
i

Bournemouth University, Department of Computing and Informatics, Final Year Project

FACULTY OF SCIENCE & TECHNOLOGY

BSc (Hons) Computing

May 2017

Synchronizing Files over a Network
Using Rsync

by

Matthew Carney

ii

Bournemouth University, Department of Computing and Informatics, Final Year Project

Faculty of Science & Technology

Department of Computing and Informatics

Final Year Project

iii

Bournemouth University, Department of Computing and Informatics, Final Year Project

Abstract

File synchronization is a technology that can be adapted to software of all sizes, but no matter the

scale of the product the effects can be exponential. This project applies synchronization to produce

an effective solution to solve the problem of updating files across multiple computers.

The solution presented in this paper is being produced for an oil rig simulation manufacturer

(Drilling Systems Ltd). The end program (NFT) uses the rsync algorithm and HTTP to propagate

graphics patch files across simulation computers on a closed LAN network using a command &

control architecture implemented in C#.

Also examined was the chosen methodology for this paper, Dynamic Systems Development

Methodology (DSDM). Which was selected due to its ability to manage tight deadlines and

changing requirements.

Both synchronization and methodology methods and literature have been examined and

appropriate evaluation has been performed.

The programs unexpected complexity meant that the intended GUI could not be implemented

however a strong framework for future work was complete.

iv

Bournemouth University, Department of Computing and Informatics, Final Year Project

Dissertation Declaration

I agree that, should the University wish to retain it for reference purposes, a copy of my dissertation

may be held by Bournemouth University normally for a period of 3 academic years. I understand

that once the retention period has expired my dissertation will be destroyed.

Confidentiality

I confirm that this dissertation does not contain information of a commercial or confidential nature

or include personal information other than that which would normally be in the public domain

unless the relevant permissions have been obtained. In particular any information which identifies

a particular individual's religious or political beliefs, information relating to their health, ethnicity,

criminal history or sex life has been anonymised unless permission has been granted for its

publication from the person to whom it relates.

Copyright

The copyright for this dissertation remains with me.

Requests for Information

I agree that this dissertation may be made available as the result of a request for information under

the Freedom of Information Act.

Signed: .

Name: Matthew Carney (i7218006)

Date: 11th May 2017

Programme: BSc (Hons) Computing

Original Work Declaration

This dissertation and the project that it is based on are my own work, except where stated, in

accordance with University regulations.

Signed: .

v

Bournemouth University, Department of Computing and Informatics, Final Year Project

Acknowledgments

For Aimee, Nick, Harry and Imogen (and obviously mum and dad) you guys kept me sane.

Thank you Paul for your guidance.

vi

Bournemouth University, Department of Computing and Informatics, Final Year Project

TABLE OF CONTENTS

1 INTRODUCTION ... 9

1.1 Aim ... 9
1.2 Objectives and Success Criteria ... 9

1.2.1 Scalability & Accessibility ... 9
1.2.2 Performance .. 10
1.2.3 Robustness .. 10

1.3 Deliverables .. 10
1.4 Risks ... 11

2 LITERATURE REVIEW ... 12

2.1 DSDM ... 12
2.2 File Synchronization.. 13

3 METHODOLOGY... 15

3.1 Possible Methodologies .. 15
3.1.1 Scrum .. 15
3.1.2 DSDM .. 15

3.2 Justification ... 16
4 REQUIREMENTS AND ANALYSIS ... 19

4.1 Customer Requirements ... 19
4.1.1 Functional and Non-Functional Requirements ... 19
4.1.2 MoSCoW Requirements .. 19

4.2 Nature of Problem ... 21
4.2.1 Existing Program ... 21
4.2.2 Network Configuration ... 21
4.2.3 Files & Sizes .. 22
4.2.4 Operating System .. 22
4.2.5 Pre-Installed Software.. 22

4.3 Technologies .. 22
4.3.1 Graphic User Interface Framework .. 22
4.3.2 File Transfer .. 23
4.3.3 File Synchronization .. 24
4.3.4 Web Server .. 25
4.3.5 Code Repository .. 25

4.4 Existing Solutions ... 26
4.4.1 Unison ... 26
4.4.2 DeltaCopy .. 26
4.4.3 Gsync .. 26
4.4.4 Luckybackup .. 26

4.5 Proposed Solution .. 27
5 DESIGN ... 28

5.1 System Design .. 28
5.1.1 System Architecture & Communication .. 28
5.1.2 Command format ... 29
5.1.3 Command receiving ... 30
5.1.4 Connection storage .. 30

5.2 Graphic User Interface Design .. 30
6 IMPLEMENTATION ... 32

6.1 Overview ... 32
6.2 Command and Control Structure .. 32

6.2.1 Command Layout .. 32
6.2.2 Listening Mechanisms ... 33

vii

Bournemouth University, Department of Computing and Informatics, Final Year Project

6.2.3 Command Handling and Execution .. 34
6.2.4 Connection storage .. 35
6.2.5 Error Handling ... 37
6.2.6 Object Serialization .. 38

6.3 Synchronization .. 39
6.4 Master Flow .. 40
6.5 Slave Flow .. 40
6.6 Library Layout ... 41
6.7 Application Settings .. 41
6.8 Issues ... 42

6.8.1 TCP connections ... 42
6.8.2 Web Server .. 42
6.8.3 Synchronization ... 43

7 EVALUATION .. 44

7.1 DSDM Evaluation ... 44
7.1.1 Justification Evaluation .. 44
7.1.2 Development Cycles .. 46

7.2 Artefact Evaluation .. 46
7.2.1 MoSCoW Requirements .. 47
7.2.2 Objectives .. 47
7.2.3 GUI .. 48

8 CONCLUSIONS .. 50

8.1 DSDM ... 50
8.2 Artefact ... 50
8.3 Future work ... 50

8.3.1 Custom communication protocol .. 50
8.3.2 Implement a GUI .. 51
8.3.3 Embedded Webserver ... 51

REFERENCES ... 52

APPENDIX A - CD Contents ... 56

APPENDIX B – Project Proposal .. 57

APPENDIX C – Ethics Checklist ... 61

viii

Bournemouth University, Department of Computing and Informatics, Final Year Project

LIST OF FIGURES

Figure 1 Initial NFT architectural layout ... 29
Figure 2 Master program UI Mock-up .. 31
Figure 3 Working Directory view example ... 31
Figure 4 Command object implementation .. 32
Figure 5 CommandType Enum implementation .. 33
Figure 6 NFT_Slave listening for and receiving commands from NFT_Master 34
Figure 8 Core receiving mechanism .. 34
Figure 9 NFT_Master scanning for and sending commands to 2 NFT_Slave clients 35
Figure 10 MasterListener implementation ... 36
Figure 11 Slave implementation .. 36
Figure 12 Error object implementation .. 37
Figure 13 UDP Error receiving logic .. 38
Figure 15 NFT_Master receiving an error message from and NFT_Slave 38
Figure 16 Example of generic converter methods ... 39
Figure 17 RsyncStream implementation ... 40
Figure 18 Code map of NFT_Core.dll ... 41
Figure 19 Resource usage during Rsync signature generation ... 48
Figure 20 Resource usage during HTTP file transfer .. 48

9

Bournemouth University, Department of Computing and Informatics, Final Year Project

1 INTRODUCTION

Drilling Systems is a Bournemouth based company that creates bespoke training simulations for oil

rigs. During the development of a simulator, software components are changed and updated, when

the graphics program needs to be updated it must also be updated on multiple graphics

computers. This task can be very time consuming, can take time away from development and can

delay installation of other software on the simulator. 6 years ago a program was created to

automate this task but over the years it has become outdated and lacks newer features required by

the developers. The main problem will be finding a new way to transfer files effectively over a

network, this will be addressed by creating a new purpose built tool which can update files on

multiple computer but also provides a suit desired features.

1.1 AIM

The aim of the project is to find a solution for updating files across a network. In order to achieve

this a new tool will be created that will propagate graphics patch files from one computer to the

multiple graphics computers in a simulator. Additional behaviour and functionality will be derived

from the client and developers who will use the program. The program will also attempt to include

some form of file synchronization to improve overall transferring and operational efficiency.

The program will use a software development methodology that will guide the creation of the new

program, this methodology and its effectiveness will also be evaluated.

1.2 OBJECTIVES AND SUCCESS CRITERIA

The primary objectives for this projects artefact is to produce a program that has been created

around the following principles:

1.2.1 Scalability & Accessibility

The program must be built and designed in a way that the code can be easily extended and

improved in the future. Crucially the code easy to read and understandable so it can be maintained

by other developers.

For example, in terms of methods of communication between the programs messages must be

standardized and extensible so that different version of the final program can still work together

and improved in the future.

10

Bournemouth University, Department of Computing and Informatics, Final Year Project

To access this objective the end program will be written using standard language practices and

using external libraries to avoid ‘spaghetti code’. These standard practices can also be tested

using built in tools to the many development environments.

1.2.2 Performance

The program must be resource intensive, in terms of memory and cpu usage but also in terms of

network bandwidth. The program must be able to run unnoticed in the background and must not

affect any simulation activity that may be occurring on the computer.

To avoid performance problems the program’s code must be well written so as to avoid any

unnecessary resource usage.

This will be evaluated by using performance metrics found within the development environment a

goal of less than 25% CPU usage will be expected at times of peak operational load.

1.2.3 Robustness

The program must also be able to recover from and deal with errors in an efficient and well-

handled manner. Due to the nature of networked programs, errors that occur on remote programs

can be hard to detect, and if they are not acted upon then they can impact and cause errors on

other remote programs that rely on them.

The code in the final program should account for any possible errors that could occur within the

application, should provide appropriate feed back to the user and the main program and be able to

recover from the error to continue the current operation.

To test this aspect of the programming simulated errors and error procedures will be used to test

the error reporting and systems in the final program.

1.3 DELIVERABLES

- An updated transfer program

- To perform appropriate research into the tools context and use to help similar projects in

the future involving transferring files over a network

- Access the effectiveness of DSDM on a project of this type

11

Bournemouth University, Department of Computing and Informatics, Final Year Project

1.4 RISKS

The program being produced in this project is none mission critical piece of software; therefore

delivery is not essential but any work and background research that can be done on this project will

help. Due to the complexity devoting developers to this project will detract from other more

pressing project that they could be undertaking, so this project aims to elevate this and provide a

good ground work into what a solution may look like.

12

Bournemouth University, Department of Computing and Informatics, Final Year Project

2 LITERATURE REVIEW

Due to the project having 2 points of focus, this literature review will be split into 2 areas structure

to provide a context from the selected, secondary sources. The first area will consider how this

project applies to literature regarding the DSDM methodology, how the literature influenced the

project author’s decision to use DSDM and the usefulness of the sources selected. The second

area will encompass literature regarding file synchronization and how this related to the project’s

technical aim.

2.1 DSDM

The DSDM handbooks were published by the DSDM consortium and the editions used in this

project were written by Jennifer Stapleton (Stapleton, J. 1997 & DSDM consortium 2002, 2003).

The books are well written, well-presented and convey the DSDM framework well, from the basics

of the framework to the more complicated intricacies of each stage. These handbooks are almost

essential to understanding how DSDM works and how it should be applied. While it does not

provide any critical analysis or examination of limitations of the framework it was essential to this

project in providing concise information about the DSDM process.

On the other hand Sani et al (2013) addresses how DSDM considers security in its development

flow and, crucially, in DSDM’s own literature. In short, the paper states that ‘DSDM does not

support developing secure software’ (pg. 1 Sani, A. et al 2013). It goes on to state that despite ‘a

considerable increase in security related software vulnerabilities reported over the last few years…

DSDM (like other agile methods) does not provide any place to address security issues in software

development’ (pg. 1 Sani et al 2013). The paper also includes a comprehensive literature review

that demonstrates how security seldom mentioned in publications (including publications by the

DSDM consortium). To do this, Sani et al use a list of accepted security principles (Saltzer et al

1975) as a base line for their literature review, noting when they are mentioned in the publications.

The review includes a set of ‘Conventional Security Attacks’ that can result from ignoring said

principles, the networking attacks mentioned directly relate to the technical approach of this project

(as networking will be involved in the final solution) and so should be considered during the design.

Paetsch et al (2003) covers different methods of requirements gathering and elicitation used in

agile methodologies. DSDM is mentioned and its use of requirements prioritization (MoSCoW) and

prototyping is examined. Even though information pertaining to DSDM is not very in depth and

DSDM is mentioned in more of a comparative context, overall this paper did provide useful

guidance for the requirements gathering and elicitation stage of the project.

13

Bournemouth University, Department of Computing and Informatics, Final Year Project

Qureshi et al (2016) is another paper that compares DSDM in the context of agile methodologies in

general. For each methodology the paper states the main limitations based on a series of case

studies and references that Qureshi et al has found. For DSDM it is stated that DSDM ‘does not

handle the engineering of average and complex project.’ (pg. 2 Qureshi et al 2016) the paper also

mentions that there is no support for sizable teams. It is also stated that DSDM ‘has shown

effectiveness for developing business applications’ but ‘is ineffective to develop scientific and

engineering applications’ (pg. 3 Qureshi et al 2016). Generally the paper would be more relevant if

these observation were explored in more depth but the points raised about DSDM are very

intriguing.

Plonka et al (2014) discusses using DSDM in an industrial application, this fits well with this project

as it provides insights into how DSDM is used in an actual software development environment and

gives good contrast to this project in terms of scale and resources. The paper sets out a User

Experience (UX) project undertaken by a software development company that conducts projects

using the DSDM methodology. The project covered in the case study is being conducted to access

DSDM’s effectiveness at handling UX type projects. It should be noted that the variation of DSDM

used here is DSDM Altern, which works in essentially the same way. The project presented is said

to benefit from DSDM’s iterative roles and its ability to adapt to changing requirements involved in

UX design.

The project present by Plonka et al uses all the standard DSDM development phases but with

more time and resources spent on each stages such as multiple interview stages, multiple teams

and roles etc. The study highlights the use of prototypes for UI mock-ups and notes that

prioritization did work at ensuring delivery of features (with some delays). An interesting point

made by Plonka et al was how, even with the techniques used by DSDM to handle changing

requirements, clients did not always feel they got what they asked for. Another observation made

was that constant communication is emphasised in DSDM, but just because constant

communication exists does not mean it is useful. The paper also mentions the effects of DSDM’s

over analysis of requirements, which doesn’t mitigate problems with requirements that only occur

during implementation.

2.2 FILE SYNCHRONIZATION

Purnama et al (2016) outlines a real world application of synchronization, the paper demonstrates

Moodle’s (a popular Learning Management System) use of Rsync and Rdiff algorithms to speed up

components of their network. The paper state that Moodle’s internal network was being strained by

full transfers of course backups and a solution was proposed to use RDiffDir to synchronize their

14

Bournemouth University, Department of Computing and Informatics, Final Year Project

backup archives and Rsync to handle general synchronization of file systems between internal

servers. The problem present here is very similar to the problem presented in this paper, seeking

to improve performance of a transfer by using synchronization instead of full file transfers.

Purnama et al demonstrated that using the 2 algorithms lessened the load on Moodle’s network

and reduced data that had to be sent when backups were being propagated. The paper also

shows the use of RDiffDir to handle synchronization of compressed archives, this is relevant for

this project as one of the key file types that will have to be sent will be Unity compressed asset files

so RDiffDir could be used in the final solution.

On the other hand Asubramania et al (1998) puts file synchronization in a narrower focus, putting

emphasis on the use of file synchronization in propagating updates among mobile devices. This is

useful as it gives a clear look at a more complex and developed synchronizer model and shows

what another real world system would look like. Asubramania et al provide, in detail, different types

of synchronizers and give comprehensive coverage on components, considerations and

synchronization theory. The paper, though technical, is too specific in scope to have much use

outside of its unique application.

Tridgell et al (1996) outlines the Rsync algorithm, the paper clearly explains what problem it is

designed to address, how it works and the theory behind the algorithm. It continues by explaining

step by step how the algorithm actually works which is extremely useful to comprehend when

writing code involving Rsync. The clarity of the paper is one of its main merits, the way it breaks

down a very complex process into easy to understand and simple to comprehend ideas is

extremely admirable. It is not an easy subject and papers on file synchronization can be seen to

struggle to convey their points as effortlessly as this paper. It gave a great insight into Rsync that

will not only be useful for designing and implementing but also for explaining to clients how the

process is going to perform.

Khanna et al (2007) present a paper that presents the DIFF3 algorithm and analyzes its behavior.

This paper starts by explaining Diff’s context within the realm of synchronization tools and its

general use, while the rest of the paper is an in-depth, detailed look at Diff3’s behavior and an

examination of its properties. Ultimately at this point the papers usefulness in the context of this

project drops off. This paper gives an excellent analysis of how another synchronization algorithm,

besides Rsync, works and behaves. Khanna et al do give a very technical look at the Diff3’s

mannerisms but this information is too technical and slightly out of scope for the type of

synchronizer needed for this project.

15

Bournemouth University, Department of Computing and Informatics, Final Year Project

3 METHODOLOGY

This chapter will outline the process for selecting an appropriate, possible methodologies and

justification for the final selection.

3.1 POSSIBLE METHODOLOGIES

Software methodologies are detailed processes designed to ensure software is delivered on time

and to a good standard, each methodology has its own emphasis on a particular stage of the

software development lifecycle. Choosing a methodology is one of the most important aspects of

any development project, as the choice of methodology will determine the flow of the project, its

design, development.

3.1.1 Scrum

Scrum is an agile methodology that is designed to provide a framework for managing one or many

self-contained teams. Teams consist of around 7 members each with a unique role, each team

manages their own time and aims to achieve an iterative goal in a fixed period called a sprint

(normally around 30 days long) (Scrum.org 2017). Scrum was not used for this project as it really is

designed for teams of multiple people in order to work effectively and as this project only has one

developer scrum is not an appropriate method.

3.1.2 DSDM

Dynamic Systems Management Method (DSDM) is an agile software methodology designed with

continuous user involvement in mind to ensure that software is delivered on time, in budget and to

user requirements usually within a business environment. The methodology was originally created

to provide a public domain framework for the Rapid Application Development (RAD) methodology

that was popular in the early 90s (Jennifer Stapleton 1997). DSDM attempts to continuously adapt

to user requirements and uses prioritization and development cycles to ensure that the most

essential features are guaranteed to be implemented.

For this project DSDM was selected for this project due to its ability to ensure software delivery

even on tight deadlines, its continuous adaption to changing requirements and its ability to ensure

the most critical requirements are fulfilled (DSDM Consortium 2003) are crucial to this project.

16

Bournemouth University, Department of Computing and Informatics, Final Year Project

3.2 JUSTIFICATION

In the official DSDM version manual (DSDM Consortium 2002), a list of project characteristics is

provided where DSDM is the correct or effective method to use for a project. For each

characteristic (interactive, clear user group, decomposable complexity, compartmentalization, time

constrained, prioritization, and changing requirements) listed in the handbook, the following list

looks at what they mean and accesses how they apply or do not apply to this project:

1. ‘Interactive, where the functionality is clearly demonstrable at the user interface’

- DSDM is particularly effective when it comes to projects that are UI focused. This is

because changes to the UI are clearly demonstrable to the client and can aid in user

involvement in the project. In DSDM functionality should be clearly demonstrable

between prototypes so clients can give stronger feedback on prototypes.

- In complex back end systems DSDM may be less of an effective method as

demonstrating changes to back end code can be harder for users to understand

changes and provide valuable feedback.

- Projects where functionality is clear are good contenders for DSDM

Suitability for project:

- This project will consist of a front-end UI and backend system for transferring to support

it

- The UI code will benefit from the use of DSDM as functionality of the UI will be clearly

demonstrable and use of DSDMs development cycles will be effective for constructing a

UI that the user wants. Therefore, demonstrating use of DSDMs core principles of user

involvement and clear iteration throughout development

- Even the backend code of the project will have a large effect on the overall functionality

which should be easy for the user to see the changes to the transfer mechanics could

result in time differences the general flow of the program.

- DSDM Characteristic Suitability: PASS

2. ‘Has a clearly defined user group’

- The main concern being addressed here is DSDMs need for a clearly defined and

accessible user base, because DSDM is so user focused the danger of gaining the

wrong viewpoints and missing important aspects of the project could violate DSDMs 4th

principle and cause the final product to miss the actual needs of the users.

Suitability for project:

- The original tool for this projects problem has a very clear and known group of graphics

coders (the ones who apply the patches to the simulators, these programmers use the

17

Bournemouth University, Department of Computing and Informatics, Final Year Project

program daily on site). These are contactable and known to the developer of this project

and they also have a clear understanding of the tool and know how they want the

program improved.

- DSDM Characteristic Suitability: PASS

3. ‘If computationally complex, the complexity can be decomposed or isolated’

- DSDM is designed to be used on systems of varying complexity, however DSDM is only

suitable if the complexity of the system can be broken down into smaller, more isolated

segments to reduce the overall complexity of the system.

Suitability for project:

- The project is not the most complex but will involve multiple different systems working in

tandem so as to transfer files in an effective and timely manner.

- Due to the nature of the C# as an object orientated language, the code will be split up

into the appropriate areas as the program is written. Backend networking code will be

split into its own classes separate from the threads and code of the UI and other

overhead components of the program so overall complexity of the program can be

reduced and used within DSDM

- DSDM Characteristic Suitability: PASS

4. ‘If large, processes the capability of being split into smaller functional components’

- DSDM’s focus on clearly deliverable functional prototypes along with teams that are

meant to work in parallel on parts of the project mean that larger project must have the

capability to be split up into smaller more manageable chunks (this relates to the

previous characteristic).

Suitability for project:

- As the project is not particularly large and the team is not very extensive, this

characteristic does not really apply to my project but like in the characteristic 3, the

projects complexity can be broken down into clearly demonstrable chunks so even if it

doesn’t apply the project is still suitable for generally DSDM

- DSDM Characteristic Suitability: N/A

18

Bournemouth University, Department of Computing and Informatics, Final Year Project

5. ‘Time-Constrained’

- DSDM works best with projects that have fixed deadline dates, without these it is

possible for schedules to slip and the fundamental benefits that DSDM provides to be

lost

Suitability for project:

- The project has a tight time constraints on it, not only does it need to be completed and

delivered to the user before May 12th when the deadlines for the project is but it will

likely have to be completed and implemented at an agreed upon date with the client.

Therefore the project will clearly time constrained and will benefit from DSDM

- DSDM Characteristic Suitability: PASS

6. ‘The requirements can be prioritised’

- DSDM works best if the requirements of the project can be organised using MoSCoW

prioritisation into requirements that Must, Should, Could and Will not be required for the

product

Suitability for project:

- This project will consist of requirements that are more important or pressing than others

as using this program for many years has meant that multiple functions of varying

importance have been derived by the users. There for a system such as MoSCoW will

be greatly beneficial in this type of project.

- DSDM Characteristic Suitability: PASS

7. ‘The requirements are unclear or subject to frequent change

- At its core DSDM is designed to deal with requirements as they adapt during the

development of software. The prevailing idea that DSDM takes from its predecessor

RAD is that requirements are going to inevitably change through the development

lifecycle so the framework is designed to work with these changing or unknown

requirements

Suitability for project:

- This characteristic is a harder to predict with this project, from the start the main

requirements of the software were clearly defined. However from experience with

working with the client it is known that their products do not always end up fitting their

original intentions and their requirements are constantly changing on their own line of

products, so it is a fair assumption to make that requirements for this project will change

over the course of development.

- DSDM Characteristic Suitability: PASS

19

Bournemouth University, Department of Computing and Informatics, Final Year Project

4 REQUIREMENTS AND ANALYSIS

This chapter will be an overview of how the requirements for this project were gathered, what

requirements were determined how they were prioritized. Existing solutions for the problem and

possible technologies for the final solution will be examined.

4.1 CUSTOMER REQUIREMENTS

Meetings with the client took place twice at the Drilling Systems offices in Bournemouth, one pre-

project feasibility meeting and another mid project meeting. Email contact was maintained

throughout the project to answer any queries. A design document with general requirements had

been produced by the graphics developers before the project, so requirements categorisation and

prioritization was done in the initial meeting with the client.

4.1.1 Functional and Non-Functional Requirements

From the aforementioned design document the following core requirements were confirmed:

Functional:

1. Transfer one computer to multiple remote computers over a closed LAN network

2. Transfer multiple files of varying sizes

3. Transfer files based on blacklist rule sets

4. Automatically find computers to transfer to

5. Has specified GUI

Non-Functional:

1. Backup and rollback functionality

4.1.2 MoSCoW Requirements

MoSCoW is a means of prioritizing requirements into requirements that ‘Must, ‘Should, ‘Could’ or

‘Won’t’ be implemented. MoSCoW was used here as means of ensuring that the most crucial

features were identified and prioritized during implementation due to projects tight deadline. The

following requirements were derived from the previous design document and prioritized during the

initial meeting.

20

Bournemouth University, Department of Computing and Informatics, Final Year Project

Prioritization Requirement Notes

Must Have

The ability to transfer files to
multiple computers on a LAN
network

Be able to scan network to find
computers to transfer to

Only certain computers
should be transferred to, the
ability to scan and find
these computers is a critical
function of the program

Blacklist file compatibility

Certain graphics files do not
need to be updated every
time, so the new tool should
have the ability to ignore
certain files or file types

Can work with existing setups

The program should be able
to work with existing
graphics installation (Eg on
older simulators)

Can handle transferring Unity
and Tempest sized patch files

Should be able to transfer
the types of files commonly
used in Drilling Systems
graphics programs

A GUI

Log activity
Added during
implementation

Should
Have

Some form of error reporting
from client programs

File overwriting

Log window to info runnings of
program

Remain stable through any
problems that could occur on the
network

The program should be
error prone and should be
able to recover from
network error

Could Have

Backup functionality and ability
to roll back to previous state

Program could have the
ability to roll back to
previous installation

Validation checks of installation

Checks could be
implemented to ensure that
the graphics installation is
installed correctly

File comparison (only update
changed files)

Inform user if pc is out of date

Could inform the user when
the files on a computer are
outdated or require
updating

Persistent list of computers to
transfer to on the network

21

Bournemouth University, Department of Computing and Informatics, Final Year Project

Won't Have One way file transfer

Won’t be able to transfer
with no counterpart program
installed on the destination
computer like the previous
tool

4.2 NATURE OF PROBLEM

As explained in section 1.2, Drilling Systems is a Bournemouth based company that produces multi

computer simulators used to train personnel to safely work on oil rigs.

When graphics software is being developed for a simulator, the software must be updated on every

graphics computer on a simulator to ensure a consistency. Some simulators can consist of up to

20 graphics computers powering huge multi display setups called ‘V-walls’.

The problem is that updating files on every graphics computer can be a lengthy and time

consuming process when performed manually, so a tool was developed in house to transfer files to

all the necessary computers on a simulator from one computer.

4.2.1 Existing Program

This tool is called Network File Transfer Tool, it is a console based application written in C++. It

uses Windows HomeGroup, a feature which allows file sharing between computers on a network

(Microsoft Support 2017). The tool also supported blacklisting of certain files that shouldn’t be

updated.

After years of use, graphics developers sought additional features (section 4.1) so a replacement

had been desired for some time. There have been several attempts to create a new tool over the

years but the complexity of the program demanded too much of any developer’s time and with the

original developer having left the company and even the source code lost, no attempts had been

implemented. So, the project was given to this papers author to examine and initiate a possible

solution.

4.2.2 Network Configuration

As mentioned, Drilling System simulators consist of multiple computers each performing different

roles in the simulation (sound, graphics, etc), these computers are all connected on a closed Local

Area Network (LAN), so the new tool would have to work on this kind of network.

22

Bournemouth University, Department of Computing and Informatics, Final Year Project

4.2.3 Files & Sizes

The program will be expected to transfer any type of files but will be primarily used to update files

for one of 2 types of graphics engines used by Drilling Systems; Tempest used on older simulators

and more recently Unity graphics. According to the client the following are typical file for the 2

engines:

Graphics
Engine

Files per
installation

Average
file size

(Mb)

Tempest ~1800 files 1 - 25

Unity ~150 files 10 - 500

It should also be noted that Unity uses compressed asset achieves which leads to less files per

setup.

4.2.4 Operating System

All of Drilling Systems software is designed for Windows, current simulators use Windows 7 as the

operating system of choice. Therefore the tool has to be built to work in a Windows environment.

4.2.5 Pre-Installed Software

Drilling Systems simulation software and tools rely on the Microsoft .NET framework so the

assumption can be made that the current version .NET will be installed on the computer. This

means that use can be made of the libraries available in .NET as it will be installed on simulator

computers.

4.3 TECHNOLOGIES

In this section possible technologies and other components that could be used in the final solution

will be examined.

4.3.1 Graphic User Interface Framework

One of the main requirements given by the client was that the tool used a Graphics User Interface

(GUI) as opposed to the console based interface that the previous tool used. As C# was the

chosen language there were really 2 options when it came to implementing a GUI in a C# program;

WPF or WinForms.

23

Bournemouth University, Department of Computing and Informatics, Final Year Project

4.3.1.1 Winforms

WinForms is the traditional method for building Windows user interfaces, it is supported by .NET

and provides language independent access for creating GUIs. WinForms acts as a wrapper for the

Windows API (win32 API) (Misra, A, 2016) and has been implemented since version 2 of the .NET

framework (Sells et al 2006, p. 25). WinForms is easy to use, reliable and provides a consistent

‘Windows’ look and feel across all modern Windows operating systems.

4.3.1.2 Windows Presentation Foundation (WPF)

WPF is a recent Microsoft platform for creating modern and dynamic visual applications for

Windows. WPF is a management framework built on DirectX (Sells et al 2006, p. 29), unlike

WinForms, WPF uses XAML (an XML based mark-up language) to declare the layout and

positioning of elements (buttons, text fields, etc.) in a User Interface (UI) (Stellman, A. 2010, p.

764). One of the main concepts behind WPF applications is the separation of UI code from actual

functional code running behind the UI.

4.3.2 File Transfer

4.3.2.1 Serialization

Serialization is the method of converting an object in programming into an array of bytes. In byte

form this data can be easily copied, stored or sent over a network. This was experimented with in

the early feasibility stage of the project but was found to consume to much program memory to be

viable.

4.3.2.2 File Transfer Protocol (FTP) and Trivial File Transfer Protocol (TFTP)

There was consideration for using a more traditional protocol for the actual file transfer of this

project such as File Transfer Protocol (FTP) to actually send the files to the remote computers.

FTP is a protocol that is fairly easy to implement in C# due to its common usage, example

implementations of both FTP servers and clients exist on the internet (CodeProject.com, 2017 & c-

sharpcorner.com 2017). However, one of the main reasons for not using FTP contains a lot of

features that are adapted for internet transfer which it was felt would ultimately make using it to

transfer files over a LAN more complicated than necessary.

24

Bournemouth University, Department of Computing and Informatics, Final Year Project

A similar protocol was found and thought to be useful, called Trivial File Transfer Protocol (TFTP).

TFTP came about during the 70s and was designed to be a completely bare bones, ‘trivially’

simple to implement system for sending files over a network. It used UDP for its original

implementation but other protocols could be used (RFC 1350, 1992). TFTP allowed files to be

downloaded or uploaded to a TFTP server.

4.3.2.3 Hyper Text Transfer Protocol (HTTP)

Hyper Text Transfer Protocol (HTTP) was considered as a possible transferring method using an

embedded webserver to server files to programs on the network. The programs would then use

standard HTTP requests to retrieve and saves the files onto the computer. Using this method was

very intriguing as using different protocols to send as files and to send communication messages

would be efficient and reduce traffic between programs.

4.3.3 File Synchronization

4.3.3.1 Rsync

Rsync is a popular file synchronization tool distributed with Linux operating systems

(Linuxcommand.org. 2017). It aims to efficiently synchronize files across multiple hosts even on

low bandwidth connections, it achieves this using a dual checksum system to work out and send

only the data that is missing from files instead of sending the whole file. However a Windows

version of Rsync does not exist as it does on Linux. The internal workings of the Rsync have been

published (Tridgell et al 1996) and many programs exist on windows, utilising the algorithm and

process behind Rsync (Unison File Synchronizer, 2017 & DeltaCopy, 2017).

4.3.3.2 Rdiff

Rdiff is a variation of Rsync, it is implemented in Linux as a command line program that gives user

full access over each of the stages of Rsync (linux.die.net, 2017). Rdiff allows users to perform one

of the three Rsync procedures on a file; generate a signature, create a delta and patch a file. Each

of these stages and the process and algorithm behind them is exactly the same as Rsync.

4.3.3.3 Octodiff

OctoDiff is an implementation of Rdiff in written in C# (OctopusDeploy, 2016). The program

functions the same as Rdiff using the same algorithm behind Rsync to perform synchronization

25

Bournemouth University, Department of Computing and Informatics, Final Year Project

operations on a file (signature, delta or patch). The program is open source so the code could be

used in this project, Octodiff is also multiplatform so can be run on Windows, Linux or Mac.

4.3.4 Web Server

4.3.4.1 NHttp

NHttp is an open source asynchronous HTTP server written in C# (pvginkel, 2017). The code is

easy to add to a project and running the server from code is straightforward and simple. It also

provides a range of features and customization (custom request and response behaviour).

However it does not allow a working server directory to be specified but overall a very useful code

for running a small but fast HTTP server from a C# program.

4.3.4.2 Internet Information Service (IIS)

Internet Information Service a web server created by Microsoft. It is intended for deployment of

applications and supports a wide range of web protocols (including HTTP, FTP etc) (Technet.

2003). It is included in most editions of windows but is not normally enabled by default on the

system. IIS can be used to run small servers for the purpose of software deployment, it is

maintained and still supported by Microsoft (IIS.net. 2017).

4.3.4.3 WAMP

WAMP is a set of software for running localhost web servers compatible with running PHP and

other web based services (Perschke, S. 2017). WAMP is created for Windows and supports a wide

range of web services which can be used for testing or as a deployment option. It provides a server

pointing to a local directory and controls for operating the server.

4.3.5 Code Repository

During a meeting with the client it was decided to use GitHub to store the code for the NFT project,

this would be used as a general repository during development but also give the client the option to

check on the progress of the project. A private GitHub repository was used that would only allow

the developer and client to view the contents of the project.

26

Bournemouth University, Department of Computing and Informatics, Final Year Project

4.4 EXISTING SOLUTIONS

Below are some solutions that exist on the Windows platform that could be theoretically used for

similar problems in which synchronization could be used to propagate changes. However due to

the unique features required by in this projects a more tailored experience was required and most

of these solution only provide one to one as opposed to one to many synchronization required in

this project.

4.4.1 Unison

Unison is a file synchronization tool written for Windows and Unix, it combines the features of

several different types of synchronization and management tools (such as Subversion, CVS and

Rsync) (Unison File Synchronizer, 2017). Unison allows 2 collections of files on separate devices

and or operating systems to be kept identical when changes are made to either collection and is

also implemented on both Windows and Unix with an operating system to show changes and

perform actions.

4.4.2 DeltaCopy

DeltaCopy is an Rsync implementation for windows, it provides a wrapper around the existing

Rsync program that allows it to run on windows operating system (DeltaCopy, 2017). The solution

provides a wide range of features such as scheduling, email notifications along with a GUI all of

which is integrated as a Windows service. DeltaCopy also provides full source code with the

possibility to use the wrapped rsync program in other windows applications.

4.4.3 Gsync

Gsync is a GUI for Rsync written using GTK graphics library, it provides all the functionality of

Rsync in GUI (OPByte.it. 2017). It was originally created for Linux based systems but versions for

windows and mac exist (Grsync-win. 2016). Gsync for Windows also provides the Rsync command

line program as well for extra flexibility.

4.4.4 Luckybackup

LuckyBackup is a backup solution written primarily for Linux (luckyBackup. 2014) but it has also

been ported to windows (however development of the port stopped before all the features were

added) (luckyBackup-win. 2007). It allows users to backup and synchronize file directories using

Rsync, which the program is built around. It provides a wide range of snapshot and scheduling

options and is provides a simple user interface.

27

Bournemouth University, Department of Computing and Informatics, Final Year Project

4.5 PROPOSED SOLUTION

The proposed solution for this project is to create an updated program which will replace the old

network transfer tool, this solution will be called Network File Transfer [NFT]. NFT will use a

command and control architecture to send files and instructions from a main GUI driven NFT

application to compact versions of NFT running on the graphics computers. As well as providing a

basic file transfer and some client request functionality improvements, NFT will also implement

Rsync based file synchronization to reduce file transfer times and provide a more efficient transfer

experience.

28

Bournemouth University, Department of Computing and Informatics, Final Year Project

5 DESIGN

With the requirements for the new tool confirmed with the client, and the background context for

the tool and possible technologies researched it was time to start the design phase. The

architectural, interface and overall design decisions as well as reasoning for these decisions will be

addressed in this chapter.

5.1 SYSTEM DESIGN

It was confirmed in the early stages of discussions with the client that the new NFT tool would have

to require a program running on each of the computers where file will be transferred to. This is in

contrast to the previous tool but it was decided to move away from using Windows HomeGroup. So

it was decided to go with a more traditional client/server model by having a ‘master’ program which

the user would interact with which would in turn send instructions to and receive feedback from

‘slave’ applications which would perform said instructions. This would be a command and control

architecture with the master controlling the slave programs.

Designing and implementing this Command and Control model correctly would be crucial to the

project being complete to any level of quality or stability. So one of the first things to work out was

how it should be implemented.

5.1.1 System Architecture & Communication

The communication between the programs went through several design iteration. First 2 TCP

connections were going to be used for communication between slaves and the master programs, 1

would be used for sending commands and error reporting, the other for sending files. But it was

decided that writing TCP transfer code which was optimized for LAN was not possible within the

time frame of the project. So it was decided to use TCP for sending instructions and HTTP

requests for downloading files using an embedded web server running within the master program.

From this, an initial architectural design was agreed upon to use as the basis Network File

Transfers (NFT) development:

29

Bournemouth University, Department of Computing and Informatics, Final Year Project

Figure 1 Initial NFT architectural layout

Next the method of communicating instructions had to be designed.

5.1.2 Command format

The command object would represent the instructions and information being sent between the

programs. The object would be serialized and sent across the network where it would be de-

serialized and executed by the receiving program.

This command object would contain some important attributes to carry out this task:

 Command type – Represents what type of action to be performed (transfer files, abort

operation, patch files, error etc)

 File list – Stores the files that will be transferred

 Source address

 Destination address

 Message – An option field to store any additional information

30

Bournemouth University, Department of Computing and Informatics, Final Year Project

5.1.3 Command receiving

For receive commands the NFT programs would use TCP listening loops that would run indefinitely

to firstly listen and connect to the NFT master program (in the case of the slave program) then

proceed to receive any data put on the connection stream. This data will then be de-serialized into

the command object where the instruction will be processed.

5.1.4 Connection storage

The NFT master program will have to store connections to multiple NFT slave applications, in order

to do this slave connection objects will have to be stored. For storage, a Slave class was designed

to store the slave TCP connection medium as well as some other key information:

 Connection object – TCPClient or Socket object

 Network stream – Stores the stream used to send and receive data

 Slave endpoint – Stores the IP address and port of the slave application

 Connected – Represents if the slave is connected or not

This object would also store a static list that would hold all the currently connected slaves, to be

used when sending commands to all slaves, displaying current connections and more functions

within the program.

This connection method would only be used on the NFT master program as each slave will only be

connected to one master program and not to any other NFT slaves.

5.2 GRAPHIC USER INTERFACE DESIGN

Both NFT programs will contain graphic elements in very different ways. Both will contain GUIs

implemented with WinForms for functionality and consistency (see Section 4.3.1), the master

program will contain a fully-fledged GUI where the user will use the program. Whereas the slave

application UI will consist a toolbar icon to provide some basic functions.

A mock program was created to experiment with what the UI may look like:

31

Bournemouth University, Department of Computing and Informatics, Final Year Project

Figure 2 Master program UI Mock-up

For the working directory section, a directory tree would allow the programs working directory to be
set.

Figure 3 Working Directory view example

32

Bournemouth University, Department of Computing and Informatics, Final Year Project

6 IMPLEMENTATION

6.1 OVERVIEW

The implementation of Network File Transfer (NFT) was based loosely on a client server

architecture, with a main server program (NFT_Master) instructing client programs (NFT_Slave) to

perform operations to their local file structure such as transfer new files, synchronize/update files

and other functions. Both program used code stored in a common library (NFT_Core.dll) this

contained core components of the required by both programs such as communication, file

operations and the Octodiff codebase which provided Rdiff synchronization functionality.

6.2 COMMAND AND CONTROL STRUCTURE

The core of the NFT_Master and NFT_Slave program interactions are contained in the command

and control structure; this section lays out how these interactions were implemented in the final

program.

6.2.1 Command Layout

To implement the command messages that would be used to communicate instructions between

the NFT_Master and NFT_Slave programs the class Command.cs was implemented. The

following are the fields used in the final Command class:

Figure 4 Command object implementation

33

Bournemouth University, Department of Computing and Informatics, Final Year Project

The class contained all the information required communicate instructions and messages between

the 2 programs (as well as data to complete these tasks). The fields for the class were built from

those determined in the design state as well as a few additions that were deemed necessary to

add during implementation:

- seq : A sequence number so the number of commands sent to a slave could be counted

- stream : Contained any Rsync streams if the command was being used to send Rsync data

The CommandType was implemented as an enumeration for each reference within the code, the

enumeration contained the following CommandTypes:

Figure 5 CommandType Enum implementation

The CommandType would be used to be determined how the command was handled and its data

used once it was received.

6.2.2 Listening Mechanisms

The Command & Control connection was implemented in TCP to allow persistent connections to

exist between the programs. To listen for commands, 2 listening functions were implemented; One

that would listen for commands from the NFT_Master and the other that would listen for commands

from the NFT_Slaves.

34

Bournemouth University, Department of Computing and Informatics, Final Year Project

Figure 6 NFT_Slave listening for and receiving commands from NFT_Master

Both listeners worked in similar ways the main difference being that the NFT_Master listener

(MasterListener.cs) would have initial function that would listen for a connection attempt from the

NFT_Master and would then listen for commands.

NFT_Master implemented a similar listener that would be listen for commands in a new thread

once a slave had connected. Both programs implemented a similar command listening function,

the function would loop infinitely receiving and handling commands. The loops would attempt to

read from the stream of the connected client, this read statement would block the loop until it

received data (avoiding unnessary CPU usage by the loops). The following what the core of the

command listening loop looked like for both the NFT_Master and NFT_Slave listener:

Figure 7 Core receiving mechanism

6.2.3 Command Handling and Execution

When a command was received by either NFT_Master or NFT_Slave the command would be

handled in the same manner to ensure operational consistency. Command handling was done in

35

Bournemouth University, Department of Computing and Informatics, Final Year Project

the CommandHandler.cs class. This class contained a method called handle which would read the

command and using its CommandType determine the correct action for that command.

CommandHandler.cs was also responsible for sending commands, it was deemed that this was an

appropriate place to store the command sending function as to avoid duplicate code and possible

alteration of command sending which would need to remain consistent for both NFT_Master and

NFT_Slave.

Figure 8 NFT_Master scanning for and sending commands to 2 NFT_Slave clients

6.2.4 Connection storage

Both NFT_Master and NFT_Slave had to store their respective connections in a safe manner in

which information could be retrieved and sent without abruptly closing the connection.

For NFT_Slave this information was stored in the MasterListener, it contained basic information

about the connected slave and exposed the objects required to send and receive data from the

connected NFT_Master. The following is the information stored and used by the NFT_Slave:

36

Bournemouth University, Department of Computing and Informatics, Final Year Project

Figure 9 MasterListener implementation

NFT_Slave information was stored on NFT master in the Slave.cs class. Like the MasterListener

counterpart, this contained information pertaining to the NFT_Slave and its connection medium,

the class also contained several methods used for general slave operations such as connecting,

disconnection, sending commands.

Figure 10 Slave implementation

37

Bournemouth University, Department of Computing and Informatics, Final Year Project

The class also contained several static variables and methods that were used to control all the

connected slaves, these included; the scan method to scan for slaves on a given network range,

the sendToAll method to send commands to all connected NFT_Slave programs. It also contained

a static list that stored all the currently connected Slave application called ‘slaves’.

6.2.5 Error Handling

After the Listeners had been implemented it was realized that using the Command & Control

connection to report errors could clutter the crucial connection. Since error reporting was less

crucial to the internal workings of the system but should still be shown for the users sake, it was

decided to use UDP to send general error messages back to the NFT_Master program to inform

the user.

Serialization would be used to send custom Error objects to the NFT_Master on a hard coded port

(the source address from the Command would be used to determine the sending address). The

structure of the error object is laid out in Error.cs:

Figure 11 Error object implementation

The contained information such as:

- Ex : Which stored the exception object that had occurred for further inspection

- senderAddr: which contained the machines address where the error occurred

- type : which contained the exception type in string for display

- message : Additional message about the implication of the error

- fatal : Which would store if the error had interrupted opertations

To send and receive this object ErrorReporter.cs contained 2 functions, one that would listen for

incoming UDP error messages and the other that would send them. The error listener worked in a

38

Bournemouth University, Department of Computing and Informatics, Final Year Project

similar way to the TCP command listeners, it contained a loop that tried to receive any UDP

datagrams and serialize them into the Error object

Figure 12 UDP Error receiving logic

The sending method attempted to send the error message to the provided address, due to the

nature of UDP sending did not require a connection to be established.

Figure 13 NFT_Master receiving an error message from and NFT_Slave

6.2.6 Object Serialization

Due to the amount of objects that required serialization in order to be send and the different types

that the objects had to serialized to, general serialization methods were implemented the Helper.cs

class that could be given the type to serialize or deserialize to and then perform the necessary

operations. The generic serializing functions were laid out in the following way:

39

Bournemouth University, Department of Computing and Informatics, Final Year Project

Figure 14 Example of generic converter methods

A conversion method was also implemented from memorystreams, this was used for sending

serialization data.

6.3 SYNCHRONIZATION

To send and handle serialization within the program the Octodiff code base was used. Octodiff is a

console program written in C# that functions like RDiff which allows each of the stages of Rsync

(signature, delta and patching of files) to be performed. In order for it to be used in NFT, Octodiff

had to be modified to return MemoryStream objects instead of creating files for signatures or

deltas. These MemoryStream objects could then be sent using RsyncStream object

(RsyncStream.cs) that contained them and the relevant information. The fields used in this object

were:

40

Bournemouth University, Department of Computing and Informatics, Final Year Project

Figure 15 RsyncStream implementation

- Type : contained the type of Rsync stream (Signature or Delta stream)

- Stream : contained the stream of Rsync data itself

- Filename : the file that the stream related to or was generated for

- relativePath : stored the files location within the NFT working directory

This RsyncStream object was then stored within a command object, with the object of that

command set to CommandType.RsyncStream the stream would be appropriately handled and the

correct actions performed when it was received by a program.

For performing Rsync tasks the class RsyncOps.cs contained the methods for generating

signatures and deltas for files and patching. This class was where Octodiff was called to perform

Rsync tasks

6.4 MASTER FLOW

The NFT master program is responsible for handling user input and for instructing NFT slaves. The

following were the steps the master application would use in its general program flow:

1. Slave detection

2. Constructing commands & sending

3. Listen for command messages from connected NFT_Slaves

4. Listening for errors

5. Handling GUI input

6.5 SLAVE FLOW

The general flow of the NFT_Slave program would be as follows:

41

Bournemouth University, Department of Computing and Informatics, Final Year Project

1. Listen for NFT_Master program

2. Listen for commands from NFT_Master

3. Send commands to symbolize success or failure and corresponding Rsync stream data

4. Sending any errors using ErrorReporter

5. Handle incoming command

6.6 LIBRARY LAYOUT

Due to the nature of the NFT architecture there were a lot of classes that had shared roles in both

NFT applications. So all program independent classes were stored in a class library called

NFT_Core.dll which would be required by both NFT programs and would store all the code and

would that the code used in both classes would be the same. The library was split into the following

namespaces to simply code and order sections based off the function of the code (Comms, Core,

Logger, Rsync and Octodiff).

Figure 16 Code map of NFT_Core.dll

6.7 APPLICATION SETTINGS

NFT settings were used to store options for NFTs operation this included; working directory were

files would be transferred to, max number of cores to use on any multithread operation and the

number of NFT_Slaves to be transferring at any time. Other settings such as port numbers were

hardcoded to ensure connection consistency across the different programs and were not meant to

be changed by the user.

These settings were originally going to be stored in the Windows registry, however this required

administration rights so internal C# executable settings were used instead.

42

Bournemouth University, Department of Computing and Informatics, Final Year Project

6.8 ISSUES

6.8.1 TCP connections

An issue came about when working out how to store the slave connections on the master program

and how to keep these connections active during storage. At this point in development, sockets

were being used to send data, when the sockets weren’t being used the connection could

randomly close. Solutions to storing sockets in C# seemed too impractical, so it was decided go

back to using TCPClient, this is an object in C# that acts as a wrapper for a socket while also

providing more functionality. The stability of the connection with TCPClient while being stored was

more consistent that using sockets so it was used the program.

Another occurred while trying to implement the listening and the command receiving logic into one

loop in the SlaveListener, this was a bad idea as the loop became unnecessarily complex. It was

decided to split the logic into 2 loops; one that would handle the listening and connecting to the

master and the other that would receive of commands. This logic made it easier to debug and to

understand the code.

6.8.2 Web Server

Multiple issues occurred while trying to incorporate an embedded web server into the NFT master

program. Microsoft IIS server was selected due to its ability to point the web server at a given path,

in order to configure the IIS server from C# the Microsoft.Web.Administration.dll library had to

bereferenced. This library can only be found in at a specific path only when some basic IIS

features have been enabled. Once this was referenced, IIS could now be configured from within

the program, initially it was slightly confusing to understand how IIS was laid out. Changes made to

IIS within the program would persist even after the program was closed so it was clear that the

appropriate fail safes and sanity checks had to be included.

The next problem was that even with IIS server running it would refuse any connection. Also at this

program also required administration rights to configure IIS without crashing, a simple procedure

using app.manifest file to request that NFT_master would be invoked as an administrator. In the

end IIS was put on hold the problems mentioned could not be overcome within the time frame, so

WAMP was used as an external web server.

43

Bournemouth University, Department of Computing and Informatics, Final Year Project

6.8.3 Synchronization

While implementing synchronization it was realized the original plan to send a signature file to all

slaves and then remotely calculate the new file deltas would not be possible due to the way Rsync

was designed. Signatures of files had to be sent from the NFT_Slaves and the deltas calculated on

the NFT_Master and then sent back.

At first it was thought that UDP could be used to send RsyncStream objects (in a similar fashion to

the ErrorReporter) but it was soon realized that RsyncStream objects could surpass the max size

of a UDP packet. Also realizing that delivery of this data was crucial to the working of the system a

method of sending an RsyncStream within a Command was implemented.

44

Bournemouth University, Department of Computing and Informatics, Final Year Project

7 EVALUATION

7.1 DSDM EVALUATION

In this section DSDM effectiveness and relevance for this project will be examined.

7.1.1 Justification Evaluation

During the methodology selection phase a set of attributes for ideal projects for DSDM were listed
from the DSDM handbook (Section 4.1.2). These attributes were assessed against the project at
that time and in this section this list will be revisited and reassessed.

1.) ‘Interactive, where the functionality is clearly demonstrable at the user interface’

Original DSDM Characteristic Suitability: PASS

- Like in the original evaluation of these characteristics, the GUI of the solution would clearly

demonstrate functionality in the way DSDM would want. However as the GUI was not

implemented during this project that does not apply.

- The backend system would not also not be very clear even when large parts of the code

was changed

Evaluated DSDM Characteristic Suitability: FAIL

2.) ‘Has a clearly defined user group’

Original DSDM Characteristic Suitability: PASS

- The user group of the original program has not changed since the beginning of this project,

so the user group is still clearly definable

Evaluated DSDM Characteristic Suitability: PASS

3.) ‘If computationally complex, the complexity can be decomposed or isolated’

Original DSDM Characteristic Suitability: PASS

- In the original analysis of the project the complexity of the solution was vastly

underestimated, it was assumed that the end solution would not be that complex and it was

also assumed that any complexity could be split up due to the nature of the programming

language used.

- Both of these assumptions were incorrect, C# encourages code to be grouped files with

other code of similar functions but this does not mean that the overall code can be split up

so neatly. In order to implement any features the group work for the entire system had to be

laid out.

Evaluated DSDM Characteristic Suitability: FAIL

45

Bournemouth University, Department of Computing and Informatics, Final Year Project

4.) ‘If large, processes the capability of being split into smaller functional components’

Original DSDM Characteristic Suitability: N/A

- Much like the previous characteristic, the overall complexity of the solution was

underestimated, and the ability to split up any complexity was also not truly realised

- When development of the solution started it was

Evaluated DSDM Characteristic Suitability: FAIL

5.) ‘Time-Constrained’

Original DSDM Characteristic Suitability: PASS

- The project did have a clearly defined deadline however the deadline for the code was too

flexible for DSDM which prefers strong deadlines that cannot change, this forces final

development cycles to be derived early and be stuck to throughout the project

- Due to the none mission critical nature of code a tight deadline was not imposed by the

client and during development, cycles and their deadlines changed and were not adhered

to.

- So although the project was time constrained, not all the timings in the project were as

constrained as DSDM required

Evaluated DSDM Characteristic Suitability: FAIL

6.) ‘The requirements can be prioritised’

Original DSDM Characteristic Suitability: PASS

- The requirements for the project could be very easily prioritized and this process helped

greatly throughout development especially for ranking the most important requirements to

be implemented

Evaluated DSDM Characteristic Suitability: PASS

7.) ‘The requirements are unclear or subject to frequent change

Original DSDM Characteristic Suitability: PASS

- It was assumed that these requirements would change throughout the project due to the

nature of development within Drilling Systems, however the user base had been using the

program for many years so had a very clear idea of what needed to be added.

- These requirements did not change throughout the project, if a GUI had been completely

implemented that may have changed as the client refined their ideas of what they wanted

the UI to look like and do but the requirements of the underlying system where known and

didn’t need to change

Evaluated DSDM Characteristic Suitability: FAIL

46

Bournemouth University, Department of Computing and Informatics, Final Year Project

7.1.2 Development Cycles

During development, DSDM development cycles were used to ensure that requirements created. 3

cycles were planned; the first to implement file transfer, the second the implement synchronization

and the third to implement a GUI. The first cycle was meant to last 2 weeks, the second and third

lasting 1 week. As with DSDM a prototype was to be delivered at the end of each cycle to give to

the client who would then test and give feedback.

It was soon realized in the first cycle that the functionality of the program could not be split up so

neatly and that addition system architecture had to be implemented before any of the cycles aims

could be added. This additional code (unrelated to the functional aim of the cycle) was crucial and

had to be implemented correctly before anything else, this caused the deadline for the first cycle to

be missed and the second, eventually it was decided to scrap the cycles as working on the general

architecture was the only way the program could be developed

7.2 ARTEFACT EVALUATION

To evaluate the end artefact of the project, comparison of how many MoSCoW requirements were

implemented in the final program and examination of how well the original solution objectives will

be performed.

47

Bournemouth University, Department of Computing and Informatics, Final Year Project

7.2.1 MoSCoW Requirements

Prioritization Requirement Implemented Notes

Must Have

The ability to transfer files to
multiple computers on a LAN
network

With WAMP activing as a
temporary webserver on the
NFT_Master computer, file
transfer is possible

Be able to scan network to find
computers to transfer to

Blacklist file compatibility

Can work with existing setups

NFT has to be set to the
path of the existing
installation

Can handle transferring Unity
and Tempest sized patch files

A GUI

Log activity

Should
Have

Some form of error reporting
from client programs

File overwriting

Log window to info runnings of
program

Log system output just
needs to be piped to
window

Remain stable through any
problems that could occur on the
network

Could Have

Backup functionality and ability
to roll back to previous state

Validation checks of installation

Files will be validated
against those on master
computer but standalone
validation was not
implemented

File comparison (only update
changed files) Handled by Rsync

Inform user if pc is out of date

Won't inform user but Rsync
will only update files that
have changed

Persistent list of transfer targets
on the network

Addresses of hosts will be
known when discovered so
could be stored in GUI

Won't Have One way file transfer

7.2.2 Objectives

7.2.2.1 Scalability & Accessibility

Core code for the solution was implemented in a shared library, this code can be easily added and

accessed from the NFT programs with fairly minimal effort. The coding standards and naming

48

Bournemouth University, Department of Computing and Informatics, Final Year Project

conventions in the program adhere to the Microsoft coding standard for C# and no warning on

standard practices were raised in the final solution

7.2.2.2 Performance

As this is not the final version of the program the true performance of every aspect of this project

cannot be truly. However the most resource intensive operations of the program can be tested and

the results analyzed.

Figure 17 Resource usage during Rsync signature generation

Figure 18 Resource usage during HTTP file transfer

During both file transfer and Rsync signature generation CPU remained below the goal of 25%
CPU usage (although memory usage did increase during signature generation).

7.2.2.3 Robustness

An error handling and reporting system was implemented in the final solution, error handling was

included in all parts of the program that critical errors could occur and mechanisms were put in

place to recover from errors

7.2.3 GUI

49

Bournemouth University, Department of Computing and Informatics, Final Year Project

Due to the complexity of the underlying system, the GUI was not implemented before the deadline.

However due the NFT architecture that has been designed with multiple hooks and methods to

allow for a GUI and other programs to be built on top of the system and use the components.

50

Bournemouth University, Department of Computing and Informatics, Final Year Project

8 CONCLUSIONS

8.1 DSDM

DSDM was not the most effective methodology for this project, the project was too complex,

requirements were not subject to much change and the deadlines involved as time constrained as

intended. All these factors lead to DSDM not working correctly. These factors were not fully

realised at the beginning of the project. DSDMs methods of requirements gathering and ranking

(using MoSCoW) were very useful however and crucial for focusing on functionality during the

development phase. As mentioned in (Qureshi et al 2016) DSDM does not work for complex

projects such as this, this was made worse by the end solutions intertwined code that means that

complexity could not be broken down. For a project such as this a looser, agile based framework

would have been more appropriate.

8.2 ARTEFACT

Although the artefact did not implement every requirement defined by the user it provided a good

framework and basis for a new file transfer tool. The library code provides a solid framework for a

GUI to be built on top of. One the aims of this project was to implement a new tool and the program

created here provides a good core for a new effective transfer tool, and can be enhanced with

future work.

8.3 FUTURE WORK

8.3.1 Custom communication protocol

If more time could be afforded to the development of NFT, it would be essential to implement a

custom TCP transferring code. This would allow much more controlled transferring experience and

would be a good experiment in writing file transferring code in C#. The code would support

multithreading, multiplexing and error recovery, writing bespoke transfer code would also allow

unneeded features to be removed for better performance and would contribute general code

simplicity.

51

Bournemouth University, Department of Computing and Informatics, Final Year Project

8.3.2 Implement a GUI

The NFT system that has been produced in this project has been designed to allow entry points for

other programs to use the code base (3rd party programs, GUIs). Static functions and object have

been designed to be assessed by an overlying GUI, this is in fact crucial to access all the

functionality of NFT. Now that the underlying architecture has been established a GUI can be more

quickly implemented to the client’s specifications. DSDM can even be used here to produce UI

prototypes to determine the ideal layout for the client and end users

8.3.3 Embedded Webserver

WAMP was used as a temporary web server in the final solution but this would be replaced with a

webserver which could be started and controlled from within the program.

Word Count: 10000

52

Bournemouth University, Department of Computing and Informatics, Final Year Project

REFERENCES

Asubramania, S, B. Pierce, B, C. 1998. 'What is a File Synchronizer?’ Fourth Annual

ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom

'98), (507), pp. [Online]. Available

at: http://www.cis.upenn.edu/~bcpierce/papers/snc.ps (Accessed: 2nd March 2017).

CodeProject.com. 2017. Simple C# FTP Class - CodeProject. [ONLINE] Available

at: https://www.codeproject.com/Tips/443588/Simple-Csharp-FTP-Class. [Accessed 27 April

2017].

C-sharpcorner.com. 2017. Simple FTP Demo Application Using C# And .Net 2.0. [ONLINE]

Available at: http://www.c-sharpcorner.com/article/simple-ftp-demo-application-using-C-Sharp-

and-net-2-0/. [Accessed 27 April 2017].

DeltaCopy. 2017. DeltaCopy - Rsync for Windows. [ONLINE] Available

at: http://www.aboutmyip.com/AboutMyXApp/DeltaCopy.jsp. [Accessed 27 April 2017].

DSDM Consortium, 2002. Business Driven Systems Development. Edition. DSDM Consortium.

DSDM Consortium, 2003. DSDM: Business Focused Development, Second Edition. 2 Edition.

Pearson Education.

Grsyn-win. 2016. Grsync for Windows download. [ONLINE] Available at:

https://sourceforge.net/projects/grsync-win/. [Accessed 11 May 2017].

IIS.net. 2017. Home : The Official Microsoft IIS Site . [ONLINE] Available at:

https://www.iis.net/. [Accessed 11 May 2017].

Khanna, S. Kunal, K. Pierce, B, C. 2007. 'A Formal Investigation of Diff3', Foundations of

Software Technology and Theoretical Computer Science (FSTTCS), pp. [Online]. Available

at: http://www.cis.upenn.edu/~bcpierce/papers/diff3-short.pdf (Accessed: 2nd March 2017).

linux.die.net. 2017. rdiff(1) - Linux man page. [ONLINE] Available

at: https://linux.die.net/man/1/rdiff. [Accessed 10 May 2017].

Linuxcommand.org. 2017. rsync. [ONLINE] Available

at: http://linuxcommand.org/man_pages/rsync1.html. [Accessed 10 May 2017].

53

Bournemouth University, Department of Computing and Informatics, Final Year Project

luckyBackup. 2014. luckyBackup - backup and sync utility. [ONLINE] Available at:

http://luckybackup.sourceforge.net/. [Accessed 11 May 2017].

luckyBackup-win. 2007. contrib:luckybackup-win - BMT Solutions. [ONLINE] Available at:

http://www.bmtsolutions.us/wiki/doku.php?id=contrib:luckybackup-win. [Accessed 11 May

2017].

Microsoft Support. 2017. Homegroup from start to end. [ONLINE] Available at:

https://support.microsoft.com/en-gb/help/17145/windows-homegroup-from-start-to-finish.

[Accessed 08 May 2017].

Misra, A. 2016. Use of Windows Presentation Foundation and Windows Forms in Windows

Application Programming. International Journal of Advanced Research in Computer Science,

[Online]. Volume 7, No 7, 1. Available

at: http://search.proquest.com/openview/f67a5535ff1ef7af53e9dd2e176606f2/1?pq-

origsite=gscholar&cbl=1606379 [Accessed 27 April 2017].

OctopusDeploy. 2016. GitHub - OctopusDeploy/Octodiff: 100% C# implementation of remote

delta compression based on the rsync algorithm. [ONLINE] Available

at: https://github.com/OctopusDeploy/Octodiff. [Accessed 27 April 2017].

OPByte.it. 2017. OPByte: Grsync rsync GUI interface frontend for Linux, Windows and Mac OS

X. [ONLINE] Available at: http://www.opbyte.it/grsync/. [Accessed 11 May 2017].

Paetsch, F. Eberlein, A. Maurer, F. 2003. 'Requirements Engineering and Agile Software

Development', Proceedings of the Twelfth IEEE International Workshops on Enabling

Technologies, 1(ISBN 0-7695-1963-6), pp. pg308-314 [Online]. Available

at: http://ase.cpsc.ucalgary.ca/uploads/Publications/PaetschEberleinMaurer.pdf (Accessed: 8th

February 2017).

Perschke, S. 2017. WampServer delivers a smart, Windows-friendly platform for Apache,

MySQL and PHP-based apps | Network World. [ONLINE] Available

at: http://www.networkworld.com/article/2187564/software/wampserver-delivers-a-smart--

windows-friendly-platform-for-apache--mysql-and-php-based-apps.html. [Accessed 29 April

2017].

54

Bournemouth University, Department of Computing and Informatics, Final Year Project

Plonka, L. Sharp, H. Gregory, P. Taylor, K. 2014. ‘Ux design in agile: a DSDM case study’.

Agile Processes in Software Engineering and Extreme Programming: 15th International

Conference, XP 2014. Avaliable at: http://oro.open.ac.uk/40418/1/XP2014CameraReady.pdf

Purnama, F. Usagawa, T. Ijtihadie, R, M. Linawati. 2016. 'Rsync and Rdiff Implementation on

Moodle’s Backup and Restore Feature for Course Synchronization over The Network', 2016

IEEE Region 10 Symposium, (), pp. [Online]. Available

at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7519372 (Accessed: 2th March

2017).

pvginkel. 2017. GitHub - pvginkel/NHttp: Simple asynchronous .NET HTTP server. [ONLINE]

Available at: https://github.com/pvginkel/NHttp. [Accessed 27 April 2017].

Qureshi, M, R, J. Bajaber, F. 2016. 'Comparison of Agile Process Models to Conclude the

Effectiveness for Industrial Software Projects', Sci.Int.(Lahore), 28(6), pp. 5119-5123 [Online].

Available at: http://www.sci-int.com/pdf/20937959451%20a%201%205115-

5119%20M.%20Rizwan%20Jameel%20Qureshi--COMp--KSA.pdf (Accessed: 2nd March

2017).

RFC 1350. 1992. RFC 1350 - The TFTP Protocol (Revision 2). [ONLINE] Available

at: https://tools.ietf.org/html/rfc1350. [Accessed 27 April 2017].

Saltzer, J, H. Schroeder, M, D. 1975. ‘The Protection of Information in Computer Systems’,

1278-1308. In the Proceedings of the IEEE. Available at

http://www.cs.virginia.edu/~evans/cs551/saltzer/

Sani, A. Firdaus, A. Jeong, S, R. Ghani, I. 2013. 'A Review of Software Development Security

Engineering using Dynamic Systems Method (DSDM)', International Journal of Computer

Applications, 69(25), pp. [Online]. Available

at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.403.8971&rep=rep1&type=pdf (Ac

cessed: 10th February 2017).

Scrum.org. 2017. What is Scrum?. [ONLINE] Available at:

https://www.scrum.org/resources/what-is-scrum. [Accessed 08 May 2017].

Sells, C. Weinhardt, M. 2006. Windows Forms 2.0 Programming. 2nd ed. [ONLINE] Available

at:

https://books.google.co.uk/books?hl=en&lr=&id=Woa6WJyyvqIC&oi=fnd&pg=PT31&dq=winfor

ms&ots=M6PczRFcdA&sig=F1XFTn64kaQSKWXTsvRS5mXdCTM#v=onepage&q&f=false.

Addison Wesley.

http://oro.open.ac.uk/40418/1/XP2014CameraReady.pdf

55

Bournemouth University, Department of Computing and Informatics, Final Year Project

Stapleton, J. 1997. DSDM: Dynamic Systems Development Method: The Method in Practice. 1

Edition. Addison-Wesley Professional.

Stellman, A. 2010. Head First C#, 2E: A Learner's Guide to Real-World Programming with

Visual C# and .NET (Head First Guides). 2 Edition. O'Reilly Media.

Technet. 2003. Running IIS 6.0 as an Application Server. [ONLINE] Available at:

https://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/ddf1d92f-3e6e-

423f-b024-35cefc10a22f.mspx. [Accessed 08 May 2017].

Tridgell, A. Mackerras, P. 1996. 'The rsync algorithm', ANU Research Publications, pp.

[Online]. Available at: https://openresearch-repository.anu.edu.au/bitstream/1885/40765/3/TR-

CS-96-05.pdf (Accessed: 12th February 2017).

Unison File Synchronizer. 2017. Unison File Synchronizer. [ONLINE] Available

at: https://www.cis.upenn.edu/~bcpierce/unison/. [Accessed 27 April 2017].

56

Bournemouth University, Department of Computing and Informatics, Final Year Project

APPENDIX A - CD CONTENTS

- Dissertation (PDF)

- Dissertation (Word)

- Early Concept Prototypes

- Network File Transfer Project

- Network File Transfer Builds

57

Bournemouth University, Department of Computing and Informatics, Final Year Project

APPENDIX B – PROJECT PROPOSAL

58

Bournemouth University, Department of Computing and Informatics, Final Year Project

59

Bournemouth University, Department of Computing and Informatics, Final Year Project

60

Bournemouth University, Department of Computing and Informatics, Final Year Project

61

Bournemouth University, Department of Computing and Informatics, Final Year Project

APPENDIX C – ETHICS CHECKLIST

62

Bournemouth University, Department of Computing and Informatics, Final Year Project

63

Bournemouth University, Department of Computing and Informatics, Final Year Project

64

Bournemouth University, Department of Computing and Informatics, Final Year Project

65

Bournemouth University, Department of Computing and Informatics, Final Year Project

66

Bournemouth University, Department of Computing and Informatics, Final Year Project

