical structure, and the resulting low-dimensional representation
is the closest possible representation with an equivalent topological
structure. In other words, it captures the local similarities of data with
respect to their global structure (Fig. 2.2b).

Usage of UMAP over the t-SNE comes with several advantages:
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o It scales way better than t-SNE. It is faster, more efficient, and
not restricted to two or three-dimensional embeddings so that it
can process even high-dimensional sparse data.

e Because UMAP is a general dimensionality reduction technique,
it is possible to use it in a preprocessing step.

e Although both methods mainly capture the local similarities
in data, UMAP shows better results in preserving the global
structure.

e UMAP can use non-metric distance measures.

Despite their visualization qualities, both t-SNE and UMAP neglect
information about the local density of the original dataset. As they
mainly look at the n closest neighbors but not at their density, it could
lead to misleading visualizations where the cluster’s size and shape
are primarily representing how many points are in it, rather than the
underlying distribution.

(a) PCA (b) UMAP (c) densMAP

Figure 2.2: Comparison of PCA (a), UMAP (b), and densMAP (c) on the Fashion
MNIST dataset [51].

Narayan et al. [52] introduced density-preserving data visualiza-
tion derivatives called den-SNE and densMAP. Since both methods con-
verge by iteratively optimizing their objective functions, they added
a new term called local radius to represent local densities. In other
words, this term represents an average distance to the closest neigh-
bors. We can see the difference in Fig. 2.2, where we applied the UMAP
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and densMAP on the Fashion MNIST dataset [51]. The densMAP’s
embedding is more spread out due to density preservation.

2.2 Time Series Downsampling for Visualization

Plotting time series containing many points comes with several pitfalls.
We cannot draw all data points in time series without overplotting
due to restricted space, making it almost impossible for us to examine
them in detail. The second pitfall is that with the rising number of
objects to render, we need more power. Because we do not want to
create a misleading plot, finding the closest representation with visible
structures while minimizing information loss is essential.

2.2.1 Simple Downsampling and Piecewise Aggregate
Approximation

The most straightforward solution to overplotting in spatial data is
sub-sampling the dataset, where its time series equivalent is called
downsampling. If we try to sub-sample the data in the same way as in
the spatial domain, we quickly encounter problems with the temporal
aspect.

As we cannot randomly select points, the simplest downsampling
algorithm picks every n-th data point. This algorithm is very fast and
we can use it on specific types of time series because we are losing %
of the original information.

Piecewise Aggregate Approximation (PAA) is a simple downsampling
algorithm that, instead of removing data points, aggregates them into
smaller representations [53]. The basic idea is to split time series into
approximately equal-sized buckets and aggregate their data points.
We can use any aggregation function like average, mode, or median,
based on the application. As the aggregation function combines all
data points in the bucket, PAA captures much more information than
selecting every n-th data point. Because of the simple nature of PAA,
the whole process is fast and scalable.
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2.2.2 Largest Triangle Downsampling

Already mentioned algorithms have excellent properties from a com-
putational perspective but not from a visualization standpoint. As
they remove or aggregate data points by a fixed value or range, we
can lose some visually important information.

Because of this issue, Steinarsson proposed the Largest Triangle
downsampling algorithms designed for time series downsampling for
visual representation [54]. These algorithms select data points by their
effective area, similarly to the Visvalingam—Whyatt algorithm. Having
data points X,, Xp, X, such asa < b < ¢ and indices 4, b, c are the
positions in time series, the effective area of the X is the area of a
triangle X, X}, X, (Fig. 2.3). The indices 4, b, c are chosen differently in
every algorithm, and for the final downsampling, we are using the
data points with the largest effective area.

Effective Area of Data Points
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Figure 2.3: Effective area when X, X;, and X, are directly successive
data points (there are no data points between them). The color of the
effective area corresponds to the color of a data point, first and last
datapoints are different as they are part of the downsampled result.

Largest Triangle One Bucket Algorithm

The simplest algorithm proposed by Steinarsson is the Largest Triangle
One Bucket (LTOB) algorithm. First, all points get rank by their effec-
tive area, which we compute using directly successive data points.
Afterwards, it removes data points with zero effective areas and splits
points into buckets based on the number of data points we want to
have in the downsampled time series. For every bucket, it selects point
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with the highest rank (Fig. 2.4). This method’s disadvantage is that it
only uses the effective area computed from two adjacent points, which
can potentially lead to misleading representations.

LTOB downsampling
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Figure 2.4: For every bucket, the LTOB downsampling algorithm se-
lects data points with the largest effective area within the bucket.

Largest Triangle Three Buckets Algorithm

The Largest Triangle Three Buckets (LTTB) algorithm partially solves
the problem of the LTOB and searches a much larger area for point
exclusion. First it separates data points into equally-sized buckets,
where the first and the last data point get their own buckets, as we
do not want to exclude them. Second, it computes the effective area
for every point by iterating through the buckets from left to right,
taking three directly successive buckets A, B, C at a time. For every
point X, € B, it computes the effective area as an area S of a triangle
X, Xp X, where X, € A, X, € C, such as:

S = maXx SXaXch (2.2)
X,€A, XceC

Finally, for every bucket, it selects the point with the largest effective
area (Fig. 2.5).

This algorithm is robust, reasonably efficient, and solves the prob-
lems of LTOB. The only problem could be the bucket selection when
working with data with values non-uniformly spread over time.
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LTTB downsampling
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Figure 2.5: LTTB downsampling algorithm.

Largest Triangle Dynamic Algorithm

Because both methods above rely on equally-sized buckets, the last
algorithm Steinarsson proposed is the Largest Triangle Dynamic (LTD)
algorithm. First, it uses the predefined number of equally-sized buck-
ets. Then it computes the interval calmness as the mean square error
of linear regression on that bucket, including the last point from the
previous interval and the first point in the next one. Afterwards, it
joins two adjacent intervals with the smallest error and divides the
one with the largest error, so the number of buckets remains the same.
This iterative process converges to the optimal bucket sizes. The num-
ber of iterations is empirically determined, but in the original paper,
the author recommends starting with one-tenth of the original time
series’s size. Afterwards, it uses the LTTB algorithm to select one point
from each bucket.

TLD solves the problem of equally-sized buckets but requires a lot
of computational time, which makes it hard to apply it to long time
series.

Datashader

All of the approaches mentioned so far transform time series into a
representation with fewer points, which we then can use for visualiza-
tion. But as we downsample time series, we lose information based on
the number of points we eventually plot. For example, it is not uncom-
mon to have time series consisting of hundred thousand data points,
and usually, we are downsampling to less than one thousand data
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points for visualization. It is impossible to capture the information
precisely and even with the best possible downsampling algorithms,
we lose a lot of information, especially the initial data density. If our
task requires to study these underlying properties, we must logically
plot all our data points.

I Datashader (1076 points)
’W’ /U\,M = LTTB (1073 points)

S W\”\\

Time

Value

Figure 2.6: Datashader and LTTB demonstrated on one milion points.

The Datashader renderer [55] is a complete graphical pipeline from
the original data to final graph. It breaks plotting into multiple com-
putations on intermediate representations. That allows multiple fast
and efficient aggregations, such as value counts and averaging. Then
Datashader renders the results to the final image’s pixels as color sat-
urations. The resulting representation is a raster image that accurately
represents the aggregated information. Accuracy is limited only by the
resolution of the final image and, due to its effectiveness, it can process
millions of data points in a reasonable time. As the raster image loses
detail as we zoom in, this method gives us an excellent overview of
the whole time series (or dataset), but if we want to explore details,
we need to repeat the processing pipeline all over again.

2.3 Chapter Summary

In this chapter, we showed several dimensionality reduction tech-
niques used for visualization. Generally, it is advisable to start with
PCA to capture the global data structure and then combine it with
either t-SNE, UMAP, or densMAP to examine the details. In our case,
we will primarily use UMAP and densMAP as they have several ad-
vantages over t-SNE.
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For time series plotting, we can use the LTTB downsampling algo-
rithm if we want a smaller representation for visualization or use the
Datashader renderer to render the original data accurately.

28



3 Case Study — Analysis of Power Consump-
tion Dataset

In recent years, we observe widespread IoI technologies in everyday
life due to the decreasing price of smart sensors and high-quality
network availability. Electricity distribution and consumption are no
exception, and smart electric meters are now standard components in
modern households. It eventually leads to a large amount of sensor
data structured as time series, and there is a need for efficient analysis
tools to process this information.

As a part of our research in Gauss Algorithmic !, we got an oppor-
tunity to analyze such a dataset. Our assignment was to analyze, find
clusters, and detect anomalies in a large dataset of power consumption
curves, emphasizing their long-term behavior. We decided to prepare
an end-to-end analytic pipeline for this dataset, from the initial data
processing to the final outcomes, that can be further used by other
data scientists in their studies.

This chapter will go through all steps in our analytic pipeline on
the power consumption dataset using techniques mentioned in the
previous chapters and will propose a novel approach for time series
transformation.

3.1 Dataset Description

First we will describe in detail the dataset that was used within this
thesis. Our dataset consists of a large set of power consumption curves
for customers located in Slovakia. Because of the strong emphasis
on customers’ privacy, all data are completely anonymous. We have
only randomly generated numbers from our contracting authority
representing customer labels and power consumption curves for every
consumer. Thus, we lack information about the customer’s location
or type (apartment, household, company). We have over 20 000 time
series from the February 1st 2017 to August 1st 2018. The sampling
rate of our time series is one value in 15 minutes.

1. https://www.gaussalgo.com/
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This initial step in our analysis aims to determine the quality of
input data in terms of missing values, extremes, and dataset size.
We found a high rate of incorrect or missing data. There are entirely
missing days throughout the period and even several months in 2018
(Fig. 3.1). On average, we have approximately 52 000 data points,
which corresponds to almost 547 days for each customer. In the end,
we removed a portion of power consumption curves because they had
only a few to none uncorrupted values, leaving us with over 12 000
time series for further analysis.

Power Consumption Curves
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Figure 3.1: Example of power consumption curves with missing values
and significantly different behavior.

3.2 Requirements

With our dataset’s detailed overlook, we will divide our work into
two objectives to accomplish our assignment. The first objective is to
process the dataset into a form that could be easily analyzed (Data
Engineering), and the second goal is to perform the analysis — clustering
and anomaly detection with an emphasis on their long-term behavior
(Data Analysis).
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1. Data Engineering: A combination of rapidly changing customer
power consumption, sensor errors, changes based on external
factors, such as time of the year, and lack of information about
a customer makes this task remarkably challenging. Another
critical detail is the size of our dataset and the length of indi-
vidual time series. To explore and analyze this data, we have to
prepare the following steps: propose preprocessing and feature
extraction resistant to missing data, extract long-term behavior,
and maintain reasonable time and space complexity for all steps.

2. Data Analysis: After the data preparation, we want to analyze
our dataset and find outliers. As we are working with a large
dataset of time series, we want to prepare meaningful views
and visualizations, which will guide a user towards clusters and
anomalous data.

3.3 Preprocessing

We are working with a large number of data coming from smart electric
meters. It is not unusual to encounter missing or unrealistic values
due to sensor or network error. Therefore, it is essential to handle these
types of defects in the preprocessing stage so they do not influence
the results of the subsequent data analysis.

In our dataset, we distinguish between two unrealistic value cases:
values with negative power consumption and sudden dramatic change
in power consumption only for a single data point. It is not uncommon
to observe a combination of both in one power consumption curve.
We assume that this type of error is due to sensor or network failure.
To deal with values below zero, we replace them with float nan (not a
number), representing the missing value. To remove value jumps, we
compute our power curve’s second derivation and replace values with
a disproportionately large absolute value of the second derivation by
nan values.

We are not replacing the missing values with real numbers in our
preprocessing step. Instead, we use the feature extraction technique
that is resistant to them. We will address this problem in more detail
in the next section.
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3.4 Feature Extraction

Consumers’ power consumption tends to change rapidly due to sud-
den extensive usage of electric devices, but it should be more stable
in the long-term behavior. Thus we want to extract features that will
reflect the long-term behavior and will not be significantly affected
by swift changes. These features will provide a better overview of
user behavior and make it possible to find users with similar power
consumption. To overcome fluctuations of power in short periods,
we want to study long-term periodic and non-periodic behavior. We
do this by extracting seasonalities (periodic behavior) and trends
(non-periodic behavior) in customer power consumption.

Due to the geological location and climate in Slovakia, power con-
sumption is generally changing during the year. The main factors
are changes in temperature and sunlight hours through seasons. To
capture these changes, we extract weekly seasonality separately for
every meteorological season. Another characteristic comes from daily
seasonality, where we distinguish between free days and workdays.
We also want to utilize trends and yearly seasonalities of our data. As
holidays have a substantial impact on power consumption, we want
to capture their effect in the model.

For extracting these seasonalities and trends from our data, we
are using the Prophet by Facebook [56]. It uses a decomposable time
series model with three main components: trend, seasonality, and
holidays [57]. It is formally defined as:

y(t) = g(t) +s(t) + h(t) + e (3.1)

Where ¢(t) is the trend function, s(t) is the seasonality function, h(t)
corresponds to the effects of holidays, and ¢; is noise keeping the
normal distribution.

Prophet provides an interface to detect changepoints in trends
automatically. However, because our data is relatively short, only eigh-
teen months of data, we do not expect any significant trend changes
in our data. Thus we are using a linear trend with zero change points.
The Prophet uses the Fourier series representation to model multiple
periodic effects (seasonalities) with different lengths. We use yearly
seasonality, free day and workday daily seasonality, and weekly sea-
sonality for every meteorological season. To include the effects of
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holidays, it uses a matrix of regressors corresponding to every hol-
iday. This effect is also applied to days before and after the holiday.
Other essential features are the ability to deal with missing values,
computational speed, and scalability.

In this work, we manually define seasonalities based on the ex-
pected behavior of different customers based on the consultation with
our contracting authority. First, we expect a different behavior on
free days (holidays, weekends) and workdays. Then, because of the
weather changes during the year, there can be a change in weekly
behavior, so we are using a weekly seasonality for every season. Fi-
nally, we want to see the trend and the yearly seasonality. We can
see the example of this decomposition in Fig. 3.2. Using this feature
extraction allows us to find customers with similar properties in one
seasonality but significantly different behavior in others — for example,
two customers with almost identical seasonalities but significantly
higher power consumption could be a sign of energy theft.

Seasonalities of Power Consupmtion Curve
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Figure 3.2: Example of seasonalities extracted from a single power con-
sumption curve (top-most curve) from our dataset using the Prophet.

In summary, we are describing our original time series with eight
new time series: free day and workday seasonalities, spring, sum-
mer, winter, and autumn weekly seasonalities, yearly seasonality, and
trend. In the next section, we will provide techniques for combining
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information from time series with multiple components with differ-
ent lengths (multi-component or multi-model time series) into a single
representation.

3.5 Interactive Feature Space Building

Once we use seasonalities and trends, our dataset changes from uni-
variate time series into a multi-component time series consisting of
eight time series with different lengths and temporal resolution. Be-
cause of the lack of knowledge about the customer, we are working
with unsupervised learning on a large dataset of multi-component
time series. In our solution, we will first propose a technique for trans-
forming this type of data into a spatial representation and then propose
an optimized version of the technique for work with large datasets.

3.5.1 Multi-Component Feature DTW Transformation

We propose a novel technique called Multi-Component Feature DTW
transformations (MCFDTW) to transform the dataset of multi-component
time series into a spatial representation. As Kate [7] has shown, it is
possible to combine multiple Feature DTW transformations (FDTW).
Similarly to his approach, the MCFDTW is a union of FDTW transfor-
mations for every component of our multi-component time series.

Having a dataset S = Ty, T7, . . ., T;, of multi-component time se-
ries T, = (ayo, an1, - - -, an]-), where a,; are time series of an arbitrary
length and Aj = (aoj, ayj, .- -, anj) are tuples of time series from one
component, we define the MCFDTW transformation as:

MCFDTW(S) = (FDTW(Ag)|[FDTW(A,)|...|[FDTW(A;)) (3.2)

where | denotes a concatenation of feature matrices from FDTW trans-
formations.

To increase the efficiency of MCFDTW), instead of the original
FDTW transformation, we can use the Prototyped Feature DTW (PFDTW)
as it is not computing whole distance matrices.
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3.5.2 Prototype Selection

The prototypes are crucial for the success of PEDTW transformation,
but their correct selection is a challenging task. Iwana et al. [32] pro-
posed two ways for the prototype selection from the full distance
matrix for the dataset. The first one is using statistics to remove statis-
tically insignificant feature vectors from the full distance matrix. This
technique is usable in supervised and unsupervised learning, but it
is impractical on large datasets because it requires the full distance
matrix as a starting point. The second approach uses the AdaBoost al-
gorithm to select the best features for classification, making it available
only for supervised learning.

Because in our task, we are working with a large dataset and ap-
plying an unsupervised learning approach, we are proposing several
bottom-up methods for the prototype selection:

1. Random selection
2. Manual selection
3. Selection by density

4. Selection by Predicted Correlation

Random Selection

The first and most straightforward option is to use randomly selected
prototypes. This approach is very efficient, and if our sample is large
enough, it covers a sufficient portion of the full feature space. Based
on our tests on the UCR datasets [58], a random prototype selection
seems to be a very efficient approach that still produces comparable
results in terms of classification accuracy (Appendix A.1). Because
of these advantages, we recommend using this method of prototype
selection as a starting point.

Manual Selection

The second approach is selecting specific time series as prototypes
by hand. It is usable if the user has deep knowledge about the data

35



3. Cask STuDY — ANALYSIS OF POWER CONSUMPTION DATASET

and could pinpoint the significant time series. As the resulting fea-
ture vectors are the distances to these specific time series, it is easily
interpretable for the user.

Even though using only manually selected prototypes has the ad-
vantage of additional explainability, the user could miss some impor-
tant time series. To minimize this problem, we recommend combing
manual selection with a random selection. If randomly selected pro-
totypes improved the final results, we could suspect either that we
selected improper prototypes or that our selection is too small.

In our pipeline, we are using the combination of dimensionality
reduction methods and visualization for the manual selection of new
prototypes (see 3.5.3 Interactive Feature Space Building).

Selection by Density

Another approach comes from an observation that we need more
points to describe a dense region than the sparse one, similar to the
Kohonen map [59]. This strategy starts with a random sample and
then uses data visualization to select new prototypes from the dense
regions and remove prototypes that are far away.

Because after the MCFDTW transformation, the transformed fea-
ture matrix has the number of dimensions equal to the number of
selected prototypes, we can encounter the Curse of Dimensionality
[37]. This is problematic for density-based techniques. Because there
is no conventional solution to this issue, instead of using a fully auto-
matic solution, we recommend to use a combination of dimensionality
reduction and visualization techniques (see 3.5.3 Interactive Feature
Space Building). Based on the work with our dataset, this approach
yields stable results.

Selection by Predicted Correlation

As two strongly correlated feature vectors do not give much informa-
tion from a statistical point of view, the last strategy we propose comes
from an assumption that we could predict the correlation of poten-
tial new prototypes. To do so, we are using the correlations between
currently selected prototypes and their feature vectors.
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We start with the random prototype selection and transform the
dataset into a feature matrix. Then we use Spearman’s rank correlation
coefficient and compute the correlation matrix between the feature
vectors produced from our prototypes. Afterwards, we use the feature
matrix and correlation coefficient of other prototypes to train a regres-
sor to predict the correlation on other time series for each prototype.
Finally, we select the prototypes with the lowest average predicted
correlation.

Unfortunately, this method did not prove significantly better dur-
ing our tests than the randomized selection of similar size. The pre-
diction of the correlation of new prototypes was reasonably accurate,
but it seems that the correlation was not the most reliable predictor
of prototype quality. We think that there is an opportunity for future
research direction.

3.5.3 Interactive Feature Space Building

Considering the techniques used for prototype selection, we split our
feature space building process into an interactive iterative pipeline.
The pipeline consists of six steps:

1. Select a subsample of the dataset.
Build a Prototyped Feature DTW space.
Vizualize the dataset.

Choose new or remove prototypes using the visualization.

A

Repeat steps 2-4 until we are satisfied with the result or do not
evidence any change.

6. Apply MCFDTW to the whole dataset.

Because our dataset consists of a large number of multi-component
time series, we will randomly select a fraction of our dataset in the
tirst step. We are using approximately one-third of our dataset, which
allows us to work in real-time. As we expect large groups of similar
power curves, the selection of this portion should consist of all major
consumer groups, thus minimize the negative effect of not using the
whole dataset.
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In the second step, we are building the new feature space by using
MDEFDTW. In the first iteration, we are using the random selection of
prototypes. After the first iteration, the feature space building is fully
automatic based on the prototypes selected or removed in next step.
As we are using the iterative approach, we do not recalculate already
computed feature vectors, which increases the efficiency.

In the third step, we are selecting new prototypes using data vi-
sualizations. Firstly, we use PCA and UMAP/densMAP to visualize
our dataset’s global and local structures. As displayed in Fig. 3.3, we
can study the local and global structure of the dataset, including pro-
totypes’ positions. One point in Fig. 3.3 represents a single customer
— one multi-component time series. Using interactive zoom and se-
lection, we can select time series to inspect them directly, study their
position and surrounding in the UMAP and PCA transformations,
and closely examine their seasonalities and trends (Fig. 3.4).

Figure 3.3: Visualization of the subsample of Power Consumption
dataset using PCA and UMAP. Grey hexagons highlight prototypes.

To help with the inspection, we are providing multiple coloring
options. Firstly, it is possible to select, group, and color time series
manually. As this coloring is persistent throughout iterations, we can
use it to study the change of positions of our time series in terms of
their surroundings. Another option is to use coloring by automatic
clustering or anomaly detection score. We will discuss this in the next
section.

Once we are satisfied with the selected prototypes, we repeat steps
2-4 until we do not see evidence of any significant change in our visu-
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Figure 3.4: Example of inspection of seasonalities and trends of selected
customers using the interactive selection.

alization. Because UMAP/densMAP are stochastic, there are always
some changes, but they should not be global (mixing of manually
selected groups). Afterwards, we apply the MCFDTW transformation
to the whole dataset.

3.6 Clustering and Anomaly Detection

As our dataset is transformed into a feature matrix, we can practically
use any clustering algorithm for spatial data. In our application, the
user can choose from all methods available in Scikit-learn or HDBSCAN.
To overcome the curse of dimensionality from MCFDTW transforma-
tion and to reduce the computational time, we are using two clustering
pipelines:

1. We are using PCA to reduce the number of dimensions into
50-100 dimensions based on the explained variance ratio for
distance-based clustering methods. Even though these clustering
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methods are not as affected by high dimensionality as density-
based methods, they usually perform better on lower dimensions.

2. For density-based methods OPTICS and HDBSCAN, we use PCA
transformation into 50 dimensions followed by UMAP /densMAP
embedding into 30 dimensions. As these embeddings preserve
the local structure in the data, they help to overcome the sparsity
of high-dimensional space.

After the clustering, we can visualize the results in the original
visualization of our dataset or its subsample (Fig. 3.5). We can use this
view in prototype selection, for example, using prototypes closest to
the K-means centers or discovering dense regions using HDBSCAN.

cccccccccccccccccccccccccccccccccc

nnnnnnnnn

pppppppp

Figure 3.5: Using clustering from the K-means method as coloring in
the visualization of a subsample of our dataset.

For detecting the anomalies in our dataset, we are using Isolation
Forest and LODA. It is possible to use them on a whole dataset or a
selected subsample. As both these methods are very efficient, we use
them directly on the MCFDTW feature vector without any dimension-
ality reduction. Another option for anomaly detection comes from
clustering with OPTICS or HDBSCAN, as both methods select certain
points as noise.

Similarly to the clustering, we can plot the results of anomaly
detection in our visualizations to either study their location within
the dataset or to use them for identifying new potential prototypes
(Fig. 3.6).

40



3. Cask StupY — ANALYSIS OF POWER CONSUMPTION DATASET

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Anomaly Score.

Figure 3.6: Coloring the data points by their anomaly score from the
Isolation Forest method. The lower the value, the more anomalous is
the data point.

3.7 Implementation

Our solution is mainly usable by data scientists, so we tried to use
the tools that are typical and common in this field. We are using the
Python programming language, and our solution is distributed as a
single open-source package.

We implemented the Feature DTW and related algorithms using
the well-known API defined by the Scikit-learn project [ 60, 61 ], which is
the most used tool for machine learning in Python. As Scikit-learn does
not natively support work with time series, we stick to the time series
interface defined by the Tslearn library [62]. We are using dtaidistance
[63], fastdtw [64], dtw-python [65], and Tslearn [62] python packages
for computing the DTW distance and its various approximations.

Based on our knowledge of data science work, the most signifi-
cant part is in the IPython [66] and Jupyter notebooks [67], and so our
implementation is fully integrated into these technologies. For the
visualization and rendering, we use the combination of Matplotlib
package [68] for smaller non-interactive visualizations, Bokeh server
[69] for interactive visualizations, and Datashader [55] for processing
and rendering the large time series.

Even though there are some implementations of the LODA anomaly
detection method, none of them is complete, and all of them lack the
feature to explain the cause of the anomaly. We prepared an open-
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source anlearn anomaly detection python package ? with our imple-
mentation of LODA, that is, to the best of our knowledge, the only one
containing sparse projections and the ability to explain cause of the
anomaly.

As we want our work to be fully replicable, we are using the Nix
package manager [70] in combination with pinned requirements for
all Python packages and their dependencies. This allows us to have a
tully replicable work environment with the exact version of Python
and all the used packages.

We were using only open-source packages in our work, and all
of our source codes, including all notebooks from experiments, are
available in our Github repository >.

3.8 Results

In our analysis, we prepared a complete processing pipeline for the
large dataset of power consumption curves, starting from feature
extraction and ending with data visualization, clustering, and anomaly
detection.

When manually comparing time series close together in the UMAP
visualization, we can see similarities in seasonalities, trends, and sta-
tistical properties. Because of this fact, we can assume that the Multi-
Component Feature DTW transformation maintained properties nec-
essary for further analysis of multi-component time series.

Upon a visual exploration, we can see two obvious larger well-
separated clusters in our data (Fig. 3.7). In K-means clustering, we
can see that both visual clusters are divided into convex similar-sized
clusters (Fig. 3.7a). In HDBSCAN clustering, we can see six clusters
and a relatively large portion of noise data points (Fig. 3.7b). Interest-
ingly, the two large clusters from the visualization are divided very
unequally. The first consists only of a single cluster, while the second
one of multiple smaller clusters with noise between them.

2. https://github.com/gaussalgo/anlearn
3. https://github.com/HOON24/visual-analysis-of-big-time-series-datasets
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Figure 3.7: (a) displays the K-means clustering on power consump-
tion dataset. (b) shows the HDBSCAN clustering. Cluster labels are
positive numbers, in HDBSCAN clustering —1 corresponds to noise.

In anomaly detection, we used Isolation Forest and LODA meth-
ods. The results are slightly different, but we can see overlap in the
group of most anomalous points. As the anomalous points have visu-
ally different power consumption curves, seasonalities, trends, and
statistical properties than the rest of the points, we can consider these
users to have an anomalous behavior (Fig. 3.8).
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Customers With Anomalous Consumption Curve
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Figure 3.8: Example of anomalous consumers detected by Isolation
Forest and LODA methods. Color denotes a single customer.
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4 Conclusion and Future Work

The aim of this thesis was to perform an exhaustive literature search
and present the overview of the existing techniques used for visual
analysis of large datasets of long time series. We applied these methods
in the analysis of power consumption curves and proposed a novel
approach for transforming datasets of time series into feature space
representation.

In the first part, we discussed distance measures used for time
series, including their advantages and disadvantages, the Feature
DTW transformation, and methods utilized for clustering and anomaly
detection on large datasets.

The second part focused on methods used for visual exploration of
time series and datasets. We listed several methods for dimensionality
reduction that are specifically useful for finding visually meaning-
ful low-dimensional representations of datasets and algorithms for
downsampling time series that maintain their visual properties.

The third part, and the main contribution of this thesis, is a pro-
posed novel method Multi-Component Feature DTW (MCFDTW)
transformation, and the strategies for prototype selection. MCFDTW
efficiently transforms large datasets of multi-component time series
into a meaningful smaller feature space representation used in anal-
ysis pipelines. To demonstrate the usefulness of our approach, we
analyzed the power consumption dataset resulting in multiple views
of the dataset revealing the local and global structures within. Then
we found clusters in our data with similar seasonalities and trends
and also anomalous data points.

From the perspective of future work, we see an opportunity for
possible research in converting the manual selection of prototypes
to the automatic one for Prototyped Feature DTW and MCFDTW
transformations. We tried multiple strategies based on the automatic
selection by predicting the correlation of new prototypes or using
the data density. None of our strategies provided significantly better
results than the same amount of randomly selected prototypes, yet
we still believe there is a strategy that will yield superior results.
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A Appendix

A.1 Comparison of Distance Measures and Prototype
Selection Strategies on UCR datasets

As a part of this thesis, we tested multiple combinations of differ-
ent distance measures and Feature DTW transformations, including
various strategies for prototype selection on UCR datasets [58]. In
our implementation, we are using five-split cross-validation and com-
paring the average accuracy of each algorithm. For complete results,
please see our repository !. Based on our results (Fig. A.1, Fig. A.2),
we make these conclusions:

e The overall best distance measure is a combination of constrained
DTW computed on the original time series and their derivations.

e Prototyped Feature DTW outperforms Prototyped Feature DTW.

e Random selection of prototypes can be a useful starting strategy.

Notation
Distance measures:

e dtw - Dynamic Time Warping [11]

e fdtw - Fast Dynamic Time Warping [16]

sakoe_chiba - DTW with Sakoe-Chiba constraint [12]

itakura - DTW with Itakura constraint [14]

dd_distance_measure_wa - a combination of distance measure us-
ing the original time series and their first derivatives ((1 — a) *
dist(x,y) + a = dist(x',y")) [7]

1. https://github.com/HOON24/visual-analysis-of-big-time-series-datasets
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Prototype selection + Classification methods:

58

Random_X - Randomly selecting X% of training data as proto-
types (Random_10, Random_30, Random_50) + Linear SVC

LassoSV C - Selecting prototypes with the highest importance
from the Linear Support Vector Machine classifier with 11 penal-
ization + Linear SVC

Tree - Selecting prototypes with the highest importance from the
Extra Tree Classifier + Linear SVC

SVC - Using all prototypes + Linear SVC

1NN - Nearest Neighbor classifier using one closest neighbor
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Figure A.1: Average accuracy of distance measures, prototype selection
strategies, and classification algorithms on UCR datasets.
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Figure A.2: Average rank of combinations of distance measures and
prototype selection strategies on UCR datasets.
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