Lambda Architecture for Twitter real-time sentiment analysis

Lorenzo Agnolucci
E-mail address

lorenzo.agnolucci@stud.unifi.it

Abstract

With the increasing importance of social networks and
Big Data in general in the modern society it is necessary to
find some ways to analyze such a large amount of data. The
Lambda Architecture was developed specifically to resolve
this problem in an efficient and reliable way.

The aim of this work is to present a Lambda Architecture
to perform a sentiment analysis on Twitter data in real-time
using some of the frameworks of the Apache suite: Hadoop,
HBase and Storm.

Future Distribution Permission

The author(s) of this report give permission for
this document to be distributed to Unifi-affiliated
students taking future courses.

1. Introduction

The advent of Big Data has brought a change in
data processing over recent years. Big Data dif-
fers from traditional data processing through its
use of parallelism: only by using multiple com-
puting resources it is possible to process terabytes
of data. The Lambda Architecture is a particular
approach popularized by Nathan Marz that com-
bines the large-scale batch-processing strengths
of MapReduce with the real-time responsiveness
of stream processing to allow to create scalable,
responsive, and fault-tolerant solutions to Big
Data problems [5]. A Lambda Architecture is
composed by 3 layers:

e batch layer: it computes arbitrary functions
on an immutable, constantly growing master
database. It uses batch-oriented technologies
like MapReduce to precompute batch views
from historical data and this is effective but
latency is high

e serving layer: it is a specialized distributed
database that supports batch updates and ran-
dom reads but does not need to support ran-
dom writes

e speed layer: it only looks at recent data and
uses low-latency techniques like stream pro-
cessing to update the real-time views as it re-
ceives new data instead of recomputing the
views from scratch. It compensates for the
high latency of the batch layer

Real-time views contain only information derived
from the data that arrived since the batch views
were last generated and are discarded when the
data they were built from is processed by the
batch layer. The batch and real-time views are
combined to create query results [7].

Sentiment analysis is a type of data mining
that measures the inclination of people’s opinions
on a particular topic, product, person or brand
through natural language processing (NLP), com-
putational linguistics and text analysis.

For these reasons it is useful and appropriate to
perform a sentiment analysis about certain key-
words on Twitter data using a Lambda Architec-
ture.

2. Proposed approach

The main goal of this work was not a per-
fect sentiment classification of tweets but rather
the implementation of a Lambda Architecture ca-
pable of efficiently providing sentiment analy-
sis statistics of tweets in real time. The project
has been developed exclusively with Java, and
Apache Storm [2], Hadoop [4] and HBase [3]

Twitter Streaming
API

with twitter4j
library

é}m
PR

Ccsv
Dataset

gzh 4>Q€
AP ACHE ‘::://)Javan

Batch Layer

CrlErEEED

Serving Layer

Figure 1. Diagram of the Lambda Architecture structure

have been executed in a pseudo-distributed mode
on a local cluster.

The speed layer represents the core of this work
and it is started first. It takes as arguments the
keywords on which the sentiment analysis will be
performed by the whole architecture and creates
the tables of the speed layer. Then the batch layer
and the GUI are started so that the Lambda Archi-
tecture is complete.

To increase the number of tweets handled by
the architecture (or in other words to avoid having
to run the architecture for a long time) it is pre-
tended that some tweets belonging to a dataset [8]
are taken from the real-time stream. Consistently
some of the keywords taken as arguments by the
speed layer match the keywords of the dataset
(e.g. # Apple and #Google).

The structure of the proposed Lambda Archi-
tecture is shown in figure 1.

2.1. Sentiment classifier

A sentiment classifier model has been trained
using the LingPipe library [1] with a dataset [6]
composed by 1.6 million tweets and with only
2 categories: positive and negative. Then the
trained model has been stored locally so that the
batch and the speed layer could use it to classify

other tweets. The model has also been evaluated
with another dataset [8] and despite the fact that
the classification was not the main focus of this
work it still achieved a decent 0.71 accuracy.

2.2. Serving Layer

The serving layer uses Apache HBase. The ta-
bles are created by the speed layer at the begin-
ning of the execution. There are 4 tables:

e tweet master database: it represents the mas-
ter database of the Lambda Architecture.
Each row contains the text, the keywords and
the ID of each tweet

e tweet real-time database: it contains only the
information regarding the tweets that arrived
since the batch view was last generated. Each
row contains the keywords and the sentiment
associated to a certain tweet and, as every
other thing that is stored in HBase, the times-
tamp in which the row was inserted in the
database. In this case the timestamp is par-
ticularly useful because it is used to discard
the rows corresponding to tweets already pro-
cessed by the batch layer

e batch view: it is the result of the computation
of the batch layer. It contains a row for each

keyword and the number of positive and neg-
ative sentiments associated to it

e synchronization table: it is composed by only
2 rows that represent respectively the times-
tamps of the start and the end of the batch pro-
cessing. These timestamps are used to syn-
chronize the batch and the speed layer

2.3. Batch Layer

The batch layer is represented by Apache
Hadoop, that runs in an infinite loop and
computes a MapReduce job on tweet master
database, and then it writes its results from
scratch in batch view. It also writes the times-
tamps of the beginning and of the end of the exe-
cution in synchronization table.

The Mapper reads the text and the keywords of
each tweet from tweet master database and then
classifies the text using the already trained sen-
timent classifier model. Then for each keyword
contained in the text of the tweet it outputs a tuple
structured as < Keyword, Sentiment >. The
Reducer takes a tuple in input and it increments
the value of the column of the sentiment corre-
sponding to the sentiment field of the tuple of the
row associated to the keyword field of batch view.

2.4. Speed Layer

The core of the speed layer is Apache Storm.
The program takes the keywords as arguments
and creates all the tables of the serving layer at
the beginning of the execution (if they do not al-
ready exist).

To discard the data already processed by the
batch layer from the real-time view it was neces-
sary to implement synchronization spout and syn-
chronization bolt, combined with synchronization
table. In this way when the batch layer terminates
its execution the rows inserted before the start of
the batch computation are no longer part of the
real-time view. At the same time the rows in-
serted during the batch computation are not dis-
carded and still are a part of the real-time view.
The Storm topology (shown in figure 2) is com-
posed by:

e tweet stream spout. it uses the twitterdj li-
brary and the Twitter Streaming API to get a
real-time stream of tweets. It filters the tweets
to retrieve only the ones that contain at least
one of the keywords and that are written in
English

e tweet parser bolt: it takes a tweet object in
input and parse it to output a tuple containing
the ID, the text and the keywords of the tweet

o tweet CSV spout: this spout would not exist
in a real-world application but in this work
it is used to increment the number of tweets
computed by the Lambda Architecture. For
each tweet of the dataset [8] it outputs a tuple
with the same structure used by tweet parser
bolt

e master database mapper bolt: it inserts a
row in tweet master database for each parsed
tweet

e tweet sentiment classifier bolt: it uses the al-
ready trained sentiment classifier model to
classify the text of the tweet. Then, for each
keyword contained in the text it outputs a tu-
ple containing the keyword and the infered
sentiment

e real-time database mapper bolt: for each
tuple outputted by twitter sentiment classi-
fier bolt it inserts a row in tweet real-time
database

e synchronization spout: it checks the two rows
of the synchronization table and when both
the start and the end timestamps are modified
it outputs a tuple containing the start times-
tamp

e synchronization bolt: it takes the start times-
tamp outputted by synchronization spout and
it deletes the rows of tweet real-time database
with a preceding timestamp

2.5. Data visualization

To visualize the data and to better show how the
different parts of the architecture work together

Synchronization Spout

Synchronization
Table

Tweet Stream Spout Tweet Parser Bolt

Tweet CSV Spout

Tweet Sentiment
Classifier Bolt

Master Database
Mapper Bolt

Synchronization
Bolt

Tweet Real-time
Database

Real-time Database
Mapper Bolt

Tweet Master
Database

Figure 2. Diagram of the Storm topology

a simple Graphic User Interface was developed
with Java FX. It is composed by two tables, rep-
resenting respectively the content of the real-time
view and the batch view, and a bar chart, which
combines the data of the two views. The data of
the batch view is retrieved straightforwardly from
the batch view table, as each of its rows repre-
sents the number of positive and negative senti-
ments associated to a specific keyword. On the
contrary a more elaborated process is needed to
get the real-time view: indeed it is necessary to
aggregate the rows of the real-time database with
the same keyword and sentiment and count them.
The content of both the views and the chart is re-
freshed every second to show the most recent re-
sults. Figure 3 shows a screenshot of the GUI.

3. Conclusions and future work

In the present work it has been shown an imple-
mentation of a Lambda Architecture capable of
getting sentiment analysis statistics of real-time
tweets. The GUI that was developed lets to un-
derstand simply and to visualize how the different
parts of a Lambda Architecture work together in
order to allow to handle a large amount of data
efficiently and correctly.

Twitter Real Time Sentiment Analysis

Combined Views Chart

#hicrosoft #Tuitter

Figure 3. Screenshot of the GUI

#apple #Facebook #Go0ge

As future developments a "neutral" category
could be added to the sentiment classifier to bet-
ter handle the tweets that not necessarily express
an opinion on the keyword. Also, the architec-
ture could be deployed to an Amazon Web Ser-
vices cluster to exploit the fully distributed mode
of Storm and Hadoop.

References

[1] Alias-i. Lingpipe 4.1.0, 2008. http://alias-1i.com/
lingpipe.

(2]

(3]

(4]

(3]

(6]

(7]

(8]

Apache Software Foundation. Storm, 2.1.0. https://
storm.apache.org.

Apache Software Foundation. Hbase, 2.2.3. https://
hbase.apache.org.

Apache Software Foundation. Hadoop, 3.2.1. https://
hadoop.apache.org.

P. Butcher. Seven Concurrency Models in Seven Weeks: When
Threads Unravel. Pragmatic Bookshelf, 2014.

A. Go, R. Bhayani, and L. Huang. Twitter sentiment classifi-
cation using distant supervision. CS224N project report, Stan-
ford, 1(12):2009, 2009. https://www.kaggle.com/
kazanova/sentiment140.

N. Marz and J. Warren. Big Data: Principles and best prac-
tices of scalable real-time data systems. New York; Manning
Publications Co., 2015.

N. J. Sanders. Twitter ~ sentiment corpus,
2011. https://github.com/guyz/
twitter—-sentiment-dataset.

