
On-boarding with JanusGraph Performance 

June 17, 2017 

 

Chin Huang, chhuang@us.ibm.com;github:chinhuang007 

Yi-Hong Wang, yh.wang@us.ibm.com;github:yhwang 

Ted Chang, htchang@ibm.com;github:tedhtchang 

 

JanusGraph:@JanusGraph 



Agenda 

Overview – Onboarding with graph performance 

JanusGraph performance evaluation scenarios 

• Bulk loader performance 

• Data import performance 

• Query performance 

Lessons learned 

Q&A 



Onboarding with graph performance  

Exciting era with many new technologies!! 

Onboarding users/developers to graph databases 
• Typical focus areas: features and benefits, ease of use, suitability, 

extensibility, APIs… 

• Performance is one of the most important differentiators for any 

application 

• Is performance just for system testing?! 

• Performance and scalability are key considerations for design, 

development, and operations 

 

Journey to JanusGraph with a performance mind! 
• Check out graph structures and traversals 

• Evaluate reads and writes in high volume 

• Can JanusGraph scale out for future data/user growth? 

• Look for bottlenecks and provide improvements 



JanusGraph performance test environment 

Server spec 
• Physical servers: x3650 M5, 2 sockets x 14 cores, 384 GB (12 x 32G) memory 

• CPU: Intel Xeon Processor E5-2690 v4 14C 2.6GHz 35MB Cache 2400MHz  

• Network interface: Emulex VFA5.2 ML2 Dual Port 10GbE SFP+ Adapter 

• Disk: 720 GB SSD, RAID 5 

• Operating system: Ubuntu 16.04.2 LTS 

 

Existing tools 
• jMeter - load testing tool 

• nmon, nmon analyser - system performance monitor and analyze tool 

• VisualVM - all-in-one Java troubleshooting/profiling tool 

• GCeasy - garbage collection log analysis tool 

 

Home grown tools 
• Graph schema loader, data generator, batch importer, batch requester 

 



JanusGraph performance tool - Graph schema loader 

Enable the graph model creation via the 

gremlin console or embedded in java 
• Use JSON to describe your graph model 

• Support: 

• Property 

• Vertex 

• Edge 

• Index  

Benefit: Create schema on-the-fly 

without single line of code! 
https://github.com/yhwang/janusgraph-utils 

 



Bulk load performance – Use case and data 

Data Migration 

OneTimeBulkLoader 

Batch Update 

IncrementalBulkLoader 

011110100101100101 Gryo: 

{“id”: 1, “label”:…} GraphSON: 

1:person:marko:29 Script: 

Supported Formats 

• OneTimeBulkLoader 

• 128GB GraphSON file 

• 31 million vertices 

• 38 million edges 

• 3277 propertyKeys 

• 5 vertex labels 

• 3 edge labels 

• 78.9 properties per edge 

• 18.7 properties per vertex 

 



Bulk load performance – Topology 

HDFS 

• Spark - 1.6.1 

• Standalone Cluster 

• 2 worker nodes 

• 8 executors per node 

• 8 cores per executor 

• 2GB per executor 

• Hadoop - 2.7.2 

• Use HDFS to store the GraphSON file 

• Cassandra - 2.1.17 

• 2-node cluster 

• Tinkerpop3 – 3.2.3 

• GraphComputer 

• JanusGraph – 0.1.1 

• JanusGraphBulkLoaderVertexProgram 

• Astyanax persistence provider 

Worker Node 

Cassandra 

BulkLoader 

+ + HDFS client 

Executor 

X 8 

Worker Node 

Executor  X 8 

Cassandra 

Cluster Master 



Bulk load performance – results 

• Vertex: 

• 31,594,277 

• 19 mins 

• 495 records/sec per core 

 

• Edge: 

• 38,322,731 

• 24.8 mins 

• 461.8 records/sec per core 

 

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 (

%
) 

Node1 Node2

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 (

%
) 

Node1 Node2



Data import performance – use case and data 

Synthetic Data 

Small Medium Large XLarge 10x Properties 50x Properties 100x Properties 

Vertices(Million) 0.3 3 30 30 3 3 3 

Edges (Million) 0.3 3 30 300 3 3 3 

PropertyKeys 7 7 7 7 70 350 700 

Vertex labels 3 3 3 3 3 3 3 

Edge labels 2 2 2 2 2 2 2 

Public Data 

Wikimedia votes Higgs Twitter Panama Papers 

Vertices(Million) 0.007 0.456 1.04 

Edges (Million) 0.1 16 1.53 

PropertyKeys 0 2 22 

Vertex labels 1 1 5 

Edge labels 1 4 261 



Data import performance – topology and configuration 

All-In-One-Node 

Cassandra 

Batch Importer 

+ 

CSV Data Generator  

+ 

JanusGraph configuration: 

storage.backend=astyanax 

ids.block-size = 500000 

storage.buffer-size = 2560 

storage.batch-loading = true 

schema.default = none 

 

BatchImporter configuration: 

commit size = 100 

worker target size = 10000 

Schema Loader 

+ 



Data import performance tooling- Graph data generator 

A Java application  

• Vertices and edges labels 

• Number of vertices and edges 

• Number of properties and data types 

• Native and mixed index 

• Relations patterns 

• Super-nodes 

• Generate graph-db schema in JSON 

• Generate datamap JSON for BatchImporter 

  

https://github.ibm.com/htchang/JanusGraphBench 



Data import performance tooling - Graph data batch importer 

Java application to Import CSV data into JanusGraph 

Features: 

• Multiple Threads 

• Worker record size 

• Commit size 

• Import schema 

• Import CSV to JanusGraph with configurable data mapping 

 

 

https://github.com/sdmonov/JanusGraphBatchImporter 



Data import performance – results 

0.2 1 
10 10 

0.2 2 

25 

241 

55 

70 
73 73 

0

10

20

30

40

50

60

70

80

0

50

100

150

200

250

300

C
P

U
%

 

Im
p

o
rt

 T
im

e 
(m

in
) 

Size of DB 

Batch Import Time V.S. # of Records 

Vertex Import(min) Edges Import(min) CPU%

1,648 

319 

35 10 

788 

450 

133 

52 

70 

80 

90 90 

0

10

20

30

40

50

60

70

80

90

100

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

medium (8mil) 10x Properties(80mil) 50x Properties(400mil) 100x Properties(800mil)

C
P

U
%

 

re
co

rd
s/

se
c 

Size of DB 

Insert rate V.S. # of Properties Per Record  

Vertex/sec/core Edges/sec/core CPU%



Data query performance – use case and data 

Flight search 

• All flights from airport A to airport B on a given date and time 

• # of stops: non-stop, one-stop, two-stop… 

 

Data spec 

• 600+ airports, 350K+ flight schedules 

 

Performance analysis 

• How many requests per second can JanusGraph handle? 

• Can JanusGraph scale with future volume growth? 

 



Data query performance - Topology and configuration 

JanusG

raph 

Server 

 
ElasticSearch 

 
Cassandra 

Storage Backend Node Index Backend Node 

JanusGraph Node 1 JanusGraph Node 2 

JanusG

raph 

Server 

JanusG

raph 

Server 

JanusG

raph 

Server 

JanusG

raph 

Server 

JanusG

raph 

Server 

Load Driver Node 

 
jMeter (thread groups) 

REST Calls, http post 

• JanusGraph server with REST 

• 1 or 10 instances per server 

• Astyanax persistence provider 

• threadPoolBoss: 2 

• threadPoolWorker: 20 

• Java heap: -Xms512m -Xmx8G  

• Concurrent threads (users): 1, 5, 10, 20, 

40, 100, 200 

• Think time: 0 ms 

• Run duration: 5 minutes 

• Multiple test configurations 

• 10 instances on 1 node 

• 20 instances on 2 nodes 

• 30 instances on 3 nodes 

. . . . . . . .  . . 



Data query performance – Non-stop flights (one level deep traversals) 

Response Time 

Concurrent threads Concurrent threads 

TPS 

m
ill

is
e

c
o

n
d

s
 

tr
a

n
s
a

c
ti
o

n
s
 

Performs well regardless number of instances and nodes 



Data query performance – One-stop flights (two levels deep traversals) 

People would like to see more than just non stop flights… 

Response Time 

Concurrent threads Concurrent threads 

TPS 

m
ill

is
e

c
o

n
d

s
 

tr
a

n
s
a

c
ti
o

n
s
 



Data query performance – Two-stop flights (three levels deep traversals) 

The query gets complicated because we need to operate and filter on 

multiple vertices and edges. 

Response Time 

Concurrent threads Concurrent threads 

TPS 

m
ill

is
e

c
o

n
d

s
 

tr
a

n
s
a

c
ti
o

n
s
 



Lessons Learned 

Model your graph database for performance 

• Data is yours. Design the data model for your use cases! 

• What kind of queries you want to support? How many levels deep into a traversal? 

• Consider denormalization… 

• Design and use indexes, graph indexes and vertex-centric indexes in JanusGraph, for better performance, but 

not over-use indexes 

• It is recommended to create the complete data model before inserting content 

 

Use batch commits with caution 

• Batch commits allow multiple transactions to be committed together. The batch size affects performance and the 

optimal size depends on the characteristics of data. 

• Need to handle conflicts for inserts and updates in a multi-threads/multi-clients implementation 

• Make sure the commit is completed and closed 

 

 



Lessons Learned 

Fine-tune for your workloads and systems 

• JanusGraph supports storage and index backends therefore tune your backends! 

• JanusGraph server configurations, such as threadPoolBoss and threadPoolWorker 

• JVM configurations, such as Xms (initial and minimum Java heap size) and Xmx (maximum Java heap size) 

You don’t want to see the annoying java.lang.OutOfMemoryError exceptions  But at the same time an 

oversized Xmx has negative impact on performance due to long and slower GCs. 

• Use multiple threads and/or instances to your system’s capacity 

• Next step… consider cloud and auto-scaling 

• Be thorough and be patient because it will take a few iterations 

• Just like a fine-tuned instrument, you will enjoy the beautiful music for a long time! 

 



Compose for JanusGraph 

What is it? 
• Compose is an open-source database hosting provider 

• Supports backups, monitoring, performance tuning, and a full-suite of deployment management tools backed 

by a 24x7 support and operations team 

• Offers JanusGraph technology with Scylla database 

• https://www.compose.com/janusgraph 



Thank you for keeping performance in mind !! 
     

    Chin Huang, chhuang@us.ibm.com;github:chinhuang007 

    Yi-Hong Wang, yh.wang@ibm.com;github:yhwang 

    Ted Chang, htchang@ibm.com;github:tedhtchang 

 

What’s next? 

The journey continues… 

• Find ways to improve JanusGraph performance 

• Join us if you are interested in graph performance 

• Work with us if you have graph datasets 

• Talk to us if you have any comments or suggestions 

 


