Windows Bridge for iOS
[NSUndoManager]
DEV DESIGN Henry Fox
[This document reuses content from a number of online and internal sources. Implicit thanks to the otherwise uncredited original authors and contributors. Explicit thanks to Nithish for letting me also use this document’s format]
Table of Contents
Table of Contents	1
Overview	1
Approach	1
Technical Details	2

[bookmark: _Toc449186689][bookmark: _Toc456955802]Overview
This document outlines the implementation and design of NSUndoManager. NSUndoManager provides developers with an easily customizable way to register undo and redo operations as well as operation groups. The implementation will use undo and redo stacks to track which undo or redo selector should be called.
Dependencies
The prepareWithInvocationTarget method of registering an undo operation depends on NSInvocation and forwardInvocation implementations scheduled for 1608.
[bookmark: _Toc449186692][bookmark: _Toc456955803]Approach
NSUndoManager will be implemented as normal in the Foundation framework. No windows runtime libraries will be used. There is no core foundation counterpart to the undo manager. No previous implementation exists for NSUndoManager.

[bookmark: _Toc449186701]NSUndoManager provides an easy way to register steps that can be undone by the selector provided to the Undo Manager. Special undo operations can be done such as grouping undo operations into a single undo call. In addition, UIViews have a default NSUndoManager that can be accessed by convenience.

[bookmark: _Toc449186700][bookmark: _Toc456955804]Technical Details
The undo stack will hold weak references to selectors that are provided to the NSUndoManager. As the undo manager does not create these selectors, it will retain no references to them and ownership is never taken from the caller. If anything does happen to these selectors in some weird way, a runtime exception will naturally be thrown. The caller is responsible for the sanity of all objects passed to the undo manager. In addition, NSUndoManager is not a thread safe object but provides convenient properties for whether or not an undo/redo operation is currently being performed. The undo stack will hold structs for the undo operations as undo operations can be grouped and named. There can also be subgroups within groups meaning the undo operations need to be malleable.
The stacks in question here for undo and redo operations will be NSMutableArrays. This is for the sake of the removeAllActionsWithTarget:(id)target; method to avoid excess manipulation of the stack.
There will be three objects to manage the undo operations. _NSUndoGroup, _NSUndoBasicAction, _NSUndoForwardInvocation.
@interface _NSUndoBasicAction : NSObject <_NSUndoable>

- (id)_initWithTarget:(id)target selector:(SEL)aSelector object:(id)anObject;

@end

@interface _NSUndoForwardInvocation : NSObject <_NSUndoable>

-(id)_initWithInvocation : (NSInvocation*)invocation;

@end

@interface _NSUndoGroup : NSObject <_NSUndoable>

- (id)initWithLevel:(NSInteger)level;
- (void)addUndoCallToUndoGroup:(_NSUndoBasicAction*)undoCall;
- (NSInteger)createUndoGroupWithLevel:(NSInteger)level;
- (void)closeUndoGroup;
- (BOOL)isClosed;
- (NSInteger)_getDepth;

@end
The first basic operation to add an undo operation to the UndoManager is…

Redo operations are the exact same as the undo operations. For example, a common practice when using the NSUndoManager is that the selector supplied to the NSUndoManager registers itself as the undo operation with its current value. A redo operation cannot be registered manually but is instead a product of the undo operation. If there’s an undo operation registered while an undo is taking place, it is assumed that this is a reuse of the undo registration and the operation is recorded to the redo stack as a single group instead.
@implementation someObject
- (void)setString:(NSString *)newTitle {
 // Register what the undo operation should do
 [undoManager registerUndoWithTarget:self selector:@selector(setString:) object:[myObject theString]];
 // Finally, change whatever you want about the object you've registered an undo with
 myObject.theString = newTitle;
}
Each undo operation will first register the same selector as the current undo operation or undo operation groups with the current value of their respective objects. Each basic undo operation only works with a single object to modify.
More complex undo operations will pass the undo call to the respective registered object using prepareWithInvocationTarget. Thus, the undo operation merely stores the arguments and method to forward this call to.

/* @implementation storeManager */
- (void)updateStock:(NSStoreItem*)item withCount:(NSInteger)count freshness:(NSInteger)fresh {
 // Where self is some store manager object responsible for the stock of its items.
 [[undoManager prepareWithInvocationTarget:self] updateStock:item withCount:item.count freshness:item.freshness];
 item.count = count;
 item.freshness = fresh;
}
Thus, we can provide more complicated undo operations as the forwardInvocation call will make the object essentially undo itself by the caller’s registered function. NSUndoManager implements forwardInvocation as the method of storing this information. Calling prepareWithInvocationTarget on an NSUndoManager will create an NSUndoManagerProxy object to receive the arguments which are to be stored in a forwardInvocationUndo struct and passed to the actual undo manager.

For basic undo operations, these cannot take place without knowing the previous value of the object to be undone. Thus, we must take a copy of the object upon registering. We do however, need to keep a reference to the object being registered since the new value of the object must be grabbed as well when registering a redo operation. Remember, NSUndoManager is not thread safe, so it’s up to the caller to provide proper safety on these objects.

For a complex undo operation using forward invocations, we need to keep a reference to the NSInvocation object and the target. Additionally, we must take a copy of each of the arguments in the NSInvocation argument. These will be set on a copy of the NSInvocation object before being passed to the registered target. Immediately before this, a redo operation will be registered with the same invocation and current values being copied as well. The problem arises when attempting to register a redo operation after an undo operation of this kind. The only method I can see of keeping a reference to the current value of each of the arguments is to have KVO watch each argument and update the arguments in the NSInvocation when being redone. Thankfully, NSInvocation has a retainArguments call to handle this.
What about these stored members, arguments, etc…?
Whenever undo operations exceed the limit of undo operations set by the user, all objects associated with that last undo operation can be cleaned up. Additionally, these items may be cleaned up whenever the caller chooses to remove a target from the undo stack. Until this time though, these old values must be retained.
Grouping Undo Operations
As previously mentioned, undo operations can be grouped together. The undo operation itself calls undoNestedGroup which will trickle down to the lowest sub group. In addition to being able to manually create sub groups, the undo manager will automatically group all registered actions in a single run loop. This lets multiple operations done at once to be undone at the same time as well ensuring a preserved state. A manual undo group can be created by calling [undoManager beginUndoGrouping] and stopped by calling [undoManager endUndoGrouping].
For example, one can do
// Today’s item stock
[undoManager beginUndoGrouping]
[store updateStock:apples withCount:7 freshness:3];
[store updateStock:banana withCount:13 freshness:6];
// Store’s meat section
[undoManager beginUndoGrouping]
[store updateStock:steak withCount:3 freshness:1];
[store updateStock:burger withCount:10 freshness:5];
[undoManager setActionName:@"updatedMeat"];
[undoManager endUndoGrouping]
[undoManager endUndoGrouping]

The result of this is that the first undo operation has two nested undo operations for the produce, and another nested undo group for meat items. Undo operations cannot be done out of order with the stack however even though there is one overall undo group for updating the store, one can call undoNestedGroup in order to only undo the meat item updates.

Calling just undo on the other hand will undo all undo operations from the current undo group, including any nested groups. Thus, it would undo every stock update.

Grouping undo operations and basic undo operations are the most common uses of the NSUndoManager.
Action Names
Undo operations can have an action name associated with it. This name is used for a few things including the default prompt provided to a user for undo actions. For example, when selecting Edit -> Undo * the action name will appear there instead of a star. This is not on a per action level, but is rather a field to update in the NSUndoManager.
Undo Operations Summary
There are three operations to call on UndoManager to modify the objects registered. Undo, UndoNestedGroup, and Redo. Undo simply closes the top level undoGroup if necessary and invokes UndoNestedGroup. Redo mirrors the call that UndoNestedGroup performs but on the redo stack instead.
The Takeaway
[bookmark: _GoBack]NSUndoManager essentially acts as a container of selectors and their arguments grouped by names or grouping options to be called via undo. It’s a stack of deferred calls with some extra functions for UI elements and stack manipulation. The first thing to remember is that NSUndoManager does not care about any of the data being manipulated by the selectors, it merely registers the selector in a stack and when called re-registers that same object and selector in the redo stack to essentially undo the undo operation. NSUndoManager is not responsible for the state of any of the objects passed to it, they are all owned by the caller.
Microsoft_Visio_Drawing3.vsdx
Create NSUndoManagerProxy with target and reference to self (NSUndoManager)
NSUndoManager
prepareWithInvocationTarget:

Return the new NSUndoManagerProxy

NSUndoManagerProxy

Receives any message.
Treat as the intended invocation message.
Create __NSUndoOperation
Type = 1
Target = target
Create __forwardInvocationUndo
Empty nested undo group
nestedLevel = currentlevel + 1
Invocation = forwardInvocation’s invocation
Copy each argument in forwardInvocation’s argument list.

Private message to NSUndoManager

_undo.push(undo operation)

image4.emf
NSUndoManager undo

Pop undo operation off

stack

Type = 0

Type = 1

undoOperation =

undo.pop()

Change current undo

operation͛s undoValue

to object͛s current

value. (undoValue =

[object copy])

_redo.push(undoOperat

oin)

undoOperation =

undo.pop()

Change current undo

operation͛s argument

list to the current value

of each argument.

(undoValue = [object

copy])

_redo.push(undoOperat

oin)

Microsoft_Visio_Drawing4.vsdx
NSUndoManager
undo

Pop undo operation off stack

Type = 0

Type = 1
undoOperation = undo.pop()
Change current undo operation’s undoValue to object’s current value. (undoValue = [object copy])
_redo.push(undoOperatoin)
undoOperation = undo.pop()
Change current undo operation’s argument list to the current value of each argument. (undoValue = [object copy])
_redo.push(undoOperatoin)

image1.emf
NSUndoManager

_undoStack _redoStack

Register Undo

Call Undo

Call Redo

Microsoft_Visio_Drawing1.vsdx
NSUndoManager
_undoStack
_redoStack

Register Undo
Call Undo
Call Redo

image2.emf
Create

_NSUndoBasicOperation

undoMessage = selector

Id undoValue = [object retain]

id undoObject = object;

Type = 0

Target = target param

Create

__basicUndoOperation

Empty nested undo

group

nestedLevel =

currentlevel + 1

NSUndoManager

registerUndoWithTarget:selector:object:

[currentUndoGroup

addObject:undoOperation]

Microsoft_Visio_Drawing2.vsdx
Create _NSUndoBasicOperation
undoMessage = selector
Id undoValue = [object retain]
id undoObject = object;
Type = 0
Target = target param
Create __basicUndoOperation
Empty nested undo group
nestedLevel = currentlevel + 1

NSUndoManager
registerUndoWithTarget:selector:object:

[currentUndoGroup addObject:undoOperation]

image3.emf
Create

NSUndoManagerProxy

with target and

reference to self

(NSUndoManager)

NSUndoManager

prepareWithInvocationTarget:

Return the new

NSUndoManagerProxy

NSUndoManagerProxy

Receives any message.

Treat as the intended

invocation message.

Create

__NSUndoOperation

Type = 1

Target = target

Create

__forwardInvocationUndo

Empty nested undo group

nestedLevel = currentlevel +

1

Invocation =

forwardInvocation͛s

invocation

Copy each argument in

forwardInvocation͛s

argument list.

Private message to

NSUndoManager

_undo.push(undo

operation)

