
Large Scale Graph Analytics with

DataWorks Summit San Jose

June 13, 2017

P. Taylor Goetz, Hortonworks

@ptgoetz

About Me

• Tech Staff @ Hortonworks

• TSC Member, JanusGraph

• PMC Chair, Apache Storm

• ASF Member

• PMC: Apache Incubator, Apache Arrow, Apache

Kylin, Apache Apex, Apache Eagle, Apache Metron

What is a Graph Database?

–Wikipedia

“In computing, a graph database is a database that uses graph

structures for semantic queries with nodes, edges and

properties to represent and store data. A key concept of the

system is the graph (or edge or relationship), which directly relates

data items in the store. The relationships allow data in the store

to be linked together directly, and in many cases retrieved

with one operation.”

Graph Structures - Vertices

• Vertices are the nodes or points in

a graph structure

Graph Structures - Vertices

• Vertices are the nodes or points in a

graph structure

• Vertices can be associated with a

set of properties (key-value pairs)

Graph Structures - Edges

• Edges are the connections

between the vertices in a graph

Graph Structures - Edges

• Edges are the connections

between the vertices in a graph

• Edges can be non-directional,

directional, or bi-directional

Graph Structures - Edges

• Edges are the connections

between the vertices in a graph

• Edges can be non-directional,

directional, or bi-directional

• Edges can be named and like

vertices can have properties

Graph Structures - Graph

• The graph is the collection of

vertices, edges, and associated

properties

G = (V, E)

What is a Graph Database?

• A graph database is a datastore

optimized for storing and querying

graph structures

• Distinct from relational databases

• Focus in terms of storage and

queries is on relationships

Common Use Cases
Anywhere relationship modeling and analysis can provide insight or value.

Social Media

Master Data Management

Common Use Cases

• Social Networks

• Master Data Management

• Fraud Detection

• Cybersecurity

• Identity and Access Management

• Recommendation Engines

Common Use Cases

• Social Networks

• Master Data Management

• Fraud Detection

• Cybersecurity

• Identity and Access Management

• Recommendation Engines

Many of these can overlap

and be combined to provide

new insights.

The Power of Relationships

The Power of Relationships

• Harness the value of interconnectedness

• “Paths to Insight”

• Traversal vs. Traditional Query: Join Reduction

• “If you can whiteboard it, you can graph it.”

A little history and the

importance of OSS licensing.

Titan DB

• Large scale graph db developed by Aurelius

• Licensed under ALv2 (this is important)

• Aurelius acquired by DataStax Feb. 2015

• 1.0 released Sept. 19, 2015

GitHub Contributions to Titan

DataStax Aurelius

Acquisition Feb. 2015

GitHub Contributions to Titan

DataStax Aurelius

Acquisition Feb. 2015

0.9.0-M2

Jun. 9, 2015

GitHub Contributions to Titan

DataStax Aurelius

Acquisition Feb. 2015

0.9.0-M2

Jun. 9, 2015

1.0

Sept. 19, 2015

GitHub Contributions to Titan

DataStax Aurelius

Acquisition Feb. 2015

0.9.0-M2

Jun. 9, 2015

1.0

Sept. 19, 2015

Where does that leave

community, users?

ALv2 to the

Rescue!
Empowering Communities

ALv2 to the

Rescue!
Empowering Communities

“We can do this. What’s the next step?”

“Apache Olympian?”

What is a “hostile fork?”
A "hostile fork" is a fork of a project that goes against the wishes of the

copyright holders and/or community.

–DataStax counsel on Apache Incubator mailing list

“DataStax does not approve of and objects to the proposed forking

of Titan into Olympian or any other ASF project.”

“Apache Olympian?”

Next stop…

Introducing…

• Spearheaded by Google, IBM,

Hortonworks, Expero, GRAKN.AI

• Contributors from Netflix, Amazon,

Uber, Orchestral Developments

• Sponsored by the Linux Foundation

Introducing…

• ALv2 License

• Apache style governance model

• Source code, issues hosted on

GitHub

• Mailing lists on Google Groups

• Chat on Gitter

Technical Dive

• Optimized for storing/querying billions of vertices and edges

• Supports thousands of concurrent users

• Can execute local queries (OLTP) or cross-cluster distributed

queries (OLAP)

Apache Tinkerpop

• THE framework and API for graph manipulation and

traversal

• Open source, vendor agnostic

• Supported by a number of Graph DBs

• Promotes portability

Gremlin Query Language

• DSL for graph traversal and manipulation

• Fluent style API

• Multi-language support (Java, Scala,

Groovy, Python, Ruby, etc.)

OLAP Integration

• Apache Hadoop

• Apache Spark

• Apache Giraph

• ACID compliant (depending on backend)

• Supports very many concurrent transactions

• Embedded, Single Node, or Scale out

JanusGraph Architectural Overview

Storage Backends

• Well defined storage API allows for easily

pluggable implementations

• Choose the backend best for your use case and

architecture

• Options include: Apache HBase, Apache

Cassandra, Google Cloud Bigtable, Berkeley DB

• More on the way…

Choose Your Own [CAP] Adventure

Consistency

Availability
Partition

Tolerance

Apache

HBase

Berkeley DB

Apache

Cassandra
Scylla DB

Google Cloud

Bigtable

JanusGraph External Indices

• Secondary to primary graph storage

• Provide a means to speed up graph traversal

and information retrieval

• Two types:

• Graph Index

• Vertex-centric Index

Graph Indices

• Global index structures across entire graph

• Efficient retrieval of vertices and edges based on

associated properties

• Eliminates need to do a full graph scan

• When querying, JanusGraph will typically warn

when a full scan is necessary

• New indexes take effect immediately, but

reindexing may be required

Vertex-Centric Indexes

• Local index structures built per-vertex

• Eliminates the need to load all vertices from the

graph for filtering

Pluggable Index Backends

• Elastic Search

• Apache Solr

• Apache Lucene

Schema and Data Modeling

• Consist of edge labels, property keys, vertex labels

• Explicit or Implicit

• Can evolve over time w/out database downtime

• Edge label multiplicity, Property keys, Key cardinality, Vertex labels

Schema - Edge Label Multiplicity

• MULTI: Multiple edges of the same label between vertices

• SIMPLE: One edge with that label (unique per label)

• MANY2ONE: One outgoing edge with that label (mother/children)

• ONE2MANY: One incoming edge with that label

• ONE2ONE: One incoming, one outgoing edge with that label

Schema - Property Key Data Types

Schema - Property Key Cardinality

• SINGLE: At most one value per element.

• LIST: Arbitrary number of values per element. Allows duplicates.

• SET: Multiple values, but no duplicates.

• Gremlin console:

• Groovy-based REPL for exploring the graph

• Pre-defined convenience variables, expandable by plugins. E.g.:

• “g” — represents the entire graph

• “hdfs” — access to hdfs provided by the TinkerPop Hadoop

plugin

• Local or remote

Graph Traversal with Gremlin

\,,,/
(o o)

-----oOOo-(3)-oOOo-----
09:12:24 INFO org.apache.tinkerpop.gremlin.hadoop.structure.HadoopGraph
plugin activated: tinkerpop.hadoop
plugin activated: janusgraph.imports
gremlin>

Graph Traversal with Gremlin

What path will

we be taking

today?

“Graph of the Gods”

Who is Hercules’

grandfather?

gremlin>

g

gremlin>

Global variable representing

the entire graph

g.V()

Select all vertices in the graph

gremlin>

g.V().has('name', ‘hercules')

Find the vertex that has a ‘name’

Property with the value of ‘hercules’

gremlin>

g.V().has('name', ‘hercules')
.out(‘father')

Follow outbound edge named ‘father’

to the connected vertex

gremlin>

g.V().has('name', ‘hercules')
.out(‘father')
.out(‘father')

Follow outbound edge named ‘father’

to the connected vertex

gremlin>

g.V().has('name', ‘hercules')
.out(‘father')
.out(‘father')
.values('name')

Select the vertex property ‘name’

gremlin>

g.V().has('name', ‘hercules')
.out(‘father')
.out(‘father')
.values('name')

Select the vertex property ‘name’

gremlin>

g.V().has('name', ‘hercules')
.out(‘father')
.out(‘father')
.values('name')

gremlin>

==> saturn

What’s in a version number?

1.1

Unreleased

0.1.1

May 16, 2017

Contributions Welcome!

• Website: http://janusgraph.org

• GitHub Organization: https://github.com/JanusGraph

• User Mailing List: janusgraph-user@googlegroups.com

• Developer Mailing List: janusgraph-dev@googlegroups.com

http://janusgraph.org
https://github.com/JanusGraph
mailto:janusgraph-user@googlegroups.com
mailto:janusgraph-dev@googlegroups.com

Thank you!
Questions?

P. Taylor Goetz, Hortonworks

@ptgoetz

