
1

Kylin – Hadoop OLAP Engine

October 2014

Jiang Xu, Architect of Kylin

Kylin Overview

Kylin
- n. (in Chinese art) a mythical animal of composite form

2

Kylin is an open source Distributed Analytics Engine from
eBay Inc. that provides SQL interface and multi-dimensional
analysis (OLAP) on Hadoop supporting extremely large
datasets

http://kylin.io

What Is Kylin?
•  Extremely Fast OLAP Engine at Scale
Kylin is designed to reduce query latency on Hadoop for 10+ billions of rows of data

•  ANSI-SQL Interface on Hadoop
Kylin offers ANSI-SQL on Hadoop and supports most ANSI-SQL query functions

•  Interactive Query Capability
Users can interact with Hadoop data via Kylin at sub-second latency, better than Hive queries for the same
dataset

•  MOLAP Cube
User can define a data model and pre-build in Kylin with more than 10+ billions of raw data records

•  Seamless Integration with BI Tools
Kylin currently offers integration capability with BI Tools like Tableau. Integration with Microstrategy and Excel
is coming soon

3

What Is Kylin? - Other Highlights
•  Job Management and Monitoring

• Compression and Encoding Support

•  Incremental Refresh of Cubes

• Leverage HBase Coprocessor for query latency

• Approximate Query Capability for distinct Count (HyperLogLog)

• Easy Web interface to manage, build, monitor and query cubes

• Security capability to set ACL at Cube/Project Level

• Support LDAP Integration

4

Glance of SQL-on-Hadoop Ecosystem …

•  SQL translated to MapReduce jobs
–  Hive
–  Stinger without Tez

•  SQL processed by a MPP Engine
–  Impala
–  Drill
–  Presto
–  Spark + Shark

•  SQL process by a existing SQL Engine + HDFS
–  EMC Greenplum (postgres)
–  Taobao Garude (mysql)

•  OLAP on Hadoop in other Companies
–  Adobe: HBase Cube
–  LinkedIn: Avatara
–  Salesforce.com: Phoenix

5

Why Do We Build Kylin?

• Why existing SQL-on-Hadoop solutions fall short?
The existing SQL-on-Hadoop needs to scan partial or whole data set to answer a user query. Moreover, table join may trigger
the data transfer across host. Due to large scan range and network traffic latency, many queries are very slow (minute+
latency).

• What is MOLAP/ROLAP?

–  MOLAP (Multi-dimensional OLAP) is to pre-compute data along different dimensions of interest and store resultant
values in the cube. MOLAP is much faster but is inflexible. Kylin is more like MOLAP.

–  ROLAP (Relational-OLAP) is to use star or snow-flake schema to do runtime aggregation. ROLAP is flexible but much
slower. All existing SQL-on-Hadoop is kind of ROLAP.

• How does Kylin support ROLAP/MOLAP?
Kylin builds data cube (MOLAP) from hive table (ROLAP) according to the metadata definition.

–  If the query can be fulfilled by data cube, Kylin will route the query to data cube that is MOLAP.
–  If the query can’t be fulfilled by data cube, Kylin will route the query to hive table that is ROLAP.
–  Basically, you can think Kylin as HOLAP on top of MOLAP and ROLAP.

6

Architecture Overview

7

Analytics Query Taxonomy

8

High Level
Aggregation

• Very High Level, e.g GMV by
site by vertical by weeks

Analysis
Query

• Middle level, e.g GMV by site by vertical, by
category (level x) past 12 weeks

Drill Down to
Detail • Detail Level (SSA Table)

Low Level
Aggregation • Seller ID

Transaction
Level • Transaction ID

80+%
Analytics

Kylin is designed to accelerate
Analytics queries!

Query Performance -- Compare to Hive

9

Query Type Return
Dataset

Query
On Kylin (s)

Query
On Hive (s)

Comments

1 High Level Aggregation 4 0.129 157.437 1,217 times

2 Analysis Query 22,669 1.615 109.206 68 times

3 Drill Down to Detail 325,029 12.058 113.123 9 times

4 Drill Down to Detail 524,780 22.42 6383.21 278 times

5 Data Dump 972,002 49.054 N/A

0

100

200

SQL #1 SQL #2 SQL #3

Hive
Kylin

Query Performance – Latency & Throughput

10

Tech Highlights

11

Component Design

12

Query Engine

(Calcite)

M
etadata M

anager

JDBC Driver

Storage Engine

Data Cube

(HBase)

Job Engine
(MapReduce)

Star Schema
(Hive)

SQL	

RESTful Server

D
ictionary
&

 C
ube

JDBC Driver ODBC Driver

HBase
Coprossor

Background – Cube & Cuboid

13

• Cuboid = one combination of dimensions
• Cube = all combination of dimensions (all cuboids)

time, item

time, item, location

time, item, location, supplier

time item location supplier

time, location

Time, supplier

item, location
item, supplier

location, supplier

time, item, supplier
time, location, supplier

item, location, supplier

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D(base) cuboid

Metadata- Overview

14

Cube: …
Fact Table: …
Dimensions: …
Measures: …
Row Key: …
HBase Mapping:
…

Fact

Dim Dim

Dim

Source
Star Schema	

row A
row B
row C

Column
Family

Val 1
Val 2
Val 3

Row Key	
 Column	

Target
HBase Storage	

Cube Metadata	

Metadata – Dimension

• Dimension
–  Normal
–  Mandatory
–  Hierarchy
–  Derived

15

Metadata – Measure

• Measure
–  Sum
–  Count
–  Max
–  Min
–  Average
–  Distinct Count (based on HyperLogLog)

16

Query Engine - Overview

• Query engine is based on Calcite

• Query Execution Plan

• Optiq Plug-ins in Query Engine

17

Query Engine – Calcite
• Calcite (http://incubator.apache.org/projects/calcite.html) is an extensible open source SQL

engine that is also used in Stinger/Drill/Cascading.

18

Query Engine – Explain Plan

19

SELECT test_cal_dt.week_beg_dt, test_category.lv1_categ, test_category.lv2_categ, test_category.lv3_categ, test_kylin_fact.format_name,
test_sites.site_name, sum(test_kylin_fact.price) as total_price, count(*) as total_count
FROM test_kylin_fact
 LEFT JOIN test_cal_dt ON test_kylin_fact.cal_dt = test_cal_dt.cal_dt
 LEFT JOIN test_category_groupings ON test_kylin_fact.leaf_categ_id = test_category_groupings.leaf_categ_id AND test_kylin_fact.lstg_site_id =
test_category_groupings.site_id
 LEFT JOIN test_sites ON test_kylin_fact.lstg_site_id = test_sites.site_id
WHERE test_kylin_fact.seller_id = 123456 OR test_kylin_fact.lstg_format_name = ’New'
GROUP BY test_cal_dt.week_beg_dt, test_category.lv1_categ, test_category.lv2_categ, test_category.lv3_categ, test_kylin_fact.format_name,
test_sites.site_name

OLAPToEnumerableConverter
 OLAPProjectRel(WEEK_BEG_DT=[$0], LV1_CATEG=[$1], LVL2_CATEG=[$2], LVL3_CATEG=[$3], FORMAT_NAME=[$4],
SITE_NAME=[$5], TOTAL_PRICE=[CASE(=($7, 0), null, $6)], TOTAL_COUNT=[$8])
 OLAPAggregateRel(group=[{0, 1, 2, 3, 4, 5}], agg#0=[$SUM0($6)], agg#1=[COUNT($6)], TRANS_CNT=[COUNT()])
 OLAPProjectRel(WEEK_BEG_DT=[$13], LV1_CATEG=[$21], LVL2_CATEG=[$15], LVL3_CATEG=[$14], FORMAT_NAME=[$5],
SITE_NAME=[$23], PRICE=[$0])
 OLAPFilterRel(condition=[OR(=($3, 123456), =($5, ‘New'))])
 OLAPJoinRel(condition=[=($2, $25)], joinType=[left])
 OLAPJoinRel(condition=[AND(=($6, $22), =($2, $17))], joinType=[left])
 OLAPJoinRel(condition=[=($4, $12)], joinType=[left])
 OLAPTableScan(table=[[DEFAULT, TEST_KYLIN_FACT]], fields=[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]])
 OLAPTableScan(table=[[DEFAULT, TEST_CAL_DT]], fields=[[0, 1]])
 OLAPTableScan(table=[[DEFAULT, TEST_CATEGORY_GROUPINGS]], fields=[[0, 1, 2, 3, 4, 5, 6, 7, 8]])
 OLAPTableScan(table=[[DEFAULT, TEST_SITES]], fields=[[0, 1, 2]])

Query Engine – Calcite Plugin-ins

• Metadata SPI
–  Provide table schema from kylin metadata

• Optimize Rule
–  Translate the logic operator into kylin operator

• Relational Operator
–  Find right cube
–  Translate SQL into storage engine api call
–  Generate physical execute plan by linq4j java implementation

• Result Enumerator
–  Translate storage engine result into java implementation result.

• SQL Function
–  Add HyperLogLog for distinct count
–  Implement date time related functions (i.e. Quarter)

20

Storage Engine - Overview

• Provide cube query for query engine
–  Common iterator interface for storage engine
–  Isolate query engine from underline storage

• HBase Storage
–  Pre-join & pre-aggregation
–  Dictionary
–  HBase coprocessor

21

Storage Engine – Pre-join & pre-aggregation

• Pre-join (Hive)
–  Kylin will generate pre-join HQL based on metadata that will join the fact table with dimension tables
–  Kylin will use Hive to execute the pre-join HQL that will generate the pre-joined flat table

• Pre-aggregation (MapReduce)
–  Kylin will generate a minimum spanning tree of cuboid from cube lattice graph.
–  Kylin will generate MapReduce job base on the minimum spanning tree
–  MapReduce job will do pre-aggregation to generate all cuboids from N dimensions to 1 dimension.

• MOLAP Cube (HBase)
–  The pre-join & pre-aggregation results (i.e. MOLAP Cube) is stored in HBase

22

Storage Engine – Dictionary

• Dictionary maps dimension values into IDs that will reduce the memory and storage footprint.

• Metadata can define whether one dimension use “dictionary” or not

• Dictionary is based on Trie

23

Storage Engine – HBase Coprocessor

• HBase coprocessor can reduce network traffic and parallelize scan logic

• HBase client
–  Serialize the filter + dimension + metrics into bytes
–  Send the encoded bytes to corprocessor

• HBase Corprocessor
–  Deserialize the bytes to filter + dimension + metrics
–  Iterate all rows from each scan range

• Filter unmatched rows
• Aggregate the matched rows by dimensions in an cache
• Send back the aggregated rows from cache

24

Cube Build - Overview

• Multi Staged Build

• Map Reduce Job Flow

• Cube Build Steps

25

Cube Build – Multi Staged Build

26

Cube Build – Map Reduce Job Flow

27

Cube Build – Steps

• Build dictionary from dimension tables on local disk. And copy dictionary to HDFS

• Run Hive query to build a joined flatten table

• Run map reduce job to build cuboids in HDFS sequence files from tier 1 to tier N

• Calculate the key distribution of HDFS sequence files. And evenly split the key space into K regions.
• 
• Translate HDFS sequence files into HBase Hfile

• Bulk load the HFile into HBase

28

Cube Optimization - Overview

•  “Curse of dimensionality”: N dimension cube has 2N cuboid
–  Full Cube vs. Partial Cube

• Hugh data volume
–  Incremental Build

• Slow Table Scan – TopN Query on High Cardinality Dimension
–  Bitmap inverted index
–  Time range partition
–  In-memory parallel scan: block cache + endpoint coprocessor

29

Cube Optimization – Full Cube vs. Partial Cube

• Full Cube
–  Pre-aggregate all dimension combinations
–  “Curse of dimensionality”: N dimension cube has 2N cuboid.

• Partial Cube
–  To avoid dimension explosion, we divide the dimensions into different aggregation groups
–  For cube with 30 dimensions, if we divide these dimensions into 3 group, the cuboid number will

reduce from 1 Billion to 3 Thousands
–  Tradeoff between online aggregation and offline pre-aggregation

30

Cube Optimization – Partial Cube

31

Cube Optimization – Incremental Build

32

Cube Optimization – TopN Query on High Cardinality Dimension

33

•  Bitmap inverted index

•  Separate high cardinality

dimension from low cardinality
dimension

•  Time range partition

•  In-memory (block cache)

•  Parallel scan (endpoint

coprocessor)

Kylin Resources

• Web Site
http://kylin.io

• Google Groups
https://groups.google.com/forum/#!forum/kylin-olap

• Source Code
https://github.com/KylinOLAP/Kylin

34

Q & A

35

