
Frog

A Natural Language Processing Suite for Dutch

Version 0.13.1 - FIRST DRAFT REVISION! NOT FINAL!

Iris Hendrickx, Antal van den Bosch, Maarten van Gompel en Ko van der Sloot
Centre for Language Studies and Centre for Speech and Language Technology, Radboud University

CLST Technical Report 16-02

June 2016

2

Contents

1 Introduction 1

2 License 3

3 Installation 5
3.1 Manual compilation & installation . 5

4 User guide 7
4.1 Quick start guide . 7

4.1.1 Interactive Mode . 9
4.1.2 Server mode . 9

4.2 Software usage . 10
4.2.1 Character encoding . 10
4.2.2 Tokenizer . 10
4.2.3 Multi-word units . 10
4.2.4 Lemmatizer . 10
4.2.5 Morphological Analyzer . 11
4.2.6 Part-of-Speech Tagger . 11
4.2.7 Named Entity Recognition . 11
4.2.8 Phrase Chunker . 12
4.2.9 Dependency Parser . 12

4.3 Using Frog from Python . 12
4.3.1 Installation . 13
4.3.2 Usage . 13

4.4 Frog generator . 14

5 Background 17
5.1 Once upon a time . 17
5.2 Module overview . 17

5.2.1 Configuration file . 17
5.2.2 Tokenizer . 17
5.2.3 Multi-word Units . 17
5.2.4 Lemmatizer . 18
5.2.5 Morphological Analyzer . 19
5.2.6 PoS Tagger . 20
5.2.7 Named Entity Recognition . 20
5.2.8 Phrase Chunker . 20
5.2.9 Parser . 21

5.3 Frog in practice . 21

6 Credits and references 23

A Alpino syntactic dependency labels 27

Chapter 1

Introduction

Frog is an integration of memory-based natural language processing (NLP) modules developed for Dutch. Frog
performs tokenization, part-of-speech tagging, lemmatization and morphological segmentation of word tokens.
At the sentence level Frog identifies non-embedded phrase chunks in the sentence, recognizes named entities and
assigns a dependency parse graph. Frog produces output in either FoLiA XML or a simple tab-delimited column
format with one token per line. All NLP modules are based on Timbl, the Tilburg memory-based learning software
package. Most modules were created in the 1990s at the ILK Research Group (Tilburg University, the Netherlands)
and the CLiPS Research Centre (University of Antwerp, Belgium). Over the years they have been integrated into
a single text processing tool, which is currently maintained and developed by the Language Machines Research
Group and the Centre for Language and Speech Technology at Radboud University (Nijmegen, the Netherlands).

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

License

Frog is free and open software. You can redistribute it and/or modify it under the terms of the GNU General
Public License v3 as published by the Free Software Foundation. You should have received a copy of the GNU
General Public License along with Frog. If not, see http://www.gnu.org/licenses/gpl.html.

3

4 CHAPTER 2. LICENSE

Chapter 3

Installation

You can download Frog, manually compile and install it from source. However, due to the many dependencies
and required technical expertise this is not an easy endeavor.

Linux users should first check whether their distribution’s package manager has up-to-date packages for Frog,
as this provides the easiest way of installation.

If no up-to-date package exists, we recommend to use LaMachine. Frog is part of our LaMachine software
distribution and includes all necessary dependencies. It runs on Linux, BSD and Mac OS X. It can also run as a
virtual machine under other operating systems, including Windows. LaMachine makes the installation of Frog
straightforward; detailed instructions for the installation of LaMachine can be found here: http://proycon.
github.io/LaMachine/.

3.1 Manual compilation & installation

The source code of Frog for manual installation can be obtained from Github. Because of file sizes and to cleanly
separate code from data, the data and configuration files for the modules of Frog have been packaged separately.

• Source code repository: https://github.com/LanguageMachines/frog/

• Stable releases1: https://github.com/LanguageMachines/frog/releases/

• Frog data repository: https://github.com/LanguageMachines/frogdata/ (required dependency!)

To compile these manually, you first need current versions of the following dependencies of our software, and
compile and install them in the order specified here:

• ticcutils2 - A shared utility library

• libfolia3- A library for the FoLiA format

• ucto4 - A rule-based tokenizer

• timbl5 - The memory-based classifier engine

• timblserver6 - For server functionality around Timbl

• mbt7 - The memory-based tagger

You will also need the following 3rd party dependencies:

1The source code repository points to the latest development version by default, which may contain experimental features. Stable releases
are deliberate snapshots of the source code. It is recommended to grab the latest stable release.

2https://github.com/LanguageMachines/ticcutils
3https://github.com/LanguageMachines/libfolia
4https://languagemachines.github.io/ucto
5https://languagemachines.github.io/timbl
6https://github.com/LanguageMachines/timblserver
7https://languagemachines.github.io/mbt

5

6 CHAPTER 3. INSTALLATION

• icu - A C++ library for Unicode and Globalization support. On Debian/Ubuntu systems, install the package
libicu-dev.

• libxml2 - An XML library. On Debian/Ubuntu systems install the package libxml2-dev.

• A sane build environment with a C++ compiler (e.g. gcc or clang), autotools, autoconf-archive, libtool, pkg-
config

The actual compilation proceeds by entering the Frog directory and issuing the following commands:

$ bash bootstrap.sh
$./configure
$ make
$ sudo make install

To install in a non-standard location (/usr/local/ by default), you may use
the --prefix=/desired/installation/path/ option.

Chapter 4

User guide

Frog aims to automatically enrich Dutch text with linguistic information of various forms. Frog integrates several
NLP modules that perform the following tasks: tokenize text to split punctuation from word forms (including
recognition of sentence boundaries and multi-word units), assignment of part-of-speech tags, lemmas, and mor-
phological and syntactic information to words.

In the next part we first give a brief explanation on running Frog to get you started quickly, followed by a
more elaborate description of using Frog and how to manipulate the settings for each of the separate modules. In
Chapter 5 we discuss background information of Frog and the detailed architecture of the modules.

4.1 Quick start guide

Frog is developed as a command line tool. We assume the reader already has at least basic command line skills.
Typing frog -h on the command line results in a brief overview of all available command line options. Frog

is typically run on an input document, which is specified using the -t option for plain text documents, or -x for
documents in the FoLiA XML format. It is, however, also possible to run it interactively or as a server. We show
an example of the output of Frog when processing the contents of a plain-text file test.txt, containing just the
sentence In ’41 werd aan de stamkaart een z.g. inlegvel toegevoegd.

We run Frog as follows: $ frog -t test.txt
Frog will present the output as shown in example 4.1 below:

(4.1)

1 2 3 4 5 6 7 8 9 10
1 In in [in] VZ(init) 0.987660 O B-PP 0 ROOT
2 ’41 ’41 [’41] TW(hoofd,vrij) 0.719498 O B-NP 1 obj1
3 werd worden [word] WW(pv,verl,ev) 0.999799 O B-VP 0 ROOT
4 aan aan [aan] VZ(init) 0.996734 O B-PP 10 mod
5 de de [de] LID(bep,stan,rest) 0.999964 O B-NP 6 det
6 stamkaart stamkaart [stam][kaart] N(soort,ev,basis,zijd,stan) 0.996536 O I-NP 4 obj1
7 een een [een] LID(onbep,stan,agr) 0.995147 O B-NP 9 det
8 z.g. z.g. [z.g.] ADJ(prenom,basis,met-e,stan) 0.500000 O I-NP 9 mod
9 inlegvel inlegvel [in][leg][vel] N(soort,ev,basis,zijd,stan) 1.000000 O I-NP 10 obj1
10 toegevoegd toevoegen [toe][ge][voeg][d] WW(vd,vrij,zonder) 0.998549 O B-VP 3 vc
11 . . [.] LET() 1.000000 O O 10 punct

The ten TAB-delimited columns in the output of Frog contain the information we list below. This columned
output is intended for quick interpretation on the terminal or in scripts. It does, however, not contain every detail
available to Frog.

1. Token number (Number is reset every sentence.)

2. Token The text of the token/word

3. Lemma The lemma

4. Morphological segmentation A morphological segmentation in which each morpheme is enclosed in square
brackets

5. PoS tag The Part-of-Speech tag according to the CGN tagset (Van Eynde, 2004).

7

8 CHAPTER 4. USER GUIDE

6. Confidence in the PoS tag, a number between 0 and 1, representing the probability mass assigned to the best
guess tag in the tag distribution

7. Named entity type in BIO-encoding1

8. Base phrase chunk in BIO-encoding

9. Token number of head word in dependency graph (according to the Frog parser)

10 Dependency relation type of the word with head word

For full output, you will want to instruct Frog to output to a FoLiA XML file. This is done using the -X option,
followed by the name of the output file.

To run Frog in this way we execute: $ frog -t test.txt -X test.xml The result is a file in FoLiA XML
format (van Gompel and Reynaert, 2013) that contains all information in a more structured and verbose fashion.
More information about this file format, including a full specification, programming libraries, and other tools, can
be found on https://proycon.github.io/folia. We show an example of the XML structure for the token
aangesneden in example 4.2 and explain the details of this structure in section 4.2. Each of these layers of linguistic
output will be discussed in more detail in the next chapters.

(4.2) <w xml:id="WP3452.p.1.s.1.w.4" class="WORD">
<t>aangesneden</t>
<pos class="WW(vd,vrij,zonder)" confidence="0.875" head="WW">

<feat class="vd" subset="wvorm"/>
<feat class="vrij" subset="positie"/>
<feat class="zonder" subset="buiging"/>

</pos>
<lemma class="aansnijden"/>
<morphology>

<morpheme>
<t>aan</t>

</morpheme>
<morpheme>

<t>ge</t>
</morpheme>
<morpheme>

<t>snijd</t>
</morpheme>
<morpheme>

<t>en</t>
</morpheme>

</morphology>
</w>

Input and Output options

By default the output of Frog is written to screen (i.e. standard output). There are two options for outputting to
file (which can also be called simultaneously):

• -o <filename> – Writes columned (TAB delimited) data to file.

• -X <filename> – Writes FoLiA XML to file.

We already saw the input option -t <filename> for plain-text files. It is also possible to read FoLiA XML
documents instead, using the -x <filename> option.

Besides input of a single plain text file, Frog also accepts a directory of plain text files as input --testdir=<directory>
, which can also be written to an output directory with parameter --outputdir=<dir>. The FoLiA equivalent
for --outputdir is --xmldir. To read multiple FoLiA documents, instead of plain-text documents, from a
directory, use -x --testdir=<directory>.

1B (begin) indicates the begin of the named entity, I (inside) indicates the continuation of a named entity, and O (outside) indicates that
something is not a named entity

4.1. QUICK START GUIDE 9

4.1.1 Interactive Mode

Frog can be started in an interactive mode by simply typing frog on the command line. Frog will present a frog>
prompt after which you can type text for processing. By default, you will press ENTER at an empty prompt before
Frog will process the prior input. This allows for multiline sentences to be entered. To change this behavior, you
may want to start Frog with the -n option instead, which tells it to assume each input line is a sentence. FoLiA
input or output is not supported in interactive mode.

To exit this mode, type CTRL-D.

4.1.2 Server mode

Frog offers a server mode that launches it as a daemon to which multiple clients can connect over TCP. The server
mode is start using the -S <port> option. Note that options like -n and --skip are valid in this mode too.

You can for example start a Frog server on port 12345 as follows: $ frog -S 12345.
The simple protocol clients should adhere to is as follows:

• The client sends text to process (may contain newlines)

• The client sends the string EOT followed by a newline

• The server responds with columned, TAB delimited output, one token per line, and an empty line between
sentences.

• FoLiA input an output are also possible, using the -x and -X options without parameters. When -X is
selected, TAB delimited output is suppressed.

• The last line of the server response consists of the string READY, so the client knows it received the full
response.

Communicating with Frog on such a low-level may not be necessary, as there are already some libraries avail-
able to communicate with Frog for several programming languages:

• Python – pynlpl.clients.frogclient2

• R – frogr3 – by Wouter van Atteveldt

• Go – grof4 – by Machiel Molenaar

The following example shows how to communicate with the Frog server from Python using the Frog client in
PyNLPl, which can generally be installed with a simple pip install pynlpl, or is already available if you use
our LaMachine distribution.

from pynlpl.clients.frogclient import FrogClient

port = 12345
frogclient = FrogClient(’localhost’,port)

for data in frogclient.process("Dit is de tekst om te verwerken.")
word, lemma, morph, pos = data[:4]
#TODO: Further processing per word

Do note that Python users may prefer using the python-frog binding instead, which will be described in Sec-
tion 4.3. This binds with Frog natively without using a client/server model and therefore has better performance.

2https://github.com/proycon/pynlpl, supports both Python 2 and Python 3
3https://github.com/vanatteveldt/frogr/
4https://github.com/Machiel/gorf

10 CHAPTER 4. USER GUIDE

4.2 Software usage

4.2.1 Character encoding

Frog assumes the input text to be plain text in the UTF-8 character encoding. However, Frog offers the option to
specify another character encoding as input with the option �t -e. This options is passed on to the Ucto Tokenizer.
It has some limitations, (see 4.2.2) and will be ignored when the Tokenizer is disabled. The character encodings
are derived from the ubiquitous unix tool iconv 5. The output of Frog will always be in UTF-8 character encoding.
Likewise, FoLiA XML defaults to UTF-8 as well.

4.2.2 Tokenizer

Frog uses the tokenization software Ucto (van Gompel, van der Sloot, and van den Bosch, 2012) for sentence
boundary detection and to separate punctuation from words. In general, recognizing sentence boundaries and
punctuation is a simple task but recognizing names and abbreviations is essential to perfom this task well. As
shown in example 4.1, the tokenizer recognizes abbreviations such as z.g. and ‘41 and considers them to be one
token. Ucto uses manually constructed rules and lists of Dutch names and abbreviations. Detailed information on
Ucto can be found on https://languagemachines.github.io/ucto/.

The tokenizer module in Frog can be adjusted in several ways. If the input text is already split on sentence
boundaries and has one sentence per line, the -n option can be used to prevent Frog from changing the existing
sentence boundaries. When sentence boundaries were already marked with a specific marker, one can specify
this marker as --uttmarker "marker". The marker strings will be ignored and their positions will be taken as
sentence boundaries.

If the input text is already fully tokenized, the tokenization step in Frog can be skipped altogether using the
skip parameter --skip=t. 6

4.2.3 Multi-word units

Frog recognizes certain special multi-word units (mwu) where a group of consecutive, related tokens is treated
as one token. This behavior accommodates, and is in fact required for Frog’s dependency parser as it is trained
on a data set with such multi-word units. In the output both parts of the multi-word unit will be connected with
an underscore. The PoS-tag, morphological analysis, named entity label and chunk label are concatenated in the
same manner.

This multi-word detection can be disabled using the option --skip=m. When using this option, each element
of the MWU is treated as separate token. We shown an example sentence in 4.2.3 that has two multi-word units:
Albert Heijn and ’s avonds.

S: Supermarkt Albert Heijn is tegenwoordig tot ’s avonds laat open.

1 Supermarkt supermarkt [super][markt] N(soort,ev,basis,zijd,stan) 0.542056 O B-NP 3 su
2 Albert Heijn Albert Heijn [Albert] [Heijn] SPEC(deeleigen) SPEC(deeleigen) 1.000000 B-ORG I-ORG B-NP I-NP 1 app
3 is zijn [zijn] WW(pv,tgw,ev) 0.999150 O B-VP ROOT
4 tegenwoordig tegenwoordig [tegenwoordig] ADJ(vrij,basis,zonder) 0.994033 O B-ADVP 3 predc
5 tot tot [tot] VZ(init) 0.964286 O B-PP None
6 ’s avonds ’s avond [’s] [avond][s] LID(bep,gen,evmo) N(soort,ev,basis,gen) 0.962560 O O O B-ADVP 5 obj1
7 laat laat [laat] ADJ(vrij,basis,zonder) 1.000000 O B-VP 8 mod
8 open open [open] ADJ(vrij,basis,zonder) 0.983755 O B-ADJP 3 predc
9 . . [.] LET() 1.000000 O O 8 punct

4.2.4 Lemmatizer

The lemmatizer assigns the canonical form of a word to each word. For verbs the canonical form is the infinitive,
and for nouns it is the singular form. The lemmatizer trained on the e-Lex lexicon (TST-centrale, 2007). It is
dependent on the Part-of-Speech tagger as it uses both the word form and the assigned PoS tag to disambiguate

5In the current Frog version UTF-16 is not accepted as input in Frog.
6In fact the tokenizer still is used, but in PassThru mode. This allows for conversion to FoLiA XML and sentence detection.

4.2. SOFTWARE USAGE 11

between different candidate lemmas. For example the word zakken used as a noun has the lemma zak while the
verb has lemma zakken. Section 5.2.4 presents further details on the lemmatizer.

4.2.5 Morphological Analyzer

The morphological Analyzer (MBMA) cuts each word into its morphemes and shows the spelling changes that
took place to create the word form. The fourth column in example 4.1 shows the morphemes of the example
sentence. MBMA tries to decompose every token into morphemes, except for punctuation marks and names.
Note that MBMA sometimes makes mistakes with unknown words such as abbreviations that are not included
in the MBMA lexicon. The abbreviation z.g. in the example is wrongly analyzed as consisting of two parts.
As shown in the earlier XML example 4.2 the past particle aangesneden is split into [aan][ge][snijd][en] where the
morpheem [snijd] is the root form of sned. More information about the MBMA architecture can be found in 5.2.5.

4.2.6 Part-of-Speech Tagger

The Part-of-Speech tagger uses the tag set of Corpus Gesproken Nederlands (CNG) (Van Eynde, 2004). It has 12 main
PoS tags (shown in table 4.1) and detailed features for type, gender, number, case, position, degree, and tense.

We show an example of the PoS tagger output in table 4.2. The tagger also expresses how certain it was about
its tag label in a confidence score between 0 (not sure) and 1 (absolutely sure). In the example the PoS tagger
is very sure about the first four tokens but not about the label N(soort,ev,basis,zijd,stan) for the token
Psychologie as it only has a confidence score of 0.67. Psychologie is an ambiguous token and can also be used as a
name (tag SPEC).

ADJ Adjective
BW Adverb
LET Punctuation
LID Determiner
N Noun
SPEC Names and unknown
TSW Interjection
TW Numerator
VG Conjunction
VNW Pronoun
VZ Preposition
WW Verb

Table 4.1: The main tags in the CGN PoS-tag set.

34 Ik VNW(pers,pron,nomin,vol,1,ev) 0.999791
35 ben WW(pv,tgw,ev) 0.999589
36 ook BW() 0.999979
37 professor N(soort,ev,basis,zijd,stan) 0.997691
38 Psychologie N(soort,ev,basis,zijd,stan) 0.666667

Table 4.2: The PoS tagger assigns a confidence score to each tag.

4.2.7 Named Entity Recognition

The Named Entity Recognizer (NER) detects names in the text and labels them as location (LOC), person (PER),
organization (ORG), product (PRO), event (EVE) or miscellaneous (MISC).

Internally and in Frog’s columned output, the tags use a so-called BIO paradigm where B stands for the begin-
ning of the name, I signifies Inside the name, and O outside the name.

More detailed information about the NER module can be found in 5.2.7.

12 CHAPTER 4. USER GUIDE

4.2.8 Phrase Chunker

The phrase chunker represents an intermediate step between part-of-speech tagging and full parsing as it produces
a non-recursive, non-overlapping flat structure of recognized phrases in the text and classifies them with their
grammatical function such as adverbial phrase (ADVP), verb phrase (VP) or noun phrase (NP). The tag labels
produced by the chunker use the same type of BIO-tags (Beginning-Inside-Outside) as the named entity recognizer.
We show an example sentence in 4.3 where the four-word noun phrase het cold case team is recognized as one
phrase. The prepositional phrases (PP) consist only of the preposition themselves due to the flat structure in
which the relation between prepositions and noun phrases is not expressed (note that the dependency parse labels,
section 4.2.9 do express these relations). Here Midden-Nederland is recognized by the PoS tagger as name and
therefor marked as a separate noun phrase that follows the noun phrase de politie.

(4.3) [Dat]NP [bevestigt]V P [het cold case team]NP [van]PP][de politie]NP [Midden-Nederland]NP [aan]PP [de
Telegraaf]NP [.

1 Dat B-NP
2 bevestigt B-VP
3 het B-NP
4 cold I-NP
5 case I-NP
6 team I-NP
7 van B-PP
8 de B-NP
9 politie I-NP
10 Midden-Nederland B-NP
11 aan B-PP
12 de B-NP
13 Telegraaf I-NP
14 . O

Table 4.3: The phrase chunker detects phrase boundaries and labels the phrases with their grammatical informa-
tion.

4.2.9 Dependency Parser

The Constraint-satisfaction inference-based dependency parser (CSI-DP) (Canisius et al., 2006) predicts grammat-
ical relations between pairs of tokens. In each token pair relation, one token is the head and the other is the
dependent. Together these relations represent the syntactic tree of the sentence. One token, usually the main verb
in he sentence, forms the root of the tree and the other tokens depend on the root in a direct or indirect relation.
CSI-DP is trained on the Alpino treebank (Bouma, R., and Malouf, 2001) for Dutch and uses the Alpino syntactic
labels listed in appendix A. In the plain text output of Frog (example 4.1) the dependency information is pre-
sented in the last two columns. The one-but-last column shows number of the token number of the head word of
the dependency relation and the last column shows the grammatical relation type. We show the last two columns
of the CSI-DP output in table 4.4. The main verb bevestigt is root element of the sentence, the head of the subject
relation (su) with the pronoun Dat and head in the object relation (obj1) with team. The noun team is the head in
three relations: the determiner(det) het and the two modifiers(mod) cold case. The name Midden-Nederland is linked
as an apposition to the noun politie. The prepositional phrase van is correctly assigned to the head noun team but
the phrase aan is mistakenly linked to politie instead of the root verb bevestigt. Linking prepositional phrases is a
hard task for parsers (Atterer and Schütze, 2007). More details on the architecture of the CSI-DP can be found in
section 5.2.9

4.3 Using Frog from Python

It is possible to call Frog directly from Python using the python-frog software library. Contrary to the Frog
client for Python discussed in Section 4.1.2, this library is a direct binding with code from Frog and does not use a
client/server model. It therefore offers the tighests form of integration, and highest performance, possible.

4.3. USING FROG FROM PYTHON 13

1 Dat 2 su
2 bevestigt 0 ROOT
3 het 6 det
4 cold 5 mod
5 case 6 mod
6 team 2 obj1
7 van 6 mod
8 de 9 det
9 politie 7 obj1
10 Midden-Nederland 9 app
11 aan 9 mod
12 de 13 det
13 Telegraaf 11 obj1
14 . 13 punct

Table 4.4: The dependency parser labels each token with a dependency relation to its head token and assigns the
grammatical relation.

4.3.1 Installation

The Python-Frog library is not included with Frog itself, but is shipped separately from https://github.com/
proycon/python-frog.

Users who installed Frog using LaMachine, however, will already find that this software has been installed.
Other users will need to compile and install it from source. First ensure Frog itself is installed, then install

the dependency cython7. Installation of Python-Frog is then done by running: $ python setup.py install
from its directory.

4.3.2 Usage

The Python 3 example below illustrates how to parse text with Frog:

from frog import Frog, FrogOptions

frog = Frog(FrogOptions(parser=False), "/etc/frog/frog.cfg")

output = frog.process_raw("Dit is een test")
print("RAW OUTPUT=",output)
output = frog.process("Dit is nog een test.")
print("PARSED OUTPUT=",output)

To instantiate the Frog class, two arguments are needed. The first is a FrogOptions instance that specifies
the configuration options you want to pass to Frog. The second is a string pointing to the Frog configuration file to
use; frog.cfg is the default shipped with Frog. You need to ensure to specify the full path to where it is installed
on your system though.

The Frog instance offers two methods: process raw(text) and process(text). The former just returns
a string containing the usual multiline, columned, and TAB delimiter output. The latter parses this string into a
dictionary. The example output of this from the script above is shown below:

PARSED OUTPUT = [
{’chunker’: ’B-NP’, ’index’: ’1’, ’lemma’: ’dit’, ’ner’: ’O’,
’pos’: ’VNW(aanw,pron,stan,vol,3o,ev)’, ’posprob’: 0.777085, ’text’: ’Dit’, ’morph’: ’[dit]’},
{’chunker’: ’B-VP’, ’index’: ’2’, ’lemma’: ’zijn’, ’ner’: ’O’,
’pos’: ’WW(pv,tgw,ev)’, ’posprob’: 0.999966, ’text’: ’is’, ’morph’: ’[zijn]’},

7Versions for Python 3 may be called cython3 on distributions such as Debian or Ubuntu

14 CHAPTER 4. USER GUIDE

{’chunker’: ’B-NP’, ’index’: ’3’, ’lemma’: ’nog’, ’ner’: ’O’,
’pos’: ’BW()’, ’posprob’: 0.99982, ’text’: ’nog’, ’morph’: ’[nog]’},

{’chunker’: ’I-NP’, ’index’: ’4’, ’lemma’: ’een’, ’ner’: ’O’,
’pos’: ’LID(onbep,stan,agr)’, ’posprob’: 0.995781, ’text’: ’een’, ’morph’: ’[een]’},

{’chunker’: ’I-NP’, ’index’: ’5’, ’lemma’: ’test’, ’ner’: ’O’,
’pos’: ’N(soort,ev,basis,zijd,stan)’, ’posprob’: 0.903055, ’text’: ’test’, ’morph’: ’[test]’},

{’chunker’: ’O’, ’index’: ’6’, ’eos’: True, ’lemma’: ’.’, ’ner’: ’O’,
’pos’: ’LET()’, ’posprob’: 1.0, ’text’: ’.’, ’morph’: ’[.]’}

]

There are various options you can set when creating an instance of FrogOptions, they are set as keyword
arguments:

• tok – bool – Do tokenisation? (default: True)

• lemma – bool – Do lemmatisation? (default: True)

• morph – bool – Do morphological analysis? (default: True)

• daringmorph – bool – Do morphological analysis in new experimental style? (default: False)

• mwu – bool – Do Multi Word Unit detection? (default: True)

• chunking – bool – Do Chunking/Shallow parsing? (default: True)

• ner – bool – Do Named Entity Recognition? (default: True)

• parser – bool – Do Dependency Parsing? (default: False).

• xmlin – bool – Input is FoLiA XML (default: False)

• xmlout – bool – Output is FoLiA XML (default: False)

• docid – str – Document ID (for FoLiA)

• numThreads – int – Number of threads to use (default: unset, unlimited)

4.4 Frog generator

Frog is developed for Dutch and intended as a ready tool to feed your text and to get detailed linguistic information
as output. However, it is possible to create a Frog lemmatizer and PoS-tagger for your own data set, either for a
specific Dutch corpus or for a corpus in a different language. Froggen is a Frog-generator that expects as input a
training corpus in a TAB separated column format of words, lemmas and PoS-tags.

This Dutch tweet annotated with lemma and PoS-tag information is an example of input required for froggen:

Coolio coolio TSW
mam mam N
, , LET
echt echt ADJ
vet vet ADJ
lekker lekker ADJ
’ ’ LET
<utt>
Eh eh TSW
... ... LET
watte wat VNW
<utt>
? ? LET
#kleinemannetjeswordengroot #kleinemannetjeswordengroot HTAG

4.4. FROG GENERATOR 15

Running froggen -T taggedcorpus -c my frog.cfg will create a set of Frog files, including the spec-
ified configuration file, that can be used to run your own Frog. Your own instance of Frog should then be invoked
using frog -c my frog.cfg.

Besides the option to specify the Frog configuration file name to save the settings, one can also name the output
directory where the frog files will be saved with [-O outputdir]. Froggen also allows an additional dictionary
list of words, lemmas and PoS-tags to improve the lemmatizer module with the option [-l lemmalist].

16 CHAPTER 4. USER GUIDE

Chapter 5

Background

5.1 Once upon a time

The development of Frog’s modules started in the nineties at the ILK Research Group (Tilburg University, the
Netherlands) and the CLiPS Research Centre (University of Antwerp, Belgium). Most modules rely on Timbl,
the Tilburg memory-based learning software package (Daelemans et al., 2004) or MBT the memory-based tagger-
generator (Daelemans, Zavrel, and Van den Boschand K. Van der Sloot, 2010). These modules were integrated into
an NLP pipeline that was first named MB-TALPA and later Tadpole (van den Bosch et al., 2007). Over the years,
the modules were refined and retrained on larger data sets and the latest versions of each module are discussed in
this chapter. We thank all programmers who worked on Frog and its predecessors in chapter 6.

The CliPS Research Centre also developed an English counterpart of Frog, a python module called MBSP
(MBSP website: http://www.clips.ua.ac.be/pages/MBSP).

5.2 Module overview

Frog was developed as a modular system that allows for flexibility in usage. In the current version of Frog,
modules have a minimum of dependencies between each other so that the different modules can actually run
in parallel processes, speeding up the performance time of Frog. The NER module, lemmatizer, phrase chunker
and dependency parser are all independent from each other. All modules expect tokenized text as input. The
lemmatizer, morphological analyzer and parser do depend on the PoS-tagger output. These dependencies are
depicted in figure 5.1. The tokenizer and multi-word chunker are rule-based modules while all other modules are
based on trained memory-based classifiers.

5.2.1 Configuration file

For advanced usage of Frog, we can define the individual settings of each module in the Frog configuration file
(frog.cfg in the frog source directory). Editing this file requires detailed knowledge about the modules and
relevant options will be discussed in the next sections. You can create your own frog configuration file and run frog
with frog -c myconfigfile.cfg . The configuration file also contains links to the Folia XML set definitions
for the used XML tag sets.

5.2.2 Tokenizer

The tokenizer Ucto has its own reference guide (van Gompel, van der Sloot, and van den Bosch, 2012) and more
detailed information can also be found on https://languagemachines.github.io/ucto/.

5.2.3 Multi-word Units

Extraction of multi-word units is a necessary pre-processing step for the Frog parser. The mwu module is a simple
script that takes as input the tokenized and PoS-tagged text and concatenates certain tokens like fixed expressions
and names. Common mwu such as ‘ad hoc’ are found with a dictionary lookup, and consecutive tokens that are
labeled as ‘SPEC(deeleigen)’ by the PoS-tagger are concatenated (gluetag in the Frog config file). The dictionary

17

18 CHAPTER 5. BACKGROUND

Figure 5.1: Overview of the Frog architecture and the dependencies between the modules. All blue modules are
based on memory-based learning while the yellow modules are rule-based.

list of common mwu contains 1325 items and is distributed with the Frog source code and can be found under
/etc/frog/Frog.mwu.1.0 . These settings can be modified in the Frog config file.

5.2.4 Lemmatizer

The lemmatizer is trained on the e-Lex lexicon (TST-centrale, 2007) with 595,664 unique word form - PoS-tag -
lemma combinations. The e-Lex lexicon has been manually cleaned to correct several errors. A timbl classifier
is trained to learn the conversion of word forms to their lemmas. Each word form in the lexicon is represented
as training instance consisting of the last 20 characters of the word form. Note that this abbreviates long words
such as consumptiemaatschappijen to u m p t i e m a a t s c h a p p i j e n.In total, the training in-
stance base has 402,734 unique word forms. As in he Dutch language morphological changes occur in the word
suffix, leaving out the word beginning will not hinder the lemma assignment. The class label of each instance
is the PoStag and a rewrite rule to transform the word form to the lemma form. The rewrite rules are applied
to the word form endings and delete or insert one or multiple characters. For example to get the lemma bij for
the noun bijen we need to delete the ending en to derive the lemma. We show some examples of instances in
5.1 where the rewrite rules should be read as follows. For the example the word form haarspleten with label
N(soort,mv,basis)+Dten+Iet is a plural noun with lemma haarspleet that is derived by deleting(+D) the
ending ten and inserting (+I) the new ending et. For ambiguous word forms, the class label consists of multiple
rewrite rules. The first rewrite rule with the same PoS tag is selected in such case. Let’s take as example the word
staken that can be the plural noun form of staak, the present tense of the verb staken or the past tense of the verb
steken. Here the PoS determines which rewrite rule is applied. The lemmatizer does not take into account the
sentence context of the words and in those rare cases where a word form has different lemmas associated with the
same PoS-tags, a random choice is made.

(5.1)
= = = = = = = = = b i j e n N(soort,mv,basis)+Den
= = = h a a r s p l e t e n N(soort,mv,basis)+Dten+Iet
= = = = h a a r s t u k j e N(soort,ev,dim,onz,stan)
= = = = = = = = s t a k e n N(soort,mv,basis)+Dken+Iak|WW(inf,nom,zonder,zonder-n)|WW(inf,prenom,zonder)|

WW(inf,vrij,zonder)|WW(pv,tgw,mv)|WW(pv,verl,mv)+Daken+Ieken
= = = = = = = s p l e t e n N(soort,mv,basis)+Dten+Iet|WW(pv,verl,mv)+Deten+Iijten

5.2. MODULE OVERVIEW 19

5.2.5 Morphological Analyzer

The Morphological analyser MBMA (van den Bosch and Daelemans, 1999) aims to decompose tokens into their
morphemes reflecting possible spelling changes. Here we show two example words:

(5.2) [leven][s][ver][zeker][ing][s][maatschappij][en]
[aan][deel][houd][er][s][vergader][ing][en]

Internally, MBMA not only tries to split tokens into morphemes but also aims to classify each splitting point and its
relation to the adjacent morpheme. MBMA is trained on the CELEX database (Baayen, Piepenbrock, and van Rijn,
1993). Each word is represented by a set of instances that each represent one character of the word in context of 6
characters to the left and right. As example we show the 10 instances that were created for the word form gesneden
in 5.3. The general rule in Dutch to create a part particle of a verb is to add ge- at the beginning and add -en at the
end. The first character ’g’ is labeled with pv+Ige indicating the start of an past particle (pv) where a prefix ge was
inserted (+Ige). Instance 3 represents the actual start of the verb (V) and instance 5 reflects the spelling change
that transforms the root form snijd to the actual used form sned (0+Rij>e: replace current character ’ij’ with ’e’).
Instance 7 also has label ’pv’ and denotes the end boundary of the root morpheme.

Timbl IGtree (Daelemans et al., 2004) trained on 3179,331 instances extracted from that were based on the
CELEX lexicon of 293,570 word forms.

The morphological character type classes result in a total 2708 class labels where the most frequent class ’0’
occurs in 69% of the cases as most characters are inside an morpheme and to do not signify any morpheme border
or spelling change. 7% of the instance represent a noun (N) starting point and 4% a verb (V) starting point.
The most frequent spelling changes are the insertion of an ’e’ after the morpheme (0/e) (klopt dit?) or a plural
inflection (denoted as ’m’). Running frog with the parameter --deep-morph results in a much richer morphological
analysis including grammatical classes and spelling changes.

(5.3)

1 g e s n e d e pv+Ige
2 g e s n e d e n 0
3 g e s n e d e n V
4 g e s n e d e n 0
5 g e s n e d e n 0+Rij>e
6 g e s n e d e n 0
7 g e s n e d e n pv
8 e s n e d e n 0

,,_,_,_,a,f,g,e,z,o,n,k,0
,,_,_,a,f,g,e,z,o,n,k,e,pv+Ige
,,_,a,f,g,e,z,o,n,k,e,n,0
,,a,f,g,e,z,o,n,k,e,n,_,V
,a,f,g,e,z,o,n,k,e,n,,_,0+Ri>o
a,f,g,e,z,o,n,k,e,n,_,_,_,0
f,g,e,z,o,n,k,e,n,_,_,_,_,0
g,e,z,o,n,k,e,n,_,_,_,_,_,pv
e,z,o,n,k,e,n,_,_,_,_,_,_,0
,,_,_,_,_,a,f,g,e,z,o,o,P
--
,,_,d,i,e,p,g,e,z,o,n,k,0
,,d,i,e,p,g,e,z,o,n,k,e,A
_,d,i,e,p,g,e,z,o,n,k,e,n,0
d,i,e,p,g,e,z,o,n,k,e,n,_,0
i,e,p,g,e,z,o,n,k,e,n,_,_,0
e,p,g,e,z,o,n,k,e,n,_,_,_,0
p,g,e,z,o,n,k,e,n,_,_,_,_,0
g,e,z,o,n,k,e,n,_,_,_,_,_,0
e,z,o,n,k,e,n,_,_,_,_,_,_,0/P
,,_,_,_,_,d,i,e,p,g,i,n,A
--
e,z,o,n,g,e,n,_,_,_,_,_,_,0

20 CHAPTER 5. BACKGROUND

,,_,_,_,_,g,e,z,o,n,k,e,A|pv+Ige
,,_,_,_,g,e,z,o,n,k,e,n,0
,,_,_,g,e,z,o,n,k,e,n,_,0|V
,,_,g,e,z,o,n,k,e,n,_,_,0|0+Ri>o
,,g,e,z,o,n,k,e,n,_,_,_,0
,g,e,z,o,n,k,e,n,,_,_,_,0
g,e,z,o,n,k,e,n,_,_,_,_,_,0|pv
e,z,o,n,k,e,n,_,_,_,_,_,_,0/P|0
,,_,_,_,_,g,e,z,o,n,n,e,pv+Ige

Note that the older version of the morphological analyzer reported in (van den Bosch et al., 2007) was trained
on a slightly different version of the data with a context of only 5 instead of 6 characters left and right. In that older
study the performance of the morphological analyzer was evaluated on a 10% held set and an accuracy of 79% on
unseen words was attained.

5.2.6 PoS Tagger

The PoS tagger in Frog is based on MBT, a memory-based tagger-generator and tagger1(Daelemans, Zavrel, and
Van den Boschand K. Van der Sloot, 2010) trained on a large Dutch corpus of 10,975,324 tokens in 933,891 sentences.
This corpus is a mix of several manually annotated corpora but about 90% of the data comes from the transcribed
Spoken Dutch Corpus of about nine million tokens (Schuurman et al., 2003). The other ten precent of the training
data comes from the ILK corpus (46K tokens), the D-Coi corpus (330K tokens) and the Eindhoven corpus (75K
tokens) (?) that were re-tagged with CGN tag set. The tag set consists of 12 coarse grained PoS-tags and 280 fine-
grained PoS tag labels. Note that the chosen main categories (shown in table 4.1) are well in line with a universal
PoS tag set as proposed by (2012) which has almost the same tags. The universal set has a particles tag for function
words that signify negation, mood or tense while CGN has an interjection tag to label worde like ’aha’ and ’oké’
that are typicallt used in spoken utterances.

5.2.7 Named Entity Recognition

The Named Entity Recognizer (NER) is an MBT classifier (Daelemans, Zavrel, and Van den Boschand K. Van der Sloot,
2010) trained on the SoNar 1 million word corpus labeled with manually verified NER labels. The annotation is flat
and in case of nested names, the longest name is annotated. For example a phrase like ’het Gentse Stadsbestuur’
is labeled as het[Gentsestadsbestuur]ORG. ’Gentse’ also refers to a location but the overarching phrase is the name
of an organization and this label takes precedence. Dutch determiners are never included as part of the name.
Details about the annotation of the training data can be found in the Sonar NE annotation guidelines (Desmet and
Hoste, 2009).

The NER module does not use PoS tags but learns the relation between words and name tags directly. An easy
way to adapt the NER module to a new domain is to give an additional name list to the NER module. The names
on this list has the following format: the full name followed by a tab and the name label as exemplified here.The
name list can be specified in the configuration file under [[NER]] as known ners=nerfile.

Zwarte Zwadderneel per
LaMa groep org

5.2.8 Phrase Chunker

The phrase chunker module is based on the chunker developed in the 90’s (Daelemans, Buchholz, and Veenstra,
1999) and uses MBT (Daelemans, Zavrel, and Van den Boschand K. Van der Sloot, 2010) as classifier. The chunker
adopted the BIO tags to represent chunking as a tagging task where B-tags signal the start of the chunk, I-tags
inside the chunk and O-tags outside the chunk. In the context of the TTNW project (Kemps-Snijders et al.,), the
chunker was updated and trained on a newer and larger corpus of one million words, the Lassy Small Corpus
(van Noord, Schuurman, and Bouma, 2011). This corpus a annotated with syntactic trees that were fist converted
to a flat structure with a script.

1MBT available at http://languagemachines.github.io/mbt/

5.3. FROG IN PRACTICE 21

5.2.9 Parser

The Constraint-satisfaction inference-based dependency parser (CSI-DP) (Canisius, 2009) is trained on the manu-
ally verified Lassy small corpus(van Noord et al., 2013b) and several million tokens of automatically parsed text by
the Alpino parser (Van Eynde, 2004) from Wikipedia pages, newspaper articles, and the Eindhoven corpus.

When CSI-DP is parsing a new sentence, the parser first aims to predict low level syntactic information, such
as the syntactic dependency relation between each pair of tokens in the sentence and the possible relation types a
certain token can have. These low level predictions take the form of soft weighted constraints. In the second step,
the parser aims to generate the final parse tree where each token has only one relation with another token using
a constraint solver based on the Eisner parsing algorithm (Eisner, 2000). The soft constraints determine the search
space for the constraint solver to find the optimal solution.

CSI-DP applies three types of constraints: dependency constraints, modifier constraints and direction con-
straints. For each constraint type, a separate timbl classifier is trained. Each pair of tokens in the training set
occurs with a certain set of possible dependency relations and this information is learned by the dependency con-
straint classifier. An instance is created for each token pair and its relation where one is the modifier and and one
is head. Note that a pair always creates two instances where these roles are switched. The timbl classifier trained
on this instance base will then for each token pair predict zero, one or multiple relations and these relations form
the soft constraints that are the input for the general solver who selects the overall best parse tree. .The potential
relation between the token pair is expressed in the following features: the words and PoS tags of each token and
its left and right neighboring token, the distance between the two tokens in number of intermediate tokens, and a
position feature expressing whether the token is located right or left of the potential head word.

For each token in the sentence, instances are created between the token and all other tokens in the sentence
with a maximum distance of 8 tokens left and right. The maximum distance of 8 tokens covers 95% of all present
dependency relations in the training set (Canisius et al., 2006). This leads to a unbalance of instances that express an
actual syntactic relation between a word pair and negative cases. Therefore, the negative instances in the training
set were reduced by randomly sampling a set of negative cases that is twice as big the number of positive cases
(based on experiments in (Canisius, 2009)).

The second group of constraints are the modifier constraints that express for each single token the possible
syntactic relations that it has in the training set. The feature set for these instances consist of the local context in 1
or 2 ?? words and PoS tags of the token.

The third group of direction constraints specify for each token in the sentence whether the potential linked
head word is left or right of the word, or the root. Based on evidence in the training set, a word is added with
one, two or three possible positions as soft weighted constraints. For example the token politie might occur in a left
positioned subject relation to a root verb, a right positioned direct object relation, of in an elliptic sentence as the
root form itself. We refer to chapter 5 of (2009) for all details concerning CSI-DEP.

5.3 Frog in practice

Frog has been used in research projects mostly because of its capacity to process Dutch texts efficiently and analyze
the texts sufficiently accurately. The purposes range from corpus construction to linguistic research and natural
language processing and text analytics applications. We provide a overview of work reporting to use Frog, in
topical clusters.

Corpus construction

Frog, named Tadpole before 2011, has been used for the automated annotation of, mostly, POS tags and lemmas
of Dutch corpora. When the material of Frog was post-corrected manually, this is usually done on the basis of the
probabilities produced by the POS tagger and setting a confidentiality threshold (Van den Bosch, Schuurman, and
Vandeghinste, 2006).

• The 500-million-word SoNaR corpus of written contemporary Dutch, and its 50-million word predecessor
D-Coi (Oostdijk et al., 2008; Oostdijk et al., 2013);

• The 500-million word Lassy Large corpus (Van Noord et al., 2013a) that has also been parsed automatically
with the ALPINO parser (Bouma, R., and Malouf, 2001);

• The 115-hour JASMIN corpus of transcribed Dutch, spoken by elderly, non-native speakers, and children
(Cucchiarini and Van hamme, 2013);

22 CHAPTER 5. BACKGROUND

• The 7-million word Dutch subcorpus of a multilingual parallel corpus of automotive texts (Lefever, Macken,
and Hoste, 2009);

• The Insight Interaction corpus of 15 20-minute transcribed multi-modal dialogues (Brône and Oben, 2015);

• The SUBTLEX-NL word frequency database was based on an automatically analyzed 44-million word corpus
of Dutch subtitles of movies and television shows (Keuleers, Brysbaert, and New, 2010).

Feature generation for text filtering and Natural Language Processing

Frog’s analyses can help to zoom in on particular linguistic abstractions over text, such as adjectives or particular
constructions, to be used in further processing. They can also help to generate annotation layers that can act as
features in further NLP processing steps. POS tags and lemmas are mostly used for these purposes. We list a
number of examples across the NLP board:

• Sentence-level analysis tasks such as word sense disambiguation (Van Gompel, 2010) and entity recognition
(Van de Camp and Van den Bosch, 2011);

• Text-level tasks such as authorship attribution (Luyckx, 2011), emotion detection (Vaassen and Daelemans,
2011), sentiment analysis (Hogenboom et al., 2014), and readability prediction (De Clercq et al., 2014);

• Text-to-text processing tasks such as machine translation (Haque et al., 2011) and sub-sentential alignment
for machine translation (Macken, 2010);

• Filtering Dutch texts for resource development, such as filtering adjectives for developing a subjectivity
lexicon (De Smedt and Daelemans, 2012), and POS tagging to assist shallow chunking of Dutch texts for
bilingual terminology extraction (Macken, Lefever, and Hoste, 2013).

Chapter 6

Credits and references

If you use Frog for your own work, please cite this reference manual

Frog, A Natural Language Processing Suite for Dutch, Reference guide, Iris Hendrickx, Antal van
den Bosch, Maarten van Gompel en Ko van der Sloot, Language and Speech Technology Technical
Report Series 16-02, Radboud University Nijmegen, Draft 0.13.1 - June 2016

The following paper describes Tadpole, the predecessor of Frog. It contains a subset of the components de-
scribed in this paper:

Van den Bosch, A., Busser, G.J., Daelemans, W., and Canisius, S. (2007). An efficient memory-based
morphosyntactic tagger and parser for Dutch, In F. van Eynde, P. Dirix, I. Schuurman, and V. Van-
deghinste (Eds.), Selected Papers of the 17th Computational Linguistics in the Netherlands Meeting,
Leuven, Belgium, pp. 99-114

We would like to thank everybody who worked on Frog and its predecessors. Frog, formerly known as Tadpole
and before that as MB-TALPA, was coded by Bertjan Busser, Ko van der Sloot, Maarten van Gompel, and Peter
Berck, subsuming code by Sander Canisius (constraint satisfaction inference-based dependency parser), Antal
van den Bosch (MBMA, MBLEM, tagger-lemmatizer integration), Jakub Zavrel (MBT), and Maarten van Gompel
(Ucto). In the context of the CLARIN-NL infrastructure project TTNWW, Frederik Vaassen (CLiPS, Antwerp)
created the base phrase chunking module, and Bart Desmet (LT3, Ghent) provided the data for the named-entity
module.

Maarten van Gompel designed the FoLiA XML output format that Frog produces, and also wrote a Frog bind-
ing for Python1, as well as a separate Frog client in Python2. Wouter van Atteveldt wrote a Frog client in R3, and
Machiel Molenaar wrote a Frog client for Go4.

The development of Frog relies on earlier work and ideas from Ko van der Sloot (lead programmer of MBT
and TiMBL and the TiMBL API), Walter Daelemans, Jakub Zavrel, Peter Berck, Gert Durieux, and Ton Weijters.

The development and improvement of Frog also relies on your bug reports, suggestions, and comments. Use
the github issue tracker at https://github.com/LanguageMachines/frog/issues/ or mail lamasoftware@
science.ru.nl.

References

Atterer, Michaela and Hinrich Schütze. 2007. Prepositional phrase attachment without oracles. Computational
Linguistics, 33(4):469–476.

Baayen, R. H., R. Piepenbrock, and H. van Rijn. 1993. The CELEX lexical data base on CD-ROM. Linguistic Data
Consortium, Philadelphia, PA.

Bouma, G., G. Van Noord R., and Malouf. 2001. Alpino: Wide-coverage computational analysis of dutch. Language
and Computers, 37(1):45–59.

1https://github.com/proycon/python-frog
2Part of PyNLPL: https://github.com/proycon/pynlpl
3https://github.com/vanatteveldt/frogr/
4https://github.com/Machiel/gorf

23

24 References

Brône, Geert and Bert Oben. 2015. Insight interaction: a multimodal and multifocal dialogue corpus. Language
resources and evaluation, 49(1):195–214.

Canisius, Sander. 2009. Structured prediction for natural language processing. A constraint satisfaction approach. Ph.D.
thesis, Tilburg University.

Canisius, Sander, Toine Bogers, Antal van den Bosch, Jeroen Geertzen, and Erik Tjong Kim Sang. 2006. Depen-
dency parsing by inference over high-recall dependency predictions. In Proceedings of the Tenth Conference on
Computational Natural Language Learning, CoNLL-X ’06, pages 176–180, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Cucchiarini, Catia and Hugo Van hamme. 2013. The jasmin speech corpus: Recordings of children, non-natives
and elderly people. In Essential Speech and Language Technology for Dutch. Springer, pages 147–164.

Daelemans, W., J. Zavrel, and A. Van den Boschand K. Van der Sloot. 2010. TiMBL: Tilburg Memory Based
Learner, version 3.2, reference guide. Technical Report ILK Research Group Technical Report Series 10-04, ILK,
Tilburg University, The Netherlands.

Daelemans, W., J. Zavrel, K. Van der Sloot, and A. Van den Bosch. 2004. TiMBL: Tilburg Memory Based Learner,
version 6.3, reference manual. Technical Report ILK Research Group Technical Report Series 10-01, ILK, Tilburg
University, The Netherlands.

Daelemans, Walter, Sabine Buchholz, and Jorn Veenstra. 1999. Memory-based shallow parsing. In Proceedings of
CoNLL-99, pages 53–60.

De Clercq, Orphée, Veronique Hoste, Bart Desmet, Philip Van Oosten, Martine De Cock, and Lieve Macken. 2014.
Using the crowd for readability prediction. Natural Language Engineering, 20(03):293–325.

De Smedt, Tom and Walter Daelemans. 2012. ” vreselijk mooi!”(terribly beautiful): A subjectivity lexicon for dutch
adjectives. In LREC, pages 3568–3572.

Desmet, B. and V. Hoste. 2009. Named Entity Annotatierichtlijnen voor het Nederlands. Technical Report LT3
09.01., LT3, University Ghent, Belgium.

Eisner, Jason, 2000. Bilexical grammars and their cubic-time parsing algorithms, pages 29–61. Springer.

Haque, R., S. Kumar Naskar, A. Van den Bosch, and A. Way. 2011. Integrating source-language context into
phrase-based statistical machine translation. Machine Translation, 25(3):239–285, September.

Hogenboom, Alexander, Bas Heerschop, Flavius Frasincar, Uzay Kaymak, and Franciska de Jong. 2014. Multi-
lingual support for lexicon-based sentiment analysis guided by semantics. Decision support systems, 62:43–53.

Kemps-Snijders, Marc, Ineke Schuurman, Walter Daelemans, Kris Demuynck, Brecht Desplanques, Veronique
Hoste, Marijn Huijbregts, Jean-Pierre Martens, Joris Pelemans Hans Paulussen, Martin Reynaert, Vincent Van-
deghinste Antal van den Bosch, Henk van den Heuvel, Maarten van Gompel, Gertjan Van Noord, and Patrick
Wambacq. TTNWW to the rescue: no need to know how to handle tools and resources.

Keuleers, Emmanuel, Marc Brysbaert, and Boris New. 2010. Subtlex-nl: A new measure for dutch word frequency
based on film subtitles. Behavior research methods, 42(3):643–650.

Lefever, Els, Lieve Macken, and Veronique Hoste. 2009. Language-independent bilingual terminology extraction
from a multilingual parallel corpus. In Proceedings of the 12th Conference of the European Chapter of the Association
for Computational Linguistics, pages 496–504. Association for Computational Linguistics.

Luyckx, Kim. 2011. Scalability issues in authorship attribution. ASP/VUBPRESS/UPA.

Macken, Lieve. 2010. Sub-sentential alignment of translational correspondences. UPA University Press Antwerp.

Macken, Lieve, Els Lefever, and Veronique Hoste. 2013. Texsis: bilingual terminology extraction from parallel
corpora using chunk-based alignment. Terminology, 19(1):1–30.

Oostdijk, N., M. Reynaert, P. Monachesi, G. Van Noord, R. Ordelman, I. Schuurman, and V. Vandeghinste. 2008.
From D-Coi to SoNaR: A reference corpus for Dutch. In Proceedings of the Sixth International Language Resources
and Evaluation (LREC’08), Marrakech, Morocco.

References 25

Oostdijk, Nelleke, Martin Reynaert, Véronique Hoste, and Ineke Schuurman. 2013. The construction of a 500-
million-word reference corpus of contemporary written dutch. In Essential speech and language technology for
Dutch. Springer, pages 219–247.

Petrov, Slav, Dipanjan Das, and Ryan McDonald. 2012. A universal part-of-speech tagset. In Nicoletta Cal-
zolari (Conference Chair), Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph
Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis, editors, Proceedings of the Eight International Con-
ference on Language Resources and Evaluation (LREC’12), Istanbul, Turkey, may. European Language Resources
Association (ELRA).

Schuurman, Ineke, Machteld Schouppe, Heleen Hoekstra, and Ton van der Wouden. 2003. CGN, an annotated
corpus of spoken Dutch. In Anne Abeillé, Silvia Hansen-Schirra, and Hans Uszkoreit, editors, Proceedings of
4th International Workshop on Linguistically Interpreted Corpora (LINC-03), pages 101–108, Budapest, Hungary.

TST-centrale. 2007. E-lex voor taal- en spraaktechnologie, version 1.1. Technical report, Nederlandse TaalUnie.

Vaassen, Frederik and Walter Daelemans. 2011. Automatic emotion classification for interpersonal communica-
tion. In Proceedings of the 2nd workshop on computational approaches to subjectivity and sentiment analysis, pages
104–110. Association for Computational Linguistics.

Van de Camp, M. and A. Van den Bosch. 2011. A link to the past: Constructing historical social networks. In
Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis (WASSA 2.011),
pages 61–69, Portland, Oregon, June. Association for Computational Linguistics.

Van den Bosch, A., I. Schuurman, and V. Vandeghinste. 2006. Transferring PoS-tagging and lemmatization tools
from spoken to written Dutch corpus development. In Proceedings of the Fifth International Conference on Lan-
guage Resources and Evaluation, LREC-2006, Trento, Italy.

van den Bosch, Antal, B. Busser, S. Canisius, and Walter Daelemans, 2007. An efficient memory-based morphosyntactic
tagger and parser for Dutch, pages 191–206. LOT, Utrecht.

van den Bosch, Antal and Walter Daelemans. 1999. Memory-based morphological analysis. In Proceedings of the
37th Annual Meeting of the Association for Computational Linguistics on Computational Linguistics, ACL ’99, pages
285–292, Stroudsburg, PA, USA. Association for Computational Linguistics.

Van Eynde, Frank. 2004. Part of speech tagging en lemmatisering van het corpus gesproken nederlands. Technical
report, Centrum voor Computerlingu ıstiek, KU Leuven, Belgium.

Van Gompel, M. 2010. Uvt-wsd1: A cross-lingual word sense disambiguation system. In SemEval ’10: Proceedings
of the 5th International Workshop on Semantic Evaluation, pages 238–241, Morristown, NJ, USA. Association for
Computational Linguistics.

van Gompel, M. and M. Reynaert. 2013. Folia: A practical xml format for linguistic annotation - a descriptive and
comparative study. Computational Linguistics in the Netherlands Journal, 3.

van Gompel, M., K. van der Sloot, and A. van den Bosch. 2012. Ucto: Unicode tokeniser. version 0.5.3. Reference
Guide. Technical Report ILK 12-05, ILK Research Group, Tilburg University.

Van Noord, Gertjan, Gosse Bouma, Frank Van Eynde, Daniel De Kok, Jelmer Van der Linde, Ineke Schuurman,
Erik Tjong Kim Sang, and Vincent Vandeghinste. 2013a. Large scale syntactic annotation of written dutch:
Lassy. In Essential Speech and Language Technology for Dutch. Springer, pages 147–164.

van Noord, Gertjan, Gosse Bouma, Frank van Eynde, Daniël de Kok, Jelmer van der Linde, Ineke Schuurman, Erik
Tjong Kim Sang, and Vincent Vandeghinste, 2013b. Essential Speech and Language Technology for Dutch, chapter
Large Scale Syntactic Annotation of Written Dutch: Lassy. Springer.

van Noord, Gertjan, Ineke Schuurman, and Gosse Bouma. 2011. Lassy syntactische annotatie. Technical report.

26 References

Appendix A

Alpino syntactic dependency labels

This table is taken from Alpino annotation reference manual (van Noord, Schuurman, and Bouma, 2011) :
dependentielabel OMSCHRIJVING
APP appositie, bijstelling
BODY romp (bij complementizer))
CMP complementizer
CNJ lid van nevenschikking
CRD nevenschikker (als hoofd van conjunctie)
DET determinator
DLINK discourse-link
DP discourse-part
HD hoofd
HDF afsluitend element van circumpositie
LD locatief of directioneel complement
ME maat (duur, gewicht, . . .) complement
MOD bijwoordelijke bepaling
MWP deel van een multi-word-unit
NUCL kernzin
OBCOMP vergelijkingscomplement
OBJ1 direct object, lijdend voorwerp
OBJ2 secundair object (meewerkend, belanghebbend, ondervindend)
PC voorzetselvoorwerp
POBJ1 voorlopig direct object
PREDC predicatief complement
PREDM bepaling van gesteldheid ‘tijdens de handeling’
RHD hoofd van een relatieve zin
SAT satelliet; aan- of uitloop
SE verplicht reflexief object
SU subject, onderwerp
SUP voorlopig subject
SVP scheidbaar deel van werkwoord
TAG aanhangsel, tussenvoegsel
VC verbaal complement
WHD hoofd van een vraagzin

27

