
Windows Bridge for iOS
[ADDRESSBOOK FRAMEWORK – [FOUNDATION] IMPLEMENT ADDRESSBOOK FRAMEWORK]
DEV DESIGN specification
Feature Summary (<50 words)
This spec covers the design for implementing the AddressBook framework, addressing gaps and differences.
Overview
Summary
The iOS AddressBook Framework allows developers to interact with the user’s contacts. Specifically, if given permission by the user, they have access to view all of the user’s contacts, modify and delete them, as well as create and add new ones.

These interactions are done with 3 major types – ABAddressBookRef, ABRecordRef, and ABMultiValueRef (and ABMutableMultiValueRef, a variant of ABMultiValueRef).
ABAddressBookRef represents the user’s address book, and has functionality such as asking for a list of the user’s contacts, adding new contacts, and removing existing contacts.
ABRecordRef represents a single entry in the user’s address book. It has a specific record type depending on what it represents: kABPersonType, kABGroupType, and kABSourceType. The most common is kABPersonType, which represents a single contact/person. It can be queried for various properties (such as first name/last name, emails, birthday, etc). An ABRecordRef can have its various properties modified to update information about a specific contact. An ABRecordRef can also represent a ‘Group’ or ‘Source’ (kABGroupType and kABSourceType) – a Group simply represents some grouping of contacts, while a Source represents where the contact originated from (locally to device, social networking site, CardDAV server, etc).
An ABRecordRef of type kABPersonType will have the columns specified in the table under Gaps/Differences later in the document. One of kABGroupType has the ability to copy an array of all persons in said group (an array of ABRecordRef of type kABPersonType) and one of kABSourceType has a column for the source type.
ABMultiValueRef represents a column of an ABRecordRef that can have multiple values – for example, a phone number or email. When asking for a contact’s phone number, the user is given back an ABMultiValueRef, which is essentially a list of phone numbers and some associated label (work, home, etc). An ABMutableMultiValueRef is an ABMultiValueRef that can be modified – they are usually used when creating a new contact, or adding another field to an existing one (such as adding another phone number or email).
Here are prioritizations of what functionality to implement first:

	Priority
	Functionality to Implement

	P0
	Requesting Permission & Getting a List of Contacts

	P0
	Copying an Individual Contact & Reading Basic Fields (Name, Phone, etc)

	P1
	Reading More Fields (Jobs, Birthdays, etc)

	P1
	Creating a New Contact

	P2
	Modify/Delete Existing Contact (Needs Creation Working Due to Permissions)

	P2
	ABGroup/ABSource Functionality



See the table at the end of the document for prioritization of individual functions.

Document Terms

	Term
	Definition

	Windows Contacts
	Windows.ApplicationModel.Contacts namespace


Language Decisions
[bookmark: _Toc256071273]Objective-C projection will be used to access the Windows Contacts classes. Although the AddressBook Framework types (ABAddressBookRef, ABRecordRef, etc) are pointers to C structs on the iOS side, they will be implemented as Objective-C objects.
[bookmark: _Toc256071305][bookmark: _Toc239822240][bookmark: _Toc239822997][bookmark: _Toc242763693][bookmark: _Toc256071319][bookmark: _Toc236552068][bookmark: _Toc242845030][bookmark: _Toc248222718][bookmark: _Toc266191745][bookmark: _Toc236480346][bookmark: _Toc236480428]Detailed Design
The aforementioned ABAddressBookRef, ABRecordRef, and ABMultiValueRef will be implemented using Objective-C projections of classes from the Windows.ApplicationModel.Contacts namespace. An ABAddressBookRef will be implemented using the Windows Contacts classes ContactManager and ContactStore. A Contact Manager allows a user to ask for a ContactStore, which represents some group of contacts on the device (it can represent all of them, provided the necessary permissions are declared in the manifest). A ContactStore can give the user a list of all contacts in the ContactStore. This mimics much of the functionality in an ABAddressBookRef.
ABMultiValueRef will be implemented as an NSArray of label/value pairs.
An ABRecordRef will be 1 of three things: an ABPerson, an ABGroup, or an ABSource, depending on its type (kABPersonType, kABGroupType, or kABSourceType, respectively).
An ABPerson will be implemented using a Contact, which is the way Windows Contacts represent a single contact. Contact supports functionality to query different fields of the contact similar to what an ABRecordRef with type kABPersonType can do.
An ABGroup has no equivalent on the Windows side.
An ABSource can store the source name and type (obtained from a ContactList).
These three types can either be subclasses of ABRecordRef, or they can be separate classes, with the type ABRecordRef keeping an internal pointer to the appropriate type depending on it being a kABPersonType, kABGroupType, or kABSourceType. 
Scenarios:
Getting a List of All Contacts
This is done by talking to the ABAddressBookRef, which will query its internal ContactStore (which was created by its internal ContactManager) to get a list of all Contacts (formatted as ABPerson ABRecordRefs). Note that these contacts will be read-only. An extra API to get read/write contacts will be provided, since Windows doesn’t give full read/write permissions to all contacts (only those created by the app). 

Reading a Contact
Reading values from a contact in iOS is done through an ABRecordRef with type kABPersonType -- this will be an ABPerson backed by a Windows Contact. The various columns of an iOS contact will be mapped to the Windows equivalent (see later table for mappings).

Adding a Contact
Adding a contact is done using ABPersonCreate (which will create an ABPerson ABRecordRef), updating the contact as desired, and then using the ABAddressBookRef to actually add the contact (which will add the ABPerson's internal Contact to the ABAddressBookRef's internal ContactStore’s ContactList).

Removing a Contact
Removing a contact is similar to adding a Contact in terms of interacting with the ABAddressBookRef -- the main difference is that rather than creating a new ABPerson, an existing one will be used.

Updating a Contact
Updating a contact is similar to adding a new one -- any modifications will be reflected to the internal Contact of the ABPerson ABRecordRef.

Working with a Source
The closes thing to a Source is the ContactList that a contact came from – this is tricky when the contact is an aggregate, because it will be composed of multiple raw contacts that potentially come from difference sources. Sources are not used in very many apps, especially compared to the other scenarios, so they are very low priority.

Working with a Group
Windows contacts don’t have an equivalent for Groups.

Gaps/Differences:
There are several gaps/differences between the iOS AddressBookFramework and Windows Contacts:

1) Permissions are handled differently. In iOS, the developer asks the user for address book permission using ABAddressBookRequestAccessWithCompletion, and if it is granted, they have full read/write access to the user’s entire address book. In Windows, the developer can only have write access to contacts that their app created – they only get read access to the rest of the user’s contacts. Apps usually only want read-access to contacts, so this shouldn’t be a major issue. (There is a way to get full read/write access, but it requires asking for special permission before being allowed in the Windows Store.) In order for an app to get this read-only access to all contacts, it must update its manifest to declare that it is using contacts. Specifically, it must add this to the app’s package manifest: 

<Capabilities><uap:Capability Name="contacts"/></Capabilities>

To address this gap, ABAddressBookRequestAccessWithCompletion/ ABAddressBookGetAuthorizationStatus will check to see if the user has denied privacy permissions manually – they still need to ensure that they update their manifest, but this will allow them to detect if a user explicitly goes and removes permissions. Developers will have read/write access to contacts they create, but read-only access to all other contacts.

Because of this permissions issue, and due to the way Aggregate and Raw contacts are stored in Windows, the method to get all contacts (ABAddressBookCopyArrayOfAllPeople) will return read-only contacts, but will contain all contacts on the device; if the user wishes to modify or remove contacts, they can call the new method ABAddressBookCopyArrayOfAllUserAppPeople to get the subset of all contacts that the user’s app has created and, therefore, has read/write permissions on. 
2) In iOS, making individual additions/deletions to an ABAddressBookRef are reflected when ABAddressBookSave is called. In Windows Contacts, each individual addition/deletion results in the address book being immediately updated. The address book’s manager will maintain a list of “pending” changes whenever the ABAddressBookRef is updated, and then when ABAddressBookSave is called, it will go through and actually apply them. 
3) Specific fields/properties of a single contact don’t perfectly line up. The major categories (names, addresses, emails, phones, birthdays, notes, etc) line up the same, but iOS has a few fields that Windows Contacts do not. Examples include contact creation date, alternate birthdays, and address country codes. Another difference is that many Windows Contacts properties have a length limit – for example, names are limited to 64 characters on the Windows side, addresses are limited to 1024 characters, and so on. The length limit will be checked, and if violated, an appropriate error will be returned to the user. See the below table for a mapping of fields, and any limits in length imposed by Windows:


	iOS Field/Property Name
	Windows Field/Property Name
	Windows Character Limit

	kABPersonFirstNameProperty
	Contact.FirstName
	64

	kABPersonLastNameProperty
	Contact.LastName
	64

	kABPersonMiddleNameProperty
	Contact.MiddleName
	64

	kABPersonPrefixProperty
	Contact.HonorificNamePrefix
	32

	kABPersonSuffixProperty
	Contact.HonorificNameSuffix
	32

	kABPersonNicknameProperty
	Contact.Nickname
	

	kABPersonFirstNamePhoneticProperty
	YOMI
	

	kABPersonLastNamePhoneticProperty
	YOMI
	

	kABPersonMiddleNamePhoneticProperty
	-
	

	kABPersonOrganizationProperty
	Contact.JobInfo.CompanyName
	64

	kABPersonJobTitleProperty
	Contact.JobInfo.Title
	1024

	kABPersonDepartmentProperty
	Contact.JobInfo.Department
	100

	kABPersonEmailProperty
	Contact.Emails.ContactEmail
	

	kABPersonBirthdayProperty
	Contact.ImportantDates.ContactDateKind
	

	kABPersonNoteProperty
	Contact.Notes
	4096

	kABPersonCreationDateProperty
	-
	

	kABPersonModificationDateProperty
	-
	

	
	
	

	kABPersonAddressProperty
	Contact.Addresses
	

	kABPersonAddressStreetKey
	ContactAddress.StreetAddress
	1024

	kABPersonAddressCityKey
	ContactAddress.(Region or Locality)
	1024

	kABPersonAddressStateKey
	ContactAddress.(Region or Locality)
	1024

	kABPersonAddressZIPKey
	ContactAddress.PostalCode
	1024

	kABPersonAddressCountryKey
	ContactAddress.Country
	1024

	kABPersonAddressCountryCodeKey
	-
	

	
	
	

	kABPersonDateProperty
	Contact.ImportantDates
	

	kABPersonAnniversaryLabel
	ContactDateKind
	

	
	
	

	kABPersonKindProperty
	-
	

	
	
	

	kABPersonPhoneProperty
	Contact.Phones
	

	kABPersonPhoneMobileLabel
	ContactPhone.Number/Kind/Description
	

	kABPersonPhoneIPhoneLabel
	ContactPhone.Number/Kind/Description
	

	kABPersonPhoneMainLabel
	ContactPhone.Number/Kind/Description
	

	kABPersonPhoneHomeFAXLabel
	ContactPhone.Number/Kind/Description
	

	kABPersonPhoneWorkFAXLabel
	ContactPhone.Number/Kind/Description
	

	kABPersonPhoneOtherFAXLabel
	ContactPhone.Number/Kind/Description
	

	kABPersonPhonePagerLabel
	ContactPhone.Number/Kind/Description
	

	
	
	

	kABPersonInstantMessageProperty
	Contact.ConnectedServiceAccounts
	

	kABPersonSocialProfileProperty
	
	

	
	
	

	kABPersonURLProperty
	Contact.Websites
	

	
	
	

	kABPersonRelatedNamesProperty
	Contact.SignificantOthers
	

	
	
	

	kABPersonAlternateBirthdayProperty
	-
	



Functional and Unit Testing
Test Approach
Testing will primarily be done with unit tests. The AddressBookSample test app will also be used – using the app is a way of ensuring that the AddressBook Framework works as desired, and the app running on iOS can be a reference of the desired behavior.

Prioritization of Functions

	Function
	Priority

	ABAddressBook
	

	
	

	ABAddressBookCreate
	P0

	ABAddressBookCreateWithOptions
	P0

	ABAddressBookGetAuthorizationStatus
	P0

	ABAddressBookRequestAccessWithCompletion
	P0

	ABAddressBookHasUnsavedChanges
	P0

	ABAddressBookSave
	P0

	ABAddressBookRevert
	P0

	
	

	ABAddressBookAddRecord
	P1

	ABAddressBookRemoveRecord
	P2

	
	

	ABAddressBookRegisterExternalChangeCallback
	P2

	ABAddressBookUnregisterExternalChangeCallback
	P2

	
	

	ABAddressBookCopyLocalizedLabel
	P2

	
	

	ABMultiValue
	

	
	

	ABMultiValueCopyValueAtIndex
	P0

	ABMultiValueCopyArrayOfAllValues
	P0

	ABMultiValueGetCount
	P0

	ABMultiValueGetFirstIndexOfValue
	P0

	ABMultiValueCopyLabelAtIndex
	P0

	
	

	ABMultiValueGetIdentifierAtIndex
	P0

	ABMultiValueGetIndexForIdentifier
	P0

	
	

	ABMultiValueGetPropertyType
	P0

	
	

	ABMutableMultiValue
	

	
	

	ABMultiValueCreateMutable
	P1

	
	

	ABMultiValueCreateMutableCopy
	P1

	
	

	ABMultiValueAddValueAndLabel
	P1

	ABMultiValueReplaceValueAtIndex
	P2

	ABMultiValueReplaceLabelAtIndex
	P2

	ABMultiValueInsertValueAndLabelAtIndex
	P1

	ABMultiValueRemoveValueAndLabelAtIndex
	P2

	
	

	ABRecord
	

	
	

	ABRecordGetRecordID
	P0

	ABRecordGetRecordType
	P0

	
	

	ABRecordSetValue
	P1

	ABRecordCopyValue
	P0

	ABRecordRemoveValue
	P2

	ABRecordCopyCompositeName
	P2

	
	

	ABPerson
	

	
	

	ABPersonCreate
	P1

	ABPersonCreateInSource
	P2

	
	

	ABPersonComparePeopleByName
	P2

	
	

	ABPersonGetTypeOfProperty
	P2

	ABPersonCopyLocalizedPropertyName
	P2

	
	

	ABPersonSetImageData
	P2

	ABPersonCopyImageData
	P2

	ABPersonCopyImageDataWithFormat
	P2

	ABPersonHasImageData
	P2

	ABPersonRemoveImageData
	P2

	
	

	ABAddressBookGetPersonCount
	P1

	ABAddressBookGetPersonWithRecordID
	P1

	ABAddressBookCopyArrayOfAllPeople
	P0

	ABAddressBookCopyArrayOfAllPeopleInSource
	P2

	ABAddressBookCopyArrayOfAllPeopleInSourceWithSortOrdering
	P2

	ABAddressBookCopyPeopleWithName
	P2

	ABPersonCopyArrayOfAllLinkedPeople
	P2

	ABPersonCopySource
	P2

	
	

	ABPersonCopyCompositeNameDelimiterForRecord
	P2

	ABPersonGetSortOrdering
	P2

	ABPersonGetCompositeNameFormat
	P2

	ABPersonGetCompositeNameFormatForRecord
	P2

	
	

	ABPersonCreatePeopleInSourceWithVCardRepresentation
	P2

	ABPersonCreateVCardRepresentationWithPeople
	P2

	
	

	ABSource
	

	
	

	ABAddressBookCopyDefaultSource
	P2

	ABAddressBookGetSourceWithRecordID
	P2

	ABAddressBookCopyArrayOfAllSources
	P2

	
	

	ABGroup
	

	
	

	ABGroupCreate
	P2

	ABGroupCreateInSource
	P2

	
	

	ABGroupCopyArrayOfAllMembers
	P2

	ABGroupCopyArrayOfAllMembersWithSortOrdering
	P2

	ABGroupAddMember
	P2

	ABGroupRemoveMember
	P2

	
	

	ABAddressBookGetGroupWithRecordID
	P2

	ABAddressBookGetGroupCount
	P2

	ABAddressBookCopyArrayOfAllGroups
	P2

	ABAddressBookCopyArrayOfAllGroupsInSource
	P2

	[bookmark: _GoBack]ABGroupCopySource
	P2



