Coding Conventions for LLGL

Lukas Hermanns

May 13, 2018

| LGL>K

This is the document to describe the major C++ coding conventions for the LLGL (Low Level Graphics Library)
project. While the coding conventions in programming languages such as Java and C# are globally defined and
commonly acknowledged, the coding conventions in C++ vary from project to project.

If you want to contribute to this project, please comply to the coding style which is described in this document.
Of course there are exceptions, but they should be well documented to avoid confusion. In the following sections
there is always an example of a desired and an undesired coding style.

Introduction



Syntax

Names

We start with the syntax styles in LLGL. This is similar to C#. All classes, structures, enumerations, functions,
type-aliases, and namespaces begin with an upper-case letter, underscores are not allowed, and each sub name (or
acronym) begins again with an upper-case letter (except for data type acronyms like ‘f” for float):

class RenderSystem

struct RenderContextDescriptor
enum class BlendOp

void Foo ()

using ColorRGBf

namespace LLGL

class renderSystem

struct RenderContext_Descriptor
enum class blend_op

void foo ()

using ColorRgbf

namespace 1llgl

All variables and parameters begin with a lower-case letter, underscores are not allowed, and each sub name (or
acronym) begins again with an upper-case letter:

float viewSize
ColorRGBf borderColor
Vector2f viewportSize

float ViewSize
ColorRGBf bordercolor
Vector2f viewport_Size

Moreover, the naming convention should be uniform as well. For a graphics object Foo there is almost always a
descriptor structure named FooDescriptor for instance, and the respective parameter name is fooDesc:

class Buffer
struct BufferDescriptor
Buffer* CreateBuffer (const BufferDescriptor& bufferDesc)

class Buffer
struct BufferDesc
Buffer* AllocBuffer(const BufferDesc& descriptor)

However, the name of a descriptor does not explicity appear in the names of inner structures:

struct TextureDescriptor

{
struct TexturelD;
struct Texture2D;

1

TextureDescriptor::Texture2D texture2DDesc;

struct TextureDescriptor

{
struct TexturelDDescriptor;
struct Texture2DDescriptor;

};

TextureDescriptor::Texture2DDescriptor texture2DDesc;




Indentation and Braces

For indentation 4 spaces are used. Do not use tab characters because their size vary between the platforms and
IDE settings. For all embraced code blocks a new indentation level is added, except for namespaces, because they
typically always embrace the entire code file. The braces are written like in C#, too. An open brace has its own line
(except for very small lambda functions):

namespace LLGL

{

namespace InnerNamespace

{

void Func(int& i)

{
auto verySmallLambda = [](int x) { return x*x; };
if (i > 10)
{
Foo(Q);
Bar();
}
else if (i == 5)
i = verySmallLambda(2);
}
}
}

namespace LLGL {
namespace InnerNamespace {
void Func(int& i)

{
auto verySmallLambda = [](int x) {
return x*x;
};
if (i > 10) { Foo(Q);
Bar(); 1}
else if (i == 5)
i = verySmallLambda(2);
}

}

The switch-statement is an exception for each case block:

switch (x)
{
case 1:
Foo(Q);
break;
case 2:
BarQ;
break;

}

switch (y)
{
case 1:
{
int x = y*2;
Foo(x);
}
break;

case 2:
{

Bar();
}

break;




switch (z)

{
case GL_INT: return Types::Int;
case GL_FLOAT: return Types::Float;
case GL_DOUBLE: return Types::Double;
}

Code Documentation

For the code documentation doxygen is used, i.e. the doxygen syntax is required in the commentaries of the interfaces.
The following order and syntax for the doxygen commands is used:

// Desired

JE

\brief Does something useful.

\param[in] count Specifies the number of foos.
\param[in,out] bar Specifies the resulting bars.
\param[in] ptr Specifies an optional pointer.
\return A meaningful result.

\throw std::runtime_error If something went wrong.
\remarks This function does something useful, and returns something even more useful.
\note Only supported with: OpenGL.

\see Bar

*/

int Foo(int count, int& bar, int* ptr = nullptr);

to be continued . . .




