
Tiger Language Specification

Martin Hirzel Kristoffer H. Rose

Version of November 17, 2013

Abstract

Tiger is a simple statically-typed programming
language defined in Andrew W. Appel’s book Mod-
ern Compiler Implementation in Java (Cambridge
University Press, 1998), also known as the “Tiger
book”. This document specifies the language. The
semester-long project is to implement a compiler for
Tiger, one milestone at a time. This document also
refers to the “Dragon book”: Alfred H. Aho, Monica
S. Lam, Ravi Sethi, Jeffrey D. Ullman, Compilers:
Principles, Techniques, & Tools, Second Edition
(Addison Wesley, 2007). See the class webpage for
more information:
http://cs.nyu.edu/courses/fall13/CSCI-GA.2130-001

1 Example: Hello, World!

The following example Tiger program prints a greet-
ing to standard output.

/* Hello-world */

print("Hello, World!\n")

A slightly more elaborate version of the program ac-
complishes the same task with a function:

/* Hello-world with function */

let function hello() = print("Hello, World!\n")
in hello() end

2 Syntax

Figure 1 shows the grammar. The notation follows
the conventions in the Dragon book: the arrow ‘→’
separates the head and body of a production; non-
terminals are in italics; tokens are in bold; and the
vertical bar ‘|’ separates choices. In addition, a vari-
ety of superscript notations indicate repetition of the
preceding item: X+ repeats X one or more times,
X∗, repeats X zero or more times separated by com-
mas, and X∗; repeats X zero or more times separated
by semicolons.

program → exp

dec → tyDec | varDec | funDec

tyDec → type tyId = ty
ty → tyId | arrTy | recTy
arrTy → array of tyId
recTy → { fieldDec∗, }
fieldDec → id : tyId

funDec → function id (fieldDec∗,) = exp
| function id (fieldDec∗,) : tyId = exp

varDec → var id := exp
| var id : tyId := exp

lValue → id | subscript | fieldExp
subscript → lValue [exp]
fieldExp → lValue . id

exp → lValue | nil | intLit | stringLit
| seqExp | negation | callExp | infixExp
| arrCreate | recCreate | assignment
| ifThenElse | ifThen | whileExp | forExp
| break | letExp

seqExp → (exp∗;)

negation → - exp
callExp → id (exp∗,)

infixExp → exp infixOp exp
arrCreate → tyId [exp] of exp
recCreate → tyId { fieldCreate∗, }
fieldCreate → id = exp
assignment → lValue := exp
ifThenElse → if exp then exp else exp
ifThen → if exp then exp
whileExp → while exp do exp
forExp → for id := exp to exp do exp
letExp → let dec+ in exp∗; end

Figure 1: Tiger grammar.

Tiger Language Specification, c©Martin Hirzel and Kristoffer H. Rose 2013 1

http://cs.nyu.edu/courses/fall13/CSCI-GA.2130-001

At the lexical level, Tiger has the following tokens:

• Punctuation and operators: (,), [,], {, }, :, :=,
., ,, ;, *, /, +, -, =, <>, >, <, >=, <=, &, |.

• Keywords: array, break, do, else, end, for,
function, if, in, let, nil, of, then, to, type, var,
while.

• Identifiers (id and tyId): An identifier starts with
a letter, followed by zero or more letters, under-
scores, or digits. Keywords cannot be used as iden-
tifiers. Identifiers are case-sensitive.

• Integer literals (intLit): An integer literal is a se-
quence of one or more digits from 0-9.

• String literals (stringLit): A string literal starts
and ends with double-quotes. A string can contain
printable characters or escapes. Escapes start with
a backslash \. The allowed escape sequences are:

\n Newline.
\t Tab.
\ˆc The control character c.1

\ddd ASCII code ddd (decimal).
\" Double-quote.
\\ Backslash.
\s· · ·s\ Ignore s· · ·s (spaces or newlines).

The last escape sequence makes it possible to break
long strings over multiple lines, by writing \ at the
end of one line and the beginning of the next.

• Whitespace: Any whitespace outside of strings is
ignored. Whitespace consists of spaces, tab, new-
line, or comments. A comment starts with /* and
ends with */. Comments can be nested.2

() Sequence
- Negation
*, / Infix multiplicative
+, - Infix additive
=, <>, >, <, >=, <= Infix comparison
& Infix and
| Infix or
:= Assignment

Figure 2: Tiger operator precedence.

Figure 2 shows the operator precedence, in order from
highest at the top to lowest at the bottom. Paren-
theses binds strongest and := binds weakest. All infix
operators are left-associative, except for the compar-
ison operators, which do not associate.

1In our class, control character escapes are not required.
2In our class, nested comments are not required.

3 Scope Rules

Tiger has four kinds of identifiers: types, functions,
variables, and fields.

• Type identifiers are declared by tyDec. The scope
of a type identifier starts at the beginning of the
consecutive sequence of tyDecs that define it, and
lasts until the end of the enclosing letExp. This rule
makes it possible for types to be recursive (when
a type directly refers to itself) or even mutually
recursive (when a type indirectly refers to itself via
other types).

• Function identifiers are declared by funDec.3 The
scope of a function identifier starts at the begin-
ning of the consecutive sequence of funDecs that
define it, and lasts until the end of the enclosing
letExp. This rule makes it possible for functions to
be recursive or even mutually recursive.

• There are three language constructs that declare
variable identifiers: a varDec; a fieldDec used as a
formal parameter of a function; and a forExp. In
the varDec case, the scope starts after the varDec
and lasts until the end of the enclosing letExp. In
the fieldDec case, the scope is the function body.
And in the forExp case, the scope is the loop body.

• Field identifiers are declared by a fieldDec in a
recTy, which becomes their scope.

There are two namespaces for identifiers: one for
types and one for variables and functions. An identi-
fier can be used simultaneously in both namespaces.

Tiger uses lexical scoping. In other words, scopes
nest, with identifiers in inner scopes hiding identi-
fiers in outer scopes. It is a compiler error to define
the same identifier in the same scope and namespace
more than once.

4 Types and their Relations

Tiger has the following types:

• int is a signed integer.

• string is an immutable character string.

• Arrays are references to mutable collections of ele-
ments.

• Records are references to mutable structures with
fields. Each field has a unique name within the
record and a type.

3In our class, nested functions (i.e., functions declared
within the body of another function) are not required.

Tiger Language Specification, c©Martin Hirzel and Kristoffer H. Rose 2013 2

• Certain expressions produce no value. We refer to
their type as void. Expressions of type void must
not appear where a value is expected.

The type identifiers int and string are pre-defined at
the top-level scope of the program.

Each recursive cycle of types must pass through at
least one array or record. For example, the sequence
type a=b type b=a of tyDecs is illegal.

Each declaration of an array or record type intro-
duces a new type. For example, types a and b de-
clared by type a={f:int} type b={f:int} are incom-
patible, even though they have the same structure.
On the other hand, after the declaration type c=d,
types c and d are aliases referring to the same type.

The nil value does not have a type by itself; in-
stead, nil belongs to all record types.

Assignment, parameter passing, and comparison
operates on the value for string and int, but op-
erates on the reference for arrays and records.

5 Type Rules

The type rules for declarations are:

• funDec: If the declaration does not specify a return
type, the return type is void. Either way, the return
type must match the type of the body.

• varDec: If the declaration explicitly specifies a
type, it must match the type of the initializer. The
type of the variable is the explicitly specified type,
or, if missing, the initializer type.

The type rules for l-values are:

• id: The identifier must refer to a variable. The
result type is the type of the variable.

• subscript : The base expression must have an array
type, and the index must be of type int. The result
type is the element type of the array.

• fieldExp: The base expression must have a record
type, and the identifier must name a field of the
record. The result type is the type of the field.

The type rules for expressions are:

• nil: Can only be used in a context where the spe-
cific record type can be determined (initializer of
typed varDec, assignment, comparison using <> or
= where the other operand has a known type, or
actual parameter to a function call).

• intLit: Has type int.

• stringLit: Has type string.

• seqExp: If the sequence is empty, the type is void,
otherwise, the type is that of the last expression.

• negation: Both the operand and the result are int.

• callExp: The identifier must refer to a function.
The number and types of actual and formal pa-
rameters must be the same. The type of the call is
the return type of the function.

• infixExp: The rules depend on the operator:

+, -, *, /: The operands must be of type int and
the result type is int.

=, <>: The operand types must match and the
result type is int.

>, <, >=, <=: The operand types must match and
must be int or string. The result type is int.

&, |: The operands must be int and the result
type is int.

• arrCreate: The tyId must refer to an array type.
The expression in square brackets must be int, and
the expression after of must match the element
type of the array. The result type is the array type.

• recCreate: The tyId must refer to a record type,
and the order, names, and types of fields must
match. The result type is the record type.

• assignment : The type of the lValue and the exp
must match. The result type is void.

• ifThenElse: The condition type must be int, and
the then-clause and else-clause must have the same
type, which becomes the result type.

• ifThen: The condition type must be int, and the
then-clause must be of type void. The result type
is also void.

• whileExp: The condition type must be int, and the
body type must be void. The result type is void.

• forExp: The start and end index must be of type
int. The variable is of type int and must not be
assigned to in the body. The body must be of type
void. The result type is void.

• break: Can only be used in a whileExp or forExp.
The result type is void.

• letExp: If the body is empty, the type is void, oth-
erwise, the type is that of the last body expression.

6 Dynamic Semantics

The runtime behaviors of variable declarations are:

• varDec: Evaluate the expression, and initialize the
variable to that value.

Tiger Language Specification, c©Martin Hirzel and Kristoffer H. Rose 2013 3

The runtime behaviors of l-values are:

• id: The result is the current value of the variable.

• subscript : Evaluate the base expression to obtain
a reference to an array. Evaluate the index expres-
sion to obtain an index. Indexing is zero-based.
The result is the element at that index.

• fieldExp: Evaluate the base expression to obtain a
reference to a record. The result is the value of the
field in the record.

The runtime behaviors of expressions are:

• nil: The result is a null-reference to a record.

• intLit: The result is the integer value.

• stringLit: The result is the string value.

• seqExp: Evaluate each exp in order. If the sequence
is empty, there is no result, otherwise, the result of
the last exp is the result of the seqExp.

• negation: Signed integer negation.

• callExp: Evaluate each parameter exp in order.
Copy the actual parameters to the formals. Run
the body of the callee. The result is the return
value from the callee.

• infixExp: The behaviors depend on the operator:

+, -, *, /: Add, subtract, multiply, or divide the
two integer operands.

=, <>: Equality and inequality are by-value for
int and string, and by-reference for records and
arrays. The result is 1 for true or 0 for false.

>, <, >=, <=: Magnitude comparison of int val-
ues, or lexicographic comparison of string val-
ues. The result is 1 for true or 0 for false.

&, |: Logical boolean conjunction and disjunc-
tion using short-circuit semantics. In other
words, if the value is already known after evalu-
ating the left operand, do not evaluate the right
operand. Any non-zero integer is considered
true, and 0 is false.

• arrCreate: Evaluate the size expression. Allocate a
new array of the appropriate size. Evaluate the ini-
tializer expression. Copy its value into all elements.
The result is the reference to the new array.

• recCreate: Allocate a new record, and initialize its
fields using the field expressions. The result is the
reference to the new record.

• assignment : Evaluate the lValue to a location and
the exp to a value. Copy the value to the location.

• ifThenElse: Evaluate the condition. If it is non-
zero, evaluate the then-clause and use its result,
else evaluate the else-clause and use its result.

• ifThen: Evaluate the condition. If it is non-zero,
evaluate the then-clause.

• whileExp: Evaluate the condition. If it is non-zero,
evaluate the loop body and start over.

• forExp: Evaluate the lower and upper bound (only
once before entering the loop). If the upper bound
is less than the lower bound, the body is not ex-
ecuted. Otherwise, the body is executed once for
every value between the lower and upper bound in-
clusive, with the iteration variable set accordingly.

• break: Terminate evaluation of the immediately en-
closing whileExp or forExp.

• letExp: Evaluate each dec that is a varDec in order,
then evaluate each exp in order. The result of the
last exp is the result of the letExp.

The runtime behavior in the following situations is
unspecified:

• Using a subscript with an out-of-bounds index.

• Using a fieldExp on nil.

• Overflowing the stack or running out of heap space.

7 Intrinsic Functions

The following functions are pre-defined at the top-
level scope of the program. They are part of the run-
time system and form the standard library for Tiger.

• print(s : string) — Prints s to standard output.

• flush() — Flushes standard output.

• getchar() : string — One character from stan-
dard input, or empty string for end-of-file.

• ord(s : string) : int — ASCII value of first
character of s, or -1 for empty string.

• chr(i : int) : string — Single-character string
for ASCII value i, or halt program if out-of-range.

• size(s : string) : int — Length of s.

• substring(s : string, first : int, n : int) :
string— Substring from s[first] to s[first+n-1]
inclusive (zero-based indexing), or empty string if
n<0 or first or first+n are out of range.

• concat(s1 : string, s2 : string) : string —
Concatenation of s1 and s2.

• not(i : int) : int — if i=0 then 1 else 0.

• exit(i : int) — Halt the program with code i.

Tiger Language Specification, c©Martin Hirzel and Kristoffer H. Rose 2013 4

	Example: Hello, World!
	Syntax
	Scope Rules
	Types and their Relations
	Type Rules
	Dynamic Semantics
	Intrinsic Functions

