
1

JASECI

BIBLE
Jason Mars, //////PhD Ninja

v1.3

I welcome you, neophyte, to embark on the journey of
becoming a true Jaseci Ninja!

Btw, this is a silly book in places, please take that seriously :-)

Contents

Preface 10

1 Introduction 11

I World of Jaseci 12

2 What and Why is Jaseci? 13
2.1 TL;DR . 13
2.2 Introduction and Motivation . 14
2.3 The Case for Change . 17

2.3.1 Problem Scenario . 18
2.4 A Higher Level Language . 18
2.5 A Novel Underlying Technology Stack . 20
2.6 Battle Testing so Far... 21
2.7 In a Nutshell . 22

3 Abstrations of Jaseci 23
3.1 Graphs, the Friend that Never Gets Invited to the Party 23

3.1.1 Yes, But What Kind of Graphs . 24
3.1.2 Putting it All Into Context . 26

3.2 Walkers . 26
3.3 Abilities . 27
3.4 here and visitor . 27
3.5 Actions . 27

4 Architecture of Jaseci and Jac 29
4.1 Anatomy of a Jaseci Application . 29
4.2 The Jaseci Machine . 29

4.2.1 Machine Core . 29
4.2.2 Jaseci Cloud Server . 29

5 Interfacing a Jaseci Machine 30

3

CONTENTS 4

5.1 JSCTL: The Jaseci Command Line Interface 31
5.1.1 The Very Basics: CLI vs Shell-mode, and Session Files 33
5.1.2 A Simple Workflow for Tinkering . 36

5.2 Jaseci REST API . 42
5.2.1 API Parameter Cheatsheet . 42

5.3 Full Spec of Jaseci Core APIs . 45
5.3.1 APIs for actions . 45
5.3.2 APIs for architype . 47
5.3.3 APIs for config . 52
5.3.4 APIs for global . 54
5.3.5 APIs for graph . 55
5.3.6 APIs for jac . 59
5.3.7 APIs for logger . 60
5.3.8 APIs for master . 61
5.3.9 APIs for object . 64
5.3.10 APIs for queue . 66
5.3.11 APIs for sentinel . 67
5.3.12 APIs for super . 71
5.3.13 APIs for user . 72
5.3.14 APIs for walker . 74

II The Jac Programming Language 80

6 Jac Language Overview and Basics 81
6.1 The Obligatory Hello World . 82
6.2 Numbers, Arithmetic, and Logic . 83

6.2.1 Basic Arithmetic Operations . 83
6.2.2 Comparison, Logical, and Membership Operations 84
6.2.3 Assignment Operations . 86
6.2.4 Precedence . 87
6.2.5 Primitive Types . 88

6.3 Foreshadowing Unique Graph Operations . 90
6.4 More on Strings, Lists, and Dictionaries . 91

6.4.1 Library of String Operations . 94
6.4.2 Library of List Operations . 94
6.4.3 Library of Dictionary Operations . 94

6.5 Control Flow . 94

7 Graphs, Architypes, and Walkers in Jac 99
7.1 Structure of a Jac Program . 99
7.2 Graphs as First Class Citizens . 100

7.2.1 Connect and Spawn operations . 100
7.2.2 Static Graph Creation . 103

CONTENTS 5

7.3 Walkers as the second First Class Citizens . 108
7.4 Architypes . 110

7.4.1 Context on Nodes and Edges . 110
7.4.2 Copy Assignment Operator . 112
7.4.3 Plucking Values from Node and Edge Sets 113
7.4.4 Referencing and Dereferencing Nodes and Edges 114

7.5 Actions and Abilities . 115
7.5.1 Actions . 115
7.5.2 Fused Interactions Between Nodes and Actions 116
7.5.3 Abilities . 118
7.5.4 here and visitor, the ‘this’ references of Jac 120

7.6 Inheritance . 120

8 Walkers Navigating Graphs 121
8.1 Taking Edges (and Nodes?) . 121

8.1.1 Basic Walks . 121
8.1.2 Breadth First vs Depth First Walks 123

8.2 Skipping and Disengaging . 125
8.2.1 Skip . 125
8.2.2 Disengage . 126
8.2.3 Technical Semantics of Skip and Disengage 127

8.3 Ignoring and Deleting . 127
8.4 Reporting Back as you Travel . 128
8.5 Yielding Walkers . 129

8.5.1 Yield Shorthands . 130
8.5.2 Technical Semantics of Yield . 130
8.5.3 Walkers Yielding Other Walkers (i.e., Yielding Deeply) 131

9 Actions and Action Sets 133
9.1 Standard Action Library . 133

9.1.1 date . 133
9.1.2 file . 135
9.1.3 mail . 137
9.1.4 net . 137
9.1.5 rand . 141
9.1.6 request . 143
9.1.7 std . 145
9.1.8 vector . 150

9.2 Building Your Own Library . 151

10 Imports, File I/O, Tests, and More 152
10.1 Tests in Jac . 152
10.2 Imports . 154
10.3 File I/O . 155

CONTENTS 6

10.4 Visualizing Graph with Dot Output . 155

III Jaseci AI Kit 157

IV Crafting Jaseci 158

11 Architecting Jaseci Core 159

12 Architecting Jaseci Cloud Serving 160

V Guided Tours and Epilogue 161

13 Installation and Coding Environment 162
13.1 Installation . 164

13.1.1 Python Environment . 164
13.1.2 Installing Jaseci . 165
13.1.3 VSCode and the Jac Language Extension 168

14 Building CanoniCai 170
14.1 Build a Conversational AI System with Jaseci 171

14.1.1 Preparation . 171
14.1.2 Background . 172

14.2 Automated FAQ answering chatbot . 172
14.2.1 Define the Nodes . 172
14.2.2 Build the Graph . 173
14.2.3 Initialize the Graph . 175
14.2.4 Run the init Walker . 176
14.2.5 Ask the Question . 177
14.2.6 Introducing Universal Sentence Encoder 178
14.2.7 Scale it Out . 180

14.3 Next up! . 183
14.4 A Multi-turn Action-oriented Dialogue System 183

14.4.1 Introduction . 183
14.4.2 State Graph . 184
14.4.3 Define the State Nodes . 184
14.4.4 Custom Edges . 184
14.4.5 Build the graph . 185
14.4.6 Initialize the graph . 185
14.4.7 Build the Walker Logic . 186
14.4.8 Intent classificaiton with Bi-encoder 189
14.4.9 Integrate the Intent Classifier . 191

CONTENTS 7

14.4.10Making Our Dialogue System Multi-turn 192
14.4.11Build the Multi-turn Dialogue Graph 194
14.4.12Update the Walker for Multi-turn Dialogue 202
14.4.13Train an Entity Extraction Model . 203

14.5 Unify the Dialogue and FAQ Systems . 206
14.5.1 Multi-file Jac Program and Import . 207
14.5.2 Unify FAQ + Dialogue Code . 208

14.6 Bring Your Application to Production . 211
14.6.1 Introducing yield . 211
14.6.2 Introduce sentinel . 213
14.6.3 Tests . 214
14.6.4 Running Jaseci as a Service . 215

14.7 Improve Your AI Models with Crowdsource 215

15 A Coding Tour 216
15.1 Coding in Jac . 217

15.1.1 Jac Basics . 217
15.1.2 Types in Jac . 218
15.1.3 Fun with Lists and Dictionaries . 219
15.1.4 Control Flow . 219
15.1.5 Graphs in Jac . 220
15.1.6 Navigating Graphs with Walkers . 222
15.1.7 Compute in Nodes . 223
15.1.8 Static Graphs . 225
15.1.9 Writing Tests . 226

15.2 Jac Hacking Workflow . 228
15.2.1 Using Imports . 229
15.2.2 Leveraging Static Graphs for Quick Prototyping 230
15.2.3 Test Driven Development . 231
15.2.4 File I/O . 231
15.2.5 Building to JIR . 233

15.3 AI with Jaseci Kit . 233
15.3.1 Installing Jaseci Kit . 233
15.3.2 Loading Actions from Jaseci Kit . 233
15.3.3 Using AI in Jac . 235

15.4 Launching a Jaseci Web Server . 236
15.5 Deploying Jaseci at Scale . 236

15.5.1 Quick-start with Kubectl . 236
15.5.2 Managing Jac in Cloud . 236

Epilogue 237

A Rants 238
A.1 Utilizing Whitespace for Scoping is Criminal (Yea, I’m looking at you Python)238

CONTENTS 8

B Full Jac Grammar Specification 239

CONTENTS 9

Preface

The way we design and write software to do computation and AI today is poop. How poopy
you ask? Hrm…, let me think…, In my approximation, if you were to use it as a fuel source,
it would be able to run all the blockchain transactions across the aggregate of current and
future coins for a decade.

Hrm, too much? Probably. I guess you’d expect me to use sophisticated rhetoric and
cite evidence to make my points. I mean, I could write something like “The imperative
programming model utilized in near all of the production software produced in the last four
decades has not fundamentally changed since blah blah blah...”. I’d certainly sound more
credible perhaps. Well, though I have indeed grown accustomed to writing that way, boy
has it gotten old.

I’m not going to do that all the way through this book. Let’s have fun. After all, Jaseci has
always been more play (and art) than work. Very ambitious play granted, but play at it’s
core. There are indeed places that I take that professory tone, but expect places where we
have fun. (Truthfully, thats the only way I can maintain sanity writing this tome! :-P)

Oh, and everything here is based on my opinion…no, expert ninja opinion, and my intuition.
That suffices for me, and I hope it does for you. Though I have spent decades coding and
leading teams of coders and computer scientists working on the holy grail technical challenges
of our time, I won’t rely on that to assert credibility. ...(o_o)... Lets let these ideas stand or
die on their own merit. Its my gut that tells me that we can do better. This book describes
an attempt at better. I hope you find value in it. If you do, awesome! If you don’t, awesome!

10

Chapter 1

Introduction

Coming Soon...

11

Part I

World of Jaseci

12

Chapter 2

What and Why is Jaseci?

Contents
2.1 TL;DR . 13
2.2 Introduction and Motivation . 14
2.3 The Case for Change . 17

2.3.1 Problem Scenario . 18
2.4 A Higher Level Language . 18
2.5 A Novel Underlying Technology Stack 20
2.6 Battle Testing so Far... 21
2.7 In a Nutshell . 22

2.1 TL;DR

Modern production applications are multi-service, spanning multiple individual programs
(database, memcache, logging, application logic, AI models, etc) interfacing each other
over APIs to realize a single product functionality. Creating such applications at scale is
technically challenging, requires a highly-skilled developer team, is rife with complexity, and
is, for many, prohibitively costly. This complexity is in stark contrast to the era of computing
where a state of the art software product was a single binary that ran on one machine and
could be developed by a single programmer. Though a number of important abstractions
and technologies have emerged to help mitigate the complexity of building multi-service
applications, the creation of sophisticated production software in practices is still highly
complex and requires a team of engineers.

In this work, we present a wholistic top-down re-envisioning of the system stack from the
programming language level down through the system architecture to bridge this complexity

13

CHAPTER 2. WHAT AND WHY IS JASECI? 14

gap. The key goal of our design is to address the critical need for the programmer to articulate
solutions with higher level abstractions at the problem level while having the runtime system
stack subsume and hide a broad scope of diffuse sub-applications and inter-machine resources.
This work also presents the design of a production-grade realization of such a system stack
architecture called Jaseci, and corresponding programming language Jac. Jac and Jaseci
has been released as open source and has been leveraged by real product teams to accelerate
developing and deploying sophisticated AI products and other applications at scale. Jac has
been utilized in commercial production environments to accelerate AI development timelines
by ∼10x, with the Jaseci runtime automating the decisions and optimizations typically falling
in the scope of manual engineering roles on a team such as what should and should not be a
microservice and changing those decisions dynamically.

2.2 Introduction and Motivation

There has been a fundamental paradigm shift in the landscape of how we build software
over the last 2 decades. Originally, the compute stack was envisaged with the assumption
that a single program would run on a single machine. In this traditional model, system
software abstractions subsumed the management of resources for processor, memory, disk and
physically connected peripherals within the context of the machine. However, this landscape
rapidly changed with the evolution toward software being served on the backbone provided
by the internet. Now, an ‘application’ is realized through the cooperation of multiple distinct
sub-applications (services) running collaboratively. For example a single application my
contain one or more self-contained database, memcache, logging, application logic, and AI
model applications interfacing each other over APIs as shown in Figure 2.1 (left). We call
these applications diffuse applications.

This work contends that the fundamental programming paradigms in computing has not
evolved at pace. The abstractions envisioned during the era of the single machine computa-
tional model is still present at the programming interface and throughout the runtime stack
leading to significant and costly complexity.

To address this complexity, two keystone abstractions have recently emerged to facilitate the
development of these diffuse applications. The first of these abstractions is the introduction
and rapid dissemination of containerization service platforms. With what started as a
key insight articulated in “The Datacenter as a Computer,” Google would innovate their
Borg system and ultimately released it open source as Kubernetes. With Kubernetes,
the underlying hardware resources would be abstracted away with the introduction of
pods (virtual machines), and other resources that can be virtually networked together
and otherwise configured irrespective of the physical hardware. Today, Kubernetes is the
most prevalent containerized service abstraction layer in cloud computing. The second of
keystone abstraction would be coined “Severless Computing” and gained prominence with
the introduction of Amazons Lamda functions. This FaaS abstraction would facilitate the
development of diffuse applications at the level of functions and abstract away the underlying

CHAPTER 2. WHAT AND WHY IS JASECI? 15

Application

Jaseci Runtime Engine

 Interpreter

Microservices

Virtualization

Hardware/Cloud

Libraries

App

Virtualization

Hardware/Cloud

Status-quo Application Stack Jaseci Application Stack

Storage

Mem Cache Layer Automated
by
Runtime
Engine

Jac Programming Language

Figure 2.1: Comparison between status quo development of production grade diffuse applications (left), and
the Jaseci technology stack that hides and automates an expanded set of subsystems through raising the level
of abstraction (right).

containerized service ecosystem. A programer can simply make function calls in their favorite
language without every needing to be aware of where the function will run nor the system
level resources that would be allocated or managed.

Though these two abstractions have been highly impactful, these innovations in our stack
architecture represent a bottom up evolution of abstractions. As a result, programmers are
still left with single-machine abstractions at the programming interface and must grapple with
a significant amount of complexity. For example, traditional languages and their runtime
stacks are predominately designed with the goal of hiding and managing intra-machine
resources while what is needed for diffuse applications is the hiding and management of
inter-machine resources. Analogous to the virtualization and management of allocated
memory on the heap provided by garbage collectors in modern languages (intra-machine),
the virtualization and management of resources such as microservice creation, scheduling and
orchestration alongside policies for organizing distributed databases, mem caches, logging
and other highly complex subsystems (inter-machine) is not only needed, but as we show
in this work, possible and practical. Without this raising of the level of abstraction, it has
become prohibitively difficult for a single engineer to invent, build, deploy, launch, and scale
modern cutting edge applications.

To the best of our knowledge, we are not aware of a thorough, wholistic, and top-down

CHAPTER 2. WHAT AND WHY IS JASECI? 16

design of a serverless programming paradigm and computational stack from the language
level down through the system runtime stack to hide this expanded set of resources.

In this work, we present a wholistic design approach with the goal of abstracting away and
automating a new class of underlying systems, allowing a programmer to articulate solutions
and diffuse applications at the problem level. We present the design of a diffuse runtime
execution engine we call Jaseci, and a data-spacial programming language we call Jac.

The design of Jaseci and Jac has initially been inspired to by sophisticated emerging AI
applications at scale and is driven by two key insightss.

• Higher level abstractions are needed at the language level to allow single creators to
work at the problem level to build end-to-end diffuse AI products.

• A new set of abstractions across the language runtime and system stack is needed to
automate and hide the class of inter-machine resources from the programmer.

To this end we present techniques across two categories,

1. Jac Language - A language that introduces a new set of abstractions, namely data-
spacial scoping and agent oriented programming. These abstractions natively
facilitates the emerging need to reason about and solve problems with graph represen-
tations as well as the need for algorithmic modularity and encapsulation to hide a new
class of inter-machine resources.

2. Jaseci Diffuse Runtime Engine - A runtime that raises the abstraction layer to the
problem solving level where the runtime engine subsumes responsibility for not only for
the optimization of program code, but the orchestration, configuration, and optimization
of the full cloud compute stack and inter-machine resources (such tasks as container
formation, scaling and optimization).

Jaseci and Jac is fully functional, open-source [7, 8, 9], and used in production for four
real-world products today. These commercial products were built entirely on the Jaseci
staci and includes Myca [10], HomeLendingPal [6], ZeroShotBot [14] and TrueSelph [13].
Across these and other projects, the Jac language has been used by dozens of programmers
in the creation of production software and Jaseci deployments support tens of thousands of
production queries per day currently. In practice, our initial infrastructure has been leveraged
in practice to achieve 10x reduction in development time and near 100% elimination of
typical backend code needed for a complicated AI based application.

The specific contributions of this paper include:

• We formulate the problem of development complexity and present a top down pro-
graming paradigm and runtime stack for diffuse applications.

• We describe the design and implementation Jaseci’s diffuse runtime execution
engine.

CHAPTER 2. WHAT AND WHY IS JASECI? 17

(A) Traditioinal AI Application
Development

(B) AI Application Dev. Empowered by
Jaseci

Data Scientist

DevOps Eng.

Backend/API Eng.

Storage/DB Eng.

ML API

DevOps Stroage

Jaseci automates the
management of the complex

application stacks as part of the
runtime execution engine.

Jaseci Engineer

Many specialized roles required.
Messy inter-roles dependencies

and complexities.

Figure 2.2: Comparison of typical development team required to realize production grade AI application
today (left), and the ability of a single software developer to realize such an application with Jaseci (right).

• We introduce Jac, a language that implements a data-spacial programming paradigm
(the first of its kind).

• We describe the utility of Jaseci and Jac through real world case studies of building
out a real production scale-out product.

We find that the wholistic design philosophy and resulting paradigm of Jaseci and Jac is a
promising one. Multiple development teams have adopted the data spacial programming
model of Jac and the diffuse runtime execution engine in Jaseci to build sophisticated AI
products with significantly reduced complexity and teaming.

2.3 The Case for Change

Though recent advancements in serverless computing has been instrumental in improving
the ability of teams to more rapidly develop software, significant challenges remain in the
development of cutting edge applications and products in our current compute landscape. An
demonstrative problem domain with this challenge are those characterized by applications
that include sophisticated AI pipelines on their critical path.

CHAPTER 2. WHAT AND WHY IS JASECI? 18

2.3.1 Problem Scenario

Figure 2.2A shows the typical set of often siloed roles needed to create software in this envi-
ronment. The first critical role needed is an architect / tech-lead responsible for architecting
the software solution across disparate components, programming languages, frameworks,
and SDKs. If a microservice ecosystem is needed (which is a must for modern AI appli-
cations), the architect will also decide what will and won’t be its own service (container)
and define the interfaces between these disparate services. For the AI model work, the
role of a data scientist / ML engineer is needed. This role typically works primarily in
Jupyter notebooks selecting, creating, training and tuning ML models to support application
features. Production software engineering is typically outside of the scope of this expertise
in practice. The role of a backend engineer is needed for implementing the main services
of the application and taking the code out of Jupyter notebooks to build the models into
the backend (server-side) of the application. The backend engineer is also responsible for
supporting new features and creating their API interfaces for frontend engineers. One of
the key roles any software team needs to deploy an AI product is a DevOps engineer. This
role is solely responsible for deploying and configuring containers to run on a cloud and
ensure these containers are operational and scaled to the load requirements of the software.
This responsibility covers configuring software instance pods, database pods, caching layers,
logging services, and parameterizing replicas and auto-scaling heuristics.

In this traditional model of software engineering, many challenges and complexity emerge.
An example is the (quite typical) scenario of the first main server-side implementation of
the application being a monoservice while DB, caching, and logging are microservices. As
the ML engineer introduces models of increasing size, the dev-ops person alerts the team
that the cloud instances, though designated as large, only have 8gb of ram. Meanwhile
new AI models being integrated exceed this limit. This event leads to a re-architecture
of the main monoservice to be split out AI models into microservices and interfaces being
designed or adopted leading to significant backend work / delays. In this work, we aim to
create a solution that would move all of this decisioning and work under the purview of the
automated runtime system.

Ultimately, the mission of Jaseci is to accelerate and democratize the development and
deployments of end-to-end scalable AI applications as presented in Figure 2.2B. To this end,
we present a novel set of higher level abstractions for programming sophisticated software
in a micro-service/serverless AI and a full stack architecture and programming model that
abstracts away and automates much of the complexity of building diffuse applications on a
distributed compute substrate of potentially thousands of compute nodes.

2.4 A Higher Level Language

Traditionally in computer science, the task of raising the level abstraction in a computa-
tional model has primarily been for the goal of increasing programmer productivity. This

CHAPTER 2. WHAT AND WHY IS JASECI? 19

node { }

node { }

node { }

node { }

node { }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

Foo { }

Bar { }

Baz { }

Qux { }

(A) Function/Method Scoping (B) Data Spacial Scoping

Params { }

Params { }

Params { }

Figure 2.3: A visualization of the behavior of scopes and problem solving abstractions provided by the near
ubiquitous function / method based languages (left) and the data spacial programming model (right).

productivity comes from allowing engineers to function at the problem level while hiding the
complexity of the underlying system. The Jac language introduces a set of new abstractions
guided by these principles based on two key insights. First, Jac recognizes the emerging
need for programmers to reason about and solve problems with graph representations of
data. Second, Jac further supports the need for algorithmic modularity and encapsulation
to change and prototype production software in place of prior running codebases. Based
on these insights, we introduce two new sets of abstractions. As shown in Figure 2.3b,
Jac’s data-spacial scoping natively facilitates graph based problem solving by replacing
the traditional temporal notion of scope with a function’s activation record with scoping
that is flattened and spatially laid out in graph structure. This type of scoping allows
for richer semantics for the organization of the data relevant to the problem being solved.
Figure 2.3b also depicts Jac’s agent oriented programming as little robots. Each robot
carries scope with it as it walks and performs compute relevant to where it sits on the graph.
These ‘agent’ abstractions capture the need for algorithmic modality and encapsulation when
introducing solutions to already sophisticated codebases. Jac can be used solely to build out
complete solutions or as glue code with components built in other languages. By leveraging
these new language abstractions, HomeLendingPal [6] was able to create a production grade
conversational AI experience with ∼300 lines of code in contrast to the tens of thousands it
would take to build in a traditional programming language.

CHAPTER 2. WHAT AND WHY IS JASECI? 20

Jaseci Cloud-Scale Runtime Execution Engine

Container Linked Libraries
(Library Microservices)

Jaseci Service

Action Library

JSCTL CLI

Action Library

System Microservices

REST
APIs

Cloud Monitoring and
Profiling

Caching
Layer

Persistent
Storage

Microservice
orchestration and

optimization

LoggingTask Queue

Jac Interpreter

Application Profiler

Runtime
Compiler

Action Library
Action Library Action Library

Static Libraries

Jac Program

Figure 2.4: The architecture of the Jaseci diffuse runtime execution. The runtime stack includes and combines
information from interpreter level profiling, cloud monitoring and profiling, microservice orchestrator and
optimizer. Container linked libraries are also depicted.

2.5 A Novel Underlying Technology Stack

Jaseci’s cloud-scale runtime engine presents a higher level abstraction of the software stack.
The diffuse runtime engine subsumes responsibility not only for the optimization of program
code, but also the orchestration, configuration, and optimization of constituent micro services
and the full cloud compute stack. Duties such as container formation, microservice scaling,
scheduling and optimization are automated by the runtime. For example, as shown in
Figure 2.4c Jaseci introduces the concept of container linked libraries to complement
traditional notions of statically and dynamically linked libraries. From the programmers
perspective, they need not know whether a call to a library is fused with the running pro-
gramming instance or a remote call to a microservice somewhere in a cluster. The decisioning

CHAPTER 2. WHAT AND WHY IS JASECI? 21

of what should be a microservice and what should be statically in the programs object scope
is made automatically and seamlessly by the Jaseci microservice orchestration engine.
Underlying in-cluster microservices are encapsulated and hidden with this abstraction. With
the runtime having full visibility and control over the diffuse application, high complexity
runtime decisions and heuristics such as autoscaling is brought under the purview of the
runtime software stack, relieving the need of manual configuration. With this Jaseci runtime,
a single frontend engineer was able to implement the full ZeroShotBot [14] application (which
uses a number of transformer neural networks) without writing a single line of traditional
‘backend’ code. This implementation currently support tens of thousands of queries a day
across about ∼12 business customers with tens of thousands of individual end users in a
single production environment.

2.6 Battle Testing so Far...

Jaseci is available on Github [8] under MIT open source license and is composed of an
ecosystem of tools spanning 3 packages. These include Jaseci Core, its core execution
engine, Jaseci Serv, its diffuse runtime cloud-scale execution engine, and Jaseci Kit, a
collection of cutting edge AI engines provided by the Jaseci community. In addition to these
main codebases, an experimental toolkit we call Jaseci Studio is in development to provide
visual programming and debugging tooling for developers building with Jaseci.

There are a number of notable examples of Jaseci’s use in production. These users include
four selected start-up companies that have adopted Jac and Jaseci as their development
engine and have already launched their products built using Jaseci.

myca.ai [10] - a B2C personal productivity platform that uses AI to understand personal
behavior trends and help users allocate their time, prioritize their tasks and achieve personal
growth goals. Using Jaseci, myca.ai’s back-end development only took 1 month and myca.ai
was launched within 3 months’ development to the public. Myca.ai is one of the fast growing
personal growth tool and has received positive feedback from their users.

ZeroShotBot [14] - a B2B company that develops a cutting edge conversational AI platform
using Jaseci. The product development took 2 months and was done by frontend engineers.
Zeroshotbot has gained significant market traction and has been in business discussions with
major logos such as Volaris, Pizzahut to provide readily deployable FAQ chatbots.

Truselph [13] - A minority founded startup. Truselph creates an avatar of the person
and builds conversational intelligence that allows the general public to interact with the
avatar and ask questions, while the avatar will be able to provide personalized answers
with emotions and facial expressions. Truselph is in partnership with Lenovo to co-develop
Truselph powered Kiosks for retail stores and is in business discussions with chains such as
Sephora.

Home Lending Pal [6] - an AI Powered Mortgage Advisor. Home Lending Pal is a

CHAPTER 2. WHAT AND WHY IS JASECI? 22

minority founded start-up that helps people, especially under-served minority population
to navigate through the mortgage and home purchase process. Home Lending Pal adopted
Jaseci to provide two main product features: 1 - personalized mortgage advice and 2 - Kev,
an AI-powered chatbot that will answer users questions about the process and give them a
plan to improve their finances.

2.7 In a Nutshell

Jaseci is a novel computational model invented, designed and implemented to address this
challenge. Jaseci includes a novel programming model we call data-spacial programming and
a runtime engine we call the diffuse execution environment to enable rapid development of
large scale and nimble AI applications. Our initial infrastructure has been used in practice to
achieve 10x reduction in development time and near 100% elimination of typical backend code
needed for a complicated AI based application. Jaseci [7] was open sourced in 2021 [8] [9].
Today Jaseci is in production with 4 distinct commercial products built on the engine,
including Myca [10], HomeLendingPal [6], ZeroShotBot [14] and TrueSelph [13].

Chapter 3

Abstrations of Jaseci

Contents
3.1 Graphs, the Friend that Never Gets Invited to the Party 23

3.1.1 Yes, But What Kind of Graphs 24
3.1.2 Putting it All Into Context . 26

3.2 Walkers . 26
3.3 Abilities . 27
3.4 here and visitor . 27
3.5 Actions . 27

3.1 Graphs, the Friend that Never Gets Invited to the
Party

There’s something quite strange that has happend with our common languages over the
years, ...decades. When you look at it, almost every data structure we programmers use
to solve problems can be modeled formally as a graph, or a special case of a graph, (save
perhaps hash tables). Think about it, stacks, lists, queues, trees, heaps, and yes, even
graphs, can be modeled with graphs. But, low and behold, no common language ustilizes the
formal semantics of a graph as its first order abstraction for data or memory. I mean, isn’t
it a bit odd that practically every data structure covered in the language-agnostic classic
foundational work Introduction to Algorithms [4] can most naturally be be reasoned about
as a graph, yet none of the common languages have built in and be designed around this
primitive. I submit that the graph semantic is insanely rich, very nice for us humans to
reason about, and, most importantly for the purpose of Jaseci, is inherently well suited for
the conceptualization and reasoning about computational problems, especially AI problems.

23

CHAPTER 3. ABSTRATIONS OF JASECI 24

There are a few arguments that may pop into mind at this point of my conjecture.

• “Well there are graph libraries in my favorite language that implement graph symantics,
why would I need a language to force the concept upon me?” or

• “Duh! Interacting with all data and memory through graphical abstractions will make
the language ssllooowww as hell since memory in hardware is essitially a big array,
what is this dude talking about!?!?”

For the former of these two challenges, I counter with two points. First, the core design
languages are always based upon their inherent abstractions. With graphs not being one
such abstraction, the language’s design will not be optimized to empower programmers to
nimbly do gymnastics with rich language symantics that correspond to the rich semantics
graphs offer (You’ll see what I mean in later chapters).

For the latter question, I’d respond, “Have you SEEN the kind of abstractions in modern
languages!?!? It’s rediculous, lets look at python dictionaries, actually scratch that, lets keep
it simple and look at dynamic typing in general. The runtime complexity to support dynamic
typing is most certainly higher than what would be needed to support graph symantics. Duh
right back at’ya!”

3.1.1 Yes, But What Kind of Graphs

There are many categories of graphs to consider when thinking about the abstractions to
support in Jaseci. There are rules to be defined as to the availabe semantics of the graphs.
Should all graphs be directed graphs, should we allow the creation of undirected graphs,
what about parallel edges or multigraph, are those explicitly expressible or discouraged
/ banned, can we express hypergraph, and what combination of these graphical sematics
should be able to be manifested and manipulated through the programming model. At this
point I can feel your eyes getting droopy and your mind moving into that intermediary state
between concious and sleeping, so let me cut to the answer.

In Jaseci, we elect to assume the following semantics:

1. Graphs are directed (as per Figure 3.1a) with a special case of a doubly directed edge
type which can be utilized practically as an undirected edge (imagine fusing the two
edges between nodes 3 and 4 in the figure).

2. Both nodes and edges have their own distinct identities (i,e. an edge isn’t representable
as a pairing of two nodes). This point is important as both nodes and edges can have
contexts.

3. Multigraphs (i.e., parallel edges) are allowed, including self-loop edges (as per Fig-
ure 3.1b).

4. Graphs are not required to be acyclic.
1Images credits to wiki contributers [2, 3]

CHAPTER 3. ABSTRATIONS OF JASECI 25

1

2
3

4

(a) Directed graph with cycle between nodes three
and four.

(b) Multigraph with parallel edges and self-loops

Figure 3.1: Examples of first order graph symantics supported by Jaseci.1

5. No hypergraphs, as I wouldn’t want Jaseci programmers heads to explode.

As an aside, I would describe Jaseci graphs as strictly unstrict directed multigraphs that
leverages the semantics of parallel edges to create a laymans ‘undirected edge’ by shorthanding
two directed edges pointed in opposite directions between the same two nodes.

Nerd Alert 1 (time to let your eyes glaze over)

I’d formally describe a Jaseci Graph as an 7-tuple (N, E, C, s, t, cN , cE), where
1. N is the set of nodes in a graph
2. E is the set of edges in a graph
3. C is the set of all contexts
4. s: E → V , maps the source node to an edge
5. t: E → V , maps the target node to an edge
6. cN : N → C, maps nodes to contexts
7. cE : E → C, maps edges to contexts

An undriected edge can then be formed with a pair of edges (x, y) if three conditions are
met,

1. x, y ∈ E
2. s(x) = t(y), and s(y) = t(x)
3. cE(x) = cE(y)

If you happend to have read that formal definition and didn’t enter deep comatose you may
be wondering “Whoa, what was that context stuff that came outta nowhere! What’s this guy
trying to do here, sneaking a new concept in as if it was already introduced and described.”

CHAPTER 3. ABSTRATIONS OF JASECI 26

Worry not friend, lets discuss.

3.1.2 Putting it All Into Context

A key principle of Jaseci is to reshape and reimagine how we view data and memory. We do
so by fusing the concept of data with the intuitive and rich semantics of graphs as the lowest
level primitive to view memory.

Nerd Alert 2 (time to let your eyes glaze over)

A context is a representation of data that can be expressed simply as a 3-tuple
(
∑

K ,
∑

V , pK), where
1.

∑
K is a finite alphabet of keys

2.
∑

V is a finite alphabet of values
3. pK is the pairing of keys to values

3.2 Walkers

One of the most important abstractions introduced in Jaseci is that of the walker. The
semantics of this abstraction is unlike any that has existed in any programming language
before.

In a nutshell, a walker is a unit of execution that retains state (its local scope) as it travels
over a graphs. Walkers ‘walk’ from node to node in the graph and executing its body.

The walker’s body is specified with an opening and closing braces ({ }) and is executed to
completion on each node it lands on. In this sense a walker iterates while spooling through a
sequence of nodes that it ‘takes’ using the take keyword. We call each of these iterations
node-bound iterations.

Variables declared in a walker’s body takes two forms: its context variables, those that
retain state as it travels from node to node in a graph, and its local variables, those that are
reinitialized for each node-bound iterations.

Walkers present a new way of thinking about programmatic execution distinct from the
near-ubiquitous function based asbtraction in other languages. Instead of a functions scope
being temporally pushed onto an ever increasing stack as functions call other functions.
Scopes can be spacially laid out on a graph and walkers can hop around the graph taking its
scope with it. A key difference in this model is in its introduction of data spacial problem
solving. In the former function-based model scopes become unaccessible upon the sub-call of
a function until that function returns. In contrast, walkers can access any scope at any time
in a modular way.

CHAPTER 3. ABSTRATIONS OF JASECI 27

When solving problems with walkers, a developer can think of that walker as a little self-
contained robot or agent that can retain context as it spacially moves about a graph,
interacting with the context in nodes and edges of that graph.

In addition to the introduction of the take command to support new types of control flow
for node-bound iterations. The keywords and semantics of disengage, skip, and ignore
are also introduced. These instruct walkers to stop walking the graph, skip over a node for
execution, and ignore certain paths of the graph. These semantics are describe in more detail
later in the book.

[Entrypoints to a jac program, init recognized as default]

3.3 Abilities

Nodes, edges, and walkers can have abilities. The body of an ability is specified with an
opening and closing braces ({ }) within the specification of a node, edge, or walker and
specify a unit of execution.

Abilities are most closely analogous to methods in a traditional object oriented program,
however they do not have the same semantics of a traditional function. An ability can only
interact within the scope of context and local variables of the node/edge/walker for which it
is affixed and do not have a return semantic. (Though it is important to note, that abilities
can always access the scope of the executing walker using the visitor special variable as
described below)

When using abilities, a developer can think of these as self-contained in-memory/in-data
compute operations.

3.4 here and visitor

At every execution point in a Jac/Jaseci program there are two scopes visible, that of the
walker, and that of the node it is executing on. These contexts can be referenced with the
special variables here and visitor respectively. Walkers use here to refer to the context of
the node it is currently executing on, and abilities can use visitor to refer to the context of
the current walker executing.

3.5 Actions

Actions enables bindings to functionality specified outside of Jac/Jaseci and behave as function
calls with returns. These are analogous to library calls in traditional languages. This external

CHAPTER 3. ABSTRATIONS OF JASECI 28

functionality in practice takes the form of direct binding to python implementations that are
packaged up as a Jaseci action library.

Nerd Alert 3 (time to let your eyes glaze over)

Note: This action interface is the abstraction that allows Jaseci to do it’s fancy inter-
machine optimizations, auto-scaling, auto-componentization etc.

Chapter 4

Architecture of Jaseci and Jac

Contents
4.1 Anatomy of a Jaseci Application . 29
4.2 The Jaseci Machine . 29

4.2.1 Machine Core . 29
4.2.2 Jaseci Cloud Server . 29

4.1 Anatomy of a Jaseci Application

4.2 The Jaseci Machine

4.2.1 Machine Core

4.2.2 Jaseci Cloud Server

29

Chapter 5

Interfacing a Jaseci Machine

Contents
5.1 JSCTL: The Jaseci Command Line Interface 31

5.1.1 The Very Basics: CLI vs Shell-mode, and Session Files 33
5.1.2 A Simple Workflow for Tinkering 36

5.2 Jaseci REST API . 42
5.2.1 API Parameter Cheatsheet . 42

5.3 Full Spec of Jaseci Core APIs . 45
5.3.1 APIs for actions . 45
5.3.2 APIs for architype . 47
5.3.3 APIs for config . 52
5.3.4 APIs for global . 54
5.3.5 APIs for graph . 55
5.3.6 APIs for jac . 59
5.3.7 APIs for logger . 60
5.3.8 APIs for master . 61
5.3.9 APIs for object . 64
5.3.10 APIs for queue . 66
5.3.11 APIs for sentinel . 67
5.3.12 APIs for super . 71
5.3.13 APIs for user . 72
5.3.14 APIs for walker . 74

Now that we know what Jaseci is all about, next lets roll up our sleeves and jump in. One
of the best ways to jump into Jaseci world is to gather some sample Jac programs and start
tinkering with them.

30

CHAPTER 5. INTERFACING A JASECI MACHINE 31

Core Jaseci APIs

JSCTL Cli/Shell

generated

JSSERV REST APIs

generated

JAC Actions

generated

Figure 5.1: Jaseci Interface Architecture

Before we jump right into it, it’s important to have a bit of an understanding of the the
way the interface itself is architected from in the implementation of the Jaseci stack. Jaseci
has a module that serves as its the core interface (summarized in Table 5.1) to the Jaseci
machine. This interface is expressed as a set of method functions within a python class in
Jaseci called master. (By the way, don’t worry, it’s ok to use “master”, its not not P.C.
unless you make it not P.C.). The ‘client’ expressions of that interface in the forms of a
command line tool jsctl and a server-side REST API built using Django 1. Figure 5.1
illustrates this architecture representing the relationship between core APIs and client side
expressions.

If I may say so myself the code architecture of interface generation from function signatures
is elegant, sexy, and takes advantage of the best python has to offer in terms of its support
for introspection. With this approach, as the set of functions and their semantics change in
the master API class, both the JSCTL Cli tool and the REST Server-side API changes. We
dig into this and tons more in the Part IV, so we’ll leave the discussion on implementation
architecture there for the moment. Lets jump right into how we get started playing with
some leet Jaseci haxoring. First we start with JSCTL then dive into the REST API.

5.1 JSCTL: The Jaseci Command Line Interface

JSCTL or jsctl is a command line tool that provides full access to Jaseci. This tool is
installed alongside the installation of the Jaseci Core package and should be accessible from
the command line from anywhere. Let’s say you’ve just checked out the Jaseci repo and
you’re in head folder. You should be able to execute the following.

1Django [5] is a Python web framework for rapid development and clean, pragmatic design

CHAPTER 5. INTERFACING A JASECI MACHINE 32

haxor@linux:~/jaseci# pip3 install ./jaseci_core
Processing ./jaseci_core
...
Successfully installed jaseci-0.1.0
haxor@linux:~/jaseci# jsctl --help
Usage: jsctl [OPTIONS] COMMAND [ARGS]...

The Jaseci Command Line Interface

Options:
-f, --filename TEXT Specify filename for session state.
-m, --mem-only Set true to not save file for session.
--help Show this message and exit.

Commands:
alias Group of `alias` commands
architype Group of `architype` commands
check Group of `check` commands
config Group of `config` commands
dev Internal dev operations
edit Edit a file
graph Group of `graph` commands
login Command to log into live Jaseci server
ls List relevant files
object Group of `object` commands
sentinel Group of `sentinel` commands
walker Group of `walker` commands

haxor@linux:~/jaseci#

Here we’ve installed the Jaseci python package that can be imported into any python project
with a directive such as import jaseci, and at the same time, we’ve installed the jsctl
command line tool into our OS environment. At this point we can issue a call to say jsctl
--help for any working directory.

CHAPTER 5. INTERFACING A JASECI MACHINE 33

Nerd Alert 4 (time to let your eyes glaze over)

Python Code 5.1 shows the implementation of setup.py that is responsible for deploying
the jsctl tool upon pip3 installation of Jaseci Core.

Python Code 5.1: setup.py for Jaseci Core

1 from setuptools import setup, find_packages
2

3 setup(
4 name="jaseci",
5 version="0.1.0",
6 packages=find_packages(include=["jaseci", "jaseci.*"]),
7 install_requires=[
8 "click>=7.1.0,<7.2.0",
9 "click-shell>=2.0,<3.0",

10 "numpy␣>=␣1.21.0,␣<␣1.22.0",
11 "antlr4-python3-runtime>=4.9.0,<4.10.0",
12 "requests",
13 "flake8",
14],
15 package_data={
16 "": ["*.ini"],
17 },
18 entry_points={"console_scripts": ["jsctl␣=␣jaseci.jsctl.jsctl:main"

↪→]},
19)

5.1.1 The Very Basics: CLI vs Shell-mode, and Session Files

This command line tool provides full access to the Jaseci core APIs via the command line,
or a shell mode. In shell mode, all of the same Jaseci API functionally is available within a
single session. To invoke shell-mode, simply execute jsctl without any commands and jsctl
will enter shell mode as per the example below.

CHAPTER 5. INTERFACING A JASECI MACHINE 34

haxor@linux:~/jaseci# jsctl
Starting Jaseci Shell...
jaseci > graph create
{
"context": {},
"anchor": null,
"name": "root",
"kind": "generic",
"jid": "urn:uuid:ef1eb3e4-91c3-40ba-ae7b-14c496f5ced1",
"j_timestamp": "2021-08-15T15:15:50.903960",
"j_type": "graph"

}
jaseci > exit
haxor@linux:~/jaseci#

Here we launched jsctl directly into shell mode for a single session and we can issue various
calls to the Jaseci API for that session. In this example we issue a single call to graph
create, which creates a graph within the Jaseci session with a single root node, then exit
the shell with exit.

The exact behavior can be achieved without ever entering the shell directly from the command
line as shown below.

haxor@linux:~/jaseci# jsctl graph create
{
"context": {},
"anchor": null,
"name": "root",
"kind": "generic",
"jid": "urn:uuid:91dd8c79-24e4-4a54-8d48-15bee52c340b",
"j_timestamp": "2021-08-15T15:40:12.163954",
"j_type": "graph"

}
haxor@linux:~/jaseci#

All such calls to Jaseci’s API (summarized in Table 5.1) can be issued either through
shell-mode and CLI mode.

Session Files At this point, it’s important to understand how sessions work. In a nutshell,
a session captures the complete state of a jaseci machine. This state includes the status of
memory, graphs, walkers, configurations, etc. The complete state of a Jaseci machine can be
captured in a .session file. Every time state changes for a given session via the jsctl tool
the assigned session file is updated. If you’ve been following along so far, try this.

CHAPTER 5. INTERFACING A JASECI MACHINE 35

haxor@linux:~/jaseci# ls *.session
js.session
haxor@linux:~/jaseci# jsctl graph list
[
{
"context": {},
"anchor": null,
"name": "root",
"kind": "generic",
"jid": "urn:uuid:ef1eb3e4-91c3-40ba-ae7b-14c496f5ced1",
"j_timestamp": "2021-08-15T15:55:15.030643",
"j_type": "graph"

},
{
"context": {},
"anchor": null,
"name": "root",
"kind": "generic",
"jid": "urn:uuid:91dd8c79-24e4-4a54-8d48-15bee52c340b",
"j_timestamp": "2021-08-15T15:55:46.419701",
"j_type": "graph"

}
]
haxor@linux:~/jaseci#

Note from the first call to ls we have a session file that has been created call js.session.
This is the default session file jsctl creates and utilizes when called either in cli mode or
shell mode. After listing session files, notices the call to graph list which lists the root
nodes of all graphs created within a Jaseci machine’s state. Note jsctl lists two such graph
root nodes. Indeed these nodes correspond to the ones we’ve just created when contrasting
cli mode and shell mode above. Having these two graphs demonstrates that across both
instantiations of jsctl the same session, js.session, is being used. Now try the following.

haxor@linux:~/jaseci# jsctl -f mynew.session graph list
[]
haxor@linux:~/jaseci# ls *.session
js.session mynew.session
haxor@linux:~/jaseci#

Here we see that we can use the -f or --filename flag to specify the session file to use.
In this case we list the graphs of the session corresponding to mynew.session and see the
JSON representation of an empty list of objects. We then list session files and see that one
was created for mynew.session. If we were to now type jsctl --filename js.session

CHAPTER 5. INTERFACING A JASECI MACHINE 36

graph list, we would see a list of the two graph objects that we created earlier.

In-memory mode Its important to note that there is also an in-memory mode that
can be created buy using the -m or --mem-only flags. This flag is particularly useful when
you’d simply like to tinker around with a machine in shell-mode or you’d like to script some
behavior to be executed in Jac and have no need to maintain machine state after completion.
We will be using in memory session mode quite a bit, so you’ll get a sense of its usage
throughout this chapter. Next we actually see a workflow for tinkering.

5.1.2 A Simple Workflow for Tinkering

As you get to know Jaseci and Jac, you’ll want to try things and tinker a bit. In this section,
we’ll get to know how jsctl can be used as the main platform for this play. A typical
flow will involve jumping into shell-mode, writing some code, running that code to observe
output, and in visualizing the state of the graph, and rendering that graph in dot to see it’s
visualization.

Install Graphvis Before we jump right in, let me strongly encourage you install Graphviz.
Graphviz is open source graph visualization software package that includes a handy dandy
command line tool call dot. Dot is also a standardized and open graph description language
that is a key primitive of Graphviz. The dot tool in Graphviz takes dot code and renders
it nicely. Graphviz is super easy to install. In Ubuntu simply type sudo apt install
graphviz, or on mac type brew install graphviz and you’re done! You should be able
to call dot from the command line.

Ok, lets start with a scenario. Say you’d like to write your first Jac program which will
include some nodes, edges, and walkers and you’d like to print to standard output and see
what the graph looks like after you run an interesting walker. Let role play.

Lets hop into a jsctl shell.

haxor@linux:~/jaseci# jsctl -m
Starting Jaseci Shell...
jaseci >

Good, we’re in! And we’ve set the session to be an in-memory session so no session file will
be created or saved. For this play session we only care about the Jac program we write,
which will be saved. The state of the Jaseci machine we run our toy program on doesn’t
really matter to us.

Now that we’ve got our shell running, we first want to create a blank graph. Remember,
all walkers, Jaseci’s primary unit of computation, must run on a node. As default, we can
use the root node of a freshly created graph, hence we need to create a base graph. But oh

CHAPTER 5. INTERFACING A JASECI MACHINE 37

no! We’re a bit rusty and have forgotten how create our initial graph using jsctl. Let’s
navigate the help menu to jog our memories.

jaseci > help

Documented commands (type help <topic>):
==
alias check dev graph ls sentinel
architype config edit login object walker

Undocumented commands:
======================
exit help quit

jaseci > help graph
Usage: graph [OPTIONS] COMMAND [ARGS]...

Group of `graph` commands

Options:
--help Show this message and exit.

Commands:
active Group of `graph active` commands
create Create a graph instance and return root node graph object
delete Permanently delete graph with given id
get Return the content of the graph with format Valid modes:...
list Provide complete list of all graph objects (list of root node...
node Group of `graph node` commands

jaseci > graph create --help
Usage: graph create [OPTIONS]

Create a graph instance and return root node graph object

Options:
-o, --output TEXT Filename to dump output of this command call.
-set_active BOOLEAN
--help Show this message and exit.

jaseci >

Ohhh yeah! That’s it. After simply using help from the shell we were able to navigate to
the relevant info for graph create. Let’s use this newly gotten wisdom.

CHAPTER 5. INTERFACING A JASECI MACHINE 38

jaseci > graph create -set_active true
{
"context": {},
"anchor": null,
"name": "root",
"kind": "generic",
"jid": "urn:uuid:7aa6caff-7a46-4a29-a3b0-b144218312fa",
"j_timestamp": "2021-08-15T21:34:31.797494",
"j_type": "graph"

}
jaseci >

Great! With this command a graph is created and a single root node is born. jsctl shares
with us the details of this root graph node. In Jaseci, graphs are referenced by their root
nodes and every graph has a single root node.

Notice we’ve also set the -set_active parameter to true. This parameter informs Jaseci to
use the root node of this graph (in particular the UUID of this root node) as the default
parameter to all future calls to Jaseci Core APIs that have a parameter specifying a graph
or node to operate on. This global designation that this graph is the ‘active’ graph is a
convenience feature so we the user doesn’t have to specify this parameter for future calls. Of
course this can be overridden, more on that later.

Next, lets write some Jac code for our little program. jsctl has a built in editor that is
simple yet powerful. You can use either this built in editor, or your favorite editor to create
the .jac file for our toy program. Let’s use the built in editor.

jaseci > edit fam.jac

The edit command invokes the built in editor. Though it’s a terminal editor based on
ncurses, you can basically use it much like you’d use any wysiwyg editor with features
like standard cut ctrl-c and paste ctrl-v, mouse text selection, etc. It’s based on the
phenomenal pure python project from Google called ci_edit. For more detailed help cheat
sheet see Appendix. If you must use your own favorite editor, simply be sure that you save
the fam.jac file in the same working directory from which you are running the Jaseci shell.
Now type out the toy program in Jac Code 5.2.

Jac Code 5.2: Jac Family Toy Program

1 node man;
2 node woman;
3

4 edge mom;
5 edge dad;
6 edge married;

CHAPTER 5. INTERFACING A JASECI MACHINE 39

7

8 walker create_fam {
9 root {

10 spawn here --> node::man;
11 spawn here --> node::woman;
12 --> node::man <-[married]-> --> node::woman;
13 take -->;
14 }
15 woman {
16 son = spawn here <-[mom]- node::man;
17 son -[dad]-> <-[married]->;
18 }
19 man {
20 std.out("I␣didn't␣do␣any␣of␣the␣hard␣work.");
21 }
22 }

Don’t worry if that looks like the most cryptic gobbledygook you’ve ever seen in your life. As
you learn the Jac language, all will become clear. For now, lets tinker around. Now save and
quit the editor. If you are using the built in editor thats simply a ctrl-s, ctrl-q combo.

Ok, now we should have a fam.jac file saved in our working directory. We can check from
the Jaseci shell!

jaseci > ls
fam.jac
jaseci >

We can list files from the shell prompt. By default the ls command only lists files relevant
to Jaseci (i.e., *.jac, *.dot, etc). To list all files simply add a --all or -a.

Now, on to what is on of the key operations. Lets “register” a sentinel based on our Jac
program. A sentinel is the abstraction Jaseci uses to encapsulate compiled walkers and
architype nodes and edges. You can think of registering a sentinel as compiling your jac
program. The walkers of a given sentinel can then be invoked and run on arbitrary nodes of
any graph. Let’s register our Jac toy program.

CHAPTER 5. INTERFACING A JASECI MACHINE 40

jaseci > sentinel register -name fam -code fam.jac -set_active true
2021-08-15 18:03:38,823 - INFO - parse_jac_code: fam: Processing Jac code

↪→ ...
2021-08-15 18:03:39,001 - INFO - register_code: fam: Successfully

↪→ registered code
{
"name": "fam",
"kind": "generic",
"jid": "urn:uuid:cfc9f017-cb6c-4d06-bc45-758289c96d3f",
"j_timestamp": "2021-08-15T22:03:38.823651",
"j_type": "sentinel"

}
jaseci >

Ok, theres a lot that just happened there. First, we see some logging output that informs us
that the Jac code is being processed (which really means the Jac program is being parsed
and IR being generated). If there are any syntax errors or other issues, this is where the error
output will be printed along with any problematic lines of code and such. If all goes well,
we see the next logging output that the code has been successfully registered. The formal
output is the relevant details of the successfully created sentinel. Note, that we’ve also made
this the “active” sentinel meaning it will be used as the default setting for any calls to Jaseci
Core APIs that require a sentinel be specified. At this point, Jaseci has registered our code
and we are ready to run walkers!

But first, lets take a quick look at some of the objects loaded into our Jaseci machine. For
this I’ll briefly introduce the alias group of APIs.

jaseci > alias list
{
"sentinel:fam": "urn:uuid:cfc9f017-cb6c-4d06-bc45-758289c96d3f",
"fam:walker:create_fam": "urn:uuid:17598be7-e14f-4000-9d85-66b439fa7421

↪→ ",
"fam:architype:man": "urn:uuid:c366518d-3b1e-41a3-b1ba-0b9a3ce6e1d6",
"fam:architype:woman": "urn:uuid:7eb1c510-73ca-49eb-96aa-34357f77b4cb",
"fam:architype:mom": "urn:uuid:8c9d2a66-4954-4d11-8109-a36b961eeea1",
"fam:architype:dad": "urn:uuid:d80111e4-62e2-4694-bfaa-f3294d9520d8",
"fam:architype:married": "urn:uuid:dc4974df-ea57-406e-9468-a1aa5260d306

↪→ "
}
jaseci >

The alias set of APIs are designed as an additional set of convenience tools to simplify the
referencing of various objects (walkers, architypes, etc) in Jaseci. Instead of having to use
the UUIDs to reference each object, an alias can be used to refer to any object. These aliases

CHAPTER 5. INTERFACING A JASECI MACHINE 41

can be created or removed utilizing the alias APIs.

Upon registering a sentinel, a set of aliases are automatically created for each object produced
from processing the corresponding Jac program. The call to alias list lists all available
aliases in the session. Here, we’re using this call to see the objects that were created for our
toy program and validate it corresponds to the ones we would expect from the Jac Program
represented in JC 5.2. Everything looks good!

Now, for the big moment! lets run our walker on the root node of the graph we created and
see what happens!

jaseci > walker run -name create_fam
I didn't do any of the hard work.
[]
jaseci >

Sweet!! We see the standard output we’d expect from our toy program. Hrm, as we’d expect,
when it comes to the family, the man doesn’t do much it seems.

But there were many semantics to what our toy program does. How do we visualize that the
graph produced by or program is right. Well we’re in luck! We can use Jaseci ‘dot’ features
to take a look at our graph!!

jaseci > graph get -mode dot -o fam.dot
strict digraph root {

"n0" [id="550ce1bb405c4477947e019d1e8428eb", label="n0:root"]
"n1" [id="e5c0a9b28f134313a28794a0c061bff1", label="n1:man"]
"n2" [id="bc2d2f18e2de4190a50bec2a32392a4f", label="n2:woman"]
"n3" [id="92ed7781c6674824905b149f7f320fcd", label="n3:man"]
"n1" -> "n3" [id="76535f6c3f0e4b7483c31863299e2784", label="e0:dad"]
"n3" -> "n2" [id="6bb83ee19f8b4f7eb93a11f5d4fa7f0a", label="e1:mom"]
"n1" -> "n2" [id="0fc3550e75f241ce8d1660860cf4e5c9", label="e2:

↪→ married", dir="both"]
"n0" -> "n2" [id="03fcfb60667b4631b46ee589d982e1ce", label="e3"]
"n0" -> "n1" [id="d1713ac5792e4272b9b20917b0c3ec33", label="e4"]

}
[saved to fam.dot]
jaseci >

n0:root

n1:man

e4

n2:woman

e0

e2:married

n3:man

e1:dad

e3:mom

Figure 5.2: Graph for fam.jac

Here we’ve used the graph get core API to get a print out of
the graph in dot format. By default graph get dumps out a
list of all edge and node objects of the graph, however with the
-mode dot parameter we’ve specified that the graph should be
printed in dot. The -o flag specifies a file to dump the output
of the command. Note that the -o flag for jsctl commands

CHAPTER 5. INTERFACING A JASECI MACHINE 42

only outputs the formal returned data (json payload, or string)
from a Jaseci Core API. Logging output, standard output, etc
will not be saved to the file though anything reported by a
walker using report will be saved. This output file directive
is jsctl specific and work with any command given to jsctl.

To see a pretty visual of the graph itself, we can use the dot
command from Graphviz. Simply type dot -Tpdf fam.dot
-o fam.pdf and Voila! We can see the beautiful graph our toy Jac program has produced
on its way to the standard output.

Awesomeness! We are Jac Haxors now!

5.2 Jaseci REST API

5.2.1 API Parameter Cheatsheet

Interface Parameters
info n/a
walker summon key: str (*req), wlk: Walker (*req), nd: Node (*

↪→ req), ctx: dict (\{\}), _req_ctx: dict (\{\}),
↪→ global_sync: bool (True)

walker callback nd: Node (*req), wlk: Walker (*req), key: str (*
↪→ req), ctx: dict (\{\}), _req_ctx: dict (\{\}),
↪→ global_sync: bool (True)

walker register snt: Sentinel (None), code: str (), dir: str (/),
↪→ encoded: bool (False)

walker get wlk: Walker (*req), mode: str (default), detailed:
↪→ bool (False)

walker set wlk: Walker (*req), code: str (*req), mode: str (
↪→ default)

walker list snt: Sentinel (None), detailed: bool (False)
walker spawn create name: str (*req), snt: Sentinel (None)
walker spawn list detailed: bool (False)
walker spawn delete name: str (*req)
walker spawn clear n/a
walker yield list detailed: bool (False)
walker yield delete name: str (*req)
walker yield clear n/a
walker prime wlk: Walker (*req), nd: Node (None), ctx: dict (\{\}),

↪→ _req_ctx: dict (\{\})

CHAPTER 5. INTERFACING A JASECI MACHINE 43

walker execute wlk: Walker (*req), prime: Node (None), ctx: dict
↪→ (\{\}), _req_ctx: dict (\{\}), profiling: bool (
↪→ False)

walker run name: str (*req), nd: Node (None), ctx: dict (\{\})
↪→ , _req_ctx: dict (\{\}), snt: Sentinel (None),
↪→ profiling: bool (False), is_async: bool (False)

walker queue check task_id: str ()
walker queue wait task_id: str (*req)
user create name: str (*req), global_init: str (), global_init_ctx

↪→ : dict (\{\}), other_fields: dict (\{\})
alias register name: str (*req), value: str (*req)
alias list n/a
alias delete name: str (*req)
alias clear n/a
global get name: str (*req)
global set name: str (*req), value: str (*req)
global delete name: str (*req)
global sentinel set snt: Sentinel (None)
global sentinel unset n/a
object get obj: Element (*req), depth: int (0), detailed: bool (

↪→ False)
object perms get obj: Element (*req)
object perms set obj: Element (*req), mode: str (*req)
object perms default mode: str (*req)
object perms grant obj: Element (*req), mast: Element (*req), read_only:

↪→ bool (False)
object perms revoke obj: Element (*req), mast: Element (*req)
graph create set_active: bool (True)
graph get gph: Graph (None), mode: str (default), detailed: bool

↪→ (False)
graph list detailed: bool (False)
graph active set gph: Graph (*req)
graph active unset n/a
graph active get detailed: bool (False)
graph delete gph: Graph (*req)
graph node get nd: Node (*req), keys: list ([])
graph node view nd: Node (None), detailed: bool (False), show_edges:

↪→ bool (True), node_type: str (), edge_type: str ()
graph node set nd: Node (*req), ctx: dict (*req), snt: Sentinel (None

↪→)
graph walk (cli only) nd: Node (None)

CHAPTER 5. INTERFACING A JASECI MACHINE 44

sentinel register name: str (default), code: str (), code_dir: str
↪→ (./), mode: str (default), encoded: bool (False),
↪→ auto_run: str (init), auto_run_ctx: dict (\{\}),
↪→ auto_create_graph: bool (True), set_active: bool (
↪→ True)

sentinel pull set_active: bool (True), on_demand: bool (True)
sentinel get snt: Sentinel (None), mode: str (default), detailed:

↪→ bool (False)
sentinel set code: str (*req), code_dir: str (./), encoded: bool (

↪→ False), snt: Sentinel (None), mode: str (default)
sentinel list detailed: bool (False)
sentinel test snt: Sentinel (None), detailed: bool (False)
sentinel active set snt: Sentinel (*req)
sentinel active unset n/a
sentinel active global auto_run: str (), auto_run_ctx: dict (\{\}),

↪→ auto_create_graph: bool (False), detailed: bool
↪→ (False)

sentinel active get detailed: bool (False)
sentinel delete snt: Sentinel (*req)
wapi name: str (*req), nd: Node (None), ctx: dict (\{\})

↪→ , _req_ctx: dict (\{\}), snt: Sentinel (None),
↪→ profiling: bool (False)

architype register code: str (*req), encoded: bool (False), snt: Sentinel
↪→ (None)

architype get arch: Architype (*req), mode: str (default), detailed:
↪→ bool (False)

architype set arch: Architype (*req), code: str (*req), mode: str (
↪→ default)

architype list snt: Sentinel (None), detailed: bool (False)
architype delete arch: Architype (*req), snt: Sentinel (None)
master create name: str (*req), global_init: str (), global_init_ctx

↪→ : dict (\{\}), other_fields: dict (\{\})
master get name: str (*req), mode: str (default), detailed: bool

↪→ (False)
master list detailed: bool (False)
master active set name: str (*req)
master active unset n/a
master active get detailed: bool (False)
master self detailed: bool (False)
master delete name: str (*req)

CHAPTER 5. INTERFACING A JASECI MACHINE 45

master createsuper name: str (*req), global_init: str (), global_init_ctx
↪→ : dict (\{\}), other_fields: dict (\{\})

master allusers limit: int (0), offset: int (0), asc: bool (False)
master become mast: Master (*req)
master unbecome n/a
config get name: str (*req), do_check: bool (True)
config set name: str (*req), value: str (*req), do_check: bool (

↪→ True)
config refresh name: str (*req)
config list n/a
config index n/a
config exists name: str (*req)
config delete name: str (*req), do_check: bool (True)
logger http connect host: str (*req), port: int (*req), url: str (*req),

↪→ log: str (all)
logger http clear log: str (all)
logger list n/a
actions load local file: str (*req)
actions load remote url: str (*req)
actions load module mod: str (*req)
actions list name: str ()
jac build (cli only) file: str (*req), out: str ()
jac test (cli only) file: str (*req), detailed: bool (False)
jac run (cli only) file: str (*req), walk: str (init), ctx: dict (\{\}),

↪→ profiling: bool (False)
jac dot (cli only) file: str (*req), walk: str (init), ctx: dict (\{\}),

↪→ detailed: bool (False)

Table 5.1: Full set of core Jaseci APIs

5.3 Full Spec of Jaseci Core APIs

5.3.1 APIs for actions

This set action APIs enable the manual management of Jaseci actions and action libraries/sets.
Action libraries can be loaded locally into the running instance of the python program,
or as a remote container linked action library. In this mode, action libraries operate as
micro-services. Jaseci will be able to dynamically and automatically make this decision for
the user based on online monitoring and performance profiling.

CHAPTER 5. INTERFACING A JASECI MACHINE 46

5.3.1.1 actions load local

cli: actions load local | api: actions_load_local | auth: admin

args: file: str (*req)

This API will dynamically load a module based on a python file. The module is
loaded directly into the running Jaseci python instance. This API also makes an
attempt to auto detect and hot load any python package dependencies the file may
reference via python’s relative imports. This file is assumed to have the necessary
annotations and decorations required by Jaseci to recognize its actions.

Parameters
file – The python file with full to load actions from. (i.e., /local/myact.py)

5.3.1.2 actions load remote

cli: actions load remote | api: actions_load_remote | auth: admin

args: url: str (*req)

This API will dynamically load a set of actions that are present on a remote
server/micro-service. This server must be configured to interact with Jaseci properly.
This is easily achieved using the same decorators used for local action libraries. Re-
mote actions allow for higher flexibility in the languages supported for action libraries.
If an library writer would like to use another language, the main hook REST api
simply needs to be implemented. Please refer to documentation on creating action
libraries for more details.

Parameters
url – The url of the API server supporting Jaseci actions.

CHAPTER 5. INTERFACING A JASECI MACHINE 47

5.3.1.3 actions load module

cli: actions load module | api: actions_load_module | auth: admin

args: mod: str (*req)

This API will dynamically load a module using python’s module import format. This
is particularly useful for pip installed action libraries as the developer can directly
reference the module using the same format as a regular python import. As with load
local, the module will be loaded directly into the running Jaseci python instance.

Parameters
mod – The import style module to load actions from. (i.e., jaseci_ai_kit.bi_enc)

5.3.1.4 actions list

cli: actions list | api: actions_list | auth: admin

args: name: str ()

This API is used to list the loaded actions active in Jaseci. These actions include all
types of loaded actions whether it be local modules or remote containers. A particular
set of actions can be viewed using the name parameter.

Parameters
name – The name for a library for which to filter the view of shown actions. If
left blank all actions from all loaded sets will be shown.

5.3.2 APIs for architype

The architype set of APIs allow for the addition and removing of architypes. Given a
Jac implementation of an architype these APIs are designed for creating, compiling, and

CHAPTER 5. INTERFACING A JASECI MACHINE 48

managing architypes that can be used by Jaseci. There are two ways to add an architype to
Jaseci, either through the management of sentinels using the sentinel API, or by registering
independent architypes with these architype APIs. These APIs are also used for inspecting
and managing existing arichtypes that a Jaseci instance is aware of.

5.3.2.1 architype register

cli: architype register | api: architype_register | auth: user

args: code: str (*req), encoded: bool (False), snt: Sentinel (None)

This register API allows for the creation or replacement/update of an architype that
can then be used by walkers in their interactions of graphs. The code argument takes
Jac source code for the single architype. To load multiple architypes and walkers at
the same time, use sentinel register API.

Parameters
code – The text (or filename) for an architypes Jac code
encoded – True/False flag as to whether code is encode in base64
snt – The UUID of the sentinel to be the owner of this architype

Returns
Fields include ’architype’: Architype object if created otherwise null ’success’:
True/False whether register was successful ’errors’: List of errors if register
failed ’response’: Message on outcome of register call

CHAPTER 5. INTERFACING A JASECI MACHINE 49

5.3.2.2 architype get

cli: architype get | api: architype_get | auth: user

args: arch: Architype (*req), mode: str (default), detailed: bool (
↪→ False)

No documentation yet.

Parameters
arch – The architype being accessed
mode – Valid modes: default, code, ir,
detailed – Flag to give summary or complete set of fields

Returns
Fields include (depends on mode) ’code’: Formal source code for architype ’ir’:
Intermediate representation of architype ’architype’: Architype object print

CHAPTER 5. INTERFACING A JASECI MACHINE 50

5.3.2.3 architype set

cli: architype set | api: architype_set | auth: user

args: arch: Architype (*req), code: str (*req), mode: str (default)

No documentation yet.

Parameters
arch – The architype being set
code – The text (or filename) for an architypes Jac code/ir
mode – Valid modes: default, code, ir,

Returns
Fields include (depends on mode) ’success’: True/False whether set was
successful ’errors’: List of errors if set failed ’response’: Message on outcome
of set call

CHAPTER 5. INTERFACING A JASECI MACHINE 51

5.3.2.4 architype list

cli: architype list | api: architype_list | auth: user

args: snt: Sentinel (None), detailed: bool (False)

No documentation yet.

Parameters
snt – The sentinel for which to list its architypes
detailed – Flag to give summary or complete set of fields

Returns
List of architype objects

5.3.2.5 architype delete

cli: architype delete | api: architype_delete | auth: user

args: arch: Architype (*req), snt: Sentinel (None)

No documentation yet.

Parameters
arch – The architype being set
snt – The sentinel for which to list its architypes

Returns
Fields include (depends on mode) ’success’: True/False whether command was
successful ’response’: Message on outcome of command

CHAPTER 5. INTERFACING A JASECI MACHINE 52

5.3.3 APIs for config

Abstracted since there are no valid configs in core atm, see jaseci_serv to see how used.

5.3.3.1 config get

cli: config get | api: config_get | auth: admin

args: name: str (*req), do_check: bool (True)

No documentation yet.

5.3.3.2 config set

cli: config set | api: config_set | auth: admin

args: name: str (*req), value: str (*req), do_check: bool (True)

No documentation yet.

5.3.3.3 config refresh

cli: config refresh | api: config_refresh | auth: admin

args: name: str (*req)

No documentation yet.

CHAPTER 5. INTERFACING A JASECI MACHINE 53

5.3.3.4 config list

cli: config list | api: config_list | auth: admin

args: n/a

No documentation yet.

5.3.3.5 config index

cli: config index | api: config_index | auth: admin

args: n/a

No documentation yet.

5.3.3.6 config exists

cli: config exists | api: config_exists | auth: admin

args: name: str (*req)

No documentation yet.

CHAPTER 5. INTERFACING A JASECI MACHINE 54

5.3.3.7 config delete

cli: config delete | api: config_delete | auth: admin

args: name: str (*req), do_check: bool (True)

No documentation yet.

5.3.4 APIs for global

No documentation yet.

5.3.4.1 global set

cli: global set | api: global_set | auth: admin

args: name: str (*req), value: str (*req)

No documentation yet.

5.3.4.2 global delete

cli: global delete | api: global_delete | auth: admin

args: name: str (*req)

No documentation yet.

CHAPTER 5. INTERFACING A JASECI MACHINE 55

5.3.4.3 global sentinel set

cli: global sentinel set | api: global_sentinel_set | auth: admin

args: snt: Sentinel (None)

No documentation yet.

5.3.4.4 global sentinel unset

cli: global sentinel unset | api: global_sentinel_unset | auth: admin

args: n/a

No documentation yet.

5.3.5 APIs for graph

No documentation yet.

5.3.5.1 graph create

cli: graph create | api: graph_create | auth: user

args: set_active: bool (True)

No documentation yet.

CHAPTER 5. INTERFACING A JASECI MACHINE 56

5.3.5.2 graph get

cli: graph get | api: graph_get | auth: user

args: gph: Graph (None), mode: str (default), detailed: bool (False)

Valid modes: default, dot,

5.3.5.3 graph list

cli: graph list | api: graph_list | auth: user

args: detailed: bool (False)

No documentation yet.

5.3.5.4 graph active set

cli: graph active set | api: graph_active_set | auth: user

args: gph: Graph (*req)

No documentation yet.

CHAPTER 5. INTERFACING A JASECI MACHINE 57

5.3.5.5 graph active unset

cli: graph active unset | api: graph_active_unset | auth: user

args: n/a

No documentation yet.

5.3.5.6 graph active get

cli: graph active get | api: graph_active_get | auth: user

args: detailed: bool (False)

No documentation yet.

5.3.5.7 graph delete

cli: graph delete | api: graph_delete | auth: user

args: gph: Graph (*req)

No documentation yet.

CHAPTER 5. INTERFACING A JASECI MACHINE 58

5.3.5.8 graph node get

cli: graph node get | api: graph_node_get | auth: user

args: nd: Node (*req), keys: list ([])

No documentation yet.

5.3.5.9 graph node view

cli: graph node view | api: graph_node_view | auth: user

args: nd: Node (None), detailed: bool (False), show_edges: bool (True)
↪→ , node_type: str (), edge_type: str ()

No documentation yet.

5.3.5.10 graph node set

cli: graph node set | api: graph_node_set | auth: user

args: nd: Node (*req), ctx: dict (*req), snt: Sentinel (None)

No documentation yet.

CHAPTER 5. INTERFACING A JASECI MACHINE 59

5.3.5.11 graph walk

cli: graph walk (cli only)

args: nd: Node (None)

No documentation yet.

5.3.6 APIs for jac

No documentation yet.

5.3.6.1 jac build

cli: jac build (cli only)

args: file: str (*req), out: str ()

No documentation yet.

5.3.6.2 jac test

cli: jac test (cli only)

args: file: str (*req), detailed: bool (False)

and .jir executables

CHAPTER 5. INTERFACING A JASECI MACHINE 60

5.3.6.3 jac run

cli: jac run (cli only)

args: file: str (*req), walk: str (init), ctx: dict ({}), profiling:
↪→ bool (False)

and .jir executables

5.3.6.4 jac dot

cli: jac dot (cli only)

args: file: str (*req), walk: str (init), ctx: dict ({}), detailed:
↪→ bool (False)

files and .jir executables

5.3.7 APIs for logger

No documentation yet.

5.3.7.1 logger http connect

cli: logger http connect | api: logger_http_connect | auth: admin

args: host: str (*req), port: int (*req), url: str (*req), log: str (
↪→ all)

Valid log params: sys, app, all

CHAPTER 5. INTERFACING A JASECI MACHINE 61

5.3.7.2 logger http clear

cli: logger http clear | api: logger_http_clear | auth: admin

args: log: str (all)

Valid log params: sys, app, all

5.3.7.3 logger list

cli: logger list | api: logger_list | auth: admin

args: n/a

No documentation yet.

5.3.8 APIs for master

These APIs

5.3.8.1 master create

cli: master create | api: master_create | auth: user

args: name: str (*req), global_init: str (), global_init_ctx: dict
↪→ ({}), other_fields: dict ({})

other fields used for additional feilds for overloaded interfaces (i.e., Dango interface)

CHAPTER 5. INTERFACING A JASECI MACHINE 62

5.3.8.2 master get

cli: master get | api: master_get | auth: user

args: name: str (*req), mode: str (default), detailed: bool (False)

Valid modes: default,

5.3.8.3 master list

cli: master list | api: master_list | auth: user

args: detailed: bool (False)

No documentation yet.

5.3.8.4 master active set

cli: master active set | api: master_active_set | auth: user

args: name: str (*req)

NOTE: Specail handler included in general interface to api

CHAPTER 5. INTERFACING A JASECI MACHINE 63

5.3.8.5 master active unset

cli: master active unset | api: master_active_unset | auth: user

args: n/a

No documentation yet.

5.3.8.6 master active get

cli: master active get | api: master_active_get | auth: user

args: detailed: bool (False)

No documentation yet.

5.3.8.7 master self

cli: master self | api: master_self | auth: user

args: detailed: bool (False)

No documentation yet.

CHAPTER 5. INTERFACING A JASECI MACHINE 64

5.3.8.8 master delete

cli: master delete | api: master_delete | auth: user

args: name: str (*req)

No documentation yet.

5.3.9 APIs for object

...

5.3.9.1 global get

cli: global get | api: global_get | auth: user

args: name: str (*req)

No documentation yet.

5.3.9.2 object get

cli: object get | api: object_get | auth: user

args: obj: Element (*req), depth: int (0), detailed: bool (False)

No documentation yet.

CHAPTER 5. INTERFACING A JASECI MACHINE 65

5.3.9.3 object perms get

cli: object perms get | api: object_perms_get | auth: user

args: obj: Element (*req)

No documentation yet.

5.3.9.4 object perms set

cli: object perms set | api: object_perms_set | auth: user

args: obj: Element (*req), mode: str (*req)

No documentation yet.

5.3.9.5 object perms default

cli: object perms default | api: object_perms_default | auth: user

args: mode: str (*req)

No documentation yet.

CHAPTER 5. INTERFACING A JASECI MACHINE 66

5.3.9.6 object perms grant

cli: object perms grant | api: object_perms_grant | auth: user

args: obj: Element (*req), mast: Element (*req), read_only: bool (
↪→ False)

No documentation yet.

5.3.9.7 object perms revoke

cli: object perms revoke | api: object_perms_revoke | auth: user

args: obj: Element (*req), mast: Element (*req)

No documentation yet.

5.3.9.8 info

cli: info | api: info | auth: public

args: n/a

No documentation yet.

5.3.10 APIs for queue

APIs used for celery configuration and monitoring

CHAPTER 5. INTERFACING A JASECI MACHINE 67

5.3.10.1 walker queue check

cli: walker queue check | api: walker_queue_check | auth: user

args: task_id: str ()

No documentation yet.

5.3.10.2 walker queue wait

cli: walker queue wait | api: walker_queue_wait | auth: user

args: task_id: str (*req)

No documentation yet.

5.3.11 APIs for sentinel

A sentinel is a unit in Jaseci that represents the organization and management of a collection
of architypes and walkers. In a sense, you can think of a sentinel as a complete Jac
implementation of a program or API application. Though its the case that many sentinels
can be interchangeably across any set of graphs, most use cases will typically be a single
sentinel shared by all users and managed by an admin(s), or each users maintaining a single
sentinel customized for their individual needs. Many novel usage models are possible, but I’d
point the beginner to the model most analogous to typical server side software development
to start with. This model would be to have a single admin account responsible for updating
a single sentinel that all users would share for their individual graphs. This model is achieved
through using sentinel_register, sentinel_active_global, and global_sentinel_set.

CHAPTER 5. INTERFACING A JASECI MACHINE 68

5.3.11.1 sentinel register

cli: sentinel register | api: sentinel_register | auth: user

args: name: str (default), code: str (), code_dir: str (./), mode
↪→ : str (default), encoded: bool (False), auto_run: str (init)
↪→ , auto_run_ctx: dict ({}), auto_create_graph: bool (True),
↪→ set_active: bool (True)

Auto run is the walker to execute on register (assumes active graph is selected)

5.3.11.2 sentinel pull

cli: sentinel pull | api: sentinel_pull | auth: user

args: set_active: bool (True), on_demand: bool (True)

No documentation yet.

5.3.11.3 sentinel get

cli: sentinel get | api: sentinel_get | auth: user

args: snt: Sentinel (None), mode: str (default), detailed: bool (False
↪→)

Valid modes: default, code, ir,

CHAPTER 5. INTERFACING A JASECI MACHINE 69

5.3.11.4 sentinel set

cli: sentinel set | api: sentinel_set | auth: user

args: code: str (*req), code_dir: str (./), encoded: bool (False), snt
↪→ : Sentinel (None), mode: str (default)

Valid modes: code, ir,

5.3.11.5 sentinel list

cli: sentinel list | api: sentinel_list | auth: user

args: detailed: bool (False)

No documentation yet.

5.3.11.6 sentinel test

cli: sentinel test | api: sentinel_test | auth: user

args: snt: Sentinel (None), detailed: bool (False)

No documentation yet.

CHAPTER 5. INTERFACING A JASECI MACHINE 70

5.3.11.7 sentinel active set

cli: sentinel active set | api: sentinel_active_set | auth: user

args: snt: Sentinel (*req)

No documentation yet.

5.3.11.8 sentinel active unset

cli: sentinel active unset | api: sentinel_active_unset | auth: user

args: n/a

No documentation yet.

5.3.11.9 sentinel active global

cli: sentinel active global | api: sentinel_active_global | auth:
user

args: auto_run: str (), auto_run_ctx: dict ({}), auto_create_graph:
↪→ bool (False), detailed: bool (False)

Exclusive OR with pull strategy

CHAPTER 5. INTERFACING A JASECI MACHINE 71

5.3.11.10 sentinel active get

cli: sentinel active get | api: sentinel_active_get | auth: user

args: detailed: bool (False)

No documentation yet.

5.3.11.11 sentinel delete

cli: sentinel delete | api: sentinel_delete | auth: user

args: snt: Sentinel (*req)

No documentation yet.

5.3.12 APIs for super

No documentation yet.

5.3.12.1 master createsuper

cli: master createsuper | api: master_createsuper | auth: admin

args: name: str (*req), global_init: str (), global_init_ctx: dict
↪→ ({}), other_fields: dict ({})

other fields used for additional feilds for overloaded interfaces (i.e., Dango interface)

CHAPTER 5. INTERFACING A JASECI MACHINE 72

5.3.12.2 master allusers

cli: master allusers | api: master_allusers | auth: admin

args: limit: int (0), offset: int (0), asc: bool (False)

return and offset specfies where to start NOTE: Abstract interface to be overridden

5.3.12.3 master become

cli: master become | api: master_become | auth: admin

args: mast: Master (*req)

No documentation yet.

5.3.12.4 master unbecome

cli: master unbecome | api: master_unbecome | auth: admin

args: n/a

No documentation yet.

5.3.13 APIs for user

These User APIs enable the creation and management of users on a Jaseci machine. The
creation of a user in this context is synonymous to the creation of a master Jaseci object.
These APIs are particularly useful when running a Jaseci server or cluster in contrast
to running JSCTL on the command line. Upon executing JSCTL a dummy admin user

CHAPTER 5. INTERFACING A JASECI MACHINE 73

(super_master) is created and all state is dumped to a session file, though any users created
during a JSCTL session will indeed be created as part of that session’s state.

5.3.13.1 user create

cli: user create | api: user_create | auth: public

args: name: str (*req), global_init: str (), global_init_ctx: dict
↪→ ({}), other_fields: dict ({})

This API is used to create users and optionally set them up with a graph and related
initialization. In the context of JSCTL, any name is sufficient and no additional
information is required. However, for Jaseci serving (whether it be the official Jaseci
server, or a custom overloaded server) additional fields are required and should be
added to the other fields parameter as per the specifics of the encapsulating server
requirements. In the case of the official Jaseci server, the name field must be a valid
email, and a password field must be passed through other fields. A number of other
optional parameters can also be passed through other feilds.

This single API call can also be used to fully set up and initialize a user by leveraging
the global init parameter. When set, this parameter attaches the user to the global
sentinel, creates a new graph for the user, sets it as the active graph, then runs an
initialization walker on the root node of this new graph. The initialization walker is
identified by the name assigned to global init. The default empty string assigned to
global init indicates this global setup should not be run.

Parameters
name – The user name to create. For Jaseci server this must be a valid email
address.
global_init – The name of an initialization walker. When set the user is
linked to the global sentinel and the walker is run on a new active graph created
for the user.
global_init_ctx – Context to preload for the initialization walker
other_fields – This parameter is used for additional fields required for
overloaded interfaces. This parameter is not used in JSCTL, but is used by
Jaseci server for the additional parameters of password, is_activated, and
is_superuser.

CHAPTER 5. INTERFACING A JASECI MACHINE 74

5.3.14 APIs for walker

The walker set of APIs are used for execution and management of walkers. Walkers are the
primary entry points for running Jac programs. The primary API used to run walkers is
walker_run. There are a number of variations on this API that enable the invocation of
walkers with various semantics.

5.3.14.1 walker register

cli: walker register | api: walker_register | auth: user

args: snt: Sentinel (None), code: str (), dir: str (/), encoded: bool
↪→ (False)

Though the common case is to register entire sentinels, a user can also register
individual walkers one at a time. This API accepts code for a single walker (i.e.,
walker...}}).

5.3.14.2 walker get

cli: walker get | api: walker_get | auth: user

args: wlk: Walker (*req), mode: str (default), detailed: bool (False)

Valid modes: default, code, ir, keys,

CHAPTER 5. INTERFACING A JASECI MACHINE 75

5.3.14.3 walker set

cli: walker set | api: walker_set | auth: user

args: wlk: Walker (*req), code: str (*req), mode: str (default)

Valid modes: code, ir,

5.3.14.4 walker list

cli: walker list | api: walker_list | auth: user

args: snt: Sentinel (None), detailed: bool (False)

No documentation yet.

5.3.14.5 walker spawn create

cli: walker spawn create | api: walker_spawn_create | auth: user

args: name: str (*req), snt: Sentinel (None)

No documentation yet.

CHAPTER 5. INTERFACING A JASECI MACHINE 76

5.3.14.6 walker spawn list

cli: walker spawn list | api: walker_spawn_list | auth: user

args: detailed: bool (False)

No documentation yet.

5.3.14.7 walker spawn delete

cli: walker spawn delete | api: walker_spawn_delete | auth: user

args: name: str (*req)

No documentation yet.

5.3.14.8 walker spawn clear

cli: walker spawn clear | api: walker_spawn_clear | auth: user

args: n/a

No documentation yet.

CHAPTER 5. INTERFACING A JASECI MACHINE 77

5.3.14.9 walker yield list

cli: walker yield list | api: walker_yield_list | auth: user

args: detailed: bool (False)

No documentation yet.

5.3.14.10 walker yield delete

cli: walker yield delete | api: walker_yield_delete | auth: user

args: name: str (*req)

No documentation yet.

5.3.14.11 walker yield clear

cli: walker yield clear | api: walker_yield_clear | auth: user

args: n/a

No documentation yet.

CHAPTER 5. INTERFACING A JASECI MACHINE 78

5.3.14.12 walker prime

cli: walker prime | api: walker_prime | auth: user

args: wlk: Walker (*req), nd: Node (None), ctx: dict ({}), _req_ctx:
↪→ dict ({})

No documentation yet.

5.3.14.13 walker execute

cli: walker execute | api: walker_execute | auth: user

args: wlk: Walker (*req), prime: Node (None), ctx: dict ({}), _req_ctx
↪→ : dict ({}), profiling: bool (False)

No documentation yet.

5.3.14.14 walker run

cli: walker run | api: walker_run | auth: user

args: name: str (*req), nd: Node (None), ctx: dict ({}), _req_ctx:
↪→ dict ({}), snt: Sentinel (None), profiling: bool (False), is_async
↪→ : bool (False)

reports results, and cleans up walker instance.

CHAPTER 5. INTERFACING A JASECI MACHINE 79

5.3.14.15 wapi

cli: wapi | api: wapi | auth: user

args: name: str (*req), nd: Node (None), ctx: dict ({}), _req_ctx:
↪→ dict ({}), snt: Sentinel (None), profiling: bool (False)

No documentation yet.

5.3.14.16 walker summon

cli: walker summon | api: walker_summon | auth: public

args: key: str (*req), wlk: Walker (*req), nd: Node (*req), ctx: dict
↪→ ({}), _req_ctx: dict ({}), global_sync: bool (True)

along with the walker id and node id

5.3.14.17 walker callback

cli: walker callback | api: walker_callback | auth: public

args: nd: Node (*req), wlk: Walker (*req), key: str (*req), ctx: dict
↪→ ({}), _req_ctx: dict ({}), global_sync: bool (True)

along with the walker id and node id

Part II

The Jac Programming Language

80

Chapter 6

Jac Language Overview and
Basics

Contents
6.1 The Obligatory Hello World . 82
6.2 Numbers, Arithmetic, and Logic . 83

6.2.1 Basic Arithmetic Operations . 83
6.2.2 Comparison, Logical, and Membership Operations 84
6.2.3 Assignment Operations . 86
6.2.4 Precedence . 87
6.2.5 Primitive Types . 88

6.3 Foreshadowing Unique Graph Operations 90
6.4 More on Strings, Lists, and Dictionaries 91

6.4.1 Library of String Operations . 94
6.4.2 Library of List Operations . 94
6.4.3 Library of Dictionary Operations 94

6.5 Control Flow . 94

To articulate the sorcerer spells made possible by the wand that is Jaseci, I bestow upon
thee, the Jac programming language. (Like the Harry Potter [11] simile there? Cool, I know
;-))

The name Jac take was chosen for a few reasons.

• “Jac” is three characters long, so its well suited for the file name extension .jac for
Jac programs.

• It pulls its letters from the phrase JAseci Code.

81

CHAPTER 6. JAC LANGUAGE OVERVIEW AND BASICS 82

Figure 6.1: World’s youngest coder with valid HTML on shirt.1

• And it sounds oh so sweet to say “Did you grok that sick Jac code yet!” Rolls right off
the tongue.

This chapter provides the full deep dive into the language. By the end, you will be fully
empowerd with Jaseci wizardry and get a view into the key insights and novelty in the coding
style.

First lets quickly dispense with the mundane. This section covers the standard table stakes
fodder present in pretty much all languages. These aspects of Jac must be covered for
completeness, however you should be able to speed read this section. If you are unable to
speed read this, perhaps you should give visual basic a try.

6.1 The Obligatory Hello World

Let’s begin with what has become the unofficial official starting point for any introduction
to a new language, the “hello world” program. Thank you Canada for providing one of the
most impactful contributions in computer science with “hello world” becoming a meme both
technically and socially. We have such love for this contribution we even tag or newborns
with the phrase as per Fig. 6.1. I digress. Lets now christen our baby, Jaseci, with its “Hello
World” expression.

Jac Code 6.1: Jaseci says Hello!

1 walker init {

1Image credit to wiki contributer [1]

CHAPTER 6. JAC LANGUAGE OVERVIEW AND BASICS 83

2 std.out("Hello␣World");
3 }

Simple enough right? Well let’s walk through it. What we have here is a valid Jac program
with a single walker defined. Remember a walker is our little robot friend that walks the
nodes and edges of a graph and does stuff. In the curly braces, we articulate what our walker
should do. Here we instruct our walker to utilize the standard library to call a print function
denoted as std.out to print a single string, our star and esteemed string, “Hello World.”
The output to the screen (or wherever the OS is routing it’s standard stream output) is
simply,

Hello World

And there we have the most useless program in the world. Though…technically this program
is AI. Its not as intelligent as the machine depicted in Figure 6.1, but one that we can
understand much better (unless you speak “goo goo gaa gaa” of course). Let’s move on.

6.2 Numbers, Arithmetic, and Logic

6.2.1 Basic Arithmetic Operations

Next we should cover the he simplest math operations in Jac. We build upon what we’ve
learned so far with our conversational AI above.

Jac Code 6.2: Basic arithmetic operations

1 walker init {
2 a = 4 + 4;
3 b = 4 * -5;
4 c = 4 / 4; # Evaluates to a floating point number
5 d = 4 - 6;
6 e = a + b + c + d;
7 std.out(a, b, c, d, e);
8 }

The output of this groundbreaking program is,

8 -20 1.0 -2 -13.0

Jac Code 6.2 is comprised of basic math operations. The semantics of these expressions are
pretty much the same as anything you may have seen before, and pretty much match the
semantics we have in the Python language. In this Example, we also observe that Jac is an

CHAPTER 6. JAC LANGUAGE OVERVIEW AND BASICS 84

untyped language and variables can be declared via a direct assignment; also very Python’y.
The comma separated list of the defined variables a - e in the call to std.out illustrate
multiple values being printed to screen from a single call.

Additionally, Jac supports power and modulo operations.

Jac Code 6.3: Additional arithmetic operations

1 walker init {
2 a = 4 ^ 4; b = 9 % 5; std.out(a, b);
3 }

Jac Code 6.3 outputs,

256 4

Here, we can also observe that, unlike Python, whitespace does not mater whatsoever.
Languages utilizing whitespace to express static scoping should be criminalized. Yeah, I said
it, see Rant A.1. Anyway, A corollary to this design decision is that every statement must
end with a “;”. The wonderful ;, A nod of respect goes to C/C++/JavaScript for bringing
this beautiful code punctuation to the masses. Of course the ; as code punctuation was first
introduced with ALGOL 58, but who the heck knows that language. It sounds like some kind
of plant species. Bleh. Onwards.

Nerd Alert 5 (time to let your eyes glaze over)

Grammar 6.4 shows the lines from the formal grammar for Jac that corresponds to the
parsing of arithmetic.

Grammar 6.4: Jac grammar clip relevant to arithmetic

125 arithmetic: term ((PLUS | MINUS) term)*;
126

127 term: factor ((MUL | DIV | MOD) factor)*;
128

129 factor: (PLUS | MINUS) factor | power;
130

131 power: func_call (POW factor)*;

(full grammar in Appendix B)

6.2.2 Comparison, Logical, and Membership Operations

Next we review the comparison and logical operations supported in Jac. This is relatively
straight forward if you’ve programmed before. Let’s summarize quickly for completeness.

CHAPTER 6. JAC LANGUAGE OVERVIEW AND BASICS 85

Jac Code 6.5: Comparision operations

1 walker init {
2 a = 5; b = 6;
3 std.out(a == b,
4 a != b,
5 a < b,
6 a > b,
7 a <= b,
8 a >= b,
9 a == b-1);

10 }

false true true false true false true

In order of appearance, we have tests for equality, non equality, less than, greater than, less
than or equal, and greater than or equal. These tools prove indispensible when expressing
functionality through conditionals and loops. Additionally,

Jac Code 6.6: Logical operations

1 walker init {
2 a = true; b = false;
3 std.out(a,
4 !a,
5 a && b,
6 a || b,
7 a and b,
8 a or b,
9 !a or b,

10 !(a and b));
11 }

true false false true false true false true

Jac Code 6.6 presents the logical operations supported by Jac. In oder of appearance we
have, boolean complement, logical and, logical or, another way to express and and or (thank
you Python) and some combinations. These are also indispensible when using conditionals.

[NEED EXAMPLE FOR MEMBERSHIP OPERATIONS]

CHAPTER 6. JAC LANGUAGE OVERVIEW AND BASICS 86

Nerd Alert 6 (time to let your eyes glaze over)

Grammar 6.7 shows the lines from the formal grammar for Jac that corresponds to the
parsing of comparison, logical, and membership operations.

Grammar 6.7: Jac grammar clip relevant to comparison, logic, and membership

117 logical: compare ((KW_AND | KW_OR) compare)*;
118

119 compare: NOT compare | arithmetic (cmp_op arithmetic)*;
120

121 cmp_op: EE | LT | GT | LTE | GTE | NE | KW_IN | nin;
122

123 nin: NOT KW_IN;

(full grammar in Appendix B)

6.2.3 Assignment Operations

Next, lets take a look at assignment in Jac. In contrast to equality tests of ==, assignment
operations copy the value of the right hand side of the assignment to the variable or object
on the left hand side.

Jac Code 6.8: Assignment operations

1 walker init {
2 a = 4 + 4; std.out(a);
3 a += 4 + 4; std.out(a);
4 a -= 4 * -5; std.out(a);
5 a *= 4 / 4; std.out(a);
6 a /= 4 - 6; std.out(a);
7

8 # a := here; std.out(a);
9 # Noting existence of copy assign, described later

10 }

8
16
36
36.0
-18.0

As shown in Jac Code 6.8, there are a number of ways we can articulate an assignment. Of

CHAPTER 6. JAC LANGUAGE OVERVIEW AND BASICS 87

Rank Symbol Description

1 (), [], ., ::, spawn Parenthetical/grouping, node/edge manipulation
2 ^, [] Exponent, Index
3 *, /, % Multiplication, division, modulo
4 +, - Addition, subtraction
5 ==, !=, >=, <=, >, <, in, not in Comparison
6 &&, ||, and, or Logical
7 -->, <--, -[]->, <-[]- Connect
8 =, +=, -=, *=, /=, := Assignment

Table 6.1: Precedence of operations in Jac

course we can simply set a variable equal to a particular value, however, we can go beyond
that to set that assignment relative to its original value. In particular, we can use the
short hand a += 4 + 4; to represent a = a + 4 + 4;. We will describe later an additional
assignment type we call the copy assign. If you’re simply dying of curiosity, I’ll throw you a
bone. This := assignment only applies to nodes and edges and has the semantic of copying
the member values of a node or edge as opposed to the particular node or edge a variable is
pointing to. In a nutshell this assignment uses pass by value semantics vs pass by reference
semantics which is default for nodes and edges.

Nerd Alert 7 (time to let your eyes glaze over)

Grammar 6.9 shows the lines from the formal grammar for Jac that corresponds to the
parsing of assignment operations.

Grammar 6.9: Jac grammar clip relevant to assignment

107 expression: connect (assignment | copy_assign | inc_assign)?;
108

109 assignment: EQ expression;
110

111 copy_assign: CPY_EQ expression;
112

113 inc_assign: (PEQ | MEQ | TEQ | DEQ) expression;

(full grammar in Appendix B)

6.2.4 Precedence

At this point in our discussion its important to note the precedence of operations in Jac.
Table 6.1 summarizes this precedence. There are a number of new and perhaps interesting
things that appear in this table that you may not have seen before. [JOKE] For now, don’t
hurt yourself trying to understand what they are and mean, we’ll get there.

CHAPTER 6. JAC LANGUAGE OVERVIEW AND BASICS 88

6.2.5 Primitive Types

Jac Code 6.10: Primitive types

1 walker init {
2 a=5;
3 std.out(a.type, '-', a);
4 a=5.0;
5 std.out(a.type, '-', a);
6 a=true;
7 std.out(a.type, '-', a);
8 a=[5];
9 std.out(a.type, '-', a);

10 a='5';
11 std.out(a.type, '-', a);
12 a={'num': 5};
13 std.out(a.type, '-', a);
14 }

JAC_TYPE.INT - 5
JAC_TYPE.FLOAT - 5.0
JAC_TYPE.BOOL - true
JAC_TYPE.LIST - [5]
JAC_TYPE.STR - 5
JAC_TYPE.DICT - {"num": 5}

6.2.5.1 Integers and Floats

6.2.5.2 Booleans

6.2.5.3 Lists and Strings

6.2.5.4 Dictionaries

6.2.5.5 Nodes and Edges

Jac Code 6.11: Basic arithmetic operations

1 walker init {
2 nd = spawn here --> node::generic;
3 std.out(nd.type, nd);
4 std.out(nd.edge.type, nd.edge);

CHAPTER 6. JAC LANGUAGE OVERVIEW AND BASICS 89

5 std.out(nd.edge[0].type, nd.edge[0]);
6 }

JAC_TYPE.NODE jac:uuid:918900e4-9a35-4771-bce8-e1330d761bf6
JAC_TYPE.LIST ["jac:uuid:2930cfd6-7007-4942-b6ab-f28986819336"]
JAC_TYPE.EDGE jac:uuid:2930cfd6-7007-4942-b6ab-f28986819336

6.2.5.6 Specials

Jac Code 6.12: Basic arithmetic operations

1 walker init {
2 a=null;
3 std.out(a.type, '-', a);
4 a=str;
5 std.out(a.type, '-', a);
6 std.out(null.type);
7 std.out(null.type.type);
8 }

JAC_TYPE.NULL - null
JAC_TYPE.TYPE - JAC_TYPE.STR
JAC_TYPE.NULL
JAC_TYPE.TYPE

[Type type]

[Null]

6.2.5.7 Typecasting

Jac Code 6.13: Basic arithmetic operations

1 walker init {
2 a=5.6;
3 std.out(a+2);
4 std.out((a+2).int);
5 std.out((a+2).str);
6 std.out((a+2).bool);
7 std.out((a+2).int.float);
8

CHAPTER 6. JAC LANGUAGE OVERVIEW AND BASICS 90

9 if(a.str.type == str and !(a.int.type == str) and a.int.type == int):
10 std.out("Types␣comes␣back␣correct");
11 }

7.6
7
7.6
true
7.0
Types comes back correct

6.3 Foreshadowing Unique Graph Operations

n0:root

Figure 6.2: Graph in memory
for simple Hello World program
(JC 6.1)

Before we move on to more mundane basics that will continue
to neutralize any kind of caffeine or methamphetamine buzz
an experienced coder might have as they read this, lets enjoy
a Jaseci jolt!

As described before, all data in Jaseci lives in either a graph,
or within the scope of a walker. A walker, executes when it
is engaged to the graph, meaning it is located on a particular
node of the graph. In the case of the Jac programs we’ve
looked at so far, each program has specified one walker for
which I’ve happened to choose the name init. By default
these init walkers are invoked from the default root node of an
empty graph. Figure 6.2 shows the complete state of memory
for all of the Jac programs discussed thus far. The init walker
in these cases does not walk anywhere and has only executed a set of operations on this
default root node n0.

Let’s have a quick peek at some slick language syntax for building this graph and traveling
to new nodes.

Jac Code 6.14: Preview of graph operators

1 node simple;
2 edge back;
3

4 walker kewl_graph_creator {
5 node_a = spawn here --> node::simple;
6 here <-[back]- node_a;
7 node_b = spawn here <--> node::simple;
8 node_b --> node_a;

CHAPTER 6. JAC LANGUAGE OVERVIEW AND BASICS 91

9 }

n0:root

n1:simple

e1 n2:simple

e2

e0:back

e3

Figure 6.3: Graph in memory
for JC 6.14

Jac Code 6.14 presents a sequence of operations that creates
nodes and edges and produces a relatively simple complex
graph. There is a bunch of new syntactic goodness presented
in less than 10 lines of code and I certainly won’t describe them
all here. The goal is to simply whet your appetite on whats to
come. But lets look at the state of our data (memory) shown
in Figure 6.3.

Yep, there a good bit going on here. in less than 10 lines of
code we’ve done the following things:

1. Specified a new type of node we call a simple node.

2. Specified a new type of edge we call a back edge.

3. Specified a walker kewl_graph_creator and its behavior

4. Instantiated a outward pointing edge from the n0:root node.

5. Instantiated an instance of node type simple

6. Connected edge from from root to n1

7. Instantiated a back edge

8. Connected back edge from n1 to n0

9. Instantiated another instance of node type simple, n2

10. Instantiated an undirected edge from the n0:root node.

11. Connected edge from root to n2

12. Instantiated an outward pointing edge from n2

13. Connected edge from n2 to n1

Don’t worry, I’ll wait till that sinks in…Good? Well, if you liked that, just you wait.

This is going to get very interesting indeed, but first, on to more standard stuff…

6.4 More on Strings, Lists, and Dictionaries

Jac Code 6.15: Built-in String Library

1 walker init {
2 a="␣tEsting␣me␣␣";
3 report a[4];
4 report a[4:7];
5 report a[3:-1];
6 report a.str::upper;

CHAPTER 6. JAC LANGUAGE OVERVIEW AND BASICS 92

7 report a.str::lower;
8 report a.str::title;
9 report a.str::capitalize;

10 report a.str::swap_case;
11 report a.str::is_alnum;
12 report a.str::is_alpha;
13 report a.str::is_digit;
14 report a.str::is_title;
15 report a.str::is_upper;
16 report a.str::is_lower;
17 report a.str::is_space;
18 report '{"a":␣5}'.str::load_json;
19 report a.str::count('t');
20 report a.str::find('i');
21 report a.str::split;
22 report a.str::split('E');
23 report a.str::startswith('tEs');
24 report a.str::endswith('me');
25 report a.str::replace('me', 'you');
26 report a.str::strip;
27 report a.str::strip('␣t');
28 report a.str::lstrip;
29 report a.str::lstrip('␣tE');
30 report a.str::rstrip;
31 report a.str::rstrip('␣e');
32

33 report a.str::upper.str::is_upper;
34 }

CHAPTER 6. JAC LANGUAGE OVERVIEW AND BASICS 93

{
"success": true,
"report": [
"t",
"tin",
"sting me ",
" TESTING ME ",
" testing me ",
" Testing Me ",
" testing me ",
" TeSTING ME ",
false,
false,
false,
false,
false,
false,
false,
2,
5,
[
"tEsting",
"me"

],
[
" t",
"sting me "

],
false,
false,
" tEsting you ",
"tEsting me",
"Esting me",
"tEsting me ",
"sting me ",
" tEsting me",
" tEsting m",
true

]
}

CHAPTER 6. JAC LANGUAGE OVERVIEW AND BASICS 94

Op Args Description

.str::upper none

.str::lower none

.str::title none

.str::capitalize none

.str::swap_case none

.str::is_alnum none

.str::is_digit none

.str::is_title none

.str::is_upper none

.str::is_lower none

.str::is_space none

.str::load_json none

.str::count (substr, start, end) Returns the number of occurrences of a sub-
string in the given string. Start and end specify
range of indices to search

.str::find (substr, start, end) Returns the index of first occurrence of the
substring (if found). If not found, it returns
-1. Start and end specify range of indices to
search.

.str::split optional (separator,
maxsplit)

Breaks up a string at the specified separator for
maxsplit number of times and returns a list of
strings. Default separators is ‘ ’ and maxsplit
is unlimited.

.str::join (params) Join elements of the sequence (params) sepa-
rated by the string separator that calls the join
function.

.str::startswith

.str::endswith

.str::replace

.str::strip optional,

.str::lstrip optional,

.str::rstrip optional,

Table 6.2: String operations in Jac

6.4.1 Library of String Operations

6.4.2 Library of List Operations

6.4.3 Library of Dictionary Operations

6.5 Control Flow

Jac Code 6.16: if statement

1 walker init {
2 a = 4; b = 5;

CHAPTER 6. JAC LANGUAGE OVERVIEW AND BASICS 95

Op Args Description

.list::max none

.list::min none

.list::idx_of_max none

.list::idx_of_min none

.list::copy none Returns a shallow copy of the list

.list::deepcopy none Returns a deep copy of the list

.list::sort none

.list::reverse none

.list::clear none

.list::pop optional,

.list::index

.list::append

.list::extend

.list::insert

.list::remove

.list::count

Table 6.3: List operations in Jac

Op Args Description

.dict::items (key, default) Returns value of key if exists otherwise default

.dict::items none

.dict::copy none Returns a shallow copy of the dictionary

.dict::deepcopy none Returns a deep copy of the dictionary

.dict::keys none

.dict::clear none

.dict::popitem none

.dict::values none

.dict::pop

.dict::update

Table 6.4: Dictionary operations in Jac

3 if(a < b): std.out("Hello!");
4 }

Hello!

Jac Code 6.17: else statement

1 walker init {
2 a = 4; b = 5;
3 if(a == b): std.out("A␣equals␣B");
4 else: std.out("A␣is␣not␣equal␣to␣B");
5 }

CHAPTER 6. JAC LANGUAGE OVERVIEW AND BASICS 96

A is not equal to B

Jac Code 6.18: elif statement

1 walker init {
2 a = 4; b = 5;
3 if(a == b): std.out("A␣equals␣B");
4 elif(a > b): std.out("A␣is␣greater␣than␣B");
5 elif(a == b - 1): std.out("A␣is␣one␣less␣than␣B");
6 elif(a == b - 2): std.out("A␣is␣two␣less␣than␣B");
7 else: std.out("A␣is␣something␣else");
8 }

A is one less than B

Jac Code 6.19: for loop

1 walker init {
2 for i=0 to i<10 by i+=1:
3 std.out("Hello", i, "times!");
4 }

Hello 0 times!
Hello 1 times!
Hello 2 times!
Hello 3 times!
Hello 4 times!
Hello 5 times!
Hello 6 times!
Hello 7 times!
Hello 8 times!
Hello 9 times!

Jac Code 6.20: for loop through list

1 walker init {
2 my_list = [1, 'jon', 3.5, 4];
3 for i in my_list:
4 std.out("Hello", i, "times!");
5 }

CHAPTER 6. JAC LANGUAGE OVERVIEW AND BASICS 97

Hello 1 times!
Hello jon times!
Hello 3.5 times!
Hello 4 times!

Jac Code 6.21: while loop

1 walker init {
2 i = 5;
3 while(i>0) {
4 std.out("Hello", i, "times!");
5 i -= 1;
6 }
7 }

Hello 5 times!
Hello 4 times!
Hello 3 times!
Hello 2 times!
Hello 1 times!

Jac Code 6.22: break statement

1 walker init {
2 for i=0 to i<10 by i+=1 {
3 std.out("Hello", i, "times!");
4 if(i == 6): break;
5 }
6 }

Hello 0 times!
Hello 1 times!
Hello 2 times!
Hello 3 times!
Hello 4 times!
Hello 5 times!
Hello 6 times!

Jac Code 6.23: continue statement

1 walker init {
2 i = 5;
3 while(i>0) {

CHAPTER 6. JAC LANGUAGE OVERVIEW AND BASICS 98

4 if(i == 3){
5 i -= 1; continue;
6 }
7 std.out("Hello", i, "times!");
8 i -= 1;
9 }

10 }

Hello 5 times!
Hello 4 times!
Hello 2 times!
Hello 1 times!

Chapter 7

Graphs, Architypes, and
Walkers in Jac

Contents
7.1 Structure of a Jac Program . 99
7.2 Graphs as First Class Citizens . 100

7.2.1 Connect and Spawn operations 100
7.2.2 Static Graph Creation . 103

7.3 Walkers as the second First Class Citizens 108
7.4 Architypes . 110

7.4.1 Context on Nodes and Edges 110
7.4.2 Copy Assignment Operator . 112
7.4.3 Plucking Values from Node and Edge Sets 113
7.4.4 Referencing and Dereferencing Nodes and Edges 114

7.5 Actions and Abilities . 115
7.5.1 Actions . 115
7.5.2 Fused Interactions Between Nodes and Actions 116
7.5.3 Abilities . 118
7.5.4 here and visitor, the ‘this’ references of Jac 120

7.6 Inheritance . 120

7.1 Structure of a Jac Program

[Introduce structure of a jac program]

99

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 100

[Specify the differnce between graph architypes, graph instantiations, and walkers]

[Present simple program that utilizes the structures]

[Present variations on articulating the same program]

[Code blocks]

Nerd Alert 8 (time to let your eyes glaze over)

Grammar 7.1 shows the lines from the formal grammar for Jac that presents the high level
structure of a Jac program.

Grammar 7.1: Jac grammar clip relevant to arithmetic

3 start: ver_label? element+ EOF;
4

5 element: architype | walker;
6

7 architype:
8 KW_NODE NAME (COLON INT)? attr_block
9 | KW_EDGE NAME attr_block

10 | KW_GRAPH NAME graph_block;
11

12 walker:
13 KW_WALKER NAME namespaces? LBRACE attr_stmt* walk_entry_block? (
14 statement
15 | walk_activity_block
16)* walk_exit_block? RBRACE;

(full grammar in Appendix B)

7.2 Graphs as First Class Citizens

7.2.1 Connect and Spawn operations

Jac Code 7.2: Simple walker creating and connected nodes

1 walker init {
2 node1 = spawn node::generic;
3 node2 = spawn node::generic;
4 node1 <--> node2;
5 here --> node1;
6 node2 <-- here;

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 101

n0:root

n1:generic

e2

n2:generic

e0

e1

Figure 7.1: Graph in memory for JC 7.2

7 }

Jac Code 7.3: Creating named node types

1 node person;
2 edge family;
3 edge friend;
4

5 walker init {
6 node1 = spawn node::person;
7 node2 = spawn node::person;
8 node1 <-[family]-> node2;
9 here -[friend]-> node1;

10 node2 <-[friend]- here;
11

12 # named and unnamed edges and nodes can be mixed
13 node2 --> here;
14 }

Jac Code 7.4: Connecting nodes within spawn statement

1 node person;
2 edge friend;
3 edge family;
4

5 walker init {
6 node1 = spawn here -[friend]-> node::person;
7 node2 = spawn node1 <-[family]-> node::person;

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 102

n0:root

n1:person

e2:friend

n2:person

e3:friend

e0:family

e1

Figure 7.2: Graph in memory for JC 7.3

n0:root

n1:person

e0:friend

n2:person

e2:friend

e1:family

Figure 7.3: Graph in memory for JC 7.4

8 here -[friend]-> node2;
9 }

Jac Code 7.5: Chaining node connections using the connect operator

1 node person;
2 edge friend;
3 edge family;
4

5 walker init {
6 node1 = spawn node::person;
7 node2 = spawn node::person;
8 node2 <-[friend]- here -[friend]-> node1 <-[family]-> node2;
9 }

Another incredibly useful notion to consider about connect operations is that they can be
chained. The same graph shown in Figure 7.4 can be achieved with the chained usage of the
connect operation in line 8 of JC 7.5. Here nodes are chained in an intuitive left-to-right

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 103

n0:root

n1:person

e2:friend

e1:friend

n2:person

e0:family

Figure 7.4: Graph in memory for JC 7.5

manor. Relatively sophisticated graph structures can be rapidly expressed using chained
connect operations.

7.2.2 Static Graph Creation

7.2.2.1 Static Spawn Graphs

Jac Code 7.6: A Spawn style static graph

1 graph hlp_graph {
2 has anchor graph_root;
3 spawn {
4 graph_root = spawn node::state(name="root_state");
5 user_node = spawn node::user;
6

7 state_home_price_inquiry = spawn node::state(name="
↪→ home_price_inquiry");

8 state_prob_of_approval = spawn node::state(name="prob_of_approval"
↪→);

9

10 graph_root -[user]-> user_node;
11

12 graph_root -[transition(intent_label = "home␣price␣inquiry")]->
↪→ state_home_price_inquiry;

13 graph_root -[transition(intent_label = "robability␣of␣loan␣
↪→ approval")]-> state_prob_of_approval;

14 state_home_price_inquiry -[transition(intent_label = "specifying␣
↪→ location")]-> state_home_price_inquiry;

15 state_home_price_inquiry -[transition(intent_label = "home␣price␣
↪→ inquiry")]-> state_home_price_inquiry;

16

17 state_home_price_inquiry -[transition(intent_label = "probability␣
↪→ of␣loan␣approval")]-> state_prob_of_approval;

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 104

18 state_prob_of_approval -[transition(intent_label = "home␣price␣
↪→ inquiry")]-> state_home_price_inquiry;

19 }
20 }

Jac Code 7.7: Associated DOT style static graph

1 graph acme_graph_dot {
2 has anchor state_conv_root;
3 graph G {
4 state_conv_root [node=conv_state, name=conv_root]
5

6 state_office_hour [node=conv_state, name=office_hour]
7 state_payment_method [node=conv_state, name=payment_method]
8 state_phone_number [node=conv_state, name=phone_number]
9 state_email_address [node=conv_state, name=email_address]

10 state_promotions [node=conv_state, name=promotions]
11

12 state_cancel_appointment [node=conv_state, name=cancel_appointment
↪→]

13 state_reschedule_appointment [node=conv_state, name=
↪→ reschedule_appointment]

14 state_refunds [node=conv_state, name=refunds]
15 state_feedback [node=conv_state, name=feedback]
16

17 state_service_inquiry [node=conv_state, name=service_inquiry]
18

19 state_conv_root -> state_office_hour [edge=transition, intent="
↪→ office␣hour"]

20 state_conv_root -> state_payment_method [edge=transition, intent="
↪→ payment␣method"]

21 state_conv_root -> state_phone_number [edge=transition, intent="
↪→ phone␣number"]

22 state_conv_root -> state_email_address [edge=transition, intent="
↪→ email␣address"]

23 state_conv_root -> state_promotions [edge=transition, intent="
↪→ promotions"]

24 state_conv_root -> state_cancel_appointment [edge=transition,
↪→ intent="cancel␣appointment"]

25 state_conv_root -> state_reschedule_appointment [edge=transition,
↪→ intent="reschedule␣appointment"]

26 state_conv_root -> state_refunds [edge=transition, intent="refunds
↪→ "]

27 state_conv_root -> state_feedback [edge=transition, intent="

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 105

↪→ feedback"]
28 state_conv_root -> state_service_inquiry [edge=transition, intent=

↪→ "service␣inquiry"]
29 }
30 }

7.2.2.2 Static DOT Graphs

Jac Code 7.8: A DOT style static graph

1 node test_node {
2 has name;
3 }
4 edge special;
5 graph test_graph {
6 has anchor graph_root;
7 graph G {
8 graph_root [node=test_node, name=root]
9 node_1 [node=test_node, name=node_1]

10 node_2 [node=test_node, name=node_2]
11 graph_root -> node_1 [edge=special]
12 graph_root -> node_2
13 }
14 }
15 walker init {
16 has nodes;
17 with entry {
18 nodes = [];
19 }
20 root {
21 spawn here --> graph::test_graph;
22 take --> node::test_node;
23 }
24 test_node {
25 nodes += [here];
26 take -[special]-> node::test_node;
27 }
28 report here;
29 }

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 106

{
"success": true,
"report": [
{
"context": {},
"anchor": null,
"name": "root",
"kind": "generic",
"jid": "urn:uuid:0ac65923-90b5-4c10-bda0-65ec6a2c36e7",
"j_timestamp": "2022-03-21T00:41:16.715258",
"j_type": "graph"

},
{
"context": {
"name": "root"

},
"anchor": null,
"name": "test_node",
"kind": "node",
"jid": "urn:uuid:60e68110-7a11-446e-a333-57d75d12e7d7",
"j_timestamp": "2022-03-21T00:41:16.750759",
"j_type": "node"

},
{
"context": {
"name": "node_1"

},
"anchor": null,
"name": "test_node",
"kind": "node",
"jid": "urn:uuid:fecae690-a50d-4f2c-91e2-e8ec083c5443",
"j_timestamp": "2022-03-21T00:41:16.750876",
"j_type": "node"

}
]

}

Jac Code 7.9: Another DOT style static graph

1 node year {
2 has color;
3 }
4 node month {
5 has count, season;

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 107

6 }
7 node week;
8 node day;
9 edge parent;

10 edge child;
11 graph test_graph {
12 has anchor A;
13 strict graph G {
14 H [node=year]
15 C [node=week]
16 E [node=day]
17 D [node=day]
18

19 A -> B // Basic directional edge
20 B -- H // Basic non-directional edge
21 B -> C [edge=parent] // Edge with attribute
22 C -> D -> E [edge=child] // Chain edge
23

24 A [color=red] // Node with DOT builtin graphing attr
25 B [node=month, count=2] [season=spring]// Node with Jac attr
26 A [node=year] // Multiple attr statement per node
27 }
28 }
29 walker init {
30 root {
31 spawn here --> graph::test_graph;
32 }
33 take -->;
34 report here.details['name'];
35 }

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 108

{
"success": true,
"report": [
"root",
"year",
"month",
"year",
"week",
"day",
"day"

]
}

7.3 Walkers as the second First Class Citizens

Jac Code 7.10: Walkers spawning other walkers

1 node person;
2 edge friend;
3 edge family;
4

5 walker friend_ties {
6 for i in -[friend]->:
7 std.out(here, 'is␣related␣to\n', i, '\n');
8 }
9

10 walker init {
11 node1 = spawn here -[friend]-> node::person;
12 node2 = spawn node1 <-[family]-> node::person;
13 here -[friend]-> node2;
14 spawn here walker::friend_ties;
15 }

graph:generic:root:urn:uuid:f93bca4a-a722-4fd7-b5e1-55372b4dd314 is
↪→ related to

node:node:person:urn:uuid:18411a74-60ac-4223-9d59-c3e6a8de7179

graph:generic:root:urn:uuid:f93bca4a-a722-4fd7-b5e1-55372b4dd314 is
↪→ related to

node:node:person:urn:uuid:2d251260-3086-4f4f-b5e0-fd36f6043ac7

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 109

n0:root

n1:person

e0:friend

n2:person

e2:friend

e1:family

Figure 7.5: Graph in memory for JC 7.10

Jac Code 7.11: Getting returned values from spawned walkers

1 node person;
2 edge friend;
3 edge family;
4

5 walker friend_ties {
6 has anchor fam_nodes;
7 fam_nodes = -[friend]->;
8 }
9

10 walker init {
11 node1 = spawn here -[friend]-> node::person;
12 node2 = spawn node1 <-[family]-> node::person;
13 here -[friend]-> node2;
14 fam = spawn here walker::friend_ties;
15 for i in fam:
16 std.out(here, 'is␣related␣to\n', i, '\n');
17 }

graph:generic:root:urn:uuid:75d1050b-a010-4e6d-ad6a-c941d5ce57ce is
↪→ related to

node:node:person:urn:uuid:b1b6ead0-0fc6-4736-928a-f8500832fb3b

graph:generic:root:urn:uuid:75d1050b-a010-4e6d-ad6a-c941d5ce57ce is
↪→ related to

node:node:person:urn:uuid:914af4dd-6d5a-4f00-a70c-8871db4a8b95

Jac Code 7.12: Increasing elegance by remembering spawns are expressions

1 node person;

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 110

n0:root

n1:person

e1:friend

n2:person

e0:friend

e2:family

Figure 7.6: Graph in memory for JC 7.11

2 edge friend;
3 edge family;
4

5 walker friend_ties {
6 has anchor fam_nodes;
7 fam_nodes = -[friend]->;
8 }
9

10 walker init {
11 node1 = spawn here -[friend]-> node::person;
12 node2 = spawn node1 <-[family]-> node::person;
13 here -[friend]-> node2;
14 for i in spawn here walker::friend_ties:
15 std.out(here, 'is␣related␣to\n', i, '\n');
16 }

Walkers are entry points to all valid jac programs

7.4 Architypes

7.4.1 Context on Nodes and Edges

Jac Code 7.13: Binding member contexts to nodes and edges

1 node person {
2 has name;
3 has age;
4 has birthday, profession;
5 }

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 111

n0:root

n1:person

e0:friend

n2:person

e1:family

Figure 7.7: Graph in memory for JC 7.13

6

7 edge friend: has meeting_place;
8 edge family: has kind;
9

10 walker init {
11 person1 = spawn here -[friend]-> node::person;
12 person2 = spawn here -[family]-> node::person;
13 person1.name = "Josh"; person1.age = 32;
14 person2.name = "Jane"; person2.age = 30;
15 e1 = -[friend]->.edge[0];
16 e1.meeting_place = "college";
17 e2 = -[family]->.edge[0];
18 e2.kind = "sister";
19

20 std.out("Context␣for␣our␣people␣nodes:");
21 for i in -->: std.out(i.context);
22 # or, for i in -->.node: std.out(i.context);
23 std.out("\nContext␣for␣our␣edges␣to␣those␣people:");
24 for i in -->.edge: std.out(i.context);
25 }

Context for our people nodes:
{'name': 'Josh', 'age': 32, 'birthday': '', 'profession': ''}
{'name': 'Jane', 'age': 30, 'birthday': '', 'profession': ''}

Context for our edges to those people:
{'meeting_place': 'college'}
{'type': 'sister'}

Jac Code 7.14: Binding contexts with less code

1 node person: has name, age, birthday, profession;
2 edge friend: has meeting_place;
3 edge family: has kind;

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 112

4

5 walker init {
6 person1 = spawn here -[friend(meeting_place = "college")] ->
7 node::person(name = "Josh", age = 32);
8 person2 = spawn here -[family(kind = "sister")] ->
9 node::person(name = "Jane", age = 30);

10

11 std.out("Context␣for␣our␣people␣nodes␣and␣edges:");
12 for i in -->: std.out(i.context, '\n', i.edge[0].context);
13 }

Context for our people nodes and edges:
{'name': 'Josh', 'age': 32, 'birthday': '', 'profession': ''}
{'meeting_place': 'college'}
{'name': 'Jane', 'age': 30, 'birthday': '', 'profession': ''}
{'type': 'sister'}

7.4.2 Copy Assignment Operator

Jac Code 7.15: Copy assigning from node to node

1 node person: has name, age, birthday, profession;
2 edge friend: has meeting_place;
3 edge family: has kind;
4

5 walker init {
6 person1 = spawn here -[friend(meeting_place = "college")] ->
7 node::person(name = "Josh", age = 32);
8 person2 = spawn here -[family(kind = "sister")] ->
9 node::person(name = "Jane", age = 30);

10

11 twin1 = spawn here -[friend]-> node::person;
12 twin2 = spawn here -[family]-> node::person;
13 twin1 := person1;
14 twin2 := person2;
15

16 -->.edge[2] := -->.edge[0];
17 -->.edge[3] := -->.edge[1];
18

19 std.out("Context␣for␣our␣people␣nodes␣and␣edges:");
20 for i in -->: std.out(i.context, '\n', i.edge[0].context);
21 }

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 113

n0:root

n1:person

e1:friend

n2:person

e2:family

n3:person

e0:friend

n4:person

e3:family

Figure 7.8: Graph in memory for JC 7.15

{'name': 'Josh', 'age': 32, 'birthday': '', 'profession': ''}
{'meeting_place': 'college'}
{'name': 'Jane', 'age': 30, 'birthday': '', 'profession': ''}
{'type': 'sister'}
{'name': 'Josh', 'age': 32, 'birthday': '', 'profession': ''}
{'meeting_place': 'college'}
{'name': 'Jane', 'age': 30, 'birthday': '', 'profession': ''}
{'type': 'sister'}

7.4.3 Plucking Values from Node and Edge Sets

Another very handy dandy feature when interacting with collections of nodes and edges is to
quickly extract a list of all the values for a given has variable across the collection of nodes
or edges. Lets look at an example.

Jac Code 7.16: Plucking values out of nodes and edges

1 node simple: has n_name;
2 edge conn: has e_name;
3

4 walker node_edge_plucking {
5 with entry {
6 for i=0 to i<3 by i+=1:
7 spawn here -[conn(e_name="edge"+i.str)]-> node::simple(n_name="

↪→ node"+i.str);
8 }
9 std.out(-->.n_name);

10 std.out(-->.edge.e_name);
11 }

["node0", "node1", "node2"]
["edge0", "edge1", "edge2"]

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 114

As shown in JC 7.16 we are referencing the has variable of the architypes for the collection
of simple nodes and conn edges on lines 8 and 9 respectively. As can be seen in the output,
these references evaluate to a list of the values for the corresponding variables. Keep in mind
this can work with a mixture of nodes and edges in a collection given they share a given has
variable name.

7.4.4 Referencing and Dereferencing Nodes and Edges

Nodes and edges can be referenced and dereferenced. These operations are synonymous with
they way references work in many languages and borrows the syntax of pointers in C/C++.
In particular, the & is used to get the reference of an object and * is used to dereference
object. However, in contrast to C/C++, instead of the references representing memory
location in word format, references in Jac uses a unique identifier (in UUID format) for the
object.

Jac Code 7.17: Rereferences and dereferences in Jac

1 node simple: has name;
2

3 walker ref_deref {
4 with entry {
5 for i=0 to i<3 by i+=1:
6 spawn here --> node::simple(name="node"+i.str);
7 }
8 var = &(-->[0]);
9 std.out('ref:', var);

10 std.out('obj:', *var);
11 std.out('info:',(*var).info);
12 }

ref: urn:uuid:04295f7f-a5bf-4db3-87ce-e13653a81b25
obj: jac:uuid:04295f7f-a5bf-4db3-87ce-e13653a81b25
info: {"context": {"name": "node0"}, "anchor": null, "name": "simple", "

↪→ kind": "node", "jid": "urn:uuid:04295f7f-a5bf-4db3-87ce-
↪→ e13653a81b25", "j_timestamp": "2022-08-10T15:57:00.577287", "
↪→ j_type": "node"}

JC 7.17 shows an example of the behavior of references and dereferences in Jac. Note that
once dereferenced var is simply a UUID formatted string with the unique identifier of the
object itself. This UUID is equivalent to the jid in the object .info. These referencing and
dereferencing operations are quite useful for input and output of node locations to a client
side, etc.

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 115

n0:root

n1:person

e0

Figure 7.9: Graph in memory for JC 7.18 and 7.19

Nerd Alert 9 (time to let your eyes glaze over)

Important Note: The internal representation of an instance of an architype is a string
composed of any UUID that starts with "jac:uuid:". This may change in the future but,
if you were to manually assign such a string to a variable in a Jac program, the program
will treat this variable like an object.

7.5 Actions and Abilities

7.5.1 Actions

Jac Code 7.18: Basic action in walker

1 node person {
2 has name;
3 has birthday;
4 }
5

6 walker init {
7 can date.quantize_to_year;
8 person1 = spawn here -->
9 node::person(name="Josh", birthday="1995-05-20");

10 birthyear = date.quantize_to_year(person1.birthday);
11 std.out(birthyear);
12 }

1995-01-01T00:00:00

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 116

Jac Code 7.19: Basic action in node

1 node person {
2 has name;
3 has birthday;
4 can date.quantize_to_year;
5 }
6

7 walker init {
8 root {
9 person1 = spawn here -->

10 node::person(name="Josh", birthday="1995-05-20");
11 take -->;
12 }
13 person {
14 birthyear = date.quantize_to_year(here.birthday);
15 std.out(birthyear);
16 }
17 }

7.5.2 Fused Interactions Between Nodes and Actions

Jac Code 7.20: Basic action with presets and event triggers

1 node person {
2 has name;
3 has byear;
4 can date.quantize_to_year::visitor.year::>byear with setter entry;
5 can std.out::byear,"␣from␣",visitor.info:: with exit;
6 }
7

8 walker init {
9 has year=std.time_now();

10 root {
11 person1 = spawn here -->
12 node::person(name="Josh", byear="1992-01-01");
13 take --> ;
14 }
15 person {
16 spawn here walker::setter;
17 }
18 }
19

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 117

20 walker setter {
21 has year="1995-01-01";
22 }

1995-01-01T00:00:00 from {'context': {'year': '1995-01-01'}, 'anchor':
↪→ None, 'name': 'setter', 'kind': 'walker', 'jid': 'urn:uuid:6
↪→ bbf69c3-b95c-4a88-a783-cb793cec4034', 'j_timestamp': '2021-12-04
↪→ T15:13:13.441516', 'j_type': 'walker'}

1995-01-01T00:00:00 from {'context': {'year': '2021-12-04T15
↪→ :13:13.440803'}, 'anchor': None, 'name': 'init', 'kind': 'walker',
↪→ 'jid': 'urn:uuid:7f9d1462-6562-4d4d-ba57-f069c74dfe1e', '
↪→ j_timestamp': '2021-12-04T15:13:13.438072', 'j_type': 'walker'}

Jac Code 7.21: Basic action with presets and event triggers

1 node person {
2 has name;
3 has birthday;
4 can date.quantize_to_year with activity; # <-- walkers can call
5 }
6

7 walker init {
8 root {
9 person1 = spawn here -->

10 node::person(name="Josh", birthday="1995-05-20");
11 take -->;
12 }
13 person {
14 birthyear = date.quantize_to_year(here.birthday);
15 std.out(birthyear);
16 }
17 }

[Only nodes can have with entry/exit‘’ and presets]

[can leave output (push returns) in node and walker]

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 118

1995-01-01T00:00:00 from {'context': {'year': '1995-01-01'}, 'anchor':
↪→ None, 'name': 'setter', 'kind': 'walker', 'jid': 'urn:uuid:6
↪→ bbf69c3-b95c-4a88-a783-cb793cec4034', 'j_timestamp': '2021-12-04
↪→ T15:13:13.441516', 'j_type': 'walker'}

1995-01-01T00:00:00 from {'context': {'year': '2021-12-04T15
↪→ :13:13.440803'}, 'anchor': None, 'name': 'init', 'kind': 'walker',
↪→ 'jid': 'urn:uuid:7f9d1462-6562-4d4d-ba57-f069c74dfe1e', '
↪→ j_timestamp': '2021-12-04T15:13:13.438072', 'j_type': 'walker'}

7.5.3 Abilities

Jac Code 7.22: Actions and Abilities in Walkers

1 node person {
2 has name;
3 has byear;
4 can set_year with setter entry {
5 byear = visitor.year;
6 }
7 can print_out with exit {
8 std.out(byear,"␣from␣",visitor.info);
9 }

10 can reset { #<-- Could add 'with activity' for equivalent behavior
11 ::set_back_to_95;
12 std.out("resetting␣year␣to␣1995:", here.context);
13 }
14 can set_back_to_95: byear="1995-01-01";
15 }
16

17 walker init {
18 has year=std.time_now();
19 can setup {
20 person1 = spawn here --> node::person;
21 std.out(person1);
22 person1::reset;
23 }
24 root {
25 ::setup;
26 take --> ;
27 }
28 person {
29 spawn here walker::setter;

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 119

30 person1::reset(name="Joe");
31 }
32 }
33

34 walker setter {
35 has year=std.time_now();
36 }

Jac Code 7.23: Abilities in nodes

1 node person {
2 has name;
3 has byear;
4 can set_year with setter entry {
5 byear = visitor.year;
6 }
7 can print_out with exit {
8 std.out(byear,"␣from␣",visitor.info);
9 }

10 can reset { #<-- Could add 'with activity' for equivalent behavior
11 byear="1995-01-01";
12 std.out("resetting␣birth␣year␣to␣1995:", here.context);
13 }
14 }
15

16 walker init {
17 has year=std.time_now();
18 root {
19 person1 = spawn here --> node::person;
20 std.out(person1);
21 person1::reset;
22 take --> ;
23 }
24 person {
25 spawn here walker::setter;
26 here::reset(name="Joe");
27 }
28 }
29

30 walker setter {
31 has year=std.time_now();
32 }

CHAPTER 7. GRAPHS, ARCHITYPES, AND WALKERS IN JAC 120

7.5.4 here and visitor, the ‘this’ references of Jac

Observe the usage of here and visitor in the person node architype in JC 7.23. These are
synonymous to the this reference present in many other languages except here point to the
current node scope relevant to the execution point in the program and visitor points to
the relevant walker scope relevant to that given point of execution. These references provide
full access to all has variables and builtin attributes and operations of the referenced object
instance.

Do note that in the context of the person node abilities in JC 7.23 a here reference to say
here.name = "joe"; would be equivalent to simply name = "joe"; however to capture the
here.context (or info/details/etc) the here reference becomes quite useful. The similar
relationship applies to using visitor in walker abilities.

7.6 Inheritance

Chapter 8

Walkers Navigating Graphs

Contents
8.1 Taking Edges (and Nodes?) . 121

8.1.1 Basic Walks . 121
8.1.2 Breadth First vs Depth First Walks 123

8.2 Skipping and Disengaging . 125
8.2.1 Skip . 125
8.2.2 Disengage . 126
8.2.3 Technical Semantics of Skip and Disengage 127

8.3 Ignoring and Deleting . 127
8.4 Reporting Back as you Travel . 128
8.5 Yielding Walkers . 129

8.5.1 Yield Shorthands . 130
8.5.2 Technical Semantics of Yield . 130
8.5.3 Walkers Yielding Other Walkers (i.e., Yielding Deeply) 131

8.1 Taking Edges (and Nodes?)

8.1.1 Basic Walks

Jac Code 8.1: Basic example of walker traveling graph

1 node person: has name;
2

3 walker get_names {

121

CHAPTER 8. WALKERS NAVIGATING GRAPHS 122

4 std.out(here.name);
5 take -->;
6 }
7

8 walker build_example {
9 node1 = spawn here --> node::person(name="Joe");

10 node2 = spawn node1 --> node::person(name="Susan");
11 spawn node2 --> node::person(name="Matt");
12 }
13

14 walker init {
15 root {
16 spawn here walker::build_example;
17 take -->;
18 }
19 person {
20 spawn here walker::get_names;
21 disengage;
22 }
23 }

Jac Code 8.2: Fan out style takes

1 node person: has name;
2

3 walker build_example {
4 spawn here -[friend]-> node::person(name="Joe");
5 spawn here -[friend]-> node::person(name="Susan");
6 spawn here -[family]-> node::person(name="Matt");
7 }
8

9 walker init {
10 root {
11 spawn here walker::build_example;
12 take -->;
13 }
14 person {
15 std.out(here.name);
16 }
17 }

CHAPTER 8. WALKERS NAVIGATING GRAPHS 123

n0:root

n1:plain

e1

n2:plain

e6

n5:plain

e2

n3:plain

e4

n4:plain

e0

n6:plain

e3

n7:plain

e5

Figure 8.1: Graph in memory for JC 8.3

8.1.2 Breadth First vs Depth First Walks

If you’ve played with the basic take command a bit you would notice that by default it
results in a breadth first traversal of a graph. However, the take command is indeed quite
flexible. You can specify an orientation of the take command to navigate with a breadth
first or a depth first traversal.

Jac Code 8.3: Breadth first navigation with take vs depth first

1 node plain: has name;
2

3 graph example {
4 has anchor head;
5 spawn {
6 n=[];
7 for i=0 to i<7 by i+=1 {
8 n.l::append(spawn node::plain(name=i+1));
9 }

10 n[0] --> n[1] --> n[2];
11 n[1] --> n[3];
12 n[0] --> n[4] --> n[5];
13 n[4] --> n[6];

CHAPTER 8. WALKERS NAVIGATING GRAPHS 124

14 head=n[0];
15 }
16 }
17

18 walker walk_with_breadth {
19 has anchor node_order = [];
20 node_order.l::append(here.name);
21 take:bfs -->; #take:b can also be used
22 }
23

24 walker walk_with_depth {
25 has anchor node_order = [];
26 node_order.l::append(here.name);
27 take:dfs -->; #take:d can also be used
28 }
29

30 walker init {
31 start = spawn here --> graph::example;
32 b_order = spawn start walker::walk_with_breadth;
33 d_order = spawn start walker::walk_with_depth;
34 std.out("Walk␣with␣Breadth:",b_order,"\nWalk␣with␣Depth:",d_order);
35 }

Take for example the program shown in JC 8.3. First we observe the definition of a static three
level binary tree with the graph example on line 3. This is a vanilla structure as depicted in
Figure 8.1. Two walkers are present in this example, one walker walk_with_breadth, for
which we observe a call to take:bfs -->; indicating a breadth first traversal, and another
walker walk_with_breadth, for which we observe a call to take:bfs -->; indicating a
depth first traversal.

As can be seen in its output,

Walk with Breadth: [1, 2, 5, 3, 4, 6, 7]
Walk with Depth: [1, 2, 3, 4, 5, 6, 7]
{
"success": true,
"report": []

}

The print statement on line 34 demonstrate the order of nodes visited correspond to the
specified traversal order.

Additionally, the short hand of take:b -->;, or take:d -->; could be used to specify
breadth first or depth first traversals respectively.

CHAPTER 8. WALKERS NAVIGATING GRAPHS 125

8.2 Skipping and Disengaging

With walker traversing graphs with take commands, Jac introduces a few new handy control
statements that are quite handy, namely, skip and disengage.

8.2.1 Skip

In the context of a walkers code block, the intuition bethind the abstraction of skip is that
it instructs a walker to stop and forego all remaining computation on the current node and
move to the next node (or complete computation if no nodes are queued up). Regardless as
to where in the walkers body the skip occurs, the entire remaining code in the walker is
skipped and the walker moves on.

The skip directive can also be used in node/edge abilities. In this context, the skip simply
foregoes the remaining execution of that ability itself.

Lets look at an example of a walker using the skip command.

Jac Code 8.4: Skipping nodes along a walk

1 global node_count=0;
2 node simple: has id;
3

4 walker init {
5 has output = [];
6 with entry {
7 t = here;
8 for i=0 to i<10 by i+=1 {
9 t = spawn t --> node::simple(id=global.node_count);

10 global.node_count+=1;
11 }
12 }
13 take -->;
14 simple {
15 if(here.id % 2==0): skip;
16 output.l::append(here.id);
17 }
18 output.l::append(here.info['name']);
19 with exit: std.out(output);
20 }

["root", 1, "simple", 3, "simple", 5, "simple", 7, "simple", 9, "simple"]

CHAPTER 8. WALKERS NAVIGATING GRAPHS 126

n0:root n1:simplee3 n2:simplee7 n3:simplee5 n4:simplee6 n5:simplee0 n6:simplee4 n7:simplee8 n8:simplee9 n9:simplee1 n10:simplee2

Figure 8.2: Graph in memory for JC 8.4 and JC 8.5

JC 8.4 shows an example of the skip command in practice. The init walker here traverses
a simple chain of nodes as depicted in Figure 8.2. As can be seen in the output the skip
command on line 15 causes only the odd elements to be added to the output array.

The semantics of the skip command is pretty much identical to the traditional break
commands except it “breaks” out of a walker or ability as opposed to a loop. Another way
to think of it is as a return of sorts.

8.2.2 Disengage

Disengage is a statement that can only be used inside a walker’s code body and instructs
the walker to halt all execution and ‘disengage’ from the graph (i.e. do not visit any more
nodes). In practice this is essential a skip with a clearing of all future nodes to visit.

Lets look at an example of a walker using the disengage command.

Jac Code 8.5: Disengaging walker during walk

1 global node_count=0;
2 node simple: has id;
3

4 walker init {
5 has output = [];
6 with entry {
7 t = here;
8 for i=0 to i<10 by i+=1 {
9 t = spawn t --> node::simple(id=global.node_count);

10 global.node_count+=1;
11 }
12 }
13 take -->;
14 simple {
15 if(here.id % 2==0): skip;
16 if(here.id == 7): disengage;
17 output.l::append(here.id);
18 }
19 output.l::append(here.info['name']);
20 with exit: std.out(output);
21 }

CHAPTER 8. WALKERS NAVIGATING GRAPHS 127

["root", 1, "simple", 3, "simple", 5, "simple"]

JC 8.5 shows an example of the disengage command. The init walker here is almost identical
to the implementation of JC 8.4 however we’ve added if(here.id == 7): disengage; on
line 16. This cause our walker to stop its execution and complete its walk resulting in an
effective truncation of the output array.

Note that, in addition to a basic disengage;, Jac also support a disengage-report shorthand
of the format disengage report "I'm␣disengaging";. This directive results in a final
report before the disengage executes.

8.2.3 Technical Semantics of Skip and Disengage

There are a number of important semantics of skip and disengage to keep in mind:

1. The skip statement can be used in the code bodies of walkers and abilities.

2. The disengage statement can only be used in the code body of walkers.

3. The with exit code block is not affected by skip or disengage statements. Upon a
disengage, any code in a walker’s with exit block will execute immediately after as
the walker is exiting the graph.

4. An easy way to think about these semantics is as similar to the behavior of a traditional
return (skip) and a return and stop walking (disengage).

8.3 Ignoring and Deleting

Jac Code 8.6: Ignoring edges during walk

1 node person: has name;
2 edge family;
3 edge friend;
4

5 walker build_example {
6 spawn here -[friend]-> node::person(name="Joe");
7 spawn here -[friend]-> node::person(name="Susan");
8 spawn here -[family]-> node::person(name="Matt");
9 spawn here -[family]-> node::person(name="Dan");

10 }
11

12 walker init {
13 root {
14 spawn here walker::build_example;

CHAPTER 8. WALKERS NAVIGATING GRAPHS 128

15 ignore -[family]->;
16 ignore -[friend(name=="Joe")]->;
17 take -->;
18 }
19 person {
20 std.out(here.name);
21 }
22 }

Jac Code 8.7: Destorying nodes/edges during walk

1 node person: has name;
2 edge family;
3 edge friend;
4

5 walker build_example {
6 spawn here -[friend]-> node::person(name="Joe");
7 spawn here -[friend]-> node::person(name="Susan");
8 spawn here -[family]-> node::person(name="Matt");
9 spawn here -[family]-> node::person(name="Dan");

10 }
11

12 walker init {
13 root {
14 spawn here walker::build_example;
15 for i in -[friend]->: destroy i;
16 take -->;
17 }
18 person {
19 std.out(here.name);
20 }
21 }

8.4 Reporting Back as you Travel

Jac Code 8.8: Building reports as you walk

1 node person: has name;
2 edge family;
3 edge friend;
4

5 walker build_example {

CHAPTER 8. WALKERS NAVIGATING GRAPHS 129

6 spawn here -[friend]-> node::person(name="Joe");
7 spawn here -[friend]-> node::person(name="Susan");
8 spawn here -[family]-> node::person(name="Matt");
9 spawn here -[family]-> node::person(name="Dan");

10 }
11

12 walker init {
13 root {
14 spawn here walker::build_example;
15 spawn -->[0] walker::build_example;
16 take -->;
17 }
18 person {
19 report here; # report print back on disengage
20 take -->;
21 }
22 }

8.5 Yielding Walkers

So far, we’ve looked at walkers that will walk the graph carrying state in context (has
variables). But you may be wonder what happens after its walk? And does it keep that
state like nodes and edges? Short answer is no. At the end of each walk a walker’s state
is cleared by default while node/edge state persists. That being said, there are situations
where you’d want a walker to keep its state across runs, and perhaps, you may even want a
walker to stop during a walk and wait to be explicitly called again updating just a few of it’s
dynamic state. This is where the yield keyword comes in.

Lets look at an example of yield in action.

Jac Code 8.9: Simple example of yielding walkers

1 global node_count=0;
2

3 node simple {has id;}
4

5 walker simple_yield {
6 with entry {
7 t=here;
8 for i=0 to i<10 by i+=1 {
9 t = spawn t --> node::simple(id=global.node_count);

10 global.node_count+=1;
11 }

CHAPTER 8. WALKERS NAVIGATING GRAPHS 130

12 }
13 report here.context;
14 take -->;
15 yield;
16 }

The yield keyword in JC 8.9 instructs the walker simple_yield to stop walking and wait
to be called again, even though the walker is instructed to take --> edges. In this example,
a single next node location is queued up and the walker reports a single here.context each
time it’s called, taking only 1 edge per call.

8.5.1 Yield Shorthands

Also note yield can be followed by a number of operations as a shorthand. For example
line 14 and 15 in JC 8.9 could be combined to a single line with yield take -->;. We call
this a yield-take. Shorthands include,

• Yield-Take: yield take -->;

• Yield-Report: yield report "hi";

• Yield-Disengage: yield disengage; and yield disengage report "bye";

In each of these cases, the take, report, and disengage executes with the yield.

8.5.2 Technical Semantics of Yield

There are a number of important semantics of yield to keep in mind:

1. Upon a yield, a report is returned back and cleared.

2. Additional report items from further walking will be return on subsequent yields or
walk completion.

3. Like the take command, the entire body of the walker will execute on the current node
and actually yield at the end of this execution.

• Note: Keep in mind yield can be combined with disengage and skip commands.

4. If a start node (aka a ‘prime’ node) is specified when continuing a walker after a yield,
if there are additional walk locations the walker is scheduled to travel to, the walker
will ignore this prime node and continue from where it left off on its journey.

5. If there are no nodes scheduled for the walker to go to next, a prime node must be
specified (or the walker will continue from root by default).

CHAPTER 8. WALKERS NAVIGATING GRAPHS 131

6. with entry and with exit code blocks in the walker are not executed upon continuing
from a yield or executing a yeild respectively. They execute only once starting and
ending a walk though there may be many yields in between.

7. The state of which walkers are yielded and to be continued vs which walkers are
being freshly run is kept at the level of the master (user) abstraction in Jaseci. At
the moment, walkers that are summoned as public has undefined yield semantics.
Developers should leverage the more lower level walker spawn and walker execute
APIs for customized yield behaviors.

8.5.3 Walkers Yielding Other Walkers (i.e., Yielding Deeply)

In addition to the utility of calling walkers that yield from client, walkers also benefit from
this abstraction when calling other walkers during a non-yielding walk. Lets take a look at a
code example.

Jac Code 8.10: Walkers yielding other walkers

1 walker simple_yield {
2 with entry {
3 t=here;
4 for i=0 to i<4 by i+=1:
5 t = spawn t --> node::generic;
6 }
7 if(-->.length): yield take -->;
8 }
9

10 walker deep_yield {
11 for i=0 to i<16 by i+=1 {
12 spawn here walker::simple_yield;
13 }
14 }

n0:root

n1:generic

e7

n5:generic

e9

n9:generic

e3

n2:generic

e10

n3:generic

e0

n4:generic

e1

n6:generic

e11

n7:generic

e2

n8:generic

e4

n10:generic

e5

n11:generic

e6

n12:generic

e8

Figure 8.3: Graph in memory for
JC 8.10

As shown in JC 8.10, the walker deep_yield does not
yield itself, but enjoys the semantics of the yield command
in simple_yield.

Figure 8.3 shows the graph created by JC 8.10. Though
deep_yield does not yield, tt calls simple_yield 16
times and exits. These 16 calls trigger walker::
↪→ simple_yield which in turn creates four chained
nodes off of the root node then walks the chain one step
at a time while yielding after each step. The result is this
very nice 17 node graph with a root node and 3 subtrees

CHAPTER 8. WALKERS NAVIGATING GRAPHS 132

with 4 connected nodes each. Yep, this yeilding semantic
is very handy indeed!

Chapter 9

Actions and Action Sets

Contents
9.1 Standard Action Library . 133

9.1.1 date . 133
9.1.2 file . 135
9.1.3 mail . 137
9.1.4 net . 137
9.1.5 rand . 141
9.1.6 request . 143
9.1.7 std . 145
9.1.8 vector . 150

9.2 Building Your Own Library . 151

9.1 Standard Action Library

9.1.1 date

No documentation yet.

133

CHAPTER 9. ACTIONS AND ACTION SETS 134

date.quantize_to_year

args: date: str (*req)

No documentation yet.

date.quantize_to_month

args: date: str (*req)

No documentation yet.

date.quantize_to_week

args: date: str (*req)

No documentation yet.

date.quantize_to_day

args: date: str (*req)

No documentation yet.

CHAPTER 9. ACTIONS AND ACTION SETS 135

date.datetime_now

args: n/a

No documentation yet.

date.date_now

args: n/a

No documentation yet.

date.timestamp_now

args: n/a

No documentation yet.

date.date_day_diff

args: start_date: str (*req), end_date: str (None)

No documentation yet.

9.1.2 file

No documentation yet.

CHAPTER 9. ACTIONS AND ACTION SETS 136

file.load_str

args: fn: str (*req), max_chars: int (None)

No documentation yet.

file.load_json

args: fn: str (*req)

No documentation yet.

file.dump_str

args: fn: str (*req), s: str (*req)

No documentation yet.

file.append_str

args: fn: str (*req), s: str (*req)

No documentation yet.

CHAPTER 9. ACTIONS AND ACTION SETS 137

file.dump_json

args: fn: str (*req), obj: _empty (*req), indent: int (None)

No documentation yet.

file.delete

args: fn: str (*req)

No documentation yet.

9.1.3 mail

No documentation yet.

mail.send

args: sender: _empty (*req), recipients: _empty (*req), subject:
↪→ _empty (*req), text: _empty (*req), html: _empty (*req)

No documentation yet.

9.1.4 net

This library of actions cover the standard operations that can be run on graph elements
(nodes and edges). A number of these actions accept lists that are exclusively composed of
instances of defined architype node and/or edges. Keep in mind that a jac_set is simply a
list that only contains such elements.

CHAPTER 9. ACTIONS AND ACTION SETS 138

net.max

args: item_set: JacSet (*req)

This action will return the maximum element in a list of nodes and/or edges based
on an anchor has variable. Since each node or edge can only specify a single anchor
this action enables a handy short hand for utilizing the anchor variable as the
representative field for performing the comparison in ranking. This action does not
support arhcitypes lacking an anchor.
For example, if you have a node called movie review with a field has anchor score
↪→ = .5; that changes based on sentiment analysis, using this action will return
the node with the highest score from the input list of nodes.

Parameters
item_set – A list of node and or edges to identify the maximum element based
on their respective anchor values

Returns
A node or edge object

CHAPTER 9. ACTIONS AND ACTION SETS 139

net.min

args: item_set: JacSet (*req)

This action will return the minimum element in a list of nodes and/or edges. This
action exclusively utilizes the anchor variable of the node/edge arhcitype as the
representative field for performing the comparison in ranking. This action does not
support arhcitypes lacking an anchor. (see action max for an example)

Parameters
item_set – A list of node and or edges to identify the minimum element based
on their respective anchor values

Returns
A node or edge object

CHAPTER 9. ACTIONS AND ACTION SETS 140

net.pack

args: item_set: JacSet (*req), destroy: bool (False)

This action takes a subgraph as a collection of nodes in a list and creates a generic
dictionary representation of the subgraph inclusive of all edges between nodes inside
the collection. Note that any edges that are connecting nodes outside of the list of
nodes are omitted from the packed subgraph representation. The complete context of
all nodes and connecting edges are retained in the packed dictionary format. The
unpack action can then be used to instantiate the identical subgraph back into a
graph. Packed graphs are highly portable and can be used for many use cases such as
exporting graphs and subgraphs to be imported using the unpack action.

Parameters
item_set – A list of nodes comprising the subgraph to be packed. Edges can
be included in this list but is ultimately ignored. All edges from the actual
nodes in the context of the source graph will be automatically included in the
packed dictionary if it contects two nodes within this input list.
destroy – A flag indicating whether the original graph nodes covered by pack
operation should be destroyed.

Returns
A generic and portable dictionary representation of the subgraph

CHAPTER 9. ACTIONS AND ACTION SETS 141

net.unpack

args: graph_dict: dict (*req)

This action takes a dictionary in the format produced by the packed action to
instantiate a set of nodes and edges corresponding to the subgraph represented by
the pack action. The original contexts that were pack will also be created. Important
Note: When using this unpack action, the unpacked collections of elements returned
must be connected to a source graph to avoid memory leaks.

Parameters
graph_dict – A dictionary in the format produced by the pack action.

Returns
A list of the nodes and edges that were created corresponding to the input
packed format. Note: Must be then connected to a source graph to avoid
memory leak.

net.root

args: n/a

This action returns the root node for the graph of a given user (master). A call to
this action is only valid if the user has an active graph set, otherwise it return null.
This is a handy way for any walker to get to the root node of a graph from anywhere.

Returns
The root node of the active graph for a user. If none set, returns null.

9.1.5 rand

No documentation yet.

CHAPTER 9. ACTIONS AND ACTION SETS 142

rand.seed

args: val: int (*req)

No documentation yet.

rand.integer

args: start: int (*req), end: int (*req)

No documentation yet.

rand.choice

args: lst: list (*req)

No documentation yet.

rand.sentence

args: min_lenth: int (4), max_length: int (10), sep: str ()

No documentation yet.

rand.paragraph

args: min_lenth: int (4), max_length: int (8), sep: str ()

No documentation yet.

CHAPTER 9. ACTIONS AND ACTION SETS 143

rand.text

args: min_lenth: int (3), max_length: int (6), sep: str (\n\n)

No documentation yet.

rand.word

args: n/a

No documentation yet.

rand.time

args: start_date: str (*req), end_date: str (*req)

No documentation yet.

9.1.6 request

No documentation yet.

request.get

args: url: str (*req), data: dict (*req), header: dict (*req)

Param 1 - url Param 2 - data Param 3 - header
Return - response object

CHAPTER 9. ACTIONS AND ACTION SETS 144

request.post

args: url: str (*req), data: dict (*req), header: dict (*req)

Param 1 - url Param 2 - data Param 3 - header
Return - response object

request.put

args: url: str (*req), data: dict (*req), header: dict (*req)

Param 1 - url Param 2 - data Param 3 - header
Return - response object

request.delete

args: url: str (*req), data: dict (*req), header: dict (*req)

Param 1 - url Param 2 - data Param 3 - header
Return - response object

request.head

args: url: str (*req), data: dict (*req), header: dict (*req)

Param 1 - url Param 2 - data Param 3 - header
Return - response object

CHAPTER 9. ACTIONS AND ACTION SETS 145

request.options

args: url: str (*req), data: dict (*req), header: dict (*req)

Param 1 - url Param 2 - data Param 3 - header
Return - response object

request.multipart_base64

args: url: str (*req), files: list (*req), header: dict (*req)

Param 1 - url Param 3 - header Param 3 - file (Optional) used for single file Param 4
- files (Optional) used for multiple files Note - file and files can’t be None at the same
time
Return - response object

request.file_download_base64

args: url: str (*req), header: dict (*req), encoding: str (utf-8)

No documentation yet.

9.1.7 std

No documentation yet.

CHAPTER 9. ACTIONS AND ACTION SETS 146

std.log

args: args: _empty (*req)

No documentation yet.

std.out

args: args: _empty (*req)

No documentation yet.

std.js_input

args: prompt: str ()

No documentation yet.

std.err

args: args: _empty (*req)

No documentation yet.

CHAPTER 9. ACTIONS AND ACTION SETS 147

std.sort_by_col

args: lst: list (*req), col_num: int (*req), reverse: bool (False)

Param 1 - list Param 2 - col number Param 3 - boolean as to whether things should
be reversed
Return - Sorted list

std.time_now

args: n/a

No documentation yet.

std.set_global

args: name: str (*req), value: _empty (*req)

Param 1 - name Param 2 - value (must be json serializable)

std.get_global

args: name: str (*req)

Param 1 - name

CHAPTER 9. ACTIONS AND ACTION SETS 148

std.actload_local

args: filename: str (*req)

No documentation yet.

std.actload_remote

args: url: str (*req)

No documentation yet.

std.actload_module

args: module: str (*req)

No documentation yet.

std.destroy_global

args: name: str (*req)

No documentation yet.

CHAPTER 9. ACTIONS AND ACTION SETS 149

std.set_perms

args: obj: Element (*req), mode: str (*req)

Param 1 - target element Param 2 - valid permission (public, private, read only)
Return - true/false whether successful

std.get_perms

args: obj: Element (*req)

Param 1 - target element
Return - Sorted list

std.grant_perms

args: obj: Element (*req), mast: Element (*req), read_only: bool (*req
↪→)

Param 1 - target element Param 2 - master to be granted permission Param 3 -
Boolean read only flag
Return - Sorted list

std.revoke_perms

args: obj: Element (*req), mast: Element (*req)

Param 1 - target element Param 2 - master to be revoked permission
Return - Sorted list

CHAPTER 9. ACTIONS AND ACTION SETS 150

std.get_report

args: n/a

No documentation yet.

9.1.8 vector

No documentation yet.

vector.cosine_sim

args: vec_a: list (*req), vec_b: list (*req)

Param 1 - First vector Param 2 - Second vector
Return - float between 0 and 1

vector.dot_product

args: vec_a: list (*req), vec_b: list (*req)

Param 1 - First vector Param 2 - Second vector
Return - float between 0 and 1

vector.get_centroid

args: vec_list: list (*req)

Param 1 - List of vectors
Return - (centroid vector, cluster tightness)

CHAPTER 9. ACTIONS AND ACTION SETS 151

vector.softmax

args: vec_list: list (*req)

Param 1 - List of vectors
Return - (centroid vector, cluster tightness)

vector.sort_by_key

args: data: dict (*req), reverse: _empty (False), key_pos: _empty (
↪→ None)

Param 1 - List of items Param 2 - if Reverse Param 3 (Optional) - Index of the key
to be used for sorting if param 1 is a list of tuples.
Deprecated

9.2 Building Your Own Library

Chapter 10

Imports, File I/O, Tests, and
More

Contents
10.1 Tests in Jac . 152
10.2 Imports . 154
10.3 File I/O . 155
10.4 Visualizing Graph with Dot Output . 155

10.1 Tests in Jac

Jac Code 10.1: Tests Example

1 node testnode {
2 has yo, bro;
3 }
4

5 node apple {
6 has v1, v2;
7 }
8

9 node banana {
10 has x1, x2;
11 }
12

152

CHAPTER 10. IMPORTS, FILE I/O, TESTS, AND MORE 153

13 graph dummy {
14 has anchor graph_root;
15 spawn {
16 graph_root = spawn node::testnode (yo="Hey␣yo!");
17 n1=spawn node::apple(v1="I'm␣apple");
18 n2=spawn node::banana(x1="I'm␣banana");
19 graph_root --> n1 --> n2;
20 }
21 }
22

23 walker init {
24 has num=4;
25 report here.context;
26 report num;
27 take -->;
28 }
29

30 test "assert␣should␣be␣valid"
31 with graph::dummy by walker::init {
32 assert (num==4);
33 assert (here.x1=="I'm␣banana");
34 assert <--[0].v1=="I'm␣apple";
35 }
36

37 test "assert␣should␣fail"
38 with graph::dummy by walker::init {
39 assert (num==4);
40 assert (here.x1=="I'm␣banana");
41 assert <--[0].v1=="I'm␣Apple";
42 }
43

44 test "assert␣should␣fail,␣add␣internal␣except"
45 with graph::dummy by walker::init {
46 assert (num==4);
47 assert (here.x1=="I'm␣banana");
48 assert <--[10].v1=="I'm␣apple";
49 }

CHAPTER 10. IMPORTS, FILE I/O, TESTS, AND MORE 154

Testing "assert should be valid": [PASSED in 0.00s]
Testing "assert should fail": [FAILED in 0.00s]
('JAC Assert Failed', '<-- [0] . v1 == "I\'m Apple" ')
Testing "assert should fail, add internal except": [FAILED in 0.00s]
('JAC Assert Failed', '<-- [10] . v1 == "I\'m apple" ', IndexError('

↪→ list index out of range'))
{
"tests": 3,
"passed": 1,
"failed": 2,
"success": false

}

10.2 Imports

Jac Code 10.2: Imports Example

1 import {graph::dummy, node::{banana, apple, testnode}} with "./jac_tests.
↪→ jac";

2 # import {*} with "./jac_tests.jac";
3 # import {graph::dummy, node*} with "./jac_tests.jac";
4

5 walker init {
6 has num=4;
7 with entry {
8 spawn here --> graph::dummy;
9 }

10 report here.context;
11 report num;
12 take -->;
13 }

CHAPTER 10. IMPORTS, FILE I/O, TESTS, AND MORE 155

{
"success": true,
"report": [
{},
4,
{
"yo": "Hey yo!",
"bro": null

},
4,
{
"x1": "I'm banana",
"x2": null

},
4

]
}

10.3 File I/O

Jac Code 10.3: File I/O Example

1 walker init {
2 fn="fileiotest.txt";
3 a = {'a': 5};
4 file.dump_json(fn, a);
5 b=file.load_json(fn);
6 b['a']+=b['a'];
7 file.dump_json(fn, b);
8 c=file.load_str(fn);
9 file.append_str(fn, c);

10 c=file.load_str(fn);
11 report c;
12 }

10.4 Visualizing Graph with Dot Output

A very useful feature of the Jaseci stack is the ability to dump a snapshot of a graph in
memory as dot output. There are two core interfaces to access this feature. The first is

CHAPTER 10. IMPORTS, FILE I/O, TESTS, AND MORE 156

the graph get api. Simply set the mode parameter to “dot” and a dot representation of the
graph will be printed. This API is present in both jsctl and the REST api. The other is to
use textttjac dot [filename]. This will run the program specified in filename, then print the
state of the graph at the end of the program run as dot output. This jac dot api is only
available through jsctl. For both of these apis, a detailed parameter can be used to get
more information embedded in the dot output. In particular, any context variables that are
string will be included in the nodes and edges of the dot output.

Part III

Jaseci AI Kit

157

Part IV

Crafting Jaseci

158

Chapter 11

Architecting Jaseci Core

159

Chapter 12

Architecting Jaseci Cloud
Serving

160

Part V

Guided Tours and Epilogue

161

Chapter 13

Installation and Coding
Environment

Contents
13.1 Installation . 164

13.1.1 Python Environment . 164
13.1.2 Installing Jaseci . 165
13.1.3 VSCode and the Jac Language Extension 168

If you’re the kind of haxor that doesn’t want to read a huge book and just wants to get
hacking ASAP, this part of the book is for you!! This chapter will make a few assumptions.
Firstly, it is assumed that you are in a linux environment and will have command of the
line that takes commands. Coincidental, this is commonly referred to as the command line.
Secondly, this command line will be one that accepts linux style commands in a bash format.
If you’ve never heard of bash, Google it. Thirdly and lastly, you will be using the only IDE
true ninjas use, namely VSCode. If these conditions apply to your environment, you’re good.
If they don’t but you use Linux, you’re still good (as you’re almost certainly competent
enough at this stuff to be able to easily be able to make the necessary adjustments to get
things working in your environment.)

We start this journey from the perspective of having a fresh vanilla install of the minimal
version of Ubuntu 20+. Ubuntu is a distribution or (flavor) of linux that is likely the most
popular and accessible in the market. I say likely because I don’t know for sure, but if it
isn’t I’d be shocked!

162

CHAPTER 13. INSTALLATION AND CODING ENVIRONMENT 163

Nerd Alert 10 (time to let your eyes glaze over)

The test environment I use to test these types of things is a vanilla Ubuntu environment I
spool up in Kubernetes cluster. I’ll throw it here below if helpful for anyone. You can also
just use the ubuntu docker container to validate these steps as well.
In my case, I log into the box using kubectl exec -it <podname> -- bash, then after
updating/upgrading packages I immediately run, apt install sudo, adduser haxor,
usermod -aG sudo haxor, su haxor. At this point I’m “logged in as haxor” and I can
pretend that I’m you :-).

YAML 13.1: K8s Manifest for a minimal vanilla Ubuntu test environment.

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: vanillabox
5 spec:
6 selector:
7 pod: vanillabox
8 ports:
9 − protocol: TCP

10 port: 80
11 targetPort: 80
12 −−−
13 apiVersion: apps/v1
14 kind: Deployment
15 metadata:
16 name: vanillabox
17 spec:
18 replicas: 1
19 selector:
20 matchLabels:
21 pod: vanillabox
22 template:
23 metadata:
24 labels:
25 pod: vanillabox
26 name: vanillabox
27 spec:
28 containers:
29 − name: vanillabox
30 image: ubuntu
31 command: [”/bin/sleep”, ”3650d”]
32 imagePullPolicy: IfNotPresent
33 ports:
34 − containerPort: 80

CHAPTER 13. INSTALLATION AND CODING ENVIRONMENT 164

13.1 Installation

First and foremost, lets check what os we’re running at the moment.

haxor@linux:~$ cat /etc/os-release
NAME="Ubuntu"
VERSION="20.04.4 LTS (Focal Fossa)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 20.04.4 LTS"
VERSION_ID="20.04"
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/

↪→ privacy-policy"
VERSION_CODENAME=focal
UBUNTU_CODENAME=focal
haxor@linux:~$

Ok good, we’re running Ubuntu 20.04.4 LTS as the PRETTY_NAME= indicates.

Now immediately execute sudo apt update and sudo apt upgrade as two separate com-
mands, don’t ask why just do it.

13.1.1 Python Environment

Next, we need to have Python installed. Python is the programming language and runtime
that Jaseci is primarily built upon. It’s also the language that 99.999% of everyone uses for
AI research and products (and myriad other things). It’s also my favorite as of late, well,
second favorite after Jac. Lets check to see. Simply enter the command,

haxor@linux:~$ python3 --version
-bash: python3: command not found
haxor@linux:~$

Some of you at this point might see a python version that is >= 3.8. If you see this you’re
good, you have Python installed. We don’t see this in this example. That is because we have
the minimal Ubuntu. So we have to install it.

CHAPTER 13. INSTALLATION AND CODING ENVIRONMENT 165

haxor@linux:~$ sudo apt install python3 python3-pip
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
binutils binutils-common binutils-x86-64-linux-gnu build-essential ca-

↪→ certificates cpp cpp-9 dirmngr dpkg-dev fakeroot g++ g++-9 gcc
↪→ gcc-9 gcc-9-base gnupg

...
Do you want to continue? [Y/n] y
...
Processing triggers for libc-bin (2.31-0ubuntu9.7) ...
Processing triggers for ca-certificates (20210119~20.04.2) ...
Updating certificates in /etc/ssl/certs...
0 added, 0 removed; done.
Running hooks in /etc/ca-certificates/update.d...
done.
haxor@linux:~$

The line sudo apt install python3 python3-pip instructs Ubuntu to install both the
python3 package as well as the python3-pip package. Note in the example there is a point
where it will ask you if you want to continue, just press Y and let it go. This step could take
some time in principle, but we are almost there!

Lets next check again that we have python installed.

haxor@linux:~$ python3 --version
Python 3.8.10
haxor@linux:~$ pip --version
pip 20.0.2 from /usr/lib/python3/dist-packages/pip (python 3.8)
haxor@linux:~$

Yes! We’re in great shape, we’ve also checked that pip is install and that looks good as well.
Note that we can also replace pip with pip3 and everything should work as well.

13.1.2 Installing Jaseci

Now that we have Python setup, we can use the pip install Jaseci itself. pip is Python’s
official package manager. This command line tool allows users of Python to install packages
or code libraries that go beyond the standard libraries that come with Python out of the box.
There is a public repository of libraries that is open to all the haxors of the world called
PyPI [12] that houses pretty much all the published python packages of the world. Jaseci
lives there throuh two packages, jaseci and jaseci-serv. For the moment we need only

CHAPTER 13. INSTALLATION AND CODING ENVIRONMENT 166

concern ourselves with jaseci as we get started. When we’re ready to launch amazing tech
stacks to production on scalable cloud infrastructure we’ll pull down jaseci-serv.

Now, lets install Jaseci!

haxor@linux:~$ pip install jaseci
Collecting jaseci
Downloading jaseci-1.3.1.1-py3-none-any.whl (154 kB)

|||||||||||||||||||||||||||||||||| 154 kB 4.5 MB/s
...
Successfully installed jaseci-1.3.1.1
haxor@linux:~$

TADA! We’ve pulled down Jaseci and are good to go! In this case we’ve installed Jaseci
version 1.3.1.1, your version should be at least this one but probably higher depending on
when you’re reading this. If its say a year after this moment that I’m writing this book and
it’s still 1.3.1.1, something very very wrong has happened. Indeed, if its two weeks later and
nothing has changed, call 911 and report a missing person, seriously.

To validate that everything works, lets check the command line tool jsctl is present. jsctl
is a command line tool that give full control and access to the Jaseci computational model.
In particular, and for the sake of this chapter, we will use this tool to build and run programs,
generate source for visualizing data and graphs, building artificial intelligence (AI) programs,
hot loading fancy AI models, pushing implementations live to Jaseci servers and much much
more. Now lets make sure we have access to this very powerful cli tool.

CHAPTER 13. INSTALLATION AND CODING ENVIRONMENT 167

haxor@linux:~$ jsctl --help
Usage: jsctl [OPTIONS] COMMAND [ARGS]...

The Jaseci Command Line Interface

Options:
-f, --filename TEXT Specify filename for session state.
-m, --mem-only Set true to not save file for session.
--help Show this message and exit.

Commands:
actions Group of `actions` commands
alias Group of `alias` commands
architype Group of `architype` commands
clear Clear terminal
config Group of `config` commands
edit Edit a file
global Group of `global` commands
graph Group of `graph` commands
jac Group of `jac` commands
logger Group of `logger` commands
login Command to log into live Jaseci server
ls List relevant files
master Group of `master` commands
object Group of `object` commands
reset Reset jsctl (clears state)
sentinel Group of `sentinel` commands
stripe Group of `stripe` commands
tool Internal book generation tools
walker Group of `walker` commands

haxor@linux:~$

If you see this output, you’re in business!! If you don’t, something went wrong and you
should phone a friend, (but first make sure you didn’t miss anything above).

Now, if you care about launching to production, and you want to build some amazing AI
products and experiences, you also want to install jaseci-serv and jaseci-ai-kit. Lets
do exactly what we did with jaseci and run,

CHAPTER 13. INSTALLATION AND CODING ENVIRONMENT 168

Figure 13.1: The Wonderful Jac Language extension in VSCode.

haxor@linux:~$ sudo apt install git cmake # Just to make sure you have it
...
haxor@linux:~$ pip install jaseci-serv
...
haxor@linux:~$ pip install jaseci-ai-kit
...

Now, jaseci-ai-kit is going to take a bit of time to run, so be patient. It’s all worth
it since you’ll be pulling down some beefy AI technology stuff (tensorflow and pytorch
stacks to be specific.)

13.1.3 VSCode and the Jac Language Extension

This is technically optional but... I strongly recommend you install and use VSCode with
Jaseci. VSCode IMHO, is the best code editor on the planet. I regard it as the choice Sake
to sip alongside my Jaseci Omakase.

In VSCode, you can search for and install the Jac language extensions as per Figure 13.1. As
you can see, at the time I clipped this image, its quite new and doesn’t really have a readme.
You won’t need one, it just provides syntax highlighting for .jac files at the moment. But it
makes Jac code look beautiful, so it’s a must have.

CHAPTER 13. INSTALLATION AND CODING ENVIRONMENT 169

Nerd Alert 11 (time to let your eyes glaze over)

...Personally, find an Ubuntu flavored WSL VSCode environment to be the way to go
these days. In a past life I was a 100% Mac person for it’s Unix based foundation. But
WSL got soooooo good, and I had to switch! (plus there is insufficient gaming goodness in
Mac-land). Anyway, I digress...

Chapter 14

Building CanoniCai

Contents
14.1 Build a Conversational AI System with Jaseci 171

14.1.1 Preparation . 171
14.1.2 Background . 172

14.2 Automated FAQ answering chatbot . 172
14.2.1 Define the Nodes . 172
14.2.2 Build the Graph . 173
14.2.3 Initialize the Graph . 175
14.2.4 Run the init Walker . 176
14.2.5 Ask the Question . 177
14.2.6 Introducing Universal Sentence Encoder 178
14.2.7 Scale it Out . 180

14.3 Next up! . 183
14.4 A Multi-turn Action-oriented Dialogue System 183

14.4.1 Introduction . 183
14.4.2 State Graph . 184
14.4.3 Define the State Nodes . 184
14.4.4 Custom Edges . 184
14.4.5 Build the graph . 185
14.4.6 Initialize the graph . 185
14.4.7 Build the Walker Logic . 186
14.4.8 Intent classificaiton with Bi-encoder 189
14.4.9 Integrate the Intent Classifier 191
14.4.10 Making Our Dialogue System Multi-turn 192
14.4.11 Build the Multi-turn Dialogue Graph 194

170

CHAPTER 14. BUILDING CANONICAI 171

14.4.12 Update the Walker for Multi-turn Dialogue 202
14.4.13 Train an Entity Extraction Model 203

14.5 Unify the Dialogue and FAQ Systems 206
14.5.1 Multi-file Jac Program and Import 207
14.5.2 Unify FAQ + Dialogue Code . 208

14.6 Bring Your Application to Production 211
14.6.1 Introducing yield . 211
14.6.2 Introduce sentinel . 213
14.6.3 Tests . 214
14.6.4 Running Jaseci as a Service . 215

14.7 Improve Your AI Models with Crowdsource 215

ConanoCai is a canonical example of a conversational AI built with Jaseci and Jac end to
end. It was coded by Yiping Kang, and this section has major content contributions from
Yiping Kang and Shawn Jemmont.

14.1 Build a Conversational AI System with Jaseci

In this tutorial, you are going to learn how to build a state-of-the-art conversational AI
system with Jaseci and the Jac language. You will learn the basics of Jaseci, training
state-of-the-art AI models, and everything in between, in order to create an end-to-end
fully-functional conversational AI system.

Excited? Hell yeah! Let’s jump in.

14.1.1 Preparation

To install jaseci, run this in your development environment:

1 pip install jaseci

To test the installation is successful, run:

1 jsctl --help

jsctl stands for the Jaseci Command Line Interface. If the command above displays the
help menu for jsctl, then you have successfully installed jaseci.

Note

Take a look and get familiarized with these commands while you are at it. jsctl will
be frequently used throughout this journey.

CHAPTER 14. BUILDING CANONICAI 172

14.1.2 Background

A few essential concepts to get familiar with.

14.1.2.1 Graph, nodes, edges

Refer to relevant sections of the Jaseci Bible.

14.1.2.2 Walker

Refer to relevant sections of the Jaseci Bible.

14.2 Automated FAQ answering chatbot

Our conversational AI system will consist of multiple components. To start, we are going to
build a chatbot that can answer FAQ questions without any custom training, using zeroshot
NLP models. At the end of this section, you will have a chatbot that, when given a question,
searches in its knowledge base for the most relevant answer and returns that answer.

The use case here is a Tesla FAQ chatbot. We will be using the list of FAQs from
https://www.tesla.com/en_SG/support/faq.

Note

This architecture works for any FAQ topics and use cases. Feel free to pick another
product/website/company’s FAQ if you’d like!

14.2.1 Define the Nodes

We have 3 different types of nodes:

• root: This is the root node of the graph. It is a built-in node type and each graph has
one root node only.

• faq_root: This is the entry point of the FAQ handler. We will make the decision on
the most relevant answer at this node.

• faq_state: This node represents a FAQ entry. It contains a candidate answer from
the knowledge base.

Now let’s define the custom node types.

CHAPTER 14. BUILDING CANONICAI 173

Figure 14.1: Architecture of FAQ Bot

1 node faq_root;
2 node faq_state {
3 has question;
4 has answer;
5 }

The has keyword defines a node’s variables. In this case, each faq_state has a question
and answer.

Warning

The root node does not need explicit definition. It is a built-in node type. Avoid using
root as a custom node type.

14.2.2 Build the Graph

For this FAQ chatbot, we will build a graph as illustrated here:

The idea here is that we will decide which FAQ entry is the most relevant to the incom-
ing question at the faq_root node and then we will traverse to that node to fetch the
corresponding answer.

To define this graph architecture:

1 // Static graph definition
2 graph faq {
3 has anchor faq_root;
4 spawn {
5 // Spawning the nodes
6 faq_root = spawn node::faq_root;
7 faq_answer_1 = spawn node::faq_state(
8 question="How␣do␣I␣configure␣my␣order?",
9 answer="To␣configure␣your␣order,␣log␣into␣your␣Tesla␣account."

CHAPTER 14. BUILDING CANONICAI 174

10);
11 faq_answer_2 = spawn node::faq_state(
12 question="How␣do␣I␣order␣a␣tesla",
13 answer="Visit␣our␣design␣studio␣to␣place␣your␣order."
14);
15 faq_answer_3 = spawn node::faq_state(
16 question="Can␣I␣request␣a␣test␣drive",
17 answer="Yes.␣You␣must␣be␣a␣minimum␣of␣25␣years␣of␣age."
18);
19

20 // Connecting the nodes together
21 faq_root --> faq_answer_1;
22 faq_root --> faq_answer_2;
23 faq_root --> faq_answer_3;
24 }
25 }

Let’s break down this piece of code.

We observe two uses of the spawn keyword. To spawn a node of a specific type, use the
spawn keyword for:

1 faq_answer_1 = spawn node::faq_state(
2 question="How␣do␣I␣configure␣my␣order?",
3 answer="To␣configure␣your␣order,␣log␣into␣your␣Tesla␣account.",
4);

In the above example, we just spawned a faq_state node called faq_answer_1 and initialized
its question and answer variables.

Note

The spawn keyword can be used in this style to spawn many different jaseci objects,
such as nodes, graphs and walkers.

The second usage of spawn is with the graph:

1 graph faq {
2 has anchor faq_root;
3 spawn {
4 ...
5 }
6 }

CHAPTER 14. BUILDING CANONICAI 175

In this context, the spawn designates a code block with programmatic functionality to spawn
a subgraph for which the root node of that spawned graph will be the has anchor faq_root.

In this block:

• We spawn 4 nodes, one of the type faq_root and three of the type faq_state.
• We connect each of the faq answer states to the faq root with faq_root -->

↪→ faq_answer_*.
• We set the faq_root as the anchor node of the graph. As we will later see, spawning

a graph will return its anchor node.

Warning

An anchor node is required for every graph block. It must be assigned inside the spawn
block of the graph definition.

14.2.3 Initialize the Graph

Similar to nodes, in order to create the graph, we will use the spawn keyword.

1 walker init {
2 root {
3 spawn here --> graph::faq;
4 }
5 }

This is the first walker we have introduced, so let’s break it down.

• The walker is called init.
• It contains logic specifically for the root node, meaning that the code inside the

root {} block will run only on the root node. This syntax applies for any node types,
as you will see very soon. Every Jac program starts with a single root node, but as
you will later learn, a walker can be executed on any node, though the root is used by
default if none is specified.

• spawn here --> graph::faq creates an instance of the faq graph and connects its
anchor node to here, which is the node the walker is currently on.

Note

init can be viewed as similar to main in Python. It is the default walker to run when
no specific walkers are specified for a jac run command.

here is a very powerful keyword. It always evaluates to the specific node the walker is
currently on. You will be using here a lot throughout this tutorial.

CHAPTER 14. BUILDING CANONICAI 176

Figure 14.2: Dot output for Faq graph

14.2.4 Run the init Walker

Now, let’s run the init walker to initialize the graph. First put all of the above code snippet
into a single jac file and name it main.jac, including

• nodes definition
• graph definition
• init walker

Run jsctl to get into the jaseci shell environment:

1 jsctl

Inside the jsctl shell,

1 jaseci > jac dot main.jac

This command runs the init walker of the main.jac program and prints the state of its
graph in DOT format after the walker has finished. The DOT language is a popular graph
description language widely used for representing complex graphs.

The output should look something like this

1 strict digraph root {

https://graphviz.org/doc/info/lang.html

CHAPTER 14. BUILDING CANONICAI 177

2 "n0" [id="0955c04e4ff945b4b836748ef2bbd98a", label="n0:root"]
3 "n1" [id="c1240d79110941c1bc2feb18581951bd", label="n1:faq_root"]
4 "n2" [id="55333be285c246db88181ac34d16cd20", label="n2:faq_state"]
5 "n3" [id="d4fa8f2c46ca463f9237ef818e086a29", label="n3:faq_state"]
6 "n4" [id="f7b1c8ae82af4063ad53646adc5544e9", label="n4:faq_state"]
7 "n0" -> "n1" [id="a718fd6c938149269d3ade2af2eb023c", label="e0"]
8 "n1" -> "n2" [id="3757cb15851249b4b6083d7cb3c34f8e", label="e1"]
9 "n1" -> "n4" [id="626ce784a8f5423cae5d5d5ca857fc5c", label="e2"]

10 "n1" -> "n3" [id="a609e7b54bde4a6a9c9711afdb123241", label="e3"]
11 }

Note

We are not going to cover the DOT syntax. There are many resources online if you are
interested, e.g., https://graphviz.org/doc/info/lang.html

Note

There are tools available to render a graph in DOT format. For example, https://dream-
puf.github.io/GraphvizOnline has a WSIWYG editor to render dot graph in real time.

Congratulations! You have just created your first functional jac program!

14.2.5 Ask the Question

Alright, we have initialized the graph. Now it’s time to create the code for the question-
answering. We will start with a simple string matching for the answer selection algorithm.
For this, we will create a new walker called ask.

1 walker ask {
2 has question;
3 root {
4 question = std.input("AMA␣>␣");
5 take --> node::faq_root;
6 }
7 faq_root {
8 take --> node::faq_state(question==question);
9 }

10 faq_state {:
11 std.out(here.answer);
12 }

CHAPTER 14. BUILDING CANONICAI 178

13 }

This walker is more complex than the init one and introduces a few new concepts so let’s
break it down!

• Similar to nodes, walkers can also contain has variables. They define variables of the
walker. They can also be passed as parameters when calling the walker.

• std.input and std.out read and write to the command line respectively.
• This walker has logic for three types of node: root, faq_root and faq_state.

– root: It simply traverses to the faq_root node.
– faq_root: This is where the answer selection algorithm is. We will find the most

relevant faq_state and then traverse to that node via a take statement. In this
code snippet, we are using a very simple (and limited) string matching approach
to try to match the predefined FAQ question with the user question.

– faq_state: Print the answer to the terminal.

Before we run this walker, we are going to update the init walker to speed up our development
process

1 walker init {
2 root {
3 spawn here --> graph::faq;
4 spawn here walker::ask;
5 }
6 }

This serves as a shorthand so that we can initialize the graph and ask a question in one
command.

Note

This demonstrates how one walker can spawn another walker using the spawn keyword.

Time to run the walker!
1 jaseci > jac run main.jac

jac run functions very similarly to jac dot, with the only difference being that it doesn’t
return the graph in DOT format. Try giving it one of the three questions we have predefined
and it should respond with the corresponding answer.

14.2.6 Introducing Universal Sentence Encoder

Now, obviously, what we have now is not very “AI” and we need to fix that. We are going to
use the Universal Sentence Encoder QA model as the answer selection algorithm. Universal

CHAPTER 14. BUILDING CANONICAI 179

Sentence Encoder is a language encoder model that is pre-trained on a large corpus of natural
language data and has been shown to be effective in many NLP tasks. In our application,
we are using it for zero-shot question-answering, i.e. no custom training required.

Jaseci has a set of built-in libraries or packages that are called Jaseci actions. These actions
cover a wide-range of state-of-the-art AI models across many different NLP tasks. These
actions are packaged in a Python module called jaseci_ai_kit.

To install jaseci_ai_kit:

1 pip install jaseci_ai_kit

Now we load the action we need into our jaseci environment

1 jaseci > actions load module jaseci_ai_kit.use_qa

Let’s update our walker logic to use the USE QA model:

1 walker ask {
2 can use.qa_classify;
3 has question;
4 root {
5 question = std.input(">");
6 take --> node::faq_root;
7 }
8 faq_root {
9 answers = -->.answer;

10 best_answer = use.qa_classify(
11 text = question,
12 classes = answers
13);
14 take --> node::faq_state(answer==best_answer["match"]);
15 }
16 faq_state {
17 std.out(here.answer);
18 }
19 }

Even though there are only 5 lines of new code, there are many interesting aspects, so let’s
break it down!

• -->.answer collects the answer variable of all of the nodes that are connected to
here/faq_root with a --> connection.

• use.qa_classify is one of the action supported by the USE QA action set. It takes
in a question and a list of candidate answers and return the most relevant one.

CHAPTER 14. BUILDING CANONICAI 180

Now let’s run this new updated walker and you can now ask questions that are relevant to
the answers beyond just the predefined ones.

14.2.7 Scale it Out

So far we have created a FAQ bot that is capable of providing answer in three topics. To
make this useful beyond just a prototype, we are now going to expand its database of answers.
Instead of manually spawning and connecting a node for each FAQ entry, we are going to
write a walker that automatically expands our graph:

1 walker ingest_faq {
2 has kb_file;
3 root: take --> node::faq_root;
4 faq_root {
5 kb = file.load_json(kb_file);
6 for faq in kb {
7 answer = faq["answer"];
8 spawn here --> node::faq_state(answer=answer);
9 }

10 }
11 }

An example knowledge base file look like this

1 [
2 {
3 "question": "I␣have␣a␣Model␣3␣reservation,␣how␣do␣I␣configure␣my␣order

↪→ ?",
4 "answer": "To␣configure␣your␣order,␣log␣into␣your␣Tesla␣Account␣and␣

↪→ select␣manage␣on␣your␣existing␣reservation␣to␣configure␣your␣
↪→ Tesla.␣Your␣original␣USD␣deposit␣has␣now␣been␣converted␣to␣SGD.
↪→ "

5 },
6 {
7 "question": "How␣do␣I␣order␣a␣Tesla?",
8 "answer": "Visit␣our␣Design␣Studio␣to␣explore␣our␣latest␣options␣and␣

↪→ place␣your␣order.␣The␣purchase␣price␣and␣estimated␣delivery␣
↪→ date␣will␣change␣based␣on␣your␣configuration."

9 },
10 {
11 "question": "Can␣I␣request␣a␣Test␣Drive?",
12 "answer": "Yes,␣you␣can␣request␣for␣a␣test␣drive.␣Please␣note␣that␣

↪→ drivers␣must␣be␣a␣minimum␣of␣25␣years␣of␣age␣and␣not␣exceeding␣

CHAPTER 14. BUILDING CANONICAI 181

↪→ 65␣years␣of␣age,␣hold␣a␣full␣driving␣license␣with␣over␣2␣years␣
↪→ of␣driving␣experience.␣Insurance␣conditions␣relating␣to␣your␣
↪→ specific␣status␣must␣be␣reviewed␣and␣accepted␣prior␣to␣the␣test
↪→ ␣drive."

13 }
14]

Save the above json in a file named tesla_faq.json and make sure it is in the same location
as main.jac. Let’s now update the init walker. Because we are going to use the ingest_faq
walker to generate the graph, we won’t need the static graph definition.

1 walker init {
2 root {
3 spawn here --> node::faq_root;
4 spawn here walker::ingest_faq(kb_file="tesla_faq.json");
5 spawn here walker::ask;
6 }
7 }

What we are doing here is

• Spawning a faq_root node
• Running the ingest_faq walker to create the neccessary faq_state nodes based on

the question-answer entries in the tesla_faq.json file.
• Launching the ask walker

Let’s run the program one more time and test it out!

1 jaseci > jac run main.jac

Note

Try more varied questions. Now we have a longer answer with more rich information, it
has a higher coverage of information that will be able to answer more questions.

Note

If you are feeling adventurous, try downloading the complete list of entires on the Tesla
FAQ page and use it to create a production-level FAQ bot. See if you can push the
model to its limit!

CHAPTER 14. BUILDING CANONICAI 182

Figure 14.3: Full architecture of Tesla AI

CHAPTER 14. BUILDING CANONICAI 183

14.3 Next up!

Here is a preview on what’s next to come in this journey!

On the right is the architecture diagram of the complete system we are going to build. Here
are the major components:

• Zero-shot FAQ (what we have built so far).
• Action-oriented Multi-turn Dialogue System.
• Training and inference with an intent classification model.
• Training and inference with an entity extraction model.
• Testing.
• Deploying your Jac application to a production environment.
• Training data collection and curation.

14.4 A Multi-turn Action-oriented Dialogue System

14.4.1 Introduction

In the previous section, we built a FAQ chabot. It can search in a knowledge base of answers
and find the most relevant one to a user’s question. While ths covers many diverse topics,
certain user request can not be satisfied by a single answer. For example, you might be
looking to open a new bank account which requires mulitple different pieces of information
about you. Or, you might be making a reservation at a restaurant which requires information
such as date, time and size of your group. We refer to these as action-oriented conversational
AI requests, as they often lead to a certain action or objective.

When interacting with a real human agent to accomplish this type of action-oriented requests,
the interaction can get messy and unscripted and it also varies from person to person. Again,
use the restaurant reservation as an example, one migh prefer to follow the guidance of the
agent and provide one piece of information at a time, while others might prefer to provide
all the neccessary information in one sentence at the beginning of the interaction.

Therefore, in order to build a robust and flexible conversational AI to mimic a real human
agent to support these types of messy action-oriented requests, we are going to need an
architecture that is different than the single-turn FAQ.

And that is what we are going to build in this section – a multi-turn action-oriented dialogue
system.

Warning

Create a new jac file (dialogue.jac) before moving forward. We will keep this program
separate from the FAQ one we built. But, KEEP the FAQ jac file around, we will

CHAPTER 14. BUILDING CANONICAI 184

integrate these two systems into one unified conversational AI system later.

14.4.2 State Graph

Let’s first go over the graph architecture for the dialogue system. We will be building a state
graph. In a state graph, each node is a conversational state, which represents a possible
user state during a dialgoue. The state nodes are connected with transition edges, which
encode the condition required to hop from one state to another state. The conditions are
often based on the user’s input.

14.4.3 Define the State Nodes

We will start by defining the node types.

1 node dialogue_root;
2

3 node dialogue_state {
4 has name;
5 has response;
6 }

Here we have a dialogue_root as the entry point to the dialogue system and multiple
dialogue_state nodes representing the conversational states. These nodes will be connected
with a new type of edge intent_transition.

14.4.4 Custom Edges

1 edge intent_transition {
2 has intent;
3 }

This is the first custom edge we have introduced. In jac, just like nodes, you can define
custom edge types. Edges are also allowed has variables.

In this case, we created an edge for intent transition. This is a state transition that will be
triggered conditioned on its intent being detected from the user’s input question.

Note

Custom edge type and variables enable us to encode information into edges in addition
to nodes. This is crucial for building a robust and flexible graph.

CHAPTER 14. BUILDING CANONICAI 185

14.4.5 Build the graph

Let’s build the first graph for the dialogue system.

1 graph dialogue_system {
2 has anchor dialogue_root;
3 spawn {
4 dialogue_root = spawn node::dialogue_root;
5 test_drive_state = spawn node::dialogue_state(
6 name = "test_drive",
7 response = "Your␣test␣drive␣is␣scheduled␣for␣Jan␣1st,␣2023."
8);
9 how_to_order_state = spawn node::dialogue_state (

10 name = "how_to_order",
11 response = "You␣can␣order␣a␣Tesla␣through␣our␣design␣studio."
12);
13

14 dialogue_root -[intent_transition(intent="test␣drive")]->
↪→ test_drive_state;

15 dialogue_root -[intent_transition(intent="order␣a␣tesla")]->
↪→ how_to_order_state;

16 }
17 }

We have already covered the syntax for graph definition, such as the anchor node and the
spawn block in the previous section. Refer to the FAQ graph definition step if you need a
refresher.

We have a new language syntax here dialogue_root -[intent_transition(intent="
↪→ test␣drive")]-> test_drive_state;. Let’s break this down! * If you recall, we
have used a similar but simpler syntax to connect two nodes with an edge faq_root
↪→ --> faq_state;. This connect faq_root to faq_state with a generic edge pointing
to faq_state; * In dialogue_root -[intent_transition(intent="test␣drive")]->
↪→ test_drive_state;, we are connecting the two states with a custom edge of the type
intent_transition. * In addition, we are initializing the variable intent of the edge to be
test drive.

To summarize, with this graph, a user will start at the dialogue root state when they first
start the conversation. Then based on the user’s question and its intent, we will

14.4.6 Initialize the graph

Let’s create an init walker to for this new jac program.

CHAPTER 14. BUILDING CANONICAI 186

1 walker init {
2 root {
3 spawn here --> graph::dialogue_system;
4 }
5 }

Put all the code so far in a new file and name it dialogue.jac.

Let’s initialize the graph and visualize it.

1 jaseci > jac dot dialogue.jac

1 strict digraph root {
2 "n0" [id="7b4ee7198c5b4dcd8acfcf739d6971fe", label="n0:root"]
3 "n1" [id="7caf939cfbce40d4968d904052368f30", label="n1:dialogue_root"

↪→]
4 "n2" [id="2e06be95aed449b59056e07f2077d854", label="n2:dialogue_state

↪→ "]
5 "n3" [id="4aa3e21e13eb4fb99926a465528ae753", label="n3:dialogue_state

↪→ "]
6 "n1" -> "n3" [id="6589c6d0dd67425ead843031c013d0fc", label="e0:

↪→ intent_transition"]
7 "n1" -> "n2" [id="f4c9981031a7446b855ec91b89aaa5ee", label="e1:

↪→ intent_transition"]
8 "n0" -> "n1" [id="bec764e7ee4048898799c2a4f01b9edb", label="e2"]
9 }

14.4.7 Build the Walker Logic

Let’s now start building the walker to interact with this dialogue system.

1 walker talk {
2 has question;
3 root {
4 question = std.input(">␣");
5 take --> node::dialogue_root;
6 }
7 dialogue_root {
8 take -[intent_transition(intent==question)]-> node::dialogue_state

↪→ ;
9 }

10 dialogue_state {

CHAPTER 14. BUILDING CANONICAI 187

Figure 14.4: DOT of the dialogue system

CHAPTER 14. BUILDING CANONICAI 188

11 std.out(here.response);
12 }
13 }

Similar to the first walker we built for the FAQ system, we are starting with a simple string
matching algorithm. Let’s update the init walker to include this walker.

1 walker init {
2 root {
3 spawn here --> graph::dialogue_system;
4 spawn here walker::talk;
5 }
6 }

Try out the following interactions

1 $ jsctl jac run dialogue.jac
2 > test drive
3 Your test drive is scheduled for Jan 1st, 2023.
4 {
5 "success": true,
6 "report": [],
7 "final_node": "urn:uuid:9b8d9e1e-d7fb-4e6e-ae86-7ef7c7ad28a7",
8 "yielded": false
9 }

and

1 $ jsctl jac run dialogue.jac
2 > order a tesla
3 You can order a Tesla through our design studio.
4 {
5 "success": true,
6 "report": [],
7 "final_node": "urn:uuid:168590aa-d579-4f22-afe7-da75ab7eefa3",
8 "yielded": false
9 }

What is happening here is based on the user’s question, we are traversing the corresponding
dialogue state and then return the response of that state. For now, we are just matching the
incoming question with the intent label as a simple algorithm, which we will now replace
with an AI model.

CHAPTER 14. BUILDING CANONICAI 189

Note

Notice we are running jsctl commands directly from the terminal without first entering
the jaseci shell? Any jsctl commands can be launched directly from the terminal
by just prepending it with jsctl. Try it with the other jsctl comamnds we have
encountered so far, such as jac dot.

14.4.8 Intent classificaiton with Bi-encoder

Let’s introduce an intent classification AI model. Intent Classification is the task of detecting
and assigning an intent to a given piece of text from a list of pre-defined intents, to summarize
what the text is conveying or asking. It’s one of the fundamental tasks in Natural Language
Processing (NLP) with broad applications in many areas.

There are many models that have been proposed and applied to intent classification. For this
tutorial, we are going to use a Bi-Encoder model. A Bi-encoder model has two transformer-
based encoders that each encodes the input text and candidate intent labels into embedding
vectors and then the model compare the similarity between the embedding vectors to find
the most relevant/fitting intent label.

Note

If you don’t fully understand the Bi-encoder model yet, do not worry! We will provide
the neccessary code and tooling for you to wield this model as a black box. But, if you are
interested, here is a paper for you to read up on it https://arxiv.org/pdf/1908.10084.pdf!

Now let’s train the model. We have created a jac program and sample training data
for this. They are in the code directory next to this tutorial. Copy bi_enc.jac and
clf_train_1.json to your working directory.

Let’s first load the Bi-encoder action library into Jaseci.

1 $ jsctl
2 jaseci > actions load module jaseci_ai_kit.bi_enc

We have provided an example training file that contains some starting point training data
for the two intents, test drive and order a tesla.

1 jaseci > jac run bi_enc.jac -walk train -ctx "{\"train_file\":␣\"
↪→ clf_train_1.json\"}"

CHAPTER 14. BUILDING CANONICAI 190

We are still using jac run but as you have noticed, this time we are using some new
arguments. So let’s break it down. * -walk specifies the name of the walker to run. By
default, it runs the init walker. * -ctx stands for context. This lets us provide input
parameters to the walker. The input parameters are defined as has variables in the walker.

Warning

-ctx expects a json string that contains a dictionary of parameters and their values.
Since we are running this on the command line, you will need to escape the quotation
marks " properly for it to be a valid json string. Pay close attention to the example here
-ctx "{\"train_file\":␣\"clf_train_1.json\"}" and use this as a reference.

You should see an output block that looks like the following repeating many times on your
screen:

1 ...
2 Epoch : 5
3 loss : 0.10562849541505177
4 LR : 0.0009854014598540146
5 ...

Each training epoch, the above output will print with the training loss and learning rate at
that epoch. By default, the model is trained for 50 epochs.

If the training successfully finishes, you should see "success": true at the end.

Now that the model has finished training, let’s try it out! You can use the infer walker
to play with the model and test it out! infer is short for inference, which means using a
trained model to run prediction on a given input.

1 jaseci > jac run bi_enc.jac -walk infer -ctx "{\"labels\":␣[\"test drive\
↪→ ",␣\"order a tesla\"]}"

Similar to training, we are using jac run to specifically invoke the infer walker and provide
it with custom parameters. The custom paremeter is the list of candidate intent labels,
which are test drive and order a tesla in this case, as these were the intents the model
was trained on.

1 jaseci > jac run bi_enc.jac -walk infer -ctx "{\"labels\":␣[\"test drive\
↪→ ",␣\"order a tesla\"]}"

2 Enter input text (Ctrl-C to exit)> i want to order a tesla
3 {"label": "order␣a␣tesla", "score": 9.812651595405981}
4 Enter input text (Ctrl-C to exit)> i want to test drive
5 {"label": "test␣drive", "score": 6.931458692617463}
6 Enter input text (Ctrl-C to exit)>

CHAPTER 14. BUILDING CANONICAI 191

In the output here, label is the predicted intent label and score is the score assigned by
the model to that intent.

Note

One of the advantage of the bi-encoder model is that candidate intent labels can be
dynamically defined at inference time, post training. This enables us to create custom
contextual classifiers situationally from a single trained model. We will leverage this
later as our dialogue system becomes more complex.

Congratulations! You just trained your first intent classifier, easy as that.

The trained model is kept in memory and active until they are explicitly saved with
save_model. To save the trained model to a location of your choosing, run

1 jaseci > jac run bi_enc.jac -walk save_model -ctx "{\"model_path\":␣\"
↪→ dialogue_intent_model\"}"

Similarly, you can load a saved model with load_model

1 jaseci > jac run bi_enc.jac -walk load_model -ctx "{\"model_path\":␣\"
↪→ dialogue_intent_model\"}"

Always remember to save your trained models!

Warning

save_model works with relative path. When a relative model path is specified, it will
save the model at the location relative to location of where you run jsctl. Note
that until the model is saved, the trained weights will stay in memory, which means
that it will not persisit between jsctl session. So once you have a trained model you
like, make sure to save them so you can load them back in the next jsctl session.

14.4.9 Integrate the Intent Classifier

Now let’s update our walker to use the trained intent classifier.

1 walker talk {
2 has question;
3 can bi_enc.infer;
4 root {
5 question = std.input(">␣");
6 take --> node::dialogue_root;
7 }

CHAPTER 14. BUILDING CANONICAI 192

8 dialogue_root {
9 intent_labels = -[intent_transition]->.edge.intent;

10 predicted_intent = bi_enc.infer(
11 contexts = [question],
12 candidates = intent_labels,
13 context_type = "text",
14 candidate_type = "text"
15)[0]["predicted"]["label"];
16 take -[intent_transition(intent==predicted_intent)]-> node::

↪→ dialogue_state;
17 }
18 dialogue_state {
19 std.out(here.response);
20 }
21 }

intent_labels = -[intent_transition]->.edge.intent collects the intent variables of
all the outgoing intent_transition edges. This represents the list of candidate intent
labels for this state.

Try playing with different questions, such as

1 $ jsctl
2 jaseci > jac run dialogue.jac
3 > hey yo, I heard tesla cars are great, how do i get one?
4 You can order a Tesla through our design studio.
5 {
6 "success": true,
7 "report": [],
8 "final_node": "urn:uuid:af667fdf-c2b0-4443-9ccd-7312bc4c66c4",
9 "yielded": false

10 }

14.4.10 Making Our Dialogue System Multi-turn

Dialogues in real life have many turn of interaction. Our dialogue system should also support
that to provide a human-like conversational experinece. In this section, we are going to take
the dialogue system to the next level and create a multi-turn dialogue experience.

Before we do that we need to introduce two new concepts in Jac: node abilities and
inheritance.

CHAPTER 14. BUILDING CANONICAI 193

14.4.10.1 Node Abilities

Node abilities are code that encoded as part of each node type. They often contain logic that
read, write and generally manipulate the variables and states of the nodes. Node abilities
are defined with the can keyword inside the definition of nodes, for example, in the code
below, get_plate_number is an ability of the vehicle node.

1 node vehicle {
2 has plate_numer;
3 can get_plate_numer {
4 report here.plate_number;
5 }
6 }

To learn more about node abilities, refer to the relevant sections of the Jaseci Bible. >
Note > > Node abilities look and function similarly to member functions in object-oriented
programming (OOP). However, there is a key difference in the concepts. Node abilities are
the key concept in data-spatial programming, where the logic should stay close to its working
set data in terms of the programming syntax.

14.4.10.2 Inheritance

Jac supports inheritance for nodes and edges. Node variables (defined with has) and node
abilities (defined with can) are inherited and can be overwritten by children nodes.

Here is an example:

1 node vehicle {
2 has plate_number;
3 can get_plate_number {
4 report here.plate_number;
5 }
6 }
7

8 node car:vehicle {
9 has plate_number = "RAC001";

10 }
11

12 node bus:vehicle {
13 has plate_number = "SUB002";
14 }

To learn more about inheritance in Jac, refer to the relevant sections of the Jaseci Bible.

CHAPTER 14. BUILDING CANONICAI 194

14.4.11 Build the Multi-turn Dialogue Graph

Now that we have learnt about node abilities and node inheritance, let’s put these new
concepts to use to build a new graph for the multi-turn dialogue system

There are multiple parts to this so let’s break it down one by one

14.4.11.1 Dialogue State Specific Logic

With the node abilities and node inheritance, we will now introduce state specific logic. Take
a look at how the dialogue_root node definition has changed.

1 node dialogue_state {
2 can bi_enc.infer;
3 can tfm_ner.extract_entity;
4

5 can classify_intent {
6 intent_labels = -[intent_transition]->.edge.intent;
7 visitor.wlk_ctx["intent"] = bi_enc.infer(
8 contexts = [visitor.question],
9 candidates = intent_labels,

10 context_type = "text",
11 candidate_type = "text"
12)[0]["predicted"]["label"];
13 }
14

15 can extract_entities {
16 // Entity extraction logic will be added a bit later on.
17 }
18

19 can init_wlk_ctx {
20 new_wlk_ctx = {
21 "intent": null,
22 "entities": {},
23 "prev_state": null,
24 "next_state": null,
25 "respond": false
26 };
27 if ("entities" in visitor.wlk_ctx) {
28 // Carry over extracted entities from previous interaction
29 new_wlk_ctx["entities"] = visitor.wlk_ctx["entities"];
30 }
31 visitor.wlk_ctx = new_wlk_ctx;
32 }

CHAPTER 14. BUILDING CANONICAI 195

33 can nlu {}
34 can process {
35 if (visitor.wlk_ctx["prev_state"]): visitor.wlk_ctx["respond"] =

↪→ true;
36 else {
37 visitor.wlk_ctx["next_state"] = net.root();
38 visitor.wlk_ctx["prev_state"] = here;
39 }
40 }
41 can nlg {}
42 }
43

44 node dialogue_root:dialogue_state {
45 has name = "dialogue_root";
46 can nlu {
47 ::classify_intent;
48 }
49 can process {
50 visitor.wlk_ctx["next_state"] = (-[intent_transition(intent==

↪→ visitor.wlk_ctx["intent"])]->)[0];
51 }
52 can nlg {
53 visitor.response = "Sorry␣I␣can't␣handle␣that␣just␣yet.␣Anything␣

↪→ else␣I␣can␣help␣you␣with?";
54 }
55 }

There are many interesting things going on in these ~30 lines of code so let’s break it
down! * The dialogue_state node is the parent node and it is similar to a virtual class in
OOP. It defines the variables and abilities of the nodes but the details of the abilities will
be specified in the inheriting children nodes. * In this case, dialogue_state has 4 node
abilities: * can nlu: NLU stands for Natural Language Understanding. This ability will
analyze user’s incoming requset and apply AI models. * can process: This ability uses
the NLU results and figure out the next dialogue state the walker should go to. * can nlg:
NLG stands for Natural Language Generation. This abilitiy will compose response to the
user, often based on the results from nlu. * can classify_intent: an ability to handle
intent classification. This is the same intent classification logic that has been copied over
from the walker. * can extract_entities: a new ability with a new AI model – entity
extraction. We will cover that just in a little bit (read on!). * Between these four node
abilities, classify_intent and extract_entities have concrete logic defined while nlu
and nlg are “virtual node abilities”, which will be specified in each of the inheriting children.
* For example, dialogue_root inherit from dialogue_state and overwrites nlu and nlg: *
for nlu, it invokes intent classification because it needs to decide what’s the intent of the user

CHAPTER 14. BUILDING CANONICAI 196

(test drive vs order a tesla). * for nlg, it just has a general fall-back response in case the
system can’t handle user’s ask. * New Syntax: visitor is the walker that is “visiting” the
node. And through visitor.*, the node abilities can access and update the context of the
walker. In this case, the node abilities are updating the response variable in the walker’s
context so that the walker can return the response to its caller, as well as the wlk_ctx
variable that will contain various walker context as the walker traverse the graph. * the
init_wlk_ctx ability initializes the wlk_ctx variable for each new question.

In this new node architecture, each dialogue state will have its own node type, specifying
their state-specific logic in nlu, nlg and process. Let’s take a look!

1 node how_to_order_state:dialogue_state {
2 has name = "how_to_order";
3 can nlg {
4 visitor.response = "You␣can␣order␣a␣Telsa␣through␣our␣design␣

↪→ studio";
5 }
6 }
7

8 node test_drive_state:dialogue_state {
9 has name = "test_drive";

10 can nlu {
11 if (!visitor.wlk_ctx["intent"]): ::classify_intent;
12 ::extract_entities;
13 }
14 can process {
15 // Check entity transition
16 required_entities = -[entity_transition]->.edge[0].context["

↪→ entities"];
17 if (vector.sort_by_key(visitor.wlk_ctx["entities"].d::keys) ==

↪→ vector.sort_by_key(required_entities)) {
18 visitor.wlk_ctx["next_state"] = -[entity_transition]->[0];
19 visitor.wlk_ctx["prev_state"] = here;
20 } elif (visitor.wlk_ctx["prev_state"] and !visitor.wlk_ctx["

↪→ prev_state"].context["name"] in ["test_drive", "
↪→ td_confirmation"]){

21 next_state = -[intent_transition(intent==visitor.wlk_ctx["
↪→ intent"])]->;

22 if (next_state.length > 0 and visitor.wlk_ctx["intent"] != "no"
↪→) {

23 visitor.wlk_ctx["next_state"] = next_state[0];
24 visitor.wlk_ctx["prev_state"] = here;
25 } else {
26 visitor.wlk_ctx["respond"] = true;

CHAPTER 14. BUILDING CANONICAI 197

27 }
28 } else {
29 visitor.wlk_ctx["respond"] = true;
30 }
31 }
32 can nlg {
33 if ("name" in visitor.wlk_ctx["entities"] and "address" not in

↪→ visitor.wlk_ctx["entities"]):
34 visitor.response = "What␣is␣your␣address?";
35 elif ("address" in visitor.wlk_ctx["entities"] and "name" not in

↪→ visitor.wlk_ctx["entities"]):
36 visitor.response = "What␣is␣your␣name?";
37 else:
38 visitor.response = "To␣set␣you␣up␣with␣a␣test␣drive,␣we␣will␣

↪→ need␣your␣name␣and␣address.";
39 }
40 }
41

42 node td_confirmation:dialogue_state {
43 has name = "test_drive_confirmation";
44 can nlu {
45 if (!visitor.wlk_ctx["intent"]): ::classify_intent;
46 }
47 can process {
48 if (visitor.wlk_ctx["prev_state"]): visitor.wlk_ctx["respond"] =

↪→ true;
49 else {
50 visitor.wlk_ctx["next_state"] = -[intent_transition(intent==

↪→ visitor.wlk_ctx["intent"])]->[0];
51 visitor.wlk_ctx["prev_state"] = here;
52 }
53 }
54 can nlg {
55 visitor.response =
56 "Can␣you␣confirm␣your␣name␣to␣be␣" + visitor.wlk_ctx["entities"

↪→]["name"][0] + "␣and␣your␣address␣as␣" + visitor.wlk_ctx
↪→ ["entities"]["address"][0] + "?";

57 }
58 }
59

60 node td_confirmed:dialogue_state {
61 has name = "test_drive_confirmed";
62 can nlg {

CHAPTER 14. BUILDING CANONICAI 198

63 visitor.response = "You␣are␣all␣set␣for␣a␣Tesla␣test␣drive!";
64 }
65 }
66

67 node td_canceled:dialogue_state {
68 has name = "test_drive_canceled";
69 can nlg {
70 visitor.response = "No␣worries.␣We␣look␣forward␣to␣hearing␣from␣

↪→ you␣in␣the␣future!";
71 }
72 }

• Each dialogue state now has its own node type, all inheriting from the same generic
dialogue_state node type.

• We have 4 dialogue states here for the test drive capability:
– test_drive: This is the main state of the test drive intent. It is responsible for

collecting the neccessary information from the user.
– test_drive_confirmation: Ths is the state for user to confirm the information

they have provided are correct and is ready to actually schedule the test drive.
– test_drive_confirmed: This is the state after the user has confirmed.
– test_drive_canceled: User has decided, in the middle of the dialogue, to cancel

their request to schedule a test drive.
• The process ability contains the logic that defines the conversational flow of the

dialogue system. It uses the data in wlk_ctx and assign a next_state which will be
used by the walker in a take statement, as you will see in a just a little bit.

• New Syntax: The code in test_drive_state’s ability demonstrates jac support for
list and dictionary. To access the list and dictionary-specific functions, first cast the
variable with .l/.list for list and .d/.dict for dictionaries, then proceed with : to
access the built-in functions for list and dictioinaries. For more on jac’s built-in types,
refer to the relevant sections of the Jaseci Bible.

– Specifically in this case, we are comparing the list of entities of the
entity_transition edge with the list of entities that have been extracted by
the walker and the AI model (stored in wlk_ctx["entities]). Since there can
be multiple entities required and they can be extracted in arbitrary order, we are
sorting and then comparing here.

• New Syntax: -[entity_transition]->.edge shows how to access the edge variable.
Consider -[entity_transition]-> as a filter. It returns all valid nodes that are
connected to the implicit here via an entity_transition. On its own, it will return
all the qualified nodes. When followed by .edge, it will return the set of edges that
are connected to the qualified nodes.

You might notice that some states do not have a process ability. These are states that do
not have any outgoing transitions, which we refer to as leaf nodes. If these nodes are reached,
they indicate that a dialogue has been completed end to end. The next state for these node

CHAPTER 14. BUILDING CANONICAI 199

will be returning to the root node so that the next dialogue can start fresh. To facilitate
this, we will add the following logic to the process ability of the parent dialogue_state
node so that by default, any nodes inheriting it will follow this rule.

1 node dialogue_state {
2 ...
3 can process {
4 if (visitor.wlk_ctx["prev_state"]): visitor.wlk_ctx["respond"] =

↪→ true;
5 else {
6 visitor.wlk_ctx["next_state"] = net.root();
7 visitor.wlk_ctx["prev_state"] = here;
8 }
9 }

10 ...
11 }

Note

Pay attention to the 4 dialogue states here. This pattern of main -> confirmation ->
confirmed -> canceled is a very common conversational state graph design pattern and
can apply to many topics, e.g., make a restaurant reservation and opening a new bank
account. Essentially, almost any action-oriented requests can leverage this conversational
pattern. Keep this in mind!

14.4.11.2 Entity Extraction

Previously, we have introduced intent classification and how it helps to build a dialogue
system. We now introduce the second key AI models, that is specifically important for a
multi-turn dialogue system, that is entity/slot extraction.

Entity extraction is a NLP task that focuses on extracting words or phrases of interests, or
entities, from a given piece of text. Entity extraction, sometimes also referred to as Named
Entity Recognition (NER), is useful in many domains, including information retrieval and
conversational AI. We are going to use a transformer-based entity extraction model for this
exercise.

Let’s first take a look at how we are going to use an entity model in our program. Then we
will work on training an entity model.

First, we introduce a new type of transition:

1 edge entity_transition {
2 has entities;

CHAPTER 14. BUILDING CANONICAI 200

3 }

Recall the intent_transition that will trigger if the intent is the one that is being predicted.
Similarly, the idea behind an entity_transition is that we will traverse this transition if
all the specified entities have been fulfilled, i.e., they have been extracted from user’s inputs.

With the entity_transition, let’s update our graph

1 graph dialogue_system {
2 has anchor dialogue_root;
3 spawn {
4 dialogue_root = spawn node::dialogue_root;
5 test_drive_state = spawn node::test_drive_state;
6 td_confirmation = spawn node::td_confirmation;
7 td_confirmed = spawn node::td_confirmed;
8 td_canceled = spawn node::td_canceled;
9

10 how_to_order_state = spawn node::how_to_order_state;
11

12 dialogue_root -[intent_transition(intent="test␣drive")]->
↪→ test_drive_state;

13 test_drive_state -[intent_transition(intent="cancel")]->
↪→ td_canceled;

14 test_drive_state -[entity_transition(entities=["name", "address"])
↪→]-> td_confirmation;

15 test_drive_state -[intent_transition(intent="provide␣name␣or␣
↪→ address")]-> test_drive_state;

16 td_confirmation - [intent_transition(intent="yes")]-> td_confirmed
↪→ ;

17 td_confirmation - [intent_transition(intent="no")]->
↪→ test_drive_state;

18 td_confirmation - [intent_transition(intent="cancel")]->
↪→ td_canceled;

19

20 dialogue_root -[intent_transition(intent="order␣a␣tesla")]->
↪→ how_to_order_state;

21 }
22 }

Your graph should look something like this!

CHAPTER 14. BUILDING CANONICAI 201

Figure 14.5: Multi-turn Dialogue Graph

CHAPTER 14. BUILDING CANONICAI 202

14.4.12 Update the Walker for Multi-turn Dialogue

Let’s now turn our focus to the walker logic

1 walker talk {
2 has question;
3 has wlk_ctx = {};
4 has response;
5 root {
6 take --> node::dialogue_root;
7 }
8 dialogue_state {
9 if (!question) {

10 question = std.input("Question␣(Ctrl-C␣to␣exit)>␣");
11 here::init_wlk_ctx;
12 }
13 here::nlu;
14 here::process;
15 if (visitor.wlk_ctx["respond"]) {
16 here::nlg;
17 std.out(response);
18 question = null;
19 take here;
20 } else {
21 take visitor.wlk_ctx["next_state"] else: take here;
22 }
23 }
24 }

The walker logic looks very different now. Let’s break it down! * First off, because the intent
classification logic is now a node ability, the walker logic has become simpler and, more
importantly, more focused on graph traversal logic without the detailed (and occasionally
convoluted) logic required to process to interact with an AI model. * New Syntax: here
↪→ ::nlu and here::nlg invokes the node abilities. here can be subtitied with any node
variables, not just the one the walker is currently on.

Now that we have explained some of the new language syntax here, let’s go over the overall
logic of this walker. For a new question from the user, the walker will 1. analyze the
question (here:nlu) to identify its intent (predicted_intent) and/or extract its entities
(extracted_entities). 2. based on the NLU results, it will traverse the dialogue state
graph (the two take statements) to a new dialogue state 3. at this new dialogue state, it
will perform NLU, specific to that state (recall that nlu is a node ability that varies from
node to node) and repeat step 2 4. if the walker can not make any state traversal anymore
(take ... else {}), it will construct a response (here::nlg) using the information it has

CHAPTER 14. BUILDING CANONICAI 203

gathered so far (the walker’s context) and return that response to the user.

If this still sounds fuzzy, don’t worry! Let’s use a real dialogue as an example to illustrate
this.

1 Turn #1:
2 User: hey i want to schedule a test drive
3 Tesla AI: To set you up with a test drive, we will need your name and

↪→ address.
4

5 Turn #2:
6 User: my name is Elon and I live at 123 Main Street
7 Tesla AI: Can you confirm your name to be Elon and your address as 123

↪→ Main Street?
8

9 Turn #3:
10 User: Yup! that is correct
11 Tesla AI: You are all set for a Tesla test drive!

At turn #1, * The walker starts at dialogue_root. * The nlu at dialogue_root is
called and classify the intent to be test drive. * There is an intent_transition(
↪→ test_drive) connecting dialogue_root to test_drive_state so the walker takes
↪→ itself to test_drive_state . * We are now at test_drive_state, its nlu requires
entity_extraction which will look for name and address entities. In this case, neither is
provided by the user. * As a result, the walker can no longer traverse based on the take
rules and thus construct a response based on the nlg logic at the test_drive_state.

At turn #2, * The walker starts at test_drive_state, picking up where it left off. * nlu
at test_drive_state perform intent classification and entity extractions. This time it will
pick up both name and address. * As a result, the first take statement finds a qualified path
and take that path to the td_confirmation node. * At td_confirmation, no valid take
path exists so a response is returned.

Note

Turn #3 works similiarly as turn #1. See if you can figure out how the walker reacts at
turn #3 yourself!

14.4.13 Train an Entity Extraction Model

Let’s now train an entity extraction model! We are using a transformer-based token
classification model.

CHAPTER 14. BUILDING CANONICAI 204

First, we need to load the actions. The action set is called tfm_ner (tfm stands for
transformer).

1 jaseci > actions load module jaseci_ai_kit.tfm_ner

Warning

If you installed jaseci_ai_kit prior to September 5th, 2022, please upgrade via pip
↪→ install --upgrade jaseci_ai_kit. There has been an update to the module
that you will need for remainder of this exercise. You can check your installed version
via pip show jaseci_ai_kit. You need to be on version 1.3.4.6 or higher.

Similar to Bi-encoder, we have provided a jac program to train and inference with this model,
as well as an example training dataset. Go into the code/ directory and copy tfm_ner.jac
and ner_train.json to your working directory. We are training the model to detect two
entities, name and address, for the test drive use case.

Let’s quickly go over the training data format.

1 [
2 "sure␣my␣name␣is␣[tony␣stark](name)␣and␣i␣live␣at␣[10880␣malibu␣point␣

↪→ california](address)",
3 "my␣name␣is␣[jason](name)"
4]

The training data is a json list of strings, each of which is a training example. [] indicate
the entitiy text while the () following it defines the entity type. So in the example above,
we have two entities, name:tony stark and address: 10880 malibu point california.

To train the model, run

1 jaseci > jac run tfm_ner.jac -walk train -ctx "{\"train_file\":␣\"
↪→ ner_train.json\"}"

After the model is finished training, you can play with the model using the infer walker

1 jaseci > jac run tfm_ner.jac -walk infer

For example,

1 jaseci > jac run tfm_ner.jac -walk infer
2 Enter input text (Ctrl-C to exit)> my name is jason
3 [{"entity_text": "jason", "entity_value": "name", "conf_score":

↪→ 0.5514775514602661, "start_pos": 11, "end_pos": 16}]

CHAPTER 14. BUILDING CANONICAI 205

The output of this model is a list of dictionaries, each of which is one detected entitiy.
For each detected entity, entity_value is the type of entity, so in this case either name or
address; and entity_text is the detected text from the input for this entity, so in this case
the user’s name or their address.

Let’s now update the node ability to use the entity model.

1 node dialogue_state {
2 ...
3 can extract_entities {
4 res = tfm_ner.extract_entity(visitor.question);
5 for ent in res {
6 ent_type = ent["entity_value"];
7 ent_text = ent["entity_text"];
8 if (!(ent_type in visitor.wlk_ctx["entities"])){
9 visitor.wlk_ctx["entities"][ent_type] = [];

10 }
11 visitor.wlk_ctx["entities"][ent_type].l::append(ent_text);
12 }
13 }
14 ...
15 }

There is one last update we need to do before this is fully functional. Because we have more
dialogue states and a more complex graph, we need to update our classifier to include the
new intents. We have provided an example training dataset at code/clf_train_2.json.
Re-train the bi-encoder model with this dataset.

Note

Refer to previous code snippets if you need a reminder on how to train the bi-encoder
classifier model.

Note

Remember to save your new entity extraction model!

Now try running the walker again with jac run dialogue.jac!

Congratulations! You now have a fully functional multi-turn dialogue system that can handle
test drive requests!

CHAPTER 14. BUILDING CANONICAI 206

14.5 Unify the Dialogue and FAQ Systems

So far, we have built two separate conversational AI systems, a FAQ system that automatically
scales with the available question-answer pairs and a multi-turn action-oriented dialogue
system that can handle complex requests. These two systems serve different use cases and can
be combined to a single system to provide a flexible and robust conversational AI experience.
In this section, we are going to unify these two systems into one coherent conversational AI
system.

While these two systems rely on different AI models, they share many of the same logic
flow. They both follow the general steps of first analyizing user’s question with NLU AI
models, make decision on the next conversational state to be and then construct and return a
response to the user. Leveraging this shared pattern, we will first unify the node architecture
of the two systems with a single parent node type, cai_state (cai is short of conversational
AI).

1 node cai_state {
2 has name;
3 can init_wlk_ctx {
4 new_wlk_ctx = {
5 "intent": null,
6 "entities": {},
7 "prev_state": null,
8 "next_state": null,
9 "respond": false

10 };
11 if ("entities" in visitor.wlk_ctx) {
12 // Carry over extracted entities from previous interaction
13 new_wlk_ctx["entities"] = visitor.wlk_ctx["entities"];
14 }
15 visitor.wlk_ctx = new_wlk_ctx;
16 }
17 can nlu {}
18 can process {
19 if (visitor.wlk_ctx["prev_state"]): visitor.wlk_ctx["respond"] =

↪→ true;
20 else {
21 visitor.wlk_ctx["next_state"] = net.root();
22 visitor.wlk_ctx["prev_state"] = here;
23 }
24 }
25 can nlg {}
26 }

CHAPTER 14. BUILDING CANONICAI 207

Note that the logic for init_wlk_ctx and the default process logic have been hoisted up
into cai_state as they are shared by the dialogue system and FAQ system. You can remove
these two abilities from dialogue_state node, as it will be inheriting them from cai_state
now.

We then update the defintion of dialogue_state in dialogue.jac to inherit from cai_state
↪→ :

1 node dialogue_state:cai_state{
2 // Rest of dialogue_state code remain the same
3 }

Before we move on, we will take a quick detour to introduce multi-file jac program and how
import works in jac.

14.5.1 Multi-file Jac Program and Import

Jac’s support for multi-file is quite simple. You can import object definitions from one jac file
to another with the import keyword. With import {*} with "./code.jac", everything
from code.jac will be imported, which can include nodes, edges, graph and walker definition.
Alternaitvely, you can import specific objects with import {node::state} with "./code.
↪→ jac".

To compile a multi-file Jac program, you will need one jac file that serves as the entry point
of the program. This file need to import all the neccessary components of the program.
Chained importing is supported.

Once you have the main jac file (let’s call it main.jac), you will need to compile it and its
imports into a single .jir file. jir here stands for Jac Intermediate Representation. To
compile a jac file, use the jac build command

1 jaseci > jac build main.jac

If the compilation is successful, a .jir file with the same name will be generated (in this
case, main.jir). jir file can be used with jac run or jac dot the same way as the jac
source code file.

Note

The jir format is what you will use to deploy your jac program to a production jaseci
instance.

CHAPTER 14. BUILDING CANONICAI 208

14.5.2 Unify FAQ + Dialogue Code

For faq_state, we need to now define the nlu and nlg node abilities for FAQ. So let’s
update the following in faq.jac First, faq_root

1 node faq_root:cai_state {
2 can use.qa_classify;
3 can nlu {
4 if (!visitor.wlk_ctx["prev_state"]) {
5 answers = -->.answer;
6 best_answer = use.qa_classify(
7 text = visitor.question,
8 classes = answers
9);

10 visitor.wlk_ctx["intent"] = best_answer["match"];
11 }
12 }
13 can process {
14 if (visitor.wlk_ctx["prev_state"]): visitor.wlk_ctx["respond"] =

↪→ true;
15 else {
16 for n in --> {
17 if (n.context["answer"] == visitor.wlk_ctx["intent"]){
18 visitor.wlk_ctx["next_state"] = n;
19 break;
20 }
21 }
22 visitor.wlk_ctx["prev_state"] = here;
23 }
24 }
25 can nlg {
26 visitor.response = "I␣can␣answer␣a␣variety␣of␣FAQs␣related␣to␣

↪→ Tesla.␣What␣can␣I␣help␣you␣with?";
27 }
28 }

At this point, if you have been following this journey along, this code should be relatively
easy to understand. Let’s quickly break it down. * For FAQ, the nlu logic uses the USE QA
model to find the most relevant answer. Here we are re-using the intent field in the walker
context to save the matched answer. You can also opt to create another field dedicated to
FAQ NLU result. * For the traversal logic, this is very similar to the previous FAQ logic,
i.e. find the faq_state node connected to here that contains the most relevant answer. *
for n in --> iterates through all the nodes connected with an outgoing edge from the
current node. You can use .context on any node variables to access its variables.

CHAPTER 14. BUILDING CANONICAI 209

And the logic for the faq_state that contains the answer is relatively simple;

1 node faq_state:cai_state {
2 has question;
3 has answer;
4 can nlg {
5 visitor.response = here.answer;
6 }
7 }

With these new nodes created, let’s update our graph definition. We have renamed our
graph to be tesla_ai and the dialogue.jac file to tesla_ai.jac.

1 graph tesla_ai {
2 has anchor dialogue_root;
3 spawn {
4 dialogue_root = spawn node::dialogue_root;
5 test_drive_state = spawn node::test_drive_state;
6 td_confirmation = spawn node::td_confirmation;
7 td_confirmed = spawn node::td_confirmed;
8 td_canceled = spawn node::td_canceled;
9

10 dialogue_root -[intent_transition(intent="test␣drive")]->
↪→ test_drive_state;

11 test_drive_state -[intent_transition(intent="cancel")]->
↪→ td_canceled;

12 test_drive_state -[entity_transition(entities=["name", "address"])
↪→]-> td_confirmation;

13 test_drive_state -[intent_transition(intent="provide␣name␣or␣
↪→ address")]-> test_drive_state;

14 td_confirmation - [intent_transition(intent="yes")]-> td_confirmed
↪→ ;

15 td_confirmation - [intent_transition(intent="no")]->
↪→ test_drive_state;

16 td_confirmation - [intent_transition(intent="cancel")]->
↪→ td_canceled;

17

18 faq_root = spawn graph::faq;
19 dialogue_root -[intent_transition(intent="i␣have␣a␣question")]->

↪→ faq_root;
20 }
21 }

One thing worth pointing out here is that we are spawning a graph inside a graph spawn

CHAPTER 14. BUILDING CANONICAI 210

block.

Our graph should now looks like this!

Here comes the biggest benefit of our unified node architecture – the exact same walker logic
can be shared to traverse both systems. The only change we need to make is to change from
dialogue_state to cai_state to apply the walker logic to a more generalized set of nodes.

1 walker talk {
2 ...
3 root {
4 take --> node::dialogue_root;
5 }
6 cai_state {
7 if (!question) {
8 question = std.input("Question␣(Ctrl-C␣to␣exit)>␣");
9 here::init_wlk_ctx;

10 }
11 ...
12 }
13 }

Update the graph name in the init walker as well.

1 walker init {
2 root {
3 spawn here --> graph::tesla_ai;

CHAPTER 14. BUILDING CANONICAI 211

4 spawn here walker::talk;
5 }
6 }

To compile the program,

1 jaseci > jac build tesla_ai.jac

As mentioned before, if the compiliation succeedd, a tesla_ai.jir will be generated.

Note

Run into issues at this build step? First check if all the imports are set up correctly.

Running a jir is just like running a jac file

1 jaseci > jac run tesla_ai.jir

One last step, since we introduce a new intent i have a questions, we need to update our
classifier model again. This time, use the clf_train_3.json example training data.

The model is trained? Great! Now run the jir and try questions like “I have some telsa
related questions” then following with FAQ questioins!

Congratulations! You have created a single conversational AI system that is capable of
answering FAQs and perform complex multi-step actions.

14.6 Bring Your Application to Production

Typing in questions and getting responses via jsctl in terminal is a quick and easy way of
interactively test and use your program. But the ultimate goal of building any products is
to eventually deploying it to production and having it serve real users via standard interface
such as RESTful API endpoints. In this section, we will cover a number of items related to
bringing your jac program to production.

14.6.1 Introducing yield

yield is a jac keyword that suspend the walker and return a response, which then can be
resumed at a later time with the walker context retained. Walker context includes its has
variables and its node traversal plan (i.e., any nodes that have been queued by previously
executed take statements). This context retention is done on a per-user basis. yield is a
great way to maintaining user-specific context and history in between walker calls. To learn
more about yield, refer to the relevant sections of the Jaseci Bible.

CHAPTER 14. BUILDING CANONICAI 212

In the case of our conversational AI system, it is essential for our walker to remember the
context information gained from previous interactions with the same user. So let’s update
our walker with yield.

1 walker talk {
2 has question, interactive = false;
3 has wlk_ctx = {
4 "intent": null,
5 "entities": {},
6 "prev_state": null,
7 "next_state": null,
8 "respond": false
9 };

10 has response;
11 root {
12 take --> node::dialogue_root;
13 }
14 cai_state {
15 if (!question and interactive) {
16 question = std.input("Question␣(Ctrl-C␣to␣exit)>␣");
17 here::init_wlk_ctx;
18 } elif (!question and !interactive){
19 std.err("ERROR:␣question␣is␣required␣for␣non-interactive␣mode")

↪→ ;
20 disengage;
21 }
22 here::nlu;
23 here::process;
24 if (visitor.wlk_ctx["respond"]) {
25 here::nlg;
26 if (interactive): std.out(response);
27 else {
28 yield report response;
29 here::init_wlk_ctx;
30 }
31 question = null;
32 take here;
33 } else {
34 take visitor.wlk_ctx["next_state"] else: take here;
35 }
36 }
37 }

Two new syntax here: * report returns variable from walker to its caller. When calling a

CHAPTER 14. BUILDING CANONICAI 213

walker via its REST API, the content of the API response payload will be what is reported. *
yield report is a shorthand for yielding and reporting at the same time. This is equivalane
to yield; report response;.

14.6.2 Introduce sentinel

sentinel is the overseer of walkers, nodes and edges. It is the abstraction Jaseci uses
to encapsulate compiled walkers and architype nodes and edges. The key operation with
respesct to sentinel is “register” a sentinel. You can think of registering a sentinel as a
compiling your jac program. The walkers of a given sentinel can then be invoked and run on
arbitrary nodes of any graph.

Let’s register our jac program

1 jaseci > sentinel register tesla_ai.jir -set_active true -mode ir

Three things are happening here: * First, we registered the jir we compiled earlier to new
sentinel. This means this new sentinel now has access to all of our walkers, nodes and edges.
-mode ir option speciifes a jir program is registered instead of a jac program. * Second,
with -set_active true we set this new sentinel to be the active sentinel. In other words,
this sentinel is the default one to be used when requests hit the Jac APIs, if no specific
sentinels are specified. * Third, sentinel register has automatically creates a new graph
(if no currently active graph) and run the init walker on that graph. This behavior can be
customized with the options -auto_run and -auto_create_graph.

To check your graph

1 jaseci > graph get -mode dot

This will return the current active graph in DOT format. This is the same output we get
from running jac dot earlier. Use this to check if your graph is successfully created.

Once a sentinel is registered, you can update its jac program with

1 jaseci > sentinel set -snt SENTINEL_ID -mode ir tesla_ai.jir

To get the sentinel ID, you can run one of the two following commands

1 jaseci > sentinel get

or

1 jaseci > sentinel list

CHAPTER 14. BUILDING CANONICAI 214

sentinel get returns the information about the current active sentinel, while sentinel
↪→ list returns all available sentinels for the user. The output will look something like
this

1 {
2 "version": null,
3 "name": "main.jir",
4 "kind": "generic",
5 "jid": "urn:uuid:817b4ff4-e6b7-4296-b383-55515e1e8b4a",
6 "j_timestamp": "2022-08-04T20:23:16.952641",
7 "j_type": "sentinel"
8 }

The jid field is the ID for the sentinel. (jid stands for jaseci ID).

With a sentinel and graph, we can now run walker with

1 jaseci > walker run talk -ctx {\"question\": \"I␣want␣to␣schedule␣a␣test␣
↪→ drive\"}

And with yield, the next walker run will pick up where it leaves off and retain its variable
states and nodes traversal plan.

14.6.3 Tests

Just like any program, a set of automatic tests cases with robust coverage is essential to the
success of the program through development to production. Jac has built-in tests support
and here is how you create a test case in jac.

1 import {*} with "tesla_ai.jac";
2

3 test "testing␣the␣Tesla␣conv␣AI␣system"
4 with graph::tesla_ai by walker::talk(question="Hey␣I␣would␣like␣to␣go␣on␣

↪→ a␣test␣drive"){
5 res = std.get_report();
6 assert(res[-1] == "To␣set␣you␣up␣with␣a␣test␣drive,␣we␣will␣need␣your␣

↪→ name␣and␣address.");
7 }

Let’s break this down. * test "testing␣the␣tesla␣conv␣AI␣system" names the test. *
with graph::tesla_ai specify the graph to be used as the text fixture. * by walker::
↪→ talk specify the walker to test. It will be spawned on the anchor node of the graph. *
std.get_report() let you access the report content of the walker so that you can set up
any assertion neccessary with assert.

CHAPTER 14. BUILDING CANONICAI 215

To run jac tests, save the test case(s) in a file (say tests.jac) and import the neccessary
walkers and graphs. Then run

1 jaseci > jac test tests.jac

This will execute all the test cases in tests.jac squentially and report success or any
assertion failures.

14.6.4 Running Jaseci as a Service

So far, we have been interacting jaseci through jsctl. jaseci can also be run as a service
serving a set of RESTful API endpoints. This is useful in production settings. To run jaseci
as a service, first we need to install the jaseci_serv package.

1 pip install jaseci_serv

Then launching a jaseci server is as simple as

1 jsserv makemigrations
2 jsserv migrate
3 jsserv runserver 0.0.0.0:3000

This will launch a Django RESTful API server at localhost and port 3000. The Jaseci server
supports a wide range of API endpoints. All the jsctl commands we have used throughput
this tutorial have an equivalent API endpoint, such as walker_run and sentinel_register.
As a matter of fact, the entire development journey in this tutorial can be done completely
with a remote jaseci server instance. You can go to localhost:3000/docs to check out all
the available APIs.

14.7 Improve Your AI Models with Crowdsource

Coming soon!

Chapter 15

A Coding Tour

Contents
15.1 Coding in Jac . 217

15.1.1 Jac Basics . 217
15.1.2 Types in Jac . 218
15.1.3 Fun with Lists and Dictionaries 219
15.1.4 Control Flow . 219
15.1.5 Graphs in Jac . 220
15.1.6 Navigating Graphs with Walkers 222
15.1.7 Compute in Nodes . 223
15.1.8 Static Graphs . 225
15.1.9 Writing Tests . 226

15.2 Jac Hacking Workflow . 228
15.2.1 Using Imports . 229
15.2.2 Leveraging Static Graphs for Quick Prototyping 230
15.2.3 Test Driven Development . 231
15.2.4 File I/O . 231
15.2.5 Building to JIR . 233

15.3 AI with Jaseci Kit . 233
15.3.1 Installing Jaseci Kit . 233
15.3.2 Loading Actions from Jaseci Kit 233
15.3.3 Using AI in Jac . 235

15.4 Launching a Jaseci Web Server . 236
15.5 Deploying Jaseci at Scale . 236

15.5.1 Quick-start with Kubectl . 236
15.5.2 Managing Jac in Cloud . 236

216

CHAPTER 15. A CODING TOUR 217

15.1 Coding in Jac

Jac, which is short hand for Jaseci Code, is a programming language designed for building
programs for Jaseci. The language itself is inspired by a mixture of Javascript and Python and
can be used standalone or as glue code for libraries built in other languages ecosystems. Jac
is to Python, what Python is to C, what C is to assembly language for scalable sophisticated
applications running in the cloud. In this section, we’ll cover basics to advanced assuming
no programming experience. Though we’ll try to cover everything from first time coders to
pros, we’ll move fast through some of the rudimentary concepts so have your Google ready if
you need to drill in a bit more of some of the basic programming concepts. Lets Jump in!

15.1.1 Jac Basics

Launch VSCode, spool up a terminal window, and lets tinker with an example. We’ll start
with Jac Code 15.1. I’d strongly recommend you type out this example (instead of cutting
and pasting) especially if this might be your first time programming or are a little rusty with
Python and or Javascript. It’s the best way to learn!

Jac Code 15.1: Example program introducing basic syntax.

1 walker init {
2 x = 34 - 30; # This is a comment
3 y = "Hello";
4 z = 3.45;
5

6 if(z==3.45 or y=="Bye"){ # if statement with only thing true
7 x=x-1;
8 y=y+"␣World"; # the + between two strings concatinate them
9 }

10

11 std.out(x);
12 for i=0 to i<3 by i+=1: # For loop with single line block style
13 std.out(x-i,'-', y); # prints to screen
14 report [x, y+'s']; # adds data to payload
15 }

This first example Jac Code 15.1 shows a simple program example demonstrating a number
of basic language features. Firstly, observe that the first three assignments in the program to
x, y, and z does not specify any types indicating that Jac is a dynamically typed language.
This means the types are inferred from the assignment of variables, and these types can
change dynamically as new assignments are applied to the same variables. This feature is
designed to work almost exactly like the dynamic typing in Python.

CHAPTER 15. A CODING TOUR 218

Next we find a conditional statement much like any other language. Do note operators like
the Python inspired or is supported along side the C/C++/Javascript || operator. Other
such operators include and (\&\&), not (!), etc.

After the conditional we have a library call std.out(x) on line 11. This call prints the value
of x to the screen. std.out in Jac is equivalent to the the print in Python and analogous
to the printf, cout, and console.log you’d find in C, C++, and Javascript respectively.
A suite of core standard library operations for the language has the preamble of std.

Output:

3
3 - Hello World
2 - Hello World
1 - Hello World
{
"success": true,
"report": [
[
3,
"Hello Worlds"

]
]

}

15.1.2 Types in Jac

[Types example]

Jac Code 15.2: First Example

1 walker init {
2 a=5;
3 b=5.0;
4 c=true;
5 d='5';
6 e=[a, b, c, d, 5];
7 f={'num': 5};
8

9 summary = {'int': a, 'float': b, 'bool': c,
10 'string': d, 'list': e, 'dict': f};
11

12 std.out(summary);
13 }

CHAPTER 15. A CODING TOUR 219

Output:

{"int": 5, "float": 5.0, "bool": true, "string": "5", "list": [5, 5.0,
↪→ true, "5", 5], "dict": {"num": 5}}

15.1.3 Fun with Lists and Dictionaries

[Fun with Lists and Dictionaries]

Jac Code 15.3: First Example

1 walker init {
2 d = {'four':4, 'five':5};
3 b = d.dict::copy; # equal to b=d.d::copy;
4 b['four'] += b['five'];
5 std.out(d.d::keys, d.d::values, d.d::items, b.d::items);
6

7 b_vals = b.d::values;
8 b_vals.list::append(6.5); # equal to b=d.d::copy;
9 std.out(b_vals);

10 b_vals.l::sort; std.out(b_vals);
11 b_vals.l::reverse; std.out(b_vals);
12 }

Output:

["four", "five"] [4, 5] [["four", 4], ["five", 5]] [["four", 9], ["five",
↪→ 5]]

[9, 5, 6.5]
[5, 6.5, 9]
[9, 6.5, 5]

15.1.4 Control Flow

[Fun with Control Flow]

Jac Code 15.4: First Example

1 walker init {
2 fav_nums=[];
3

4 for i=0 to i<10 by i+=1:
5 fav_nums.l::append(i*2);

CHAPTER 15. A CODING TOUR 220

6 std.out(fav_nums);
7

8 fancy_str = "";
9 for i in fav_nums {

10 fancy_str = fancy_str + "two␣*␣" + i.str +
11 "␣=␣" + (i*2).str + ",␣";
12 }
13 std.out(fancy_str);
14

15 count_down = fav_nums[-1];
16 while (count_down > 0) {
17 count_down -= 1;
18 if (count_down == 14):
19 continue;
20 std.out("I'm␣at␣countdown␣"+count_down.str);
21 if (count_down == 10):
22 break;
23 }
24 }

Output:

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
two * 0 = 0, two * 2 = 4, two * 4 = 8, two * 6 = 12, two * 8 = 16, two *

↪→ 10 = 20, two * 12 = 24, two * 14 = 28, two * 16 = 32, two * 18 =
↪→ 36,

I'm at countdown 17
I'm at countdown 16
I'm at countdown 15
I'm at countdown 13
I'm at countdown 12
I'm at countdown 11
I'm at countdown 10

15.1.5 Graphs in Jac

[Bringing Graphs in with special operators]

Jac Code 15.5: First Example

1 node person {
2 has name="Anon";
3 }

CHAPTER 15. A CODING TOUR 221

n0:root

n1:person

e5:strong

n2:person

e0:strong n3:person

e1:weak

n4:person

e2:weak

e3 e4:strong

Figure 15.1: Graph in memory for JC 15.5

4

5 edge strong;
6 edge weak;
7

8 walker init {
9 person1 = spawn here -[strong]-> node::person(name="Joe");

10 person2 = spawn here -[strong]-> node::person;
11 person3 = spawn here -[weak]-> node::person;
12 person4 = spawn here -[weak]-> node::person(name="Mike");
13

14 person1 <--> person2;
15 person3 <-[strong]-> person4;
16

17 for i in -->:
18 std.out(i.context);
19 }

Output:

{"name": "Joe"}
{"name": "Anon"}
{"name": "Anon"}
{"name": "Mike"}

CHAPTER 15. A CODING TOUR 222

15.1.6 Navigating Graphs with Walkers

[Walking Graphs]

Jac Code 15.6: First Example

1 node state {
2 has response="I'm␣silly␣state␣";
3 }
4

5 node hop_state;
6

7 edge hop;
8

9 walker init {
10 has state_visits=0, save_root;
11

12 root {
13 save_root = here;
14 hop1 = spawn here -[hop]-> node::hop_state;
15 hop2 = spawn here -[hop]-> node::hop_state;
16 }
17

18 hop_state:
19 spawn here walker::hop_buildout;
20

21 state {
22 state_visits += 1;
23 std.out(here.response+state_visits.str);
24 }
25

26 take -->;
27 with exit {
28 report spawn save_root walker::hop_counter;
29 }
30 }
31

32 walker hop_buildout {
33 spawn here --> node::state;
34 spawn here --> node::state;
35 spawn here --> node::state;
36 }
37

38 walker hop_counter {

CHAPTER 15. A CODING TOUR 223

n0:root

n1:hop_state

e6:hop

n5:hop_state

e1:hop

n2:state

e7

n3:state

e3

n4:state

e4

n6:state

e0

n7:state

e2

n8:state

e5

Figure 15.2: Graph in memory for JC 15.6

39 has anchor num=0; take -->; hop_state { num+=1; }
40 }

Output:

I'm silly state 1
I'm silly state 2
I'm silly state 3
I'm silly state 4
I'm silly state 5
I'm silly state 6
{
"success": true,
"report": [
2

]
}

15.1.7 Compute in Nodes

[Compute into the Nodes]

Jac Code 15.7: First Example

1 node state {
2 has name = rand.word().str::upper;
3 has response = "I'm␣a␣silly␣bot.␣";
4 has user_utter;
5

6 can speak with entry {

CHAPTER 15. A CODING TOUR 224

7 std.out("I'm␣"+name+".␣And␣I␣currently␣have␣" + visitor.info['name
↪→ '] +

8 "␣on␣me!␣");
9 }

10

11 can listen with talker exit {
12 user_utter = visitor.utterance;
13 std.out("I␣heard␣'"+user_utter+"'\n");
14 std.out(response);
15 }
16

17 can test_path with hop_counter entry {
18 visitor.path.l::append(&here);
19 }
20 }
21

22 walker init {
23 root {
24 n1 = spawn here --> node::state;
25 n2 = spawn here --> node::state;
26 }
27 spawn here walker::talker;
28 spawn here walker::hop_counter;
29 }
30

31 walker talker {
32 has utterance, path = [];
33 utterance = rand.sentence();
34 take -->;
35 }
36

37 walker hop_counter {
38 has anchor path = [];
39 take -->;
40

41 with exit { std.out("\nHopper's␣path:", path); }
42 }

Output:

CHAPTER 15. A CODING TOUR 225

n0:root

n1:state

e0

n2:state

e1

Figure 15.3: Graph in memory for JC 15.7

I'm DOLOREM. And I currently have talker on me!
I heard 'Magnam quaerat ut qui velit consectetur consectetur.'

I'm a silly bot.
I'm EIUS. And I currently have talker on me!
I heard 'Quisquam eius numquam amet ut porro velit amet numquam ut.'

I'm a silly bot.
I'm DOLOREM. And I currently have hop_counter on me!
I'm EIUS. And I currently have hop_counter on me!

Hopper's path: ["urn:uuid:d5be01eb-db6f-4692-9471-05ccf081ffc1", "urn:
↪→ uuid:e7dd97bf-050c-4b36-afa5-38963935c933"]

15.1.8 Static Graphs

[Static graphs]

Jac Code 15.8: First Example

1 node person {
2 has name="Anon";
3 }
4

5 edge strong;
6 edge weak;
7

8 graph basic_gph {
9 has anchor root;

CHAPTER 15. A CODING TOUR 226

n0:root

n1:generic

e5

n6:generic

e3

n11:generic

e9

n2:person

e18:strong

n3:person

e1:strong n4:person

e10:weak

n5:person

e15:weak

e11 e2:strong

n7:person

e13:strong

n8:person

e17:strong n9:person

e0:weak

n10:person

e6:weak

e20 e16:strong

n12:person

e4:strong

n13:person

e8:strong n14:person

e12:weak

n15:person

e14:weak

e19 e7:strong

Figure 15.4: Graph in memory for JC 15.8

10 spawn {
11 root = spawn node::generic;
12 person1 = spawn root -[strong]-> node::person(name="Joe");
13 person2 = spawn root -[strong]-> node::person;
14 person3 = spawn root -[weak]-> node::person;
15 person4 = spawn root -[weak]-> node::person(name="Mike");
16

17 person1 <--> person2;
18 person3 <-[strong]-> person4;
19 }
20

21 }
22

23 walker init {
24 spawn here --> graph::basic_gph;
25 spawn here --> graph::basic_gph;
26 spawn here --> graph::basic_gph;
27 }

15.1.9 Writing Tests

[Tests]

Jac Code 15.9: First Example

1 node person: has name="Anon";
2

3 graph basic {
4 has anchor root;
5 spawn {

CHAPTER 15. A CODING TOUR 227

6 root = spawn node::generic;
7 person1 = spawn root --> node::person(name="Joe");
8 person2 = spawn root --> node::person;
9 person3 = spawn root --> node::person;

10 person4 = spawn root --> node::person(name="Mike");
11 person1 <--> person2;
12 person3 <--> person4;
13 }
14

15 }
16

17 walker tally {
18 has count=0, visited=[];
19 count += 1;
20

21 if(here not in visited) {
22 visited.l::append(here);
23 take -->;
24 }
25 }
26

27 test "Size␣of␣basic␣graph"
28 with graph::basic by walker::tally {
29 assert(visited.length == 5);
30 assert(count > 5);
31 }
32

33 test "Size␣of␣a␣bit␣fancier␣graph"
34 with graph {
35 has anchor root;
36 spawn {
37 root = spawn node::generic;
38 spawn root --> graph::basic; spawn root --> graph::basic;
39 }
40 } by walker::tally {
41 assert(visited.length == 11);
42 assert(count > 11);
43 }

Output:

CHAPTER 15. A CODING TOUR 228

Testing "Size of basic graph": [PASSED in 0.00s]
Testing "Size of a bit fancier graph": [PASSED in 0.01s]
{
"tests": 2,
"passed": 2,
"failed": 0,
"success": true

}

15.2 Jac Hacking Workflow

In this section, we discuss a typical workflow and organization of a Jac coding project. To
this end, we will be creating a simple toy chatbot project and examine it’s file organization
and development workflow. First, lets take a look at the files for this project.

haxor@linux:~/toybot$ ls
cai.jac edges.jac faq_answers.txt load_faq.jac nodes.jac static_conv.jac

↪→ tests.jac
haxor@linux:~$

Now lets take a look a what each of these files represent:

• cai.jac - This is the main file for the project to which the various other elements
(nodes, edges, graphs, etc) are imported from other files in the directory.

• nodes.jac - This file houses the node architypes created for this application. Func-
tionality is specified in both the walkers and as node abilities.

• edges.jac - This file contains the edge architypes we’ve specified in the design of our
conversational AI. These edges represent various types of transitions we can make
throughout the converstation.

• static_conv.jac - This file contains a static conversational graph that represents the
posible conversational flows via state nodes and transition edges.

• load_faq.jac - This file contains a static constructor for graph elements to correspond
to frequently asked questions by loading them from a file.

• faq_answers.txt - This file specifies a list of answers to frequently asked questions,
we’ll be using a model that only depends on the answers themselves.

• tests.jac - This file is where we house all the tests for our project.

CHAPTER 15. A CODING TOUR 229

15.2.1 Using Imports

Jac Code 15.10: Main CAI Jac App

1 import {node::{state, hop_state}} with "./nodes.jac";
2 import {edge::{trans_ner, trans_intent, trans_qa}} with "./edges.jac";
3 import {graph::basic_gph} with "./static_conv.jac";
4 import {graph::faq_gph} with "./load_faq.jac";
5

6

7

8 walker init {
9 root {

10 spawn here --> graph::basic_gph;
11 spawn -->[0] -[trans_intent(intent="about␣chat␣bots")]-> graph::

↪→ faq_gph;
12 }
13 with exit {
14 spawn -->[0] walker::talker;
15 }
16 }
17

18 walker talker {
19 has utterance="";
20 has use_cmd = true, path = [];
21 if(use_cmd and here.details['name'] != 'hop_state'):
22 utterance = std.input(">␣");
23 take -->;
24 }

Jac Code 15.11: Nodes for CAI

1 node state {
2 has name = rand.word();
3 has response="I'm␣a␣silly␣bot.";
4 has user_utter;
5

6 can speak with entry {
7 std.out(response + "␣I'm␣current␣on␣"+name+"␣node");
8 }
9

10 can listen with talker exit {
11 user_utter = visitor.utterance;
12 visitor.path.l::append(&here);

CHAPTER 15. A CODING TOUR 230

13 std.out("I␣heard␣"+user_utter+".");
14 }
15

16 can test_path with get_states entry {
17 visitor.path.l::append(&here);
18 }
19 }
20

21 node hop_state {
22 has name;
23 can log with exit {
24 std.log("A␣walker␣is␣walking␣right␣over␣me.");
25 }
26 }

Jac Code 15.12: edges for CAI

1 edge trans_ner { has entities; }
2 edge trans_intent { has intent; }
3 edge trans_qa { has embed; }

15.2.2 Leveraging Static Graphs for Quick Prototyping

Jac Code 15.13: Static Conversational Graph

1 import {edge::{trans_ner, trans_intent, trans_qa}} with "./edges.jac";
2 import {node::{state, hop_state}} with "./nodes.jac";
3

4 graph basic_gph {
5 has anchor conv_root;
6 spawn {
7 conv_root = spawn node::state(name="Conv␣Root");
8

9 appt = spawn conv_root -[trans_intent(intent="appointment")]->
10 node::hop_state(name="Appointments");
11

12 spawn appt -[trans_intent(intent="create")]->
13 node::state(name="Create␣an␣appoitnment");
14 spawn appt -[trans_intent(intent="cancel")]->
15 node::state(name="Cancel␣an␣appoitnment");
16 spawn appt -[trans_intent(intent="reschedule")]->
17 node::state(name="Reschedule␣an␣appoitnment");

CHAPTER 15. A CODING TOUR 231

18

19 service = spawn conv_root -[trans_intent(intent="service␣info")]->
20 node::hop_state(name="Services");
21

22 spawn service -[trans_intent(intent="manicures")]->
23 node::state(name="About␣manicures");
24 spawn service -[trans_intent(intent="haircuts")]->
25 node::state(name="About␣haircuts");
26 spawn service -[trans_intent(intent="makeup")]->
27 node::state(name="About␣makeup");
28 }
29

30 }

15.2.3 Test Driven Development

Jac Code 15.14: Tests for CAI

1 import {*} with "./cai.jac";
2

3 walker get_states {
4 has anchor path = [];
5 take -->;
6 }
7

8 test "Travesal␣touches␣all␣nodes"
9 with graph::basic_gph by walker::get_states {

10 std.out(path.length);
11 assert(path.length==7);
12 }

15.2.4 File I/O

Jac Code 15.15: FAQ Graph Loader

1 import {edge::{trans_ner, trans_intent, trans_qa}} with "./edges.jac";
2 import {node::{state, hop_state}} with "./nodes.jac";
3

4 graph faq_gph {
5 has anchor faq_root;
6 spawn {

CHAPTER 15. A CODING TOUR 232

7 faq_root = spawn node::state(name="Faq␣Root");
8

9 answers = file.load_str('./faq_answers.txt').str::split('&&&');
10

11 for i in answers:
12 spawn faq_root -[trans_qa]-> node::state(response=i);
13 }
14

15 }

A chatbot is an artificial intelligence (AI) based computer program that
↪→ can interact with a human either via voice or text through
↪→ messaging applications, websites, mobile apps or through the
↪→ telephone.

&&&
Conversational chatbots have been around for decades now. In the past,

↪→ there have been many unsuccessful attempts to build a chatbot that
↪→ successfully mimics human conversation. However, not thats solved
↪→ with the creation of me!

&&&
During the chatbot design process, it is important to keep your user in

↪→ mind as it will help you define the right chatbot features,
↪→ functionality and build human-like interactions.

&&&
In order for a chatbot to function properly, it is crucial for the

↪→ program to access your knowledge base, website, internal databases
↪→ , existing documents, or other sources of information.

CHAPTER 15. A CODING TOUR 233

15.2.5 Building to JIR

15.3 AI with Jaseci Kit

15.3.1 Installing Jaseci Kit

haxor@linux:~$ pip install jaseci-ai-kit
Collecting jaseci-ai-kit
Downloading jaseci_ai_kit-1.3.3.5-py3-none-any.whl (34 kB)

Collecting tensorflow<3.0.0,>=2.8.0
Downloading tensorflow-2.8.0-cp38-cp38-manylinux2010_x86_64.whl (497.6

↪→ MB)
|||||||||||||||||||||||||||||||||| 497.6 MB 8.9 MB/s

...
Successfully installed ... jaseci-ai-kit-1.3.3.5 ...
haxor@linux:~$

15.3.2 Loading Actions from Jaseci Kit

haxor@linux:~$ jsctl -m
Starting Jaseci Shell...
jaseci > actions list
[
"net.max",
"net.min",
"net.root",
"rand.seed",
...
"date.quantize_to_month",
"date.quantize_to_week",
"date.quantize_to_day",
"date.date_day_diff"

]
jaseci >

CHAPTER 15. A CODING TOUR 234

jaseci > actions load module jaseci_ai_kit.use_qa
2022-04-16 22:01:52.612881: W tensorflow/stream_executor/platform/default

↪→ /dso_loader.cc:64] Could not load dynamic library 'libcudart.so
↪→ .11.0'; dlerror: libcudart.so.11.0: cannot open shared object file
↪→ : No such file or directory

2022-04-16 22:01:52.612908: I tensorflow/stream_executor/cuda/cudart_stub
↪→ .cc:29] Ignore above cudart dlerror if you do not have a GPU set
↪→ up on your machine.

2022-04-16 22:02:05.269074: W tensorflow/stream_executor/platform/default
↪→ /dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1';
↪→ dlerror: libcuda.so.1: cannot open shared object file: No such
↪→ file or directory

2022-04-16 22:02:05.269104: W tensorflow/stream_executor/cuda/cuda_driver
↪→ .cc:269] failed call to cuInit: UNKNOWN ERROR (303)

2022-04-16 22:02:05.269127: I tensorflow/stream_executor/cuda/
↪→ cuda_diagnostics.cc:156] kernel driver does not appear to be
↪→ running on this host (vanillabox-589f9b897c-k2ncs): /proc/driver/
↪→ nvidia/version does not exist

2022-04-16 22:02:05.269232: I tensorflow/core/platform/cpu_feature_guard.
↪→ cc:151] This TensorFlow binary is optimized with oneAPI Deep
↪→ Neural Network Library (oneDNN) to use the following CPU
↪→ instructions in performance-critical operations: AVX2 FMA

To enable them in other operations, rebuild TensorFlow with the
↪→ appropriate compiler flags.

{
"success": true

}
jaseci >

CHAPTER 15. A CODING TOUR 235

jaseci > actions list
[
"net.max",
"net.min",
"net.root",
"rand.seed",
...
"date.quantize_to_month",
"date.quantize_to_week",
"date.quantize_to_day",
"date.date_day_diff",
"use.question_encode",
"use.enc_question",
"use.answer_encode",
"use.enc_answer",
"use.cos_sim_score",
"use.dist_score",
"use.qa_score"

]
jaseci >

15.3.3 Using AI in Jac

[Adding some AI]

Jac Code 15.16: Universal Sentence Encoding QA in Jac

1 walker init {
2 can use.enc_question, use.enc_answer;
3

4 answers = ['I␣am␣20␣years␣old', 'My␣dog␣is␣hungry', 'My␣TV␣is␣broken'
↪→];

5 question = "If␣I␣wanted␣to␣fix␣something␣what␣should␣I␣fix?";
6

7 q_enc = use.enc_question(question);
8 a_enc = use.enc_answer(answers); # can take lists or single strings
9

10 a_scores=[];
11

12 for i in a_enc:
13 a_scores.l::append(vector.cosine_sim(q_enc, i));
14

15 report a_scores;

CHAPTER 15. A CODING TOUR 236

16 }

Output:

{
"success": true,
"report": [
[
0.010415227400767156,
0.034413563053388725,
0.08458081860660219

]
]

}

15.4 Launching a Jaseci Web Server

15.5 Deploying Jaseci at Scale

15.5.1 Quick-start with Kubectl

15.5.2 Managing Jac in Cloud

Epilogue

237

Appendix A

Rants

A.1 Utilizing Whitespace for Scoping is Criminal (Yea,
I’m looking at you Python)

This whitespace debauchery perpetrated by Python and the like is one of the most perverse
abuses of ASCII code 32 I’ve seen in computer science. It’s an assault on the freedom of
coders to decide the shape and structure of the beautiful sculptures their creative minds
might want to actualize in syntax. Coder’s fingers have a voice! And that voice deserves to
be heard! The only folks that support this oppression are those in the 1% that get paid on
a per line of code basis so they can lean on these whitespace mandates to pump up their
salaries at the cost of coders everywhere.

“FREE THE PEOPLE! FREE THE CODE!”

“FREE THE PEOPLE! FREE THE CODE!”

“FREE THE PEOPLE! FREE THE CODE!”

238

Appendix B

Full Jac Grammar Specification

Grammar B.1: Full listing of Jac Grammar (antlr4)

1 grammar jac;
2

3 start: ver_label? element+ EOF;
4

5 element: architype | walker;
6

7 architype:
8 KW_NODE NAME (COLON INT)? attr_block
9 | KW_EDGE NAME attr_block

10 | KW_GRAPH NAME graph_block;
11

12 walker:
13 KW_WALKER NAME namespaces? LBRACE attr_stmt* walk_entry_block? (
14 statement
15 | walk_activity_block
16)* walk_exit_block? RBRACE;
17

18 ver_label: 'version' COLON STRING SEMI?;
19

20 namespaces: COLON name_list;
21

22 walk_entry_block: KW_WITH KW_ENTRY code_block;
23

24 walk_exit_block: KW_WITH KW_EXIT code_block;
25

239

APPENDIX B. FULL JAC GRAMMAR SPECIFICATION 240

26 walk_activity_block: KW_WITH KW_ACTIVITY code_block;
27

28 attr_block: LBRACE (attr_stmt)* RBRACE | COLON attr_stmt | SEMI;
29

30 attr_stmt: has_stmt | can_stmt;
31

32 graph_block: graph_block_spawn | graph_block_dot;
33

34 graph_block_spawn:
35 LBRACE has_root KW_SPAWN code_block RBRACE
36 | COLON has_root KW_SPAWN code_block SEMI;
37

38 graph_block_dot:
39 LBRACE has_root dot_graph RBRACE
40 | COLON has_root dot_graph SEMI;
41

42 has_root: KW_HAS KW_ANCHOR NAME SEMI;
43

44 has_stmt:
45 KW_HAS KW_PRIVATE? KW_ANCHOR? has_assign (COMMA has_assign)* SEMI;
46

47 has_assign: NAME | NAME EQ expression;
48

49 can_stmt:
50 KW_CAN dotted_name (preset_in_out event_clause)? (
51 COMMA dotted_name (preset_in_out event_clause)?
52)* SEMI
53 | KW_CAN NAME event_clause? code_block;
54

55 event_clause:
56 KW_WITH name_list? (KW_ENTRY | KW_EXIT | KW_ACTIVITY);
57

58 preset_in_out:
59 DBL_COLON expr_list? (DBL_COLON | COLON_OUT expression);
60

61 dotted_name: NAME DOT NAME;
62

63 name_list: NAME (COMMA NAME)*;
64

65 expr_list: expression (COMMA expression)*;
66

67 code_block: LBRACE statement* RBRACE | COLON statement;
68

APPENDIX B. FULL JAC GRAMMAR SPECIFICATION 241

69 node_ctx_block: name_list code_block;
70

71 statement:
72 code_block
73 | node_ctx_block
74 | expression SEMI
75 | if_stmt
76 | for_stmt
77 | while_stmt
78 | ctrl_stmt SEMI
79 | destroy_action
80 | report_action
81 | walker_action;
82

83 if_stmt: KW_IF expression code_block (elif_stmt)* (else_stmt)?;
84

85 elif_stmt: KW_ELIF expression code_block;
86

87 else_stmt: KW_ELSE code_block;
88

89 for_stmt:
90 KW_FOR expression KW_TO expression KW_BY expression code_block
91 | KW_FOR NAME KW_IN expression code_block;
92

93 while_stmt: KW_WHILE expression code_block;
94

95 ctrl_stmt: KW_CONTINUE | KW_BREAK | KW_SKIP;
96

97 destroy_action: KW_DESTROY expression SEMI;
98

99 report_action: KW_REPORT expression SEMI;
100

101 walker_action: ignore_action | take_action | KW_DISENGAGE SEMI;
102

103 ignore_action: KW_IGNORE expression SEMI;
104

105 take_action: KW_TAKE expression (SEMI | else_stmt);
106

107 expression: connect (assignment | copy_assign | inc_assign)?;
108

109 assignment: EQ expression;
110

111 copy_assign: CPY_EQ expression;

APPENDIX B. FULL JAC GRAMMAR SPECIFICATION 242

112

113 inc_assign: (PEQ | MEQ | TEQ | DEQ) expression;
114

115 connect: logical ((NOT)? edge_ref expression)?;
116

117 logical: compare ((KW_AND | KW_OR) compare)*;
118

119 compare: NOT compare | arithmetic (cmp_op arithmetic)*;
120

121 cmp_op: EE | LT | GT | LTE | GTE | NE | KW_IN | nin;
122

123 nin: NOT KW_IN;
124

125 arithmetic: term ((PLUS | MINUS) term)*;
126

127 term: factor ((MUL | DIV | MOD) factor)*;
128

129 factor: (PLUS | MINUS) factor | power;
130

131 power: func_call (POW factor)*;
132

133 func_call:
134 atom (LPAREN expr_list? RPAREN)?
135 | atom? DBL_COLON NAME spawn_ctx?;
136

137 atom:
138 INT
139 | FLOAT
140 | STRING
141 | BOOL
142 | NULL
143 | NAME
144 | node_edge_ref
145 | list_val
146 | dict_val
147 | LPAREN expression RPAREN
148 | spawn
149 | atom DOT built_in
150 | atom DOT NAME
151 | atom index_slice
152 | ref
153 | deref
154 | any_type;

APPENDIX B. FULL JAC GRAMMAR SPECIFICATION 243

155

156 ref: '&' expression;
157

158 deref: '*' expression;
159

160 built_in:
161 cast_built_in
162 | obj_built_in
163 | dict_built_in
164 | list_built_in
165 | string_built_in;
166

167 cast_built_in: any_type;
168

169 obj_built_in: KW_CONTEXT | KW_INFO | KW_DETAILS;
170

171 dict_built_in: KW_KEYS | LBRACE name_list RBRACE;
172

173 list_built_in: KW_LENGTH | KW_DESTROY COLON expression COLON;
174

175 string_built_in:
176 TYP_STRING DBL_COLON NAME (LPAREN expr_list RPAREN)?;
177

178 node_edge_ref:
179 node_ref filter_ctx?
180 | edge_ref (node_ref filter_ctx?)?;
181

182 node_ref: KW_NODE DBL_COLON NAME;
183

184 walker_ref: KW_WALKER DBL_COLON NAME;
185

186 graph_ref: KW_GRAPH DBL_COLON NAME;
187

188 edge_ref: edge_to | edge_from | edge_any;
189

190 edge_to:
191 '-->'
192 | '-' ('[' NAME (spawn_ctx | filter_ctx)? ']')? '->';
193

194 edge_from:
195 '<--'
196 | '<-' ('[' NAME (spawn_ctx | filter_ctx)? ']')? '-';
197

APPENDIX B. FULL JAC GRAMMAR SPECIFICATION 244

198 edge_any:
199 '<-->'
200 | '<-' ('[' NAME (spawn_ctx | filter_ctx)? ']')? '->';
201

202 list_val: LSQUARE expr_list? RSQUARE;
203

204 index_slice:
205 LSQUARE expression RSQUARE
206 | LSQUARE expression COLON expression RSQUARE;
207

208 dict_val: LBRACE (kv_pair (COMMA kv_pair)*)? RBRACE;
209

210 kv_pair: STRING COLON expression;
211

212 spawn: KW_SPAWN expression? spawn_object;
213

214 spawn_object: node_spawn | walker_spawn | graph_spawn;
215

216 node_spawn: edge_ref? node_ref spawn_ctx?;
217

218 graph_spawn: edge_ref graph_ref;
219

220 walker_spawn: walker_ref spawn_ctx?;
221

222 spawn_ctx: LPAREN (spawn_assign (COMMA spawn_assign)*)? RPAREN;
223

224 filter_ctx:
225 LPAREN (filter_compare (COMMA filter_compare)*)? RPAREN;
226

227 spawn_assign: NAME EQ expression;
228

229 filter_compare: NAME cmp_op expression;
230

231 any_type:
232 TYP_STRING
233 | TYP_INT
234 | TYP_FLOAT
235 | TYP_LIST
236 | TYP_DICT
237 | TYP_BOOL
238 | KW_NODE
239 | KW_EDGE
240 | KW_TYPE;

APPENDIX B. FULL JAC GRAMMAR SPECIFICATION 245

241

242 /* DOT grammar below */
243 dot_graph:
244 KW_STRICT? (KW_GRAPH | KW_DIGRAPH) dot_id? '{' dot_stmt_list '}';
245

246 dot_stmt_list: (dot_stmt ';'?)*;
247

248 dot_stmt:
249 dot_node_stmt
250 | dot_edge_stmt
251 | dot_attr_stmt
252 | dot_id '=' dot_id
253 | dot_subgraph;
254

255 dot_attr_stmt: (KW_GRAPH | KW_NODE | KW_EDGE) dot_attr_list;
256

257 dot_attr_list: ('[' dot_a_list? ']')+;
258

259 dot_a_list: (dot_id ('=' dot_id)? ','?)+;
260

261 dot_edge_stmt: (dot_node_id | dot_subgraph) dot_edgeRHS dot_attr_list?;
262

263 dot_edgeRHS: (dot_edgeop (dot_node_id | dot_subgraph))+;
264

265 dot_edgeop: '->' | '--';
266

267 dot_node_stmt: dot_node_id dot_attr_list?;
268

269 dot_node_id: dot_id dot_port?;
270

271 dot_port: ':' dot_id (':' dot_id)?;
272

273 dot_subgraph: (KW_SUBGRAPH dot_id?)? '{' dot_stmt_list '}';
274

275 dot_id:
276 NAME
277 | STRING
278 | INT
279 | FLOAT
280 | KW_GRAPH
281 | KW_NODE
282 | KW_EDGE;
283

APPENDIX B. FULL JAC GRAMMAR SPECIFICATION 246

284 /* Lexer rules */
285 TYP_STRING: 'str';
286 TYP_INT: 'int';
287 TYP_FLOAT: 'float';
288 TYP_LIST: 'list';
289 TYP_DICT: 'dict';
290 TYP_BOOL: 'bool';
291 KW_TYPE: 'type';
292 KW_GRAPH: 'graph';
293 KW_STRICT: 'strict';
294 KW_DIGRAPH: 'digraph';
295 KW_SUBGRAPH: 'subgraph';
296 KW_NODE: 'node';
297 KW_IGNORE: 'ignore';
298 KW_TAKE: 'take';
299 KW_SPAWN: 'spawn';
300 KW_WITH: 'with';
301 KW_ENTRY: 'entry';
302 KW_EXIT: 'exit';
303 KW_LENGTH: 'length';
304 KW_KEYS: 'keys';
305 KW_CONTEXT: 'context';
306 KW_INFO: 'info';
307 KW_DETAILS: 'details';
308 KW_ACTIVITY: 'activity';
309 COLON: ':';
310 DBL_COLON: '::';
311 COLON_OUT: '::>';
312 LBRACE: '{';
313 RBRACE: '}';
314 KW_EDGE: 'edge';
315 KW_WALKER: 'walker';
316 SEMI: ';';
317 EQ: '=';
318 PEQ: '+=';
319 MEQ: '-=';
320 TEQ: '*=';
321 DEQ: '/=';
322 CPY_EQ: ':=';
323 KW_AND: 'and' | '&&';
324 KW_OR: 'or' | '||';
325 KW_IF: 'if';
326 KW_ELIF: 'elif';

APPENDIX B. FULL JAC GRAMMAR SPECIFICATION 247

327 KW_ELSE: 'else';
328 KW_FOR: 'for';
329 KW_TO: 'to';
330 KW_BY: 'by';
331 KW_WHILE: 'while';
332 KW_CONTINUE: 'continue';
333 KW_BREAK: 'break';
334 KW_DISENGAGE: 'disengage';
335 KW_SKIP: 'skip';
336 KW_REPORT: 'report';
337 KW_DESTROY: 'destroy';
338 DOT: '.';
339 NOT: '!' | 'not';
340 EE: '==';
341 LT: '<';
342 GT: '>';
343 LTE: '<=';
344 GTE: '>=';
345 NE: '!=';
346 KW_IN: 'in';
347 KW_ANCHOR: 'anchor';
348 KW_HAS: 'has';
349 KW_PRIVATE: 'private';
350 COMMA: ',';
351 KW_CAN: 'can';
352 PLUS: '+';
353 MINUS: '-';
354 MUL: '*';
355 DIV: '/';
356 MOD: '%';
357 POW: '^';
358 LPAREN: '(';
359 RPAREN: ')';
360 LSQUARE: '[';
361 RSQUARE: ']';
362 FLOAT: ([0-9]+)? '.' [0-9]+;
363 STRING: '"' ~ ["\r\n]* '"' | '\'' ~ ['\r\n]* '\'';
364 BOOL: 'true' | 'false';
365 INT: [0-9]+;
366 NULL: 'null';
367 NAME: [a-zA-Z_] [a-zA-Z0-9_]*;
368 COMMENT: '/*' .*? '*/' -> skip;
369 LINE_COMMENT: '//' ~[\r\n]* -> skip;

APPENDIX B. FULL JAC GRAMMAR SPECIFICATION 248

370 PY_COMMENT: '#' ~[\r\n]* -> skip;
371 WS: [\t\r\n] -> skip;
372 ErrorChar: .;

Bibliography

[1] Wikimedia Commons. File:baby in wikimedia foundation ”hello world” onesie.jpg —
wikimedia commons, the free media repository, 2020. [Online; accessed 29-July-2021].

[2] Wikimedia Commons. File:directed graph no background.svg — wikimedia commons,
the free media repository, 2020. [Online; accessed 13-July-2021].

[3] Wikimedia Commons. File:multi-pseudograph.svg — wikimedia commons, the free
media repository, 2020. [Online; accessed 9-July-2021].

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms, 3rd Edition. MIT Press, 2009.

[5] Django Software Foundation. Django.

[6] HomeLendingPal. Intelligent mortgage advisor - home lending pal. https://www.
homelendingpal.com/, 2022. [Online; accessed 10-May-2022].

[7] JaseciLabs. Jaseci home. https://jaseci.org/, 2022. [Online; accessed 10-May-2022].

[8] JaseciLabs. The official jaseci code repository. https://github.com/Jaseci-Labs/
jaseci, 2022. [Online; accessed 10-May-2022].

[9] JaseciLabs. Profile of jaseclabs pypi. https://pypi.org/user/jasecilabs/, 2022.
[Online; accessed 10-May-2022].

[10] myca. Myca.ai, growth via reflection. https://myca.ai/, 2022. [Online; accessed
10-May-2022].

[11] J. K. Rowling. Harry Potter and the Philosopher’s Stone, volume 1. Bloomsbury
Publishing, London, 1 edition, June 1997.

[12] The Python Foundation. Pypi: The python package index.

[13] TrueSelph. Unleash your true selph, trueselph. https://trueselph.com/, 2022. [Online;
accessed 10-May-2022].

[14] ZeroShotBot. Next-gen ai, zeroshotbot. https://zeroshotbot.com/, 2022. [Online;
accessed 10-May-2022].

249

https://www.homelendingpal.com/
https://www.homelendingpal.com/
https://jaseci.org/
https://github.com/Jaseci-Labs/jaseci
https://github.com/Jaseci-Labs/jaseci
https://pypi.org/user/jasecilabs/
https://myca.ai/
https://trueselph.com/
https://zeroshotbot.com/

	Preface
	Introduction
	I World of Jaseci
	What and Why is Jaseci?
	TL;DR
	Introduction and Motivation
	The Case for Change
	Problem Scenario

	A Higher Level Language
	A Novel Underlying Technology Stack
	Battle Testing so Far...
	In a Nutshell

	Abstrations of Jaseci
	Graphs, the Friend that Never Gets Invited to the Party
	Yes, But What Kind of Graphs
	Putting it All Into Context

	Walkers
	Abilities
	here and visitor
	Actions

	Architecture of Jaseci and Jac
	Anatomy of a Jaseci Application
	The Jaseci Machine
	Machine Core
	Jaseci Cloud Server

	Interfacing a Jaseci Machine
	JSCTL: The Jaseci Command Line Interface
	The Very Basics: CLI vs Shell-mode, and Session Files
	A Simple Workflow for Tinkering

	Jaseci REST API
	API Parameter Cheatsheet

	Full Spec of Jaseci Core APIs
	APIs for actions
	APIs for architype
	APIs for config
	APIs for global
	APIs for graph
	APIs for jac
	APIs for logger
	APIs for master
	APIs for object
	APIs for queue
	APIs for sentinel
	APIs for super
	APIs for user
	APIs for walker

	II The Jac Programming Language
	Jac Language Overview and Basics
	The Obligatory Hello World
	Numbers, Arithmetic, and Logic
	Basic Arithmetic Operations
	Comparison, Logical, and Membership Operations
	Assignment Operations
	Precedence
	Primitive Types

	Foreshadowing Unique Graph Operations
	More on Strings, Lists, and Dictionaries
	Library of String Operations
	Library of List Operations
	Library of Dictionary Operations

	Control Flow

	Graphs, Architypes, and Walkers in Jac
	Structure of a Jac Program
	Graphs as First Class Citizens
	Connect and Spawn operations
	Static Graph Creation

	Walkers as the second First Class Citizens
	Architypes
	Context on Nodes and Edges
	Copy Assignment Operator
	Plucking Values from Node and Edge Sets
	Referencing and Dereferencing Nodes and Edges

	Actions and Abilities
	Actions
	Fused Interactions Between Nodes and Actions
	Abilities
	here and visitor, the `this' references of Jac

	Inheritance

	Walkers Navigating Graphs
	Taking Edges (and Nodes?)
	Basic Walks
	Breadth First vs Depth First Walks

	Skipping and Disengaging
	Skip
	Disengage
	Technical Semantics of Skip and Disengage

	Ignoring and Deleting
	Reporting Back as you Travel
	Yielding Walkers
	Yield Shorthands
	Technical Semantics of Yield
	Walkers Yielding Other Walkers (i.e., Yielding Deeply)

	Actions and Action Sets
	Standard Action Library
	date
	file
	mail
	net
	rand
	request
	std
	vector

	Building Your Own Library

	Imports, File I/O, Tests, and More
	Tests in Jac
	Imports
	File I/O
	Visualizing Graph with Dot Output

	III Jaseci AI Kit
	IV Crafting Jaseci
	Architecting Jaseci Core
	Architecting Jaseci Cloud Serving

	V Guided Tours and Epilogue
	Installation and Coding Environment
	Installation
	Python Environment
	Installing Jaseci
	VSCode and the Jac Language Extension

	Building CanoniCai
	Build a Conversational AI System with Jaseci
	Preparation
	Background

	Automated FAQ answering chatbot
	Define the Nodes
	Build the Graph
	Initialize the Graph
	Run the init Walker
	Ask the Question
	Introducing Universal Sentence Encoder
	Scale it Out

	Next up!
	A Multi-turn Action-oriented Dialogue System
	Introduction
	State Graph
	Define the State Nodes
	Custom Edges
	Build the graph
	Initialize the graph
	Build the Walker Logic
	Intent classificaiton with Bi-encoder
	Integrate the Intent Classifier
	Making Our Dialogue System Multi-turn
	Build the Multi-turn Dialogue Graph
	Update the Walker for Multi-turn Dialogue
	Train an Entity Extraction Model

	Unify the Dialogue and FAQ Systems
	Multi-file Jac Program and Import
	Unify FAQ + Dialogue Code

	Bring Your Application to Production
	Introducing yield
	Introduce sentinel
	Tests
	Running Jaseci as a Service

	Improve Your AI Models with Crowdsource

	A Coding Tour
	Coding in Jac
	Jac Basics
	Types in Jac
	Fun with Lists and Dictionaries
	Control Flow
	Graphs in Jac
	Navigating Graphs with Walkers
	Compute in Nodes
	Static Graphs
	Writing Tests

	Jac Hacking Workflow
	Using Imports
	Leveraging Static Graphs for Quick Prototyping
	Test Driven Development
	File I/O
	Building to JIR

	AI with Jaseci Kit
	Installing Jaseci Kit
	Loading Actions from Jaseci Kit
	Using AI in Jac

	Launching a Jaseci Web Server
	Deploying Jaseci at Scale
	Quick-start with Kubectl
	Managing Jac in Cloud

	Epilogue
	Rants
	Utilizing Whitespace for Scoping is Criminal (Yea, I'm looking at you Python)

	Full Jac Grammar Specification

