
PowerShell Desired State Configuration for Linux

Release Notes
Version 1.1.0

Table of Contents
PowerShell Desired State Configuration for Linux Release Notes .. 1

Release Overview .. 1

Supported Linux operation system versions ... 1

Upgrading DSC for Linux from a Prior Version .. 2

New Scenarios Enabled in this Release ... 2

Issues Resolved in this Release ... 2

Known Limitations .. 2

New Scenarios in this Release ... 2

Separation of node and configuration IDs .. 2

Use Azure Automation as a DSC Pull Server ... 3

Additional Information.. 5

Performing DSC Operations from the Linux computer ... 5

Using PowerShell Desired State Configuration for Linux with a Pull Server ... 6

PowerShell Desired State Configuration for Linux Log Files ... 6

Release Overview

Supported Linux operation system versions

The following Linux operating system versions are supported for DSC for Linux.

 CentOS 5, 6, and 7 (x86/x64)
 Debian GNU/Linux 6, 7 and 8 (x86/x64)
 Oracle Linux 5, 6 and 7 (x86/x64)
 Red Hat Enterprise Linux Server 5, 6 and 7 (x86/x64)
 SUSE Linux Enterprise Server 10, 11 and 12 (x86/x64)
 Ubuntu Server 12.04 LTS and 14.04 LTS (x86/x64)

The following table describes the required package dependencies for DSC for Linux.

 Required package Description Minumum version

glibc GNU Library 2.4 – 31.30

python Python 2.4 – 3.4

Omiserver* Open Management Infrastructure 1.0.8-2

openssl* OpenSSL Libraries 0.9.8e or 1.0

ctypes Python CTypes library Must match Python version

libcurl cURL http client library 7.15.1

* These requirements have changed with this version of PowerShell Desired State Configuration for Linux.

Upgrading DSC for Linux from a Prior Version
Upgrading PowerShell Desired State Configuration for Linux from version 1.0 to this version (1.1) is not

supported. If you have version 1.0 currently installed, remove it prior to installing version 1.1 with: rpm

–e dsc or dpkg –r dsc

New Scenarios Enabled in this Release

 Separation of node and configuration IDs

 Use Azure Automation as a DSC Pull Server

Issues Resolved in this Release

 Restore-DSCConfiguration does not restore the prior configuration

 nxPackage/nxScript: unreliable behavior is observed when the system locale is not UTF-8.

 nxPackage: On Ubuntu and Debian, packages that prompt for user input cause, such as MySQL

server, prevent successful configuration

 nxService: in some cases, the running state of services is incorrectly detected

 nxPackage: when Ensure = Absent, installed packages fail to remove in some cases

Known Limitations

 In this release of PowerShell Desired State Configuration for Linux, only Pull Servers based on

WMF 5.0 April Preview or later are supported. To use a prior version of the Pull Server, continue

to use Desired State Configuration for Linux 1.0.

o Partial Configurations are not supported in this release.

New Scenarios in this Release

Separation of node and configuration IDs
DSC currently uses a configuration ID to uniquely identify a single configuration for a single node. This

feature separates the configuration ID into two distinct identifiers: Configuration Name and Agent ID.

Configuration Name identifies the configuration for a computer; this ID can be shared by multiple nodes.

Agent ID uniquely identifies a node; this ID must be unique for every node.

Metaconfig Updates for Seperation of Computer and Configuration IDs

Because the ConfigurationNames are no longer GUIDs (they are now friendly names), anyone can

determine them. To mitigate this issue, we added an extra level of security by adding a registration step

before a node can start requesting configurations from a server. A node registers itself with the pull

server with a shared secret (which the node and the server both know already), and the name of the

configuration it will request. This shared secret need not be unique for each computer. Assumption: the

shared secret is a hard-to-guess identifier, like a GUID. We call this shared secret RegistrationKey in the

metaconfig.

[DscLocalConfigurationManager()]
Configuration SampleLinuxMetaConfig
{
Node “mylinuxserver”{
 Settings
 {
 RefreshFrequencyMins = 30;
 RefreshMode = "PULL";
 ConfigurationMode =”ApplyAndMonitor“;
 AllowModuleOverwrite = $true;
 RebootNodeIfNeeded = $true;
 ConfigurationModeFrequencyMins = 60;
 }

 ConfigurationRepositoryWeb ConfigurationManager
 {
 ServerURL = “https://PullServerMachine:8080/psdscpullserver.svc”
 RegistrationKey = "140a952b-b9d6-406b-b416-e0f759c9c0e4"
 ConfigurationNames = @(“MySQLRole”)
 }
 }
}

SampleMetaConfig

For more information on this feature and instructions for defining shared keys on the Pull Server,

reference the WMF 5 Production Preview Release Notes.

Use Azure Automation as a DSC Pull Server
Note: For more information on Azure Automation’s DSC features, reference the documentation.

Linux computers can be onboarded to Azure Automation DSC, as long as they have outbound access to

the internet, via a few simple steps:

1. Make sure version 1.1 or later of the DSC Linux agent is installed on the machines you want to

onboard to Azure Automation DSC.

2. If the PowerShell DSC Local Configuration Manager defaults match your use case:

 On each Linux machine to onboard to Azure Automation DSC, use Register.py to

onboard using the PowerShell DSC Local Configuration Manager defaults:

/opt/microsoft/dsc/Scripts/Register.py <Automation account registration key>

<Automation account registration URL>

http://www.microsoft.com/en-us/download/details.aspx?id=48729
https://azure.microsoft.com/en-us/documentation/articles/automation-dsc-overview/
https://technet.microsoft.com/library/dn249922.aspx?f=255&MSPPError=-2147217396

 To find the registration key and registration URL for your Automation account, see the

Secure Registration section below.

If the PowerShell DSC Local Configuration Manager defaults do not match your use case, follow

steps 3 - 9. Otherwise, proceed directly to step 9.

3. Open the PowerShell console or PowerShell ISE as an administrator on a Windows machine in

your local environment. This machine must have the latest version of WMF 5 installed.

4. Connect to Azure Resource Manager using the Azure PowerShell module:

Add-AzureAccount

Switch-AzureMode AzureResourceManager

5. Download, from the Automation account you want to onboard nodes to, the PowerShell DSC

metaconfigurations for the machines you want to onboard:

Get-AzureAutomationDscOnboardingMetaconfig -ResourceGroupName MyResourceGroup -

AutomationAccountName MyAutomationAccount -ComputerName MyServer1, MyServer2 -

OutputFolder C:\Users\joe\Desktop

6. Optionally, view and update the metaconfigurations in the output folder as needed to match the

PowerShell DSC Local Configuration Manager fields and values you want, if the defaults do not

match your use case.

7. Remotely apply the PowerShell DSC metaconfiguration to the machines you want to onboard:

$SecurePass = ConvertTo-SecureString -string "<root password>" -AsPlainText -
Force

$Cred= New-Object System.Management.Automation.PSCredential "root", $SecurePass

$Opt = New-CimSessionOption -UseSsl:$true -SkipCACheck:$true -SkipCNCheck:$true
-SkipRevocationCheck:$true

need a CimSession for each Linux machine to onboard

$Session = New-CimSession -Credential:$Cred -ComputerName:<your Linux machine>
-Port:5986 -Authentication:basic -SessionOption:$Opt

Set-DscLocalConfigurationManager -CimSession $Session –Path

C:\Users\joe\Desktop\DscMetaConfigs

8. If you cannot apply the PowerShell DSC metaconfigurations remotely, for each Linux machine to

onboard, copy the metaconfiguration corresponding to that machine from the folder in step 5

onto the Linux machine. Then call SetDscLocalConfigurationManager.py locally on each Linux

machine to onboard to Azure Automation DSC:

/opt/microsoft/dsc/Scripts/SetDscLocalConfigurationManager.py –configurationmof

<path to metaconfiguration file>

https://technet.microsoft.com/library/dn249922.aspx?f=255&MSPPError=-2147217396

9. Using the Azure portal or cmdlets, check that the machines to onboard now show up as DSC

nodes registered in your Azure Automation account.

Additional Information

Performing DSC Operations from the Linux computer
DSC for Linux includes scripts to work with configuration from the local Linux computer. These scripts

are located in /opt/microsoft/dsc/Scripts and include the following:

GetDscConfiguration.py
Returns the current configuration applied to the computer. Similar to the Windows PowerShell cmdlet

Get-DscConfiguration cmdlet.

sudo ./GetConfiguration.py

GetDscLocalConfigurationManager.py
Returns the current meta-configuration applied to the computer. Similar to the Windows PowerShell

cmdlet Get-DSCLocalConfigurationManager

sudo ./GetLocalConfigurationManager.py

PerformRequiredConfigurationChecks.py

Immediately checks the configuration in accordance with the MetaConfiguration settings and applies
the configuration if an update is available. Useful for immediately applying configuration changes on the
pull server.

sudo ./PerformRequiredConfigurationChecks.py

RestoreConfiguration.py

Applies the previous configuration known to DSC, a rollback.

sudo ./RestoreConfiguration.py

SetDscLocalConfigurationManager.py

Applies a Meta Configuration MOF file to the computer. Similar to the Windows PowerShell cmdlet: Set-

DSCLocalConfigurationManager. Requires the path to the Meta Configuration MOF to apply.

#sudo ./SendMetaConfiguration.py –configurationmof /tmp/localhost.meta.mof

StartDscLocalConfigurationManager.py
Applies a configuration MOF file to the computer. Similar to the Windows PowerShell cmdlet: Start-

DscConfiguration. Requires the path to the configuration MOF to apply.

#sudo ./StartDscLocalConfigurationManager.py –configurationmof

/tmp/localhost.mof

TestDscConfiguration.py
Tests the current system configuration for compliance desired state. Similar to the Windows PowerShell

cmdlet: Test-DscConfiguration.

https://technet.microsoft.com/en-us/library/dn407379.aspx
https://technet.microsoft.com/en-us/library/dn407378.aspx
https://technet.microsoft.com/en-us/library/dn521621.aspx
https://technet.microsoft.com/en-us/library/dn521621.aspx
https://technet.microsoft.com/en-us/library/dn521623.aspx
https://technet.microsoft.com/en-us/library/dn521623.aspx
https://technet.microsoft.com/en-us/library/dn407382(v=wps.630).aspx

sudo ./TestDscConfiguration.py

InstallModule.py
Installs a custom DSC resource module. Requires the path to a .zip file containing the module shared

object library and schema MOF files.

sudo ./InstallModule.py /tmp/cnx_Resource.zip

RemoveModule.py
Removes a custom DSC resource module. Requires the name of the module to remove.

sudo ./RemoveModule.py cnx_Resource

Using PowerShell Desired State Configuration for Linux with a Pull Server

Using HTTPS with the Pull Server

Though unencrypted HTTP is supported for communication with the Pull server, HTTPS (SSL/TLS) is

recommended. When using HTTPS, the DSC Local Configuration Manager requires that the SSL

certificate of the Pull server is verifiable (signed by a trusted authority, has a common name that

matches the URL, etc.).

You can modify these HTTPS requirements as needed, by modifying the file /etc/opt/omi/

dsc/dsc.conf. The supported properties defined in this file are:

 NoSSLv3 set this to true to require the TLS protocol and set this to false to support SSLv3 or TLS.

The default is false.

 DoNotCheckCertificate set this to true to ignore SSL certificate verification. The default is false.

 CURL_CA_BUNDLE an optional path to a curl-ca-bundle.crt file containing the CA certificates to

trust for SSL/TLS. For more information, see: http://curl.haxx.se/docs/sslcerts.html

 sslCipherSuite Optionally set your preferred SSL cipher suite list. Only ciphers matching the rules

defined by this list will be supported for HTTPS negotiation. The syntax and available ciphers on

your computer depend on whether the cURL package is configured to use OpenSSL or NSS as its

SSL library. To determine which SSL library cURL is using, run the following command and look

for OpenSSL or NSS in the list of linked libraries:

curl --version |head -n 1
curl 7.29.0 (x86_64-redhat-linux-gnu) libcurl/7.29.0 NSS/3.15.4
zlib/1.2.7 libidn/1.28 libssh2/1.4.3
o For more information on configuring cipher support, see:

http://curl.haxx.se/libcurl/c/CURLOPT_SSL_CIPHER_LIST.html

PowerShell Desired State Configuration for Linux Log Files

The following log files are generated for DSC for Linux messages.

Log file Directory Description

omiserver.log /var/opt/omi/log Messages relating to the operation of the OMI CIM server.

dsc.log /var/opt/omi/log Messages relating to the operation of the Local Configuration
Manager and DSC resource operations.

http://curl.haxx.se/docs/sslcerts.html
http://curl.haxx.se/libcurl/c/CURLOPT_SSL_CIPHER_LIST.html

