[bookmark: _GoBack]Windows Bridge for iOS
[UIKit and XAML]
DEV DESIGN specification
[This document reuses content from a number of online and internal sources. Implicit thanks to the otherwise uncredited original authors and contributors.]
Table of Contents
Table of Contents	1
Overview	2
Portability of Current UIKit Assets	2
Enabling Developers to Build Rich Windows Experiences	2
Approach	2
UI Controls, Views and Visuals	2
View Controllers	3
UIKit API + XAML API	3
XAML Markup	3
Cooperative/Distinct UIKit and XAML Pages	3
Xib-2-XAML	3
Fully-Converted XAML Applications	4
Technical Details	4
Current UIKit Implementation	4
CALayers	5
UIViews	7
CoreAnimation->XAML Composition Translation Layer	8
Approaches to Implementing UIKit Controls	8
Hit-Testing	10
Gesture Interop	10
Accessibility	10
Localization	11
Implementing UIKit Controls	12
Approach	13
Example Control Comparisons	13
UIKit Markup	13
View Controllers and Views	14
Xib/Nib Files	14
The UIResponder Chain	15
XAML Conversion Approaches	15
Cooperative/Distinct UIKit and XAML Pages	16
Fully-Converted XAML Application	17
Additional Notes and Potential Improvements	18

[bookmark: _Toc449186689][bookmark: _Toc456171602]Overview
This document outlines a collective strategy for augmenting WinObjC's UIKit implementation with XAML's UI controls and markup, providing iOS app developers a means to transition to XAML/UWP app development on Windows. The strategy strives to allow developers to reuse as much of their UIKit-dependent code as possible, while also empowering and encouraging them to add rich XAML/UWP experiences to their applications as desired.

The approach can be broken down into two distinct areas:

[bookmark: _Toc449186690][bookmark: _Toc456171603]Portability of Current UIKit Assets
WinObjC will continue investing in its UIKit implementation by leveraging XAML extensively behind the scenes. We will convert all of our UIKit control implementations over to the XAML-Adapted (aka wrapped XAML control) model, in order to leverage as much of the existing Windows platform functionality as possible, while also preventing major code rewrites in ported applications. This approach involves leveraging XAML controls, control templates, and styles to implement a given UIKit control.

In the event that P0 or P1 functionality is not possible with the XAML-Adapted approach, we will work with partner teams (XAML, UI.Composition, etc.) to enable the missing platform features.

[bookmark: _Toc449186691][bookmark: _Toc456171604]Enabling Developers to Build Rich Windows Experiences
In order to facilitate the development of rich Universal Windows Applications (providing adaptive UI, supporting multiple device input modalities, etc.), WinObjC will enable and encourage the use of XAML markup and controls in ported iOS applications.

We will provide an app import workflow which converts all of the app’s xib files to XAML files. Apps likely won’t run perfectly post conversion, but the developer will be presented with an all-up Universal Windows Platform App that they can further tweak to get running properly on Windows.
[bookmark: _Toc449186692][bookmark: _Toc456171605]Approach
[bookmark: _Toc449186693][bookmark: _Toc456171606]UI Controls, Views and Visuals
We will immediately begin to convert of all of our existing UIKit control implementations over to the XAML-Adapted model. Each UIKit control’s API surface area will be implemented as required by our customers (APIs will initially be prioritized by our app dependency data), and each control will function properly as a base class for custom UIKit-derived controls that exist within ported applications and middleware.
WinObjC won’t fill gaps in the Windows platform to implement its UI controls; instead, any platform gaps will be driven as feature requests to the owning team(s). A great example of this is NSAttributedText rendering, which is not currently possible on top of XAML-Adapted control implementations; we’ll push this as a feature request to the XAML team rather than opting out of a XAML-Adapted implementation of UITextField and UITextView controls. More details are outlined in the Implementing UIKit Controls section.
Additionally, WinObjC will continue to invest in its support for custom UIViews, which are rendered to CoreAnimation CALayers via our CoreGraphics API implementation. We will work with the UI.Composition team to ensure that their API surface allows us to build our CoreAnimation implementation directly on top of UI.Composition visuals for rendering, positioning and animation purposes.
Dependencies
· XAML: Ability to reject focus from XAML controls based upon calls to derived classes to see if the focused element should become the first responder. If derived controls want to reject focus, how do we do so without setting focus to some other arbitrary hidden UI element? Ideally we could just kick focus back to the previously-focused control.
· XAML: There will be a growing list of feature gaps exposed on a per-control basis. Some known examples include:
· An API which maps well to NSAttributedText and its rendering needs.
· The ability to specify exclusion paths within rendered text.
· XAML: Assistance/guidance from the XAML team on building custom control templates, etc.
· XAML/Windows.UI.Composition: The ability to augment XAML controls’ render paths, allowing devs to easily underline labels, draw rounded corners on a button, etc.	Comment by Ramu Ramanathan: You may want to use full name Windows.UI.Composition so that it will be clear.
· Windows.UI.Composition: The ability to leverage Windows.UI.Composition visuals as a direct mapping to our CALayer implementation for rendering, positioning, and animation.
· Windows.UI.Composition: Particle animation support in Windows.UI.Composition.

[bookmark: _Toc449186694][bookmark: _Toc456171607]View Controllers
WinObjC will continue to invest heavily in its UIViewController implementations, striving for feature parity with iOS as required by app developers.
[bookmark: _Toc449186695][bookmark: _Toc456171608]UIKit API + XAML API
We will augment our UIKit API implementation by exposing our backing XAML/WinRT objects to developers via WinRT projections (where applicable/relevant). This will allow app developers to call directly into XAML/WinRT controls and objects as needed. For example; they will be able to access UITextField’s backing XAML TextBox, UITouch’s backing WinRT PointerPoint, etc.
[bookmark: _Toc449186696][bookmark: _Toc456171609]XAML Markup
WinObjC will convert ported iOS apps into full-featured Universal Windows Platform Apps that can be further developed on Windows. This functionality will be implemented in phases;
[bookmark: _Toc449186697][bookmark: _Toc456171610]Cooperative/Distinct UIKit and XAML Pages
As outlined below, we will initially enable app developers to add distinct XAML pages which are able to interop with other components within their application. We will create a new XamlUIViewController base class, which will be responsible for loading, managing, and presenting a backing XAML page as a UIView. 	Comment by Ramu Ramanathan: Now this functionality has been rolled into UIViewController, not a separate class anymore.	Comment by Ramu Ramanathan: You may want to mention that initWithNibName will give preference to .XAML files over .XIB files
App developers will derive from XamlUIViewController to provide custom management for their contained XAML pages. Given that the XamlUIViewController will derive from UIViewController, it will be able integrate into the application (UIResponder chain, etc.) just as any other UIViewController would.
Dependencies
· XAML: As discussed in the Code Behind: Language and Tooling Support section, it may be desirable to have platform support for generating ObjectiveC or Swift code behind for custom XAML controls and pages.	Comment by Ashwini Varma: This will be an ask for Swift - since it doesn't interop with C++	Comment by Jared Henderson: Added swift too.

[bookmark: _Toc449186698][bookmark: _Toc456171611]Xib-2-XAML
WinObjC will invest in a XIB-2-XAML tool that assists developers in converting xib pages to XAML representations, through a best-effort attempt at schema mapping. There are likely many properties/constructs that won’t map easily to XAML; storyboards, auto-layout, etc., but over time we should be able to identify the correct mappings for most of them.

Post conversion, the pages may not render 100% correctly, but the developer will be able to easily tweak the layout in the XAML designer as needed.

Dependencies
· XAML: We will need to work closely with XAML markup experts to define a correct schema mapping.
· XAML: Missing xib features may result in XAML markup feature requests.
· Segues/storyboard support?

[bookmark: _Toc449186699][bookmark: _Toc456171612]Fully-Converted XAML Applications
The end goal is to convert iOS apps into a full-featured UWP apps. Several changes are required to make this happen:
App Launch Sequence
WinObjC apps don’t currently launch via the default XAML app launch path (we dynamically create the Application object, etc.); this adds complexity when attempting to interop more closely with XAML pages. WinObjC will streamline the app launch path by moving to a proper XAML Application-backed instance (starting with a root App.Xaml.cpp, etc.).
ViewController Navigation Model
ViewControllers will need to be backed by XAML pages, and their content will likely need to be rendered to XAML Frames.
Single UI/Application Thread
WinObjC currently simulates distinct Windows UI and iOS Application threads by splitting the ASTA/UI thread into two fibers. This split fiber approach won’t scale well for full integration into a UWP/XAML app (including rendering middleware UI in non-WinObjC UWPs), so we are moving off of fibers as soon as possible. See additional details below.
UIKit Objects in XAML
WinObjC will need to build support for loading and initializing UIKit objects (and potentially any objects conforming to the NSCoding protocol) during the loading phase of a XAML page, providing sufficient compatibility with apps’ expected Nib File Initialization flows.
CoreAnimation Composition via Windows.UI.Composition Visuals
WinObjC currently contains a CoreAnimation->XAML composition translation layer, which it uses to render, position, and animate views on the screen. With the switch to all-XAML, this translation layer should become much simpler; we will ideally be able to trim it down to a lightweight adapter layer that is merely responsible for converting CoreAnimation transaction API calls to Windows.UI.Composition API calls for all rendering, positioning and animation purposes.
Dependencies
· CoreDispatcher: Ability to hook into the CoreDispatcher loop to consolidate UI and Application thread constructs.
· Windows.UI.Composition: The ability to leverage Windows.UI.Composition visuals as a direct mapping to our CALayer implementation for rendering, positioning, and animation.
· Windows.UI.Composition: Particle animation support in Windows.UI.Composition.
· XAML: Support for loading UIKit controls and objects from XAML, including connecting UIViewControllers’ IBOutlets and IBActions at runtime.
[bookmark: _Toc449186700][bookmark: _Toc456171613]Technical Details
[bookmark: _Toc449186701][bookmark: _Toc456171614][bookmark: _Design][bookmark: _UIKit_Control_Implementations]Current UIKit Implementation
WinObjC currently leverages three distinct patterns when implementing UIKit controls, depending on the requirements of the control being implemented. All three patterns are built upon WinObjC’s CALayer implementation:
[bookmark: _CALayers][bookmark: _Toc449186702][bookmark: _Toc456171615]CALayers
WinObjC renders its visual tree (a hierarchical tree of CALayer objects) within a root XAML Grid in the app’s CoreWindow. Each CALayer implementation is backed by a CALayerXaml object that derives from Windows::UI::Xaml::Controls::Panel. The properties and contents of each CALayerXaml instance are modified by WinObjC’s CoreAnimation->XAML composition translation layer, resulting in properly placed and visually-correct representations of the CALayers in the view:

WinObjC’s CALayers are implemented in two forms:

· CALayer base class for general bitmap rendering. This is the render path for image assets, as well as the backing surface for any CoreGraphics rasterization operations; meaning that all CoreGraphics rasterization occurs in software on our platform. See the UIView section below for more info.

· CATextLayer derived class for most of our internal text-rendering purposes. This is an optimization path to leverage XAML’s text-rendering subsystem (via DirectWrite). The only two UIKit controls that don’t currently leverage this optimization for rendering text are UITextField and UITextView (discussed later in the document); such controls fall into the CoreGraphics Rendered category described below.

A CALayer is composed (primarily) of these properties that control its position and appearance:

· bounds.size (width, height)
Specifies the dimensions of the layer. If the node has clipping enabled, its contents (and its sublayers) will be clipped to this size.

· bounds.origin (x, y)
Specifies a translation that is applied to the content of the layer and any sublayers. The clipping rectangle is not translated by this value. bounds.origin can be thought of as the “scroll offset” of a layer and is useful for pan-able scrolling views.

· position (x, y)
Specifies the position of the layer relative to its parent. The geometric origin of the position relative to the layer is determined by the anchorPoint property.

· anchorPoint (x, y) (0.0 1.0, 0.0 1.0)
Specifies the origin of the position property. An anchorPoint of (0, 0) corresponds to the position property originating at the top-left of the layer. An anchorPoint of (0.5, 0.5) corresponds to the position property originating at the center of the layer. An anchorPoint of (1.0, 1.0) corresponds to the bottom-right of the layer. In this way, the anchorPoint algebraically ties the position and bounds.size properties together.

· transform (4x4 Transform)
A general 4x4 matrix transform that is applied relative to the anchorPoint of the layer. Applies both to contents and children.

· contents (Image)
A rectangular (somewhat abstract) image that is drawn within the layer rectangle after it has been positioned, transformed and clipped. The contents internally has its own dimensions.

· contentsGravity (Enum)
Defines how the contents are positioned and sized within the layer if the dimensions of the contents and bounds.size do not match exactly. E.g. Centered, TopLeft, Left, Fill, FillAspect, etc.

· contentsRect (Rect)
Transforms into a 3x3 nine-grid that defines how the contents are stretched (if stretching is performed).

· sublayers (array)
A collection of sublayers that are rendered “on top” of the layer.

· masksToBounds (bool)
A boolean value that determines if the contents and children are clipped within the area defined by (position * anchorPoint, bounds.size).

· opacity (float) (0.0 1.0)
A value specifying the opacity of the contents and sublayers.

This static structure diagram reflects the architecture of WinObjC’s CALayer implementation:

[bookmark: _UIView_Overview][bookmark: _UIViews][bookmark: _Toc449186703][bookmark: _Toc456171616]UIViews
On iOS, all UIViews are backed by CoreAnimation CALayer objects. This architecture allows app developers to easily reach into a UIView, grab its backing CALayer, and augment or override the view’s visual state via CoreGraphics. WinObjC follows the same general architecture, striving to achieve a high rate of post-port app compatibility, as many apps and middleware components leverage this pattern.

In most cases, WinObjC’s UIView rendering is managed entirely by XAML, rather than CoreGraphics, in response to property changes on the UIElements (CALayerXaml elements) that have been placed into the XAML tree for their corresponding UIView/CALayer counterparts.

However, some of WinObjC’s UIKit control implementations (as well as an indefinite number of derived/custom controls in ported iOS apps and middleware) override a view’s drawRect: method to enhance or override a view’s default rendering behavior. When this occurs, the derived implementation of drawRect: is responsible for drawing some or all of the view’s content into the current CoreGraphics context, which is set up by the system automatically prior to calling their overridden method.

Due to the nature of the CoreGraphics implementation on WinObjC, this drawRect: render path occurs entirely in software; and the result is a bitmap image that is positioned in the XAML UI tree as an ImageSource within a CALayerXaml instance. See the CoreGraphics notes below for more info, and a discussion on how we could potentially switch to the GPU for this render path (if needed).	Comment by Jordan Saunders: Doing our CoreGraphics through a hw-accelerated API (maybe Direct2D?) seems like an appealing idea because we might be able to get some performance wins but I'm not sure if it's best in the absolute general case. I've also seen nothing to suggest it's a hot path in the current system.

Consider that CGBitmapContextCreate can be given arbitrary memory to do draws into; modeling this with Direct2D directly seems unwieldy: we can either do a blit into this buffer after every draw op which would be super slow or not support that (maybe we need data on how often people use this?).

Redoing CoreGraphics in terms of another API would end up being a lot of work. We used cairo on much-weaker devices and had far fewer performance issues than lately; I attribute these (with perhaps admittedly not enough information) to the XAML composition.

Do we have any information on how XAML implements its controls? When you tell it to draw a line, how does that operation actually happen?	Comment by Jared Henderson: Agreed; I call out elsewhere that this isn’t a hot path, and I agree we don't need to HW-accelerate right now. We should probably just get out of the CG-rendered control business and leave our CG/CT as-is. 	Comment by Ramu Ramanathan: We briefly investigated using GPU processing when adding CoreImage APIs and decided not to go with that option. Often setting the GPU pipeline and processing the image is more expensive than doing it in software, especially for small operations. Also using GPU for all graphics operations will result in reduce battery life.

[bookmark: _XAML_Composition_Translation][bookmark: _Toc449186704][bookmark: _Toc456171617]CoreAnimation->XAML Composition Translation Layer
WinObjC’s composition layer is responsible for translating CALayer positioning into XAML constructs that are applied to each CALayer’s corresponding CALayerXaml instance. All CALayerXaml positioning is performed through animate-able transforms -- all properties are independent animations, with the exception of the size property, which is instead a custom dependency property and a dependent animation.

This architecture may be simplified with XAML’s move to UI.CompositionVisual-backed UIElements in RS2. Rather than managing and applying transforms to each CALayerXaml instance, WinObjC could instead reach into each CALayerXaml’s UI.CompositionVisual and set these properties directly. 	Comment by Ramu Ramanathan: Using UI.Composition to build CALayer is similar to building UIKit controls on top of XAML. We will have to maintain CALayer and the API surface.
The advantage in switching to UI.composition as you have mentioned is to get better animation support. The composition team is building most of the CoreAnimation APIs and we should be able to take advantage of this.
 At this time, I don’t think they have any plans to implement particle animation but this is one of the asks from our team.

Such a modification would reduce complexity in WinObjC’s composition translation layer, and would also allow for the implementation of more advanced animation scenarios such as CAAnimationGroups (for which the current design doesn’t support).

Note: It’s unclear whether or not a move UI.Composition would also light up proper particle animation support, but we should make sure to drive that request if deemed necessary.

[bookmark: _Approaches_to_Implementing][bookmark: _Toc449186705][bookmark: _Toc456171618]Approaches to Implementing UIKit Controls
WinObjC uses one of three distinct patterns when implementing UIKit controls, depending upon the requirements of the control being implemented. All three patterns are built on the CALayer architecture described above.

[bookmark: _Custom_Implementation_-]Custom Implementation - XAML-Rendered	Comment by Ashwini Varma: Should this be called CustomControl-XAMLRendered?
With this approach, all of the control’s functionality is implemented on top of the UIView/CALayer paradigm, and the control doesn’t take part in the UIView drawRect: render path. This results in a control that is rendered by XAML, but there is no direct communication between the view and any of its backing XAML objects.

This is the most commonly-used pattern in WinObjC’s current UIKit implementation. Given that most controls are comprised of fundamental properties that are provided by XAML (such as background color, background image, layout dimensions, basic text content, etc.), most UIKit controls don’t require any custom rendering above what XAML already provides.

For example, here is the composition of a UIButton’s views, and their respective static structures:

There are some benefits to this approach:

· Leverages XAML for layout and rendering.
· Text is rendered with high fidelity.
· WinObjC is able to leverage OSS control implementations where available. For example; UICollectionView is an OSS control that WinObjC is leveraging.
· Custom controls that are written by app developers or third party components are able to augment the rendering path if they desire (although doing so moves their control implementation out of this bucket, and into the CoreGraphics Rendered domain – more on that below).

The primary drawbacks to this approach include:	Comment by Ramu Ramanathan: Other drawback with this approach;
The controls are draws using static image which is part of the SDK. We need to tweak design of the controls so that it looks like Windows control. However, this could affect the layout as the control layout could be different in each platform.
Also the controls are drawn from the image, so customizing the control, such as line/border style, color, etc. are not possible.	Comment by Jared Henderson: Thanks; added that info.

· Limited integration with Windows accessibility tools (label text will show up, but buttons aren’t actionable, etc.); more details below.
· The controls are drawn using static image which ship in the SDK, which makes styling updates expensive, and style customizations impossible.
· No default integration with directional navigation for keyboard accessibility, Xbox, etc.; more details below.
· Hand-rolled localization (if any); for example UIDatePicker hard-codes English months and abbreviations; more details below.
· WinObjC must implement all functionality of the control, which is wasteful if there’s a corresponding XAML control that could be used instead.

[bookmark: _Custom_Control_–]Custom Implementation - CoreGraphics-Rendered	Comment by Ashwini Varma: This can be called CustomControl-CoreGraphicsRendered 	Comment by Jared Henderson [2]: they were originally, but they're all "custom controls", so i felt that was redundant. 	Comment by Ashwini Varma: I think it just makes it explicit and hence clear	Comment by Jared Henderson: Added clarification
This approach also involves implementing all functionality of the control, but these controls take part in the drawRect: render path for some or all of their UI. Rather than relying on XAML to render, these controls leverage WinObjC’s CoreGraphics implementation to rasterize their UI to a software bitmap that is then rendered/positioned by XAML. There are only four WinObjC controls implemented in this manner today;

· UITextView – all visual content rendered in software via CoreText/CoreGraphics
· Currently evaluating moving to a XAML-adapted implementation (as we have already done for UITextField).
· UITabBar – Uses drawRect because it needs to apply an alpha mask to the bitmaps provided to it. 	Comment by Brian Lamb: UITabBar uses drawRect: because it needs to apply an alpha mask to the bitmaps provided to it - not currently possible using a UIImageView
· UISegment – UISegment has some odd styling on it (separators between buttons), but it could probably be replaced with statically stretched images.	Comment by Brian Lamb: UISegment has some odd styling on it (separators between buttons), but it could probably be replaced with statically stretched images

The primary benefit to this approach is app compatibility, although we don’t yet have details on how common this pattern is for custom controls that derive from in-box UIKit controls (custom UIButtons, etc.). If this feature is deemed critical for a large number of apps, we will work with the UI.Composition team to enable support for this pattern from within custom derived XAML controls (custom XAML buttons, etc.).

The primary drawbacks to this approach include:

· No default integration with Windows accessibility tools; more details below.	Comment by Brian Lamb: Would it be fair to say that instead of "No integration" we have "No free integration" ? Integration is definitely possible	Comment by Jared Henderson: Sounds fair to me! Updated.
· No default integration with directional navigation; more details below.
· Hand-rolled localization (if any); more details below.
· Software-rendered to a WriteableBitmap.
· Text rendered in this manner is pixelated (no font-smoothing, etc.).
· This includes our current implementation of attributed text rendering.
· WinObjC must implement all functionality of the control, which may be wasteful if there’s a corresponding XAML control that could be easily adapted instead.

[bookmark: _XAML-Adapted]XAML-Adapted
This approach involves leveraging XAML controls, control templates, and styles to implement a UIKit control. The XAML controls are managed from within the UIView implementation, and their functionality is wrapped and exposed to ported iOS apps via their documented UIKit API.

The primary benefit to this approach is that it allows WinObjC to leverage existing XAML functionality to implement complex controls. This approach has so far been scoped to extremely difficult-to-implement control implementations.

For example:

· UITextField, in order to easily integrate with the text input stack.
· UITextView will likely follow for the same reasons.
· WinObjC’s UIWebView is built upon a wrapped Xaml::WebView control.	Comment by Ashwini Varma: Doesn't the media control fall into this bucket? 	Comment by Jared Henderson: Added comments for movie playback and map view, neither of which have been implemented yet.
· MPMoviePlayerController and MKMapView will likely also follow this pattern.

There are several obvious benefits to leveraging existing XAML functionality (primarily code reuse and platform integration), but there are also some known limitations to this approach:

· There will rarely be a 1:1 mapping between UIKit and XAML control functionality, which could lead to feature gaps or difficult workarounds.
· XAML/iOS Hit-Testing paradigms don’t align 100%; see below.
· Custom controls that derive from XAML-backed implementations cannot take part in the custom drawRect: render path. 	Comment by Ashwini Varma: the controls themselves don't map 1:1 in terms of functionality. We need to do a deep dive per control to see if/how much this is an issue though. 	Comment by Jared Henderson [2]: agreed; also called out below where we talk about deciding on the approach to take on a per-control basis.	Comment by Jared Henderson: Adding it as a drawback here, too.

[bookmark: _Hit-Testing][bookmark: _Toc449186706][bookmark: _Toc456171619]Hit-Testing
Hit-testing is covered in WinObjC.UI.Touch.Input.docx.

[bookmark: _Gesture_Interop][bookmark: _Toc449186707][bookmark: _Toc456171620]Gesture Interop
Gesture interop is covered in the WinObjC.UI.Touch.Input.docx.
[bookmark: _Accessibility][bookmark: _Accessibility_Tools][bookmark: _Toc449186708][bookmark: _Toc456171621]Accessibility
Accessibility - Tools
According to the Windows 10 accessibility checklist, WinObjC apps are not currently accessible.
Basic Accessibility Information
XAML-Rendered controls are built on TextBlock, so their basic information (text content) does show up in Inspect.exe, although their visibility and layout may appear quirky to expert users of accessibility tools.
Additionally, CoreGraphics-Rendered controls do not expose their information to UIAutomation, so additional work would be required to do so.
See the MSDN documentation on exposing basic accessibility information for more information on the work required.
Keyboard Accessibility
In addition to the keyboard navigation concerns outlined in below, XAML-Rendered and CoreGraphics-Rendered controls are not exposed properly to UIAutomation. For example; WinObjC buttons aren’t click-able, sliders aren’t modifiable, and UI control collections aren’t exposed as such to accessibility tools.
For any XAML-Rendered and CoreGraphics-Rendered controls that need this functionality, WinObjC will need to provide custom AutomationPeer implementations, which will be a unique implementation per control.
iOS Accessibility
In order to light up app-provided accessibility data, WinObjC will need to implement the iOS accessibility APIs.
Note: More investigation is required before we can adequately prioritize this work; how many apps require this, etc.
Accessibility - Directional Navigation (Keyboard, Xbox, etc.)
Other than the firstResponder concept, iOS doesn’t have the notion of a ‘focused control’. This differs greatly from Windows, where keyboard input is a fundamental part of the overall user interaction experience for apps. The keyboard is indispensable to people with certain disabilities and for users who consider it a more efficient way to interact with an app. For example, users should be able to navigate around your app by using tab and arrow keys, activate UI elements by using spacebar and enter, and access commands by using keyboard shortcuts. See the Windows 10 keyboard interactions documentation for more details.

In addition to keyboard navigation scenarios, the upcoming Windows 10 refresh adds built-in support to XAML for XY Focus Navigation and Interaction, allowing apps to work well on Xbox with little-to-no modification. The XY Focus Navigation and Interaction documentation discusses several difficulties around navigation via a controller/remote on large screens; particularly with ‘focus trapping’. For example; by default, certain controls (such as a ScrollViewer for a EULA) can be painful to navigate past with a controller/keyboard, because by default, focus jumps into them when they are focused. XAML recently added support for opting out of such behavior, via the new IsFocusEngagementEnabled property. 	Comment by Raj Seshasankaran: Can we make the call that to get on XBox and TV, they need to write the UI in XAML?	Comment by Jared Henderson: I’d rather leave that up to the developer. If their UIKit version works well, and they’re happy with it, then I think they should be able to ship it.

These are fundamental concepts that WinObjC will need to implement from scratch for all of its custom XAML-Rendered and CoreGraphics-Rendered controls that accept input focus. Focus rects, focus engagement, tab ordering, keyboard shortcuts, etc.; although possible, this type of functionality will be difficult and costly to implement for XAML-Rendered and CoreGraphics-Rendered control.

Note: We must also confirm that tab and XY navigation work well with WinObjC’s XAML-Adapted controls, considering that we position them within the app’s window via several XAML transforms. Tab order seems to work in the WOCCatalog XAML control sample, but it’s possible there will be extra work here, even if we move to all XAML-Adapted control implementations. Even so, tweaking XAML-Adapted behavior will certainly be less work than writing it all from scratch for XAML-Rendered or CoreGraphics-Rendered controls.

[bookmark: _Localization][bookmark: _Toc449186709][bookmark: _Toc456171622]Localization
WinObjC needs to add localization support to any custom controls that require it, such as the DatePicker, UIBarButtonItem, UICollectionViewUpdateItem. This can be implemented by calling into ICU for localized strings rather than hard-coding them, but it would likely be easier to instead leverage XAML’s localized controls in most cases.
[bookmark: _Directional_Navigation_(Xbox,][bookmark: _Implementing_UIKit_Controls][bookmark: _Toc449186710][bookmark: _Toc456171623]Implementing UIKit Controls
As established above, it is beneficial to implement WinObjC’s UI controls upon XAML, in order to leverage the Windows platform, and to reduce a significant amount of duplicated effort. In order to do so, we must thoroughly research each control to identify their adaptable XAML counterparts, while taking any significant feature gaps into account.

Ideally, we can find 1:1 mappings for each control, so we don’t dissuade prospective WinObjC app developers, but there may be feature gaps for some controls. Any significant feature gaps that are identified will need to be communicated to the XAML team, in order to find a workaround, and/or to have the feature added to the Windows platform to benefit all Windows app developers.	Comment by Ramu Ramanathan: If there is are no equivalent control or significant gap, then we should work with XAML team and get the required control/feature to implement the control.	Comment by Jared Henderson: Thanks; that was called out below, but also added here for clarity.

The below chart is an excerpt of WinObjC’s UI control assessment chart, which enumerates all of the UI controls that we have implemented (and that we are planning to implement), and assesses (at a very high level) the viability of implementing them with the XAML-Adapted approach:

	Control
	Implementation
	XAML Counterpart
	Focusable
	Significant Gaps
	XAML SWAG

	MKMapView
	Stub
	MapControl
	Yes
	
	n/a - stub

	UIActionSheet
	Custom
	Custom 'MessageBox'
	Children
	
	.5-1 iteration

	UIActivityIndicatorView
	Custom
	ProgressRing
	No
	
	.5-1 iteration

	UIAlertView
	Custom
	Custom 'MessageBox'
	Children
	
	.5-1 iteration

	UIButton
	Custom
	Button
	Yes
	
	1 iteration

	UICollectionReusableView
	Custom
	??
	Yes
	
	see parent cost

	UICollectionView
	Custom
	GridView?
	Yes
	
	2+ iterations

	UICollectionViewCell
	Custom
	??
	Yes
	
	see parent cost

	UIDatePicker
	Custom
	CalendarDatePicker
	Yes
	
	1-2 iterations

	UIImageView
	Custom
	Image
	No
	
	unclear if desired

	UILabel
	Custom
	TextBlock
	No
	
	unclear if desired

	UINavigationBar
	Custom
	CommandBar
	Children
	
	1-2 iterations

	UIPageControl
	Stub
	Custom Button Collection
	Children
	
	1 iteration

	UIPickerView
	Custom
	Custom
	Children
	
	1-2 iterations

	UIPopoverBackgroundView
	Stub
	Custom
	No
	
	n/a - stub

	UIProgressView
	Custom
	ProgressBar
	No
	
	.5-1 iteration

	UIRefreshControl
	Stub
	Custom
	No
	
	n/a - stub

	UIScrollView
	Custom
	ScrollViewer
	Children
	
	1-2 iterations

	UISearchBar
	Custom
	Custom - TextBox, Buttons
	Children
	
	.5-1 iteration

	UISegmentedControl
	Custom
	Custom - Buttons
	Children
	
	1 iteration

	UISlider
	Custom
	Slider
	Yes
	
	.5-1 iteration

	UIStackView
	Stub
	GridView
	Children
	
	n/a - stub

	UIStepper
	Stub
	Custom?
	Children
	
	n/a - stub

	UISwitch
	Custom
	ToggleSwitch
	Yes
	
	.5-1 iteration

	UITabBar
	Custom
	CommandBar
	Children
	
	1-2 iterations

	UITableView
	Custom
	GridView?
	Children
	
	2+ iterations

	UITableViewCell
	Custom
	??
	Children
	
	see parent cost

	UITextField
	Custom
	TextBox/PasswordBox
	Yes
	AttributedText
	1-2 iterations

	UITextView
	Custom
	RichEditBox
	Yes
	AttributedText, Occlusion Paths
	1-2 iterations

	UIToolbar
	Custom
	CommandBar
	Children
	
	1-2 iterations

	UIVisualEffectView
	Stub
	Visual?
	No
	
	n/a - stub

	UIWebView
	XAML-Adapted
	WebView
	Yes
	
	n/a - already XAML

[bookmark: _Toc449186711][bookmark: _Toc456171624]Approach
Based on WinObjC’s UI control assessment chart, we will perform a detailed analysis on a per-control basis, in order to answer the following questions:

1. Identify the iOS control’s XAML counterpart; aka its potential XAML-Adaptable control.

2. Produce a dev spec that identifies all adaptation points, as well as any feature gaps in the identified XAML-Adaptable control.

a. If a significant feature gap is identified, gather data from the sample of community-provided apps, to see how important the missing feature is.

b. If the missing feature is deemed critical, work with the XAML team to find a workaround, and/or to add the missing feature to the Windows platform.

[bookmark: _Toc449186713][bookmark: _Toc456171625]Example Control Comparisons
UITextField Comparison
1. Identify the iOS control’s XAML counterpart; aka its potential XAML-Adaptable control.
· XAML’s TextBox is the Windows equivalent.

2. Produce a dev spec that identifies all adaptation points, as well as any feature gaps in the XAML-Adaptable control.

· See the UITextField Design document for a detailed assessment on the feasibility of the port to XAML-Adapted.

a. If a significant feature gap is identified, gather data from the sample of community-provided apps, to see how important the missing feature is

· NSAttributedString rendering is the only major feature gap, but our current implementation is software-rendered and suffers from severe pixelation, so we are ok losing this feature in order to benefit from the rest of the default behavior provided by the platform (text input stack integration, accessibility, keyboard navigation, etc.)

b. If the missing feature is deemed critical, work with the XAML team to find a workaround, and/or to add the missing feature to the Windows platform.

· A potential workaround is to perform NSAttributedString->RTF conversions, but we should instead formalize a feature request to the XAML team.

[bookmark: _Application_Interop_with][bookmark: _Toc449186714][bookmark: _Toc456171626]UIKit Markup
Before jumping into the proposed XAML interop approaches below, it’s beneficial to recap UIKit’s implementation of the Model-View-Controller pattern, and how that intersects with UIKit’s event and input routing behavior.

[bookmark: _View_Controllers_and][bookmark: _Toc449186715][bookmark: _Toc456171627]View Controllers and Views
The UIViewController class provides the infrastructure for managing the UIViews of iOS apps. A UIViewController manages a set of views that make up a portion of an iOS app’s UI. It is responsible for loading and disposing of those views, for managing interactions with those views, and for coordinating responses with any appropriate data objects (aka models). UIViewControllers also coordinate their efforts with other controller objects — including other UIViewControllers — in order to coordinate the management of the app’s overall UI.
A UIViewController’s main responsibilities include:
· Updating the contents and state of their views, usually in response to changes in the underlying data model.
· Responding to user interactions with views.
· Resizing views and managing overall UI layout.
A custom UIViewController subclass can also act as a container UIViewController which manages the presentation of other UIViewControllers that it owns (aka its ‘child view controllers’). A child UIViewController’s view can be presented as-is, or in conjunction with the views owned by the containing UIViewController. For example; see UIPageViewController and UISplitViewController.
True to the nature of the MVC pattern; UIViewControllers make calls directly to, and receive calls directly from, the UIViews that they manage. This differs from the Model-View-ViewModel pattern that is common in XAML applications, where ViewModels are not directly coupled with the views that they communicate with via XAML data binding.
The explicit UIViewController/UIView coupling on iOS is implemented via Outlets and Actions in nib files.
[bookmark: _Outlets][bookmark: _Xib/Nib_Files][bookmark: _Toc449186716][bookmark: _Toc456171628]Xib/Nib Files
‘nib files’ store the details of iOS app UI, similar to XAML files on Windows. They are comprised of various serialized UIViewControllers, UIViews (and other NSObjects that implement the UIKit NSObject class category). These objects are stored in ‘nib files’ along with descriptions of the properties, styles and relationships between them.
There are several forms of ‘nib files’ on iOS:
· Xib Files
The XML representation of a ‘nib file’ that is used in Xcode.

· Storyboard Files
Succeeds xib files; enhanced/modern version of xib files on iOS. A storyboard is a visual representation of the UI of an iOS application, showing screens of content and the connections between those screens. A storyboard is composed of a sequence of scenes, each of which represents a view controller and its views; scenes are connected by segue objects, which represent a transition between two view controllers.

· Nib Files
The compiled/binary version of xib or storyboard files.
WinObjC’s ‘xib2nib’ tool converts xib and storyboard files into a binary nib representation as a post-compile step when building an WinObjC app. This binary representation is parsed at runtime to load and initialize its contained objects, just as it would on iOS; see Nib File Initialization for more info.
[bookmark: _Outlets_1]Outlets
Outlets are the endpoints that tie UIViewControllers to the UIViews (and other NSObjects) that they interact with. They are exposed as properties in code, annotated with the symbol IBOutlet, and their values are assigned graphically in a nib file or a storyboard via Xcode’s Interface Builder.
App developers declare an outlet in the interface of an ObjectiveC class, and make a connection between the outlet and another object (often a UIView) in the nib file or storyboard. For example, the following allows the UIViewController to directly modify its textField.
@property (weak, nonatomic) IBOutlet UITextField* textField;
[bookmark: _Actions]Actions
An action is an event handler in an iOS app, often tied to an input event. When an event takes place, the action that’s connected to it is passed up the UIResponder chain until it’s handled. For example; a button’s ‘action’ (aka click) handler could be a ‘restoreDefaults:sender’ method call that’s passed up the UIResponder chain to be invoked on an interested object in the chain.
Actions can accomplish anything from manipulating a piece of data to updating the UI; they drive the flow of an iOS app in response to user or system events.
Actions are defined by creating and implementing a method with an IBAction return type and a ‘sender’ parameter. For example:
	- (IBAction)restoreDefaults:(id)sender;
The sender parameter points to the object that was responsible for triggering the action (could be a button, slider, another UIViewController, etc.).
The IBAction return type is a special keyword (typedef’d to void); it indicates that the method is an action that can be connected in Xcode’s Interface Builder.
[bookmark: _Nib_File_Initialization]Nib File Initialization
Upon iOS app launch, the app’s ‘main’ storyboard/nib file is loaded and initialized. This process begins with the allocation and initialization of every object in the nib file. During the instantiation process, each object in the nib file is unarchived and then initialized with the method befitting its type. Objects that conform to the NSCoding protocol (including all subclasses of UIView and UIViewController) are initialized using their initWithCoder: method. All objects in the nib file that do not conform to the NSCoding protocol are initialized using their vanilla init method.
After all objects have been instantiated and initialized, the nib-loading code reestablishes the outlet and action connections for all of those objects. Finally, after all outlet and action connections are made, each object receives the awakeFromNib message – this is typically where default values are set for the connected outlets (setting default text on a label, etc.).
See this article for more info on the UIViewController lifecycle: http://matteomanferdini.com/the-common-lifecycle-of-a-view-controller/
[bookmark: _The_UIResponder_Chain][bookmark: _Toc449186717][bookmark: _Toc456171629]The UIResponder Chain
The UIResponder chain on iOS plays a critical role in the communication between components in a UIKit application; it provides a loosely-coupled mechanism for views, controllers, and the input system to communicate.

Note: There is a common misconception that UIKit controls are able to receive forwarded touch events from other controls. However, Apple clearly documents that UIKit controls do not support receiving touch input that was not bound to them (if they were not the ‘hit-test view’ when touches began. See the apple documentation for more info.

See the iOS UI Responder Chain documentation: for a detailed write-up.

[bookmark: _XAML_Interop_Approaches][bookmark: _Toc449186718][bookmark: _Toc456171630]XAML Conversion Approaches
Two primary options have been considered for exposing and encouraging the use of XAML markup from within ported iOS apps. They are not mutually-exclusive; we can use one approach as a stepping-stone toward the second more ambitious goal.

[bookmark: _Cooperative/Distinct_UIKit_and][bookmark: _Toc449186719][bookmark: _Toc456171631]Cooperative/Distinct UIKit and XAML Pages
This approach strives for rich integration with new XAML pages into existing WinObjC applications. Developers will be able to add new XAML pages to their WinObjC apps as desired, by following essentially the same “File->New->XAML Page” pattern that they would use to add a new XAML page to a C++/C# Windows app. Meanwhile, their existing ported Xib scenes will continue to function as they do today.

Developers will be empowered to migrate their xib pages to XAML as needed, and/or to enrich their apps with Windows-specific features by adding new interoperable XAML scenes as desired.

[bookmark: _XamlViewController]Xaml ViewController
The UIViewController is the logical integration point for XAML pages in WinObjC apps; UIViewControllers communicate with other components in the app, but the views that they manage are typically self-contained.

WinObjC will update UIViewController to also be responsible for loading, managing, and presenting a backing XAML page. App developers will derive from this class to add custom management for their contained XAML pages. These XAML-backed UIViewControllers will be able integrate into the UIResponder chain just as any other UIViewController would.

For example, apps may choose to simultaneously co-host xib and XAML pages within a UISplitViewController, or to simply render a full-window XAML page:

[image:]

Model-View-ViewModel
The XamlUIViewController will be able to instantiate and load a backing XAML page, and optionally set the page’s DataContext to a custom ObjectiveC class (which derives from a WinRT-projected Windows::UI::Xaml::Data::INotifyPropertyChanged implementation), thus creating a functional ObjectiveC ViewModel:

Aside from a ramp-up on XAML markup and the Model-View-ViewModel pattern, this will be easy for app developers to adopt. Since MVVM will decouple the page’s backing C++/CX code from the rest of the WinObjC application, there will be no need for the developer to also ramp-up on C++/CX.

Note: This is the basic design, but a dev one-pager will be required to work through more specific details.

[bookmark: _Code_Behind:_Language]Code Behind: Language and Tooling Support
Long-term, the hybrid UIKit/Model-View-ViewModel pattern demonstrated above may not scale for all app developers’ needs, as they may want to add code-behind to their XAML page.

The ideal solution here might be to enable a “File->New->XAML Page” path that generates ObjectiveC or Swift code behind rather than C++/CX.

[bookmark: _XIB-2-XAML]XIB-2-XAML
We will also invest in a XIB-2-XAML tool that assists developers in converting specific pages of their app from xib to XAML. This tool will perform a best-effort attempt at schema mapping. There are many properties/constructs that won’t map easily to XAML; storyboards, auto-layout, etc., but over time we should be able to identify the correct mappings for most of them.

Post conversion, the page may not render 100% correctly, but the developer will be able to easily tweak the layout in the XAML designer as needed.

[bookmark: _Toc449186720][bookmark: _Toc456171632]Fully-Converted XAML Application
This is an additive approach to all other details outlined in this document.

After implementing Cooperative/Distinct UIKit and XAML Page support, and its XIB-2-XAML tool, we will further improve the app import workflow by providing a conversion process which converts all of the app’s xib files to XAML files, again with a best-effort attempt at schema mapping.

Apps likely won’t run perfectly post conversion, but the app developer will be presented with an all-up UWP App that they can further tweak to get running properly on Windows.

All details will be outlined in forthcoming dev design documents.

[bookmark: _Toc449186721][bookmark: _Toc456171633]Additional Notes and Potential Improvements
[bookmark: _CoreGraphics]CoreGraphics
CoreGraphics is an iOS API for 2D rasterization. WinObjC’s implementation is built on the OSS Cario library, and the version we’re using only supports rendering to software bitmaps. Our version of Cairo leverages the OSS FreeType library for its text layout calculations, which conflicts with XAML’s usage of DirectWrite – they use different algorithms to calculate text size – so their calculations don’t match 100%. This leads to truncation/alignment issues.	Comment by Ashwini Varma: Can you help elaborate on what the conflict is?

CoreGraphics is not typically a ‘hot path’ in iOS apps; it’s used mostly for scenes like load screens in game UI.

Maybe an option to move to an OSS Cairo that’s built on Win2D or D2D (although the latter is probably not WACK friendly) if needed for perf or battery improvements by moving to GPU rendering.

CoreText
CoreText is an iOS API for performing text layout calculations. WinObjC’s implementation currently leverages the OSS FreeType library for these calculations, which conflicts with XAML’s usage of DirectWrite.
CoreText and CoreGraphics both use FreeType for text layout/positioning. CoreText just does layout/positioning calculations, whereas CoreGraphics renders with those calculations.

This isn’t ideal for Custom Implementation – XAML-Rendered controls, because the layout calculations for all of our text-rendering goes through CoreText, yet we render all for these controls text via XAML TextBlocks (which uses DWrite to do it’s text layout/positioning). This discrepancy leads to misaligned text sizes in some cases (the infamous ‘Bac’ button). 	Comment by Ashwini Varma: Can we reword this to say - any of our controls which fall into the CustomControl buckets are susceptible to this? Also, can we list out which they are so we can evaluate if we can use the equivalent XAML controls instead? Not sure why this isn't also called out as an option to consider? 	Comment by Jared Henderson: Will update the text. This applies to any custom implementation – XAML-rendered control that renders text – we have several. Using a XAML control won’t always be possible, as called out several other places in the doc, but I’ll add it here as a potential solution. 	Comment by Ramu Ramanathan: This problem becomes apparent when the font used for calculation and drawing are different. In this particular case, the calculation was done with normal font but the rendering was done with bold font. This led to the text wrapping issue.

We have several potential solutions to this:

· CoreText could be moved to DWrite to align more closely with our XAML label’s usage of DWrite, but CoreGraphics moving over would be much more expensive – which would result in apps running into issues when using CoreText/CoreGraphics directly for rendering text.	Comment by Ramu Ramanathan: We should consider switching to DWrite for both CoreText and CoreGraphics. This requires writing a DWrite backend for Cairo.	Comment by Jared Henderson: If we don’t have a hard dependency for our own CoreText/CoreGraphics rendering (due to a move to XAML for all controls), I don’t see a compelling reason to invest in a switch to DWrite for these.

· Our internal usage of CoreText for text sizing calculations when implementing Custom Implementation – XAML-Rendered controls could move to DWrite, while leaving our CoreText and CoreGraphics implementations alone.

· We could move every control that renders text over to XAML-Adapted implementations (although this may not always be possible – it depends on the control).	Comment by Ramu Ramanathan: Even if we use XAML for text rendering, we still have to use FreeType/DWrite for text calculation to implement APIs that requires position/size data.

[bookmark: _Cooperative_Application_NSRunLoop]Cooperative Application NSRunLoop and CoreWindow Message Dispatching
Work is underway to consolidate the UI thread and iOS application thread fibers, in order to unblock some PLM functionality. However, we will still drain the NSRunLoop queue fully before yielding back to the CoreDispatcher, which can potentially starve the CoreDispatcher’s message pump. We should look at a more cooperative approach in RS2.

image1.emf
CoreWindow

Xaml::Controls::Grid

CALayerXaml CALayerXaml CALayerXaml

CALayerXaml CALayerXaml CALayerXaml

Microsoft_Visio_Drawing.vsdx
CoreWindow
Xaml::Controls::Grid
CALayerXaml
CALayerXaml
CALayerXaml
CALayerXaml
CALayerXaml
CALayerXaml

image2.emf
CALayer

CATextLayer

DisplayTexture

DisplayTextureContent DisplayTextureText

Xaml::ImageSource

Media::WriteableBitmap

Xaml::TextBlock

CALayerXaml : Xaml::Panel

XAML UI Tree

Microsoft_Visio_Drawing1.vsdx
CALayer
<<Stereotype>>
parameter
CATextLayer
<<Stereotype>>
parameter
M1
M2
M3
M4
DisplayTexture
<<Stereotype>>
parameter
DisplayTextureContent
<<Stereotype>>
parameter
DisplayTextureText
<<Stereotype>>
parameter
M1
M2
M3
M4
M1
M2
M3
M4
M1
M2
M3
M4
M1
M2
M3
M4
M1
M2
M3
M4
Xaml::ImageSource
<<Stereotype>>
parameter
M1
M2
M3
M4
Media::WriteableBitmap
<<Stereotype>>
parameter
M1
M2
M3
M4
Xaml::TextBlock
<<Stereotype>>
parameter
M1
M2
M3
M4
CALayerXaml : Xaml::Panel
<<Stereotype>>
parameter
XAML UI Tree
M1
M2
M3
M4
M1
M2
M3
M4
M1
M2
M3
M4

image3.emf
UIButton

UIImageView

UILabel

UIImageView

CALayer

UILabel

CATextLayer

Microsoft_Visio_Drawing2.vsdx
UIButton
UIImageView
UILabel
M1
M2
M3
M4
UIImageView
<<Stereotype>>
parameter
CALayer
<<Stereotype>>
parameter
UILabel
<<Stereotype>>
parameter
CATextLayer
<<Stereotype>>
parameter
M1
M2
M3
M4

image4.png
UspiviewCorerller

Uniindow

[—
Content

XamUlViswCantrolier
Contant

XamUIViswCantrolier
Content

image5.emf
UIXamlViewController

Projected INotifyPropertyChanged

UIViewController

CustomXAMLViewController

CustomViewModel (ObjectiveC)

Projected XAML Page

XAML Data Binding

KVO or

Direct

Communication

Microsoft_Visio_Drawing3.vsdx
UIXamlViewController
<<Stereotype>>
parameter
Projected INotifyPropertyChanged
<<Stereotype>>
parameter
UIViewController
<<Stereotype>>
parameter
CustomXAMLViewController
<<Stereotype>>
parameter
CustomViewModel (ObjectiveC)
<<Stereotype>>
parameter
M1
M2
M3
M4
Projected XAML Page
<<Stereotype>>
parameter
M1
M2
M3
M4
M1
M2
M3
M4
M1
M2
M3
M4
M1
M2
M3
M4
XAML Data Binding
M1
M2
M3
M4
KVO or
Direct
Communication
M1
M2
M3
M4

