Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10494-8.

Molecular characterization and nephron distribution of a family of transcripts encoding the pore-forming subunit of Ca2+ channels in the kidney.

Author information

  • 1Department of Medicine, Brigham & Women's Hospital, Boston, MA.

Abstract

Active, transepithelial, Ca2+ reabsorption in kidney occurs primarily in the distal convoluted tubule. Recent evidence suggests that entry of Ca2+ at the apical membrane through channels bearing resemblance to those of the voltage-dependent L type may be the rate-determining step in Ca2+ reabsorption. To determine the molecular identity of the pore-forming subunit of voltage-dependent Ca2+ channel(s) in the kidney, a homology-based PCR cloning strategy was employed. Nondegenerate primers, based on conserved regions of the published cDNA sequences of voltage-dependent Ca2+ channel alpha 1 subunits, were used to amplify cDNA from rat kidney, and the products were subcloned and sequenced. A family of molecular species was identified, representing alternatively spliced transcripts of four known genes encoding these channel subunits. Northern blot analysis indicated that the expression of each of the genes exhibits a distinct spatial distribution within the kidney. One gene, CaCh4, is expressed primarily in the cortex, and by microdissected-tubule PCR was found predominantly in the distal convoluted tubule, consistent with a role in transepithelial Ca2+ reabsorption at this site.

PMID:
1279681
[PubMed - indexed for MEDLINE]
PMCID:
PMC50365
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk