
Project	5	Design	Document	

Group	Members	
Mengjin	Yan	(myan1)	and	Yinan	Wang	(yinanw1)	

Summery	
We	performed	melody	on	a	certain	instrument	(which	is	configurable).	The	RNN	model	from	
Google’s	Magenta	is	used	for	music	learning	and	generation.	We	created	a	music	generation	system	
that	integrates	the	Conductor’s	pattern	requirements,	TouchOSC	parameter	configurations	and	the	
RNN	algorithm	to	play	music	in	real-time.		
	

System	Design	Detail	
	

	
	
Above	is	our	system	module	graph.	There	are	three	main	components	in	our	system.	First	is	
Parameter	Modification	with	communication	with	TouchOSC	as	well	as	the	Conductor.	The	
second	is	Notes	Generation	with	communication	with	Google’s	music	generation	tool	Magenta	
using	RNN	algorithm.	The	third	is	Note	Processing	and	scheduling	using	hierarchical	buffers.	
Below	is	detailed	description	of	the	three	components.	The	parameters	given	by	the	conductor	are	
fitted	in	real-time	before	dispatch	in	the	Melody	Process	and	Fit	module,	which	will	be	discussed	
below.	
	
Parameters	Modification	
	
This	component	is	the	central	control	of	the	system.	Multiple	different	system	parameters	are	
maintained	in	our	player	which	can	be	modified	through	the	control	messages	between	TouchOSC	
as	well	as	the	Conductor.		



Our	player	communicates	with	TouchOSC	through	OSC	messages.	The	parameters	to	be	controlled	
include	volume,	types	of	instrument,	etc.	Multiple	handlers	also	need	to	be	implemented	to	for	all	
different	kinds	of	messages.	Our	player	communicates	with	the	Conductor	through	O2	messages.	All	
the	messages	related	to	melody	also	need	to	be	handled	and	the	corresponding	variables	need	to	be	
modified.		
	
Thus,	this	component	achieves	the	interaction	and	real	time	control	over	our	music	generation	
system.	
	
Notes	Generation	
	
Google’s	Magenta	will	be	used	for	notes	generation	in	this	project.	The	Magenta	algorithm	learns	
from	Google’s	NSynth	dataset,	which	contains	thousands	of	music	clips	on	different	instruments.	
The	learning	and	generation	tasks	are	done	using	a	RNN	algorithm.	In	this	project,	we	will	pre-train	
the	network	and	use	it	to	run	the	generation	algorithm.	Since	hacking	the	algorithm	itself	requires	a	
huge	amount	of	work,	we	will	just	use	the	algorithm	as	it	is.		
	
The	RNN	music	generator	outputs	a	music	clip	that	starts	with	a	primer	clip	of	music	(which	is	the	
input	of	the	algorithm).	The	algorithm	will	generate	a	music	clip	with	the	style	of	the	primer	clip.	
We	will	embed	the	chord	and	genre	information	in	the	primer	clip	to	make	the	output	follows	the	
style	information	from	the	Conductor.	Since	the	generation	process	is	offline,	we	need	to	generate	
the	music	clip	by	clip	in	order	to	make	the	system	run	in	real-time.	To	preserve	the	coherency	of	
clips	as	a	whole,	we	will	use	the	last	several	notes	of	the	previous	clip	as	the	primer	clip	for	the	clip	
to	be	generated.		
	
Since	the	Magenta	is	written	in	Python,	the	system	and	Magenta	communicate	with	system	shell	
and	file	system	as	the	figure	shows.	When	a	clip	of	music	is	required	to	be	generated	(there	is	less	
than	120	notes	in	the	buffer),	the	system	send	the	request	as	a	system	command	to	run	the	
generator.	When	finished,	Magenta	outputs	the	result	as	a	midi	file	in	local	filesystem.	The	system	
will	periodically	(every	0.5	second)	check	the	filesystem	to	see	if	the	generator	finished.	If	so,	we	
will	roughly	parse	the	notes	from	the	clip	and	push	them	in	a	buffer	queue.	
	
Notes	Scheduling	
	
A	set	of	hierarchical	buffers	are	maintained	in	the	player.	The	generated	notes	pitch	as	well	as	its	
duration	and	genre	information	are	put	into	a	buffer	which	maintained	in	our	player.	At	the	head	of	
the	buffer,	a	measure	of	notes	will	be	pulled	into	the	measure	buffer	using	the	time	signature	
information	from	the	Conductor’s	message.	
	
Since	there	might	be	cases	that	the	genre	of	the	music	changes	during	the	generation	of	the	buffer,	
the	measure	in	the	buffer	might	not	be	consistent	with	the	genre	during	output.	In	this	case,	several	
rhythm	patterns	are	pre-stored	in	the	player	and	the	measure	will	be	fit	into	one	of	the	
corresponding	rhythm	patterns	before	output.		



The	final	processed	measure	will	then	be	scheduled	to	output	at	once.	In	each	output	function,	the	
corresponding	notes	will	send	a	midi	not_on	message	with	the	corresponding	volume	and	pitch.	
	

Melody	Process	and	Fit	
	
For	the	processing	in	general,	we	extract	exactly	one	measure	of	the	notes	from	the	Magenta	output	
queue	and	fit	the	notes	as	well	as	rhythm	according	to	the	configuration	(bpm,	scale,	chord)	
provided	by	the	conductor	as	well	as	TouchOSC	(volume,	range,	instrument).	Then	the	whole	
measure	is	scheduled	and	played.	The	processed	measure	is	also	fed	into	Magenta	as	the	prior	
melody	to	ensure	the	coherence	of	the	music.	
	
Specifically,	for	fitting	the	rhythm,	two	methods	are	tried.	The	first	is	the	have	some	rhythm	
patterns	predefined	in	the	source	code	and	fit	the	pitches	according	to	a	certain	rhythm	pattern	
when	extract	the	measure.	Another	method	is	just	feed	certain	rhythm	into	Magenta	as	the	prior	
melody	the	first	time	the	generator	is	called	and	just	use	whatever	rhythm	Magenta	generated	
when	output.	In	practice,	we	found	the	first	method	can	produce	more	pleasant	music	and	thus	the	
first	method	is	chosen.		
	
For	fitting	the	scale,	we	check	each	note	in	the	measure.	If	the	measure	is	not	in	the	scale	pitch	class,	
we	add	one	to	the	pitch	and	check	again.	The	pitch	will	be	continued	incremented	by	one	until	the	
pitch	is	in	the	scale	and	the	new	pitch	is	stored	back	to	the	measure.	
	
For	fitting	the	chord,	a	variable	indicating	the	possibility	of	a	note	in	the	chord	pitch	class	is	created	
and	set	to	0.5	initially.	We	also	check	each	note	in	the	measure.	If	the	note	is	in	the	chord	pitch	class,	
no	change	is	made	to	the	pitch	and	possibility	variable	is	set	to	0.1.	Otherwise,	we	first	decide	if	the	
note	should	be	in	the	pitch	class	under	the	possibility	indicated	by	the	variable.	If	the	note	doesn’t	
need	to	be	in	the	pitch	class,	the	original	pitch	is	preserved	and	the	possibility	variable	increments	
by	0.1.	If	not,	the	pitch	will	be	fit	into	the	chord	pitch	class	using	the	same	method	in	fitting	scale	
and	the	possibility	variable	will	change	to	0.1.	
	
Configuration	provided	by	TouchOSC	is	the	volume,	the	range	of	the	notes	as	well	as	instruments.	
We	support	12	types	of	instruments	in	total	which	is	6	melody	instruments	and	6	percussion	
instruments	respectively.	For	each	instrument,	the	highest	and	the	lowest	pitches	are	found.	When	
fitting	the	pitches,	we	also	make	sure	that	all	the	pitches	are	in	the	range	for	the	instrument	by	
adding	or	subtracting	12	on	the	pitches.	
		
There	is	also	a	slider	controlling	the	pitch	ranges	for	the	output.	As	it	selects	the	left	one	third	
portion,	the	output	will	be	fit	to	the	highest	two	octaves	of	the	instrument.	As	it	selects	the	middle	
one	third	portion,	the	output	will	be	fit	to	from	one	octave	higher	from	the	lowest	pitch	to	one	
octave	lower	from	the	highest	pitch	of	the	instrument.	As	it	selects	the	right	one	third	portion,	the	
output	will	be	fit	to	the	lowest	two	octaves	of	the	instrument.	


