Getting Started with XShaderCompiler

Lukas Hermanns

August 20, 2017

Contents
1__Introduction|
2 Progress|

B2 Example]

@ Timitations|

1 Introduction

XShaderCompiler (“Cross Shader Compiler”) is a cross-compiler (also called trans-compiler), which translates HLSL
code (DirectX High Level Shading Language, see msdn.microsoft.com) of Shader Model 4 and 5 into GLSL code
(OpenGL Shading Language, see www.opengl.org).

https://msdn.microsoft.com/en-us/library/windows/desktop/bb509561(v=vs.85).aspx
https://www.opengl.org/wiki/OpenGL_Shading_Language

2 Progress

This project is still in its early steps. This document is written for XShaderCompiler Version 0.10 Alpha.

2.1 ToDo List
See TODO.md file on github.com

https://github.com/LukasBanana/XShaderCompiler/blob/master/TODO.md

3 Offline Compiler

The offline compiler (named xsc) can be used to cross-compile your shaders without building any custom application.
It has similar commands like other common compilers (such as GCC), e.g. -0 to enable optimization. To show the
description of all commands, type simply xsc or xsc --help into a terminal or command line.

3.1 Commands
Here is a brief overview of the most important commands:

-T, --target TARGET
Sets the shader target specified by TARGET. These values are adopted from LunarG’s reference compiler/glslang.
Valid values for TARGET are:

vert (for Vertex Shader)

tesc (for Tessellation Control Shader, also called Hull Shader)

tese (for Tessellation Evaluation Shader, also called Domain Shader)

geom (for Geometry Shader)

frag (for Fragment Shader, also called Pixel Shader)

comp (for Compute Shader)

-E, --entry ENIRY
Sets the shader entry point (i.e. main function) specified by ENTRY.

-I, --include PATH
Adds the file path, specified by PATH, to the include search paths.

-0, --output FILE

Sets the filename of the output file specified by FILE. The default value is “FILE. ENTRY. TARGET”, where FILE
is the filename of the input shader file, ENTRY is the shader entry point, and TARGET is the shader output target.
The asterisk character *' can be included to re-use the default value, e.g. “OutputFolder/*” will result into
“OutputFolder/FILE.ENTRY.TARGET”

-Vin, --version-in VERSION
Sets the input shader version specified by VERSION. Valid values for VERSION are:
Cg (similar to HLSL3 with additional typenames)
HLSL3 (Shader Model 3)
HLSL4 (Shader Model 4)
HLSL5 (Shader Model 5) default value
HLSL6 (Shader Model 6)
GLSL (GLSL for OpenGL) only pre-processing supported
ESSL (GLSL for OpenGL ES) only pre-processing supported
VKSL (GLSL for Vulkan) only pre-processing supported
-Vout, --version-out VERSION
Sets the output shader version specified by VERSION. Valid values for VERSION are:
GLSL (for automatic deduction of the minimal required GLSL version) default value
GLSL110 (for GLSL 1.10) only partially supported
GLSL120 (for GLSL 1.20) only partially supported
GLSL130 (for GLSL 1.30)
GLSL140 (for GLSL 1.40)
GLSL156 (for GLSL 1.50)
GLSL330 (for GLSL 3.30)
GLSL400 (for GLSL 4.00)
GLSL410 (for GLSL 4.10)
GLSL420 (for GLSL 4.20)

https://www.khronos.org/opengles/sdk/tools/Reference-Compiler/

GLSL430 (for GLSL 4.30)
GLSL440 (for GLSL 4.40)
GLSL450 (for GLSL 4.50)
GLSL460 (for GLSL 4.60)

3.2 Example

Here is a small use case example. Consider the following minimal HLSL vertex shader, stored in a file named
“Example.hlsl”:

float4 VertexMain(float3 coord : COORD) : SV_Position
{

return float4(coord, 1);
}

Now enter the following into your command prompt:
xsc -T vert -E VertexMain Example.hlsl

The resulting GLSL shader will be stored in a file named “Example.VertexMain.vert”, and looks like this:

#version 130
in vec3 coord;

void main()
{

gl_Position = vec4(coord, 1);
}

3.3 Initialization File

The offline compiler always checks for an optional initialization file named xsc.ini, which must be placed at the
same location, where the executable file xsc is located. Each line in this initialization file is interpreted as a single
command line, without the leading xsc name. Here is an example of the content of such an initialization file:

Listing 1: xsc.ini

-Vout VKSL -Wall

This will always set the shader output to VKSL (GLSL for Vulkan) and enable all warnings.

4 Limitations

There are several limitations for your HLSL shaders you want to translate to GLSL with the XShaderCompiler which
are described in this section.

4.1 Tessellation Shaders

(The translation of tessellation shaders is currently in progress but here is a brief overview of the currently known limitations)

The most tessellation attributes in HLSL are specified for the tessellation-control shader (alias “Hull Shader”), but a
few of them are required for the tessellation-evaluation shader (alias “Domain Shader”). These are: partitioning,
and outputtopology. Here is an example of an HLSL Tessellation Shader:

Example.hlsl

[domain("quad")] // Required for Tessellation-Control (in GLSL)
[outputcontrolpoints (4)] // Required for Tessellation-Control (in GLSL)
[patchconstantfunc ("PatchConstantFunc")] // Required for Tessellation-Control (in GLSL)
[partitioning("fractional_odd")] // Required for Tessellation-Evaluation (in GLSL)
[outputtopology("triangle_ccw")] // Required for Tessellation-Evaluation (in GLSL)
OutputHS HullShader(/* ... */)
{

VA4
}
[domain("quad")] // Required for Tessellation-Evaluation (in GLSL)
OutputDS DomainShader(/* ... */)
{

/E oL F/
}

These attribute must be distributed into two GLSL shaders:

Example.HullShader.tesc

layout(vertices = 4) in;
//»,': ;‘:/

Example.DomainShader. tese

layout (quads, fractional_odd_spacing, ccw) in;
VA S 4

The information for fractional_odd_spacing and ccw in the Example .DomainShader. tese shader file are taken from
the tessellation-control shader, although a tessellation-evaluation shader is written. That means, both the tessellation-
control- and the tessellation-evaluation shaders must be contained in the same shader source file (or at least in one of
the included files) to guarantee a full translation of all information. Otherwise default values will be used.

To specify the secondary entry point (in the above example “HullShader”) use the secondaryEntryPoint member
in the Xsc: : ShaderInput structure or the “~-E2, --entry2 ENTRY” shell command.

	Introduction
	Progress
	ToDo List

	Offline Compiler
	Commands
	Example
	Initialization File

	Limitations
	Tessellation Shaders

