
ControlFlag: A Self-supervised Idiosyncratic Pattern Detection System for Software Control Structures
Niranjan Hasabnis Justin Gottschlich
Machine Programming Research Lab, Intel Labs, Intel

ControlFlag: flags idiosyncratic pattern violations

ControlFlag is a Machine Programming system that learns idiosyncratic patterns from open-

source repos and uses them to flag idiosyncratic pattern violations.

Uncommon patterns Common patterns
Type of problem

in C language in C language

if (x = 7) if (x == 7)
Typographical error detectionif (x != 7)

if (x->f) if (x != NULL && x->f)
Missing NULL checkif (x && x->f)

Table: Examples of common and uncommon patterns in C language

Such knowledge can enable us to provide immediate feedback to developers in a live programming

environment (IDE).

Can’t compilers/static analyzers catch this case?

Yes, GCC-10.2 with -Wall can warn in case of an assignment in if statement as below

test.cpp:3:9: warning: suggest parentheses around assignment used as truth
value [-Wparentheses]

if (x = 7) y = x;

Compilers and static analyzers have limitations:

rules-based approach that is labor-intensive and

seems difficult to use in live-programming environment (where complete program is

generally not available).

ControlFlag can learn such rules automatically from vast amount of open-source code.

Formulating the problem as anomaly detection problem

Hypothesis: certain patterns are uncommon in the control structures of high-level languages

Approach:

1. Mine idiosyncratic patterns

2. Check user's patterns against the mined patterns.

3. Flag those that deviate as per anomaly threshold.

Contributions

The first-of-its-kind approach (to our knowledge) that is self-supervised in its ability to

learn idiosyncratic patterns and apply them to flag anomalous patterns.

Preliminary implementation for C/C++ mines 38M patterns from if statements of 6000

GitHub repos (having more than 100 stars) and 1B lines of code.

The anomaly found by ControlFlag in CURL is acknowledged by the developers and is fixed

promptly. This is the first example of ControlFlag's contribution to potentially improve

robustness of real-world software.

Cite as

Niranjan Hasabnis and Justin Gottschlich.

Controlflag: A self-supervised idiosyncratic pattern detection system for software control structures.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), ML for Systems Workshop, 2020.

ControlFlag: design

ControlFlag consists of two main phases: pattern mining and scanning for idiosyncratic patterns.

Step 2: Scanning for idiosyncratic patterns

Step 2.1: Mine patterns 
in control structures 

Source code 
parser

Patterns
Syntax tree for pattern

Step 2.2: Build 
representation for patterns

Codebase

Step 2.0: Target 
Code Repository

Step 2.3: Find pattern and 
its “nearest” patterns in 

the decision tree.

Step 2.4: Is pattern an 
anomaly?

Step 1.0: Source Code 
Repositories

Codebase

Step 1.1: Mine patterns 
in control structures 

Source code 
parser

Patterns

Step 1.3: Self-supervised 
clustering using decision tree

Syntax trees for patterns

Step 1.2: Build 
representation for patterns

Step 1: Pattern mining
Semi-trust (humans 

must decide this) Self-supervision; no labelsLearn idiosyncratic patterns in code

c
v

c
v

c
v

Nearest patterns 
from training dataset

!!∗#$$
∑"#!
$%& _()*+&'((!")

< 𝛼 ∀ 𝑝, 𝑛 ∈ 𝐶

Figure: Overview of ControlFlag System.

Salient points of the design

Self-supervised learning system that uses semi-trusted training data

ControlFlag is a self-supervised learning system that uses GitHub repositories with more than

100 stars for mining patterns. Such a selection gives us semi-trust in the data.

Representations using levels of abstraction

Mined patterns are represented internally in ControlFlag as abstract syntax trees (referred as L1

abstraction level). They are also converted into higher-level tree representation (referred as L2

abstraction level) that drops certain details inASTs that could reduce chances of finding the pattern

in the training data.

Decision tree based clustering

Mined patterns in the tree forms are clustered together using a decision tree, which stores the

patterns as well as their number of occurrences in the training data.

Suggesting auto-corrections for anomalous patterns

Target patterns are checked against the decision tree. A pattern is flagged as anomalous if it

satisfies any of following: 1) it is not found in the decision tree, or 2) its occurrences are lower than

the anomaly threshold defined below. ControlFlag suggests possible corrections of the anomalous

pattern.

n0 × 100∑max_cost
i=0 max(ni)

< α ∀(p, n) ∈ C

C is the set of automatic correction results, in which every result contains a corrected pattern

p and its occurrences n. α is a user-defined anomalous threshold, and max is a function that

calculates the maximum of a list of occurrences. n is the number of occurrences of a pattern, with

ni being the number of occurrences of the pattern at i distance away.

Evaluation

We used 6000 GitHub repositories (with more than 100 stars) for C language to mine patterns

in if statement. This training data was obtained from 2.57M programs, 1.1BLoC and had 38M

patterns.

AST Occurrences Example C expressions

(identifier) 4.3M if (x)
(unary_expr (``!'') (identifier)) 2.09M if (!x)
(field_expr (identifier)(field_identifier)) 1.3M if (p->f)
(binary_expr (``=='') (identifier)(identifier)) 1.16M if (x == y)
(binary_expr (``=='') (identifier)(null)) 790K if (p == NULL)
(binary_expr (``='') (identifier)(number))) 487 if (x = 0)
(binary_expr (``='') (identifier)(identifier))) 476 if (x = y)
(binary_expr (``%'') (identifier)(number))) 6468 if (x % 2)

Table: A table showing some of the most and least frequently occurring patterns at L1 abstraction level

Scanning for anomalous patterns in OpenSSL and CURL

We scanned OpenSSL and CURL open-source packages for anomalous patterns at the anomaly

threshold of 1% and 5%.

30688 30682 13245 13294

174 0 49 0

1
8

64
512

4096
32768

L1 L2 L1 L2

OpenSSL OpenSSL CURL CURL

Number of patterns found at different 
abstraction levels

Patterns found Patterns missing

101
29 28

8

525 873
258 187

1

4

16

64

256

1024

L1 L2 L1 L2

OpenSSL OpenSSL CURL CURL

Number of anomalies flagged at different 
abstraction levels and anomaly thresholds

Anomalies at threshold of 1%
Anomalies at threshold of 5%

Figure: Results of scanning OpenSSL and CURL for anomalous patterns

CURL developers acknowledge and fix the flagged anomaly

Potential anomaly: (s->keepon > TRUE)

Location: curl/lib/http_proxy.c:359

Possible corrections:

(s->keepon > TRUE), edit distance 0, occurrences 4

(s->keepon > number), edit distance 2, occurrences

127540

(s->keepon > variable), edit distance 2, occurrences

56475

Conclusion

ControlFlag is a self-supervised system that learns idiosyncratic patterns in the control

structures. It uses that knowledge to flag anomalous patterns that can potentially represent

various problems.

Preliminary implementation flags anomalous pattern in CURL that is acknowledged by the

developers and fixed promptly. We believe that this is the first example of ControlFlag's

contribution to potentially improve robustness of real-world software.


